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Abstract

We study learners (computable devices) inferring formal languages, a setting referred to as lan-

guage learning in the limit or inductive inference. In particular, we require the learners we inves-

tigate to be witness-based, that is, to justify each of their mind changes. Besides being a natural

requirement for a learning task, this restriction deserves special attention as it is a specialization

of various important learning paradigms. In particular, with the help of witness-based learn-

ing, explanatory learners are shown to be equally powerful under these seemingly incomparable

paradigms. Nonetheless, until now, witness-based learners have only been studied sparsely.

In this work, we conduct a thorough study of these learners both when requiring syntactic and

semantic convergence and obtain normal forms thereof. In the former setting, we extend known

results such that they include witness-based learning and generalize these to hold for a variety of

learners. Transitioning to behaviourally correct learning, we also provide normal forms for se-

mantically witness-based learners. Most notably, we show that set-driven globally semantically

witness-based learners are equally powerful as their Gold-style semantically conservative counter-

part. Such results are key to understanding the, yet undiscovered, mutual relation between various

important learning paradigms when learning behaviourally correctly.

Keywords: language learning in the limit, inductive inference, behaviourally correct learning,

explanatory learning, witness-based learning, normal forms

1. Introduction

In his seminal paper, Gold (1967) studied the algorithmic learning of formal languages from a grow-

ing but finite amount of information thereof. This marked the starting point of inductive inference

or language learning in the limit, a branch of (algorithmic) learning theory. Here, a learner h (a

computable device) is successively presented all and only the information from a formal language

L (a computably enumerable subset of the natural numbers). We call such a list of elements of L
a text of L. When given a new datum, the learner h makes a guess (a description for a computably

enumerable set) about which language it believes to be presented. Once these guesses converge to

a single, correct hypothesis explaining the language, the learner successfully learned the language

L on this text. We say that h learns L, if it learns L on every text of L.

We refer to this as explanatory learning as the learner, in the limit, provides an explanation of

the presented language and denote it as TxtGEx. Here, Txt indicates that the information is given

from text, G stands for Gold-style learning, where the learner has full information on the elements

presented to make its guess, and, lastly, Ex refers to explanatory learning. Since a learner which

always guesses a particular language can learn this very language, we study classes of languages

which can be TxtGEx-learned by a single learner and denote the set of all such classes with

[TxtGEx]. We refer to this set as the learning power of TxtGEx-learners.
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Many additional restrictions may be imposed on the learners. For example, we may apply

memory restrictions, change the criterion for successful learning or require the learner to refrain

from certain unwanted behaviour. In this paper, we require each learner to justify any mind change it

makes. Kötzing and Schirneck (2016) introduced this as witness-based learning (Wb) as a means to

specialize many important restrictions in inductive inference, including conservativeness (Angluin,

1980), weak monotonicity (Jantke, 1991; Wiehagen, 1991) and cautiousness (Osherson et al., 1982),

see Section 2.1 for detailed definitions. While conservative learners are always weakly monotone,

there is no general connection to cautious learners. Nonetheless, often these learners are equally

powerful, see Kinber and Stephan (1995) or Kötzing and Palenta (2016).

A key result of Kötzing and Schirneck (2016) reveals an explanation for this phenomenon. In

the setting they study, they show that witness-based learners are equally powerful as target-cautious

learners (CautTar), which may never overgeneralise the target language (Kötzing and Palenta,

2016). Note that this restriction is a generalization of all the restrictions mentioned above. In partic-

ular, they study partially set-driven learners (Psd), see Blum and Blum (1975) and Schäfer-Richter

(1984), which base their hypotheses solely on the amount and content of the information given.

Similar equalities have been shown for Gold-style and set-driven learners (Sd), which base their

hypotheses solely on the content of the information given to them (Wexler and Culicover, 1980), by

Kinber and Stephan (1995) and Kötzing and Palenta (2016). However, these results do not include

witness-based learning.

In this paper we expand these results to also include witness-based learners and generalize

them such that they also hold for total and globally witness-based learners. This way, we dis-

cover interesting connections between these different “types” of learners and provide normal forms

thereof. Furthermore, we also study behaviourally correct learners (Bc), which need to con-

verge semantically to the correct language (Case and Lynes, 1982; Osherson and Weinstein, 1982).

Here, the mutual relation between the considered restrictions is yet to be discovered. Studying se-

mantically witness-based learners (SemWb), the semantic counterpart of witness-based learners

(Kötzing et al., 2017), we complement similar studies of (target-) cautious learners conducted by

Doskoč and Kötzing (2020) and, thus, get one step closer to discovering these relations.

In particular, in Section 3, we extend the results of Kinber and Stephan (1995) as well as

Kötzing and Palenta (2016) regarding conservative, (target-) cautious as well as weakly monotone

Ex-learners to include witness-based learning. Simultaneously, we generalize these together with

the results of Kötzing and Schirneck (2016) to hold, amongst others, also for total and globally

witness-based learners. These results are presented in Theorems 6, 7 and 10 for G-, Psd- and

Sd-learners, respectively. Besides covering multiple types of learners at once, these results unveil

interesting relations. For example, in the case of G- or Psd-learning, a total learner may be as-

sumed globally witness-based, however, only maintaining its learning power for languages it learns

target-cautiously.

In Section 4, we study semantically witness-based Bc-learners and show that three normal

forms can be assumed simultaneously. In particular, we show that semantically conservative learn-

ers (SemWb), the semantic counterpart of conservative learners (Kötzing et al., 2017) and a gen-

eralization of semantically witness-based learning, may be assumed (a) globally (b) semantically

witness-based and (c) set-driven, see Theorem 13. In Section 5, we conclude this work.
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2. Language Learning in the Limit

2.1. Preliminaries

In this section we introduce notation and preliminary results used throughout this paper. Thereby,

we consider basic computability theory as known, for an overview we refer the reader to Rogers Jr.

(1987). We start with the mathematical notation and use ( and ⊆ to denote the proper subset

and subset relation between sets, respectively. We denote the set of all natural numbers as N =
{0, 1, 2, . . . }. Furthermore, we let P and R be the set of all partial and total computable functions

p : N → N. Next, we fix an effective numbering {ϕe}e∈N of all partial computable functions and

denote the e-th computably enumerable set as We = dom(ϕe) and interpret the number e as an

index or hypothesis of this set. Additionally, we mention the following important (total) computable

functions. Firstly, we fix a total computable coding function 〈., .〉 and its inverse for the first and

second component π1 and π2, respectively. Furthermore, we write pad for an injective computable

function such that, for all e, k ∈ N, we have We = Wpad(e,k). We use unpad1 and unpad2 to

recover the first and second component, respectively. Note that both functions can be extended

iteratively to more coordinates. Lastly, for any finite set D ⊆ N, we let ind(D) be an index for this

finite set, that is, Wind(D) = D.

We learn recursively enumerable sets L ⊆ N, called languages, using learners, that is, partial

computable functions. By # we denote the pause symbol and for any set S we denote S# :=
S ∪ {#}. Then, a text is a total function T : N→ N∪ {#} and the collection of all texts is denoted

as Txt. In addition, for any text or sequence T , we let content(T ) := range(T ) \ {#} be the

content of T . A text of a language L is such that content(T ) = L. We denote the collection of all

texts of L as Txt(L). Additionally, for n ∈ N, we denote by T [n] the initial sequence of T of length

n, that is, T [0] := ε and T [n] := (T (0), T (1), . . . , T (n−1)). For a set S, we call the sequence (text)

where all elements of S are presented in strictly increasing order without interruptions (followed by

infinitely many pause symbols if S is finite) the canonical sequence (text) of S. On finite sequences

we use ⊆ to denote the extension relation and ≤ to denote the order on sequences interpreted as

natural numbers. Given two sequences σ and τ we write σ⌢τ to denote the concatenation of these.

Occasionally, we omit writing ⌢ to favour readability.

Following the system introduced by Kötzing (2009), we formalize learning criteria. An inter-

action operator β takes a learner h ∈ P and a text T ∈ Txt as argument and outputs a possibly

partial function p. Intuitively, β provides the information for the learner to make its guesses. We

consider the interaction operators G for Gold-style or full-information learning (Gold, 1967), Psd

for partially set-driven learning (Blum and Blum, 1975; Schäfer-Richter, 1984) and Sd for set-

driven learning (Wexler and Culicover, 1980). We define these using eponymous functions which

operate on sequences called sequence interaction functions. Define, for any i ∈ N,

G(h, T )(i) := h(G(T [i])),where G(T [i]) = T [i],

Psd(h, T )(i) := h(Psd(T [i])),where Psd(T [i]) = (content(T [i]), i),

Sd(h, T )(i) := h(Sd(T [i])),where Sd(T [i]) = content(T [i]).

The intuition is the following. A Gold-style learner has full information on the elements presented

to it, while a partially set-driven learner does not have information on the order the elements were

presented in or the frequency of each particular element. However, it may base its guess on the total

amount of elements presented, an information a set-driven learner is not aware of. Furthermore, for
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each of the considered interaction operators we define an ordering �β using the associated sequence

interaction functions as follows. Given finite sequences σ and τ , we define

σ �β τ :⇔ β(σ) � β(τ) :⇔ ∃τ ′ : β(σ⌢τ ′) = β(τ). (1)

Intuitively, σ �β τ indicates that information β(σ) can be extended to β(τ).
Given a learning task, we can distinguish between various criteria for successful learning. Ini-

tially, Gold (1967) introduced explanatory learning (Ex) as such a learning criterion, where the

learner is expected to converge to a single, correct hypothesis in order to learn a language. This can

be loosened to require the learner to converge semantically, that is, from some point onwards it must

output correct hypotheses which may change syntactically. This is referred to as behaviourally cor-

rect learning and denoted by Bc (Case and Lynes, 1982; Osherson and Weinstein, 1982). Formally,

a learning restriction δ is a predicate on a total learning sequence p, that is, a total function, and a

text T ∈ Txt. For the mentioned criteria we have

Ex(p, T ) :⇔ ∃n0∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T ),

Bc(p, T ) :⇔ ∃n0∀n ≥ n0 : Wp(n) = content(T ).

We can impose restrictions on the learners in order to model natural learning restrictions or such

found in other sciences. For example, we consider consistent learning (Cons), where each hypoth-

esis has to include the information it is built on, see Angluin (1980). We focus on (semantically)

witness-based learners (Kötzing and Palenta, 2016; Kötzing et al., 2017), which need to justify each

of their (semantic) mind changes. These learners specialize a variety of important learning re-

strictions, such as conservative learning (Conv), weakly monotone learning (WMon) as well as

cautious learning (Caut). While being consistent with the information given, conservative learners

must not change their mind, see Angluin (1980), and weakly monotone learners may not discard

elements from their hypotheses, see Jantke (1991) and Wiehagen (1991). Lastly, cautious learners

may never fall back to a proper subset of any previous guess, see Osherson et al. (1982). Gen-

eralizing these are target-cautious learners (CautTar), which may never overgeneralize the target

language, see Kötzing and Palenta (2016). Particular attention will be given to semantically con-

servative learners (SemConv), the semantic counterpart of conservative learners (Kötzing et al.,

2017). We formalize the relevant restrictions as

Wb(p, T ) :⇔ ∀n,m : (∃k : n ≤ k ≤ m ∧ p(n) 6= p(k))⇒

⇒ (content(T [m]) ∩Wp(m))\Wp(n) 6= ∅,

SemWb(p, T ) :⇔ ∀n,m : (∃k : n ≤ k ≤ m ∧Wp(n) 6= Wp(k))⇒

⇒ (content(T [m]) ∩Wp(m))\Wp(n) 6= ∅,

Cons(p, T ) :⇔ ∀n : content(T [n]) ⊆Wh(T [n]),

CautTar(p, T ) :⇔ ∀n : ¬(content(T ) ( Wp(n)),

SemConv(p, T ) :⇔ ∀n,m :
(

n < m ∧ content(T [m]) ⊆Wp(n)

)

⇒ Wp(n) = Wp(m).

Finally, the always true predicate T denotes the absence of a restriction.

Now, a learning criterion is a tuple (α, C, β, δ), where C is a set of admissible learners, typically

P or R, β is an interaction operator and α and δ are learning restrictions. We denote this learning

criterion as τ(α)CTxtβδ. In the case of C = P, α = T or δ = T we omit writing the respective
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symbol. For an admissible learner h ∈ C we say that h τ(α)CTxtβδ-learns a language L if and

only if on arbitrary text T ∈ Txt we have α(β(h, T ), T ) and on texts of the target language

T ∈ Txt(L) we have δ(β(h, T ), T ). With τ(α)CTxtβδ(h) we denote the class of languages

τ(α)CTxtβδ-learned by h and the set of all such classes we denote with [τ(α)CTxtβδ].

2.2. Normal Forms in Inductive Inference

In this section we discuss helpful normal forms in inductive inference. Except for consistency, all

introduced learning restrictions are delayable. Informally, the hypotheses of a delayable restric-

tion may be postponed arbitrarily but not indefinitely. Formally, we call a learning restriction δ
delayable if and only if for all texts T and T ′ with content(T ) = content(T ′), all learning se-

quences p and all total, unbounded non-decreasing functions r, we have that if δ(p, T ) and, for all

n, content(T [r(n)]) ⊆ content(T ′[n]), then δ(p ◦ r, T ′). Furthermore, we call a restriction seman-

tic if and only if for any learning sequences p and p′ and any text T , we have that if δ(p, T ) and, for

all n, Wp(n) = Wp′(n) implies δ(p′, T ). Intuitively, a restriction is semantic if any hypothesis could

be replaced by a semantically equivalent one without violating the learning restriction. Adding the

requirement that no new syntactic mind change may be introduced by this replacement, we call a re-

striction pseudo-semantic Kötzing (2017). Note that all considered restrictions are pseudo-semantic

and all, but Ex,Wb and Conv, are semantic. Delayable and semantic restrictions are of particular

interest as one can provide general results for them. The following theorem holds.

Theorem 1 (Kötzing and Palenta (2016); Kötzing et al. (2017)) For all interaction operators β,

all delayable restrictions δ and all semantic restrictions δ′, we have that

[RTxtGδ] = [TxtGδ],

[RTxtβδ′] = [Txtβδ′].

Lastly, we discuss locking sequences. Intuitively, a locking sequence is a sequence where the

learner correctly identifies the target language and does not make a mind change anymore regardless

what information of the language it is presented. Formally, given a language L and a G-learner h, a

sequence σ ∈ L∗
# is called a locking sequence for h on L if and only if for every sequence τ ∈ L∗

#

we have that h(σ) = h(στ) and Wh(στ) = L, see Blum and Blum (1975). Dropping the first

requirement, σ becomes a Bc-locking sequence, the semantic counterpart of a locking sequence,

see Jain et al. (1999). When talking about Psd-learners, for finite D ⊆ N and t ∈ N, we call

(D, t) a locking information if and only if for all (D′, t′), such that (D, t) � (D′, t′) (compare

Equation (1)) and D′ ⊆ L, we have h(D, t) = h(D′, t′) and Wh(D′,t′) = L. Lastly, for an Sd-

learner, a finite set D is a locking set of L if and only if for all D′, with D ⊆ D′ ⊆ L, we have

h(D) = h(D′) and Wh(D′) = L. Again, the semantic counterpart is obtained by dropping the first

requirement. We use the term (Bc-) locking information to subsume all these concepts.

It is an important observation by Blum and Blum (1975) that every learner h has a locking

information on every language it learns. However, not every text may have an initial segment which

is a locking information. Learners which do have a locking information on every text of a language

they learn are called strongly (Bc-) locking (Kötzing and Palenta, 2016). Formally, a learner is

strongly (Bc-) locking on some language L if on every text T ∈ Txt(L) there exists n such that

T [n] is a (Bc-) locking sequence for h on L. If h is strongly (Bc-) locking on every language it

learns, we call h strongly (Bc-) locking. The transition to partially set-driven and set-driven learners

is immediate and, thus, omitted.
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3. Normal Forms for Witness-Based Explanatory Learners

In this section we study witness-based learning in the explanatory setting. Kötzing and Schirneck

(2016) already show that partially set-driven witness-based learners are equally powerful as target-

cautious Psd-learners. Together with the result of Doskoč and Kötzing (2020), where Gold-style

target-cautious learners may be assumed partially set-driven, we see this holding true for full-

information learners as well. However, general results including total or globally witness-based

learners are still rare. With Theorems 6, 7 and 10, we provide expansions and generalizations of

these results for Gold-style, partially set-driven and set-driven learners, respectively.

We aim to generalize the results in two ways. Firstly, the aforementioned results were shown

solely for partial learners, using additional total computable functions in order to get the desired

equality. We observe that, for these constructions to work out, it suffices that the learner remains

the “same type” after composition with total computable functions. This motivates the following

notion of R-monoids.

Definition 2 We call I ⊆ P aR-monoid if and only if (I, ◦) is a monoid and R ⊆ I .

Intuitively, the composition of a learner h ∈ I with other functions in I (especially total com-

putable ones) shall remain in I . This way, we can use functions obtained from, for example, the

S-m-n Theorem, see Rogers Jr. (1987), while keeping the learner’s “type”. Note that both R and P
are R-monoids.

Secondly, we generalize the domain on which we expect the learner to show a certain behaviour.

The desire therefore arises from the observation that some of the learners behaviour does not rely

on the learnable languages, but rather comes additionally. To require the learner to fulfil additional

requirements on such information, we extend the notion of texts to classes of sets.

Definition 3 Let S ⊆ Pow(N) be closed under subsets. We define Txt(S) ⊆ Txt as the set of all

texts of elements of S , that is,

Txt(S) :=
⋃

S∈S

Txt(S).

If S = ∅ then we consider no additional text, if S = Pow(N) then we consider all texts and,

thus, the corresponding restriction becomes globally required. Already with the next result, we

show the gain we have from these notions. Due to Kötzing and Palenta (2016), it is known that

Gold-style and set-driven learners may be assumed syntactically decisive, that is, they never return

to syntactically abandoned hypotheses. We are able to capture this result containing many different

learners, including learners restricted in memory as well as total ones or learners obeying a further

restriction on additional text, within a single theorem.

Theorem 4 Let δ and δ′ be pseudo-semantic restrictions, β ∈ {G,Psd,Sd} and S ⊆ Pow(N)
be closed under subsets. Let I be an R-monoid and let h ∈ I . Let L be the class of languages

h TxtβδEx-learns while being defined and δ′ also on Txt(S). Then, h ∈ I can be assumed

syntactically decisive on Txt(L) and Txt(S).
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Proof We generalize the ideas of Kötzing and Palenta (2016), where a similar result has been shown

for G- and Sd-learners. Let h be as stated in the theorem. For a finite sequence σ, we define

Q(β(σ))⇔ ∀σ′, β(σ′) � β(σ) :

h(β(σ′)) = h(β(σ)) ⇒ ∀σ′′, β(σ′′) ∈ [β(σ′), β(σ)] : h(β(σ′′)) = h(β(σ)),

τσ = min{σ′ | β(σ′) � β(σ) ∧ ∀σ′′, β(σ′′) ∈ [β(σ′), β(σ)] : h(β(σ′′)) = h(β(σ))},

h′(β(σ)) =

{

pad(h(β(σ)), 0), if Q(β(σ)),

pad(h(β(τσ)), β(τσ)), otherwise.

Without loss of generality, we may assume that we do not encode β(τσ) as 0. Intuitively, Q(β(σ))
checks whether h(β(σ)) has been conjectured without interruptions. In this case, h conjectures

pad(h(β(σ)), 0), where the second component zero indicates the absence of interruptions. Oth-

erwise, the second component becomes β(τσ), which is the minimal information on which no

mind change has been witnessed. Note that the first component is, by definition of τσ, the same

in both cases. We first show syntactic decisiveness. Let therefore σ1, σ2, σ3 be sequences such that

β(σ1) � β(σ2) � β(σ3) and

h′(β(σ1)) = h′(β(σ3)). (2)

To show h′(β(σ1)) = h′(β(σ2)), we distinguish between the following cases.

1. Case: unpad2(h
′(β(σ3))) = 0. Then, we have pad(h(β(σ1)), 0) = h′(β(σ1)) = h′(β(σ3)) =

pad(h(β(σ3)), 0), meaning that we have, by definition of h′, Q(β(σ1)) and Q(β(σ3)) as well

as h(β(σ1)) = h(β(σ3)) since the padding function is injective. As Q(β(σ3)) holds, we have

that, for all σ′ such that β(σ′) � β(σ3),

h(β(σ′)) = h(β(σ3))⇒ ∀σ
′′, β(σ′′) ∈ [β(σ′), β(σ3)] : h(β(σ

′′)) = h(β(σ3)).

As h(β(σ1)) = h(β(σ3)), this, in particular, holds true for σ′ = σ1. Choosing σ′′ = σ2, we

get h(β(σ2)) = h(β(σ3)). Since Q(β(σ3)) and β(σ2) � β(σ3), it also holds that Q(β(σ2)).
Thus, we get h′(β(σ2)) = pad(h(β(σ2)), 0) which is equal to h′(β(σ3)), as desired.

2. Case: unpad2(h
′(β(σ3))) 6= 0. In this case, unpadding the second components of the hypothe-

ses in Equation (2), we get β(τσ1) = β(τσ3), meaning that for τσ3 we have β(τσ3) � β(σ1)
and

∀σ′′, β(σ′′) ∈ [β(τσ3), β(σ3)] : h(β(σ
′′)) = h(β(σ3)). (3)

Choosing σ′′ = σ2, in particular, we get h(β(σ1)) = h(β(σ2)) = h(β(σ3)). From Equa-

tion (3), one can also easily see that β(τσ2) = β(τσ3). Now, as ¬Q(β(σ1)), there exist σ, σ̃
such that β(σ) � β(σ̃) � β(σ1) and h(β(σ)) = h(β(σ1)) 6= h(β(σ̃)). In particular, σ, σ̃
are such that β(σ) � β(σ̃) � β(σ2) and h(β(σ)) = h(β(σ2)) 6= h(β(σ̃)), meaning that

¬Q(β(σ2)). Thus, we get h′(β(σ2)) = h′(β(σ3)) as desired.

We next show Ex-convergence. Let L ∈ L and T ∈ Txt(L). Let n0 be minimal such that

Wh(β(T [n0])) = L and, for all n ≥ n0, we have h(β(T [n0])) = h(β(T [n])). Furthermore, let

n1 ≥ n0 be minimal such that, for all n ≥ n1, we have τT [n1] = τT [n]. Such n1 exists as N with≤ on

7
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sequences is a well-order. Now, for n ≥ n1, h′(β(T [n])) either conjectures pad(h(β(T [n])), 0) if

no interruption has been witnessed. Otherwise, there exists n2 ≥ n1 where an interruption has been

witnessed. Then, for all n ≥ n2, we have that h′(β(T [n])) conjectures pad(h(β(τT [n])), β(τT [n])).
Note that this does not imply infinitely many mind changes, as we have that n ≥ n1 and, with it,

τT [n1] = τT [n]. In both cases, we have that h′ Ex-learns L from text T .

Since h′ only makes mind changes when it witnesses a mind change or interruption of h and

since h serves the restrictions δ on Txt(L) and δ′ on Txt(S), we also have that h′ serves those.

This concludes the proof.

We make use of this result when proving our main generalizations. However, we first have to

deal with the following issue. Ideally, when generalizing the result of Kötzing and Palenta (2016),

we would obtain that any (possibly globally) target-cautious G-learner is as powerful as a (possi-

bly globally) witness-based one. However, the issue arises as globally target-cautious learners are

extremely weak. In fact, as they may never overgeneralize they can solely learn finite languages, as

we show in the following theorem.

Theorem 5 Let L ⊆ Pow(N). We have that

L ⊆ PowFin(N)⇔ L ∈ [τ(CautTar)TxtSdEx]⇔ L ∈ [τ(CautTar)TxtGBc].

Proof As the learner h which, for all finite D ⊆ N, is defined as h(D) = ind(D) learns PowFin(N),
we have that

L ⊆ PowFin(N)⇒ L ∈ [τ(CautTar)TxtSdEx].

As [τ(CautTar)TxtSdEx] ⊆ [τ(CautTar)TxtGBc], we also have

L ∈ [τ(CautTar)TxtSdEx]⇒ L ∈ [τ(CautTar)TxtGBc].

It remains to be shown that if L ∈ [τ(CautTar)TxtGBc] then L ⊆ PowFin(N). We show this by

contradiction. To that end, let h be a learner such that L ⊆ τ(CautTar)TxtGBc(h) and assume

there exists an infinite L ∈ L. Let T ∈ Txt(L), and let n be such that Wh(T [n]) = L. Now,

considering the text T ′ := T [n]⌢#∞, we have

content(T ′) = content(T [n]) ( L = Wh(T [n]) = Wh(T ′[n]).

Thus, h is not CautTar on text T ′. This is a contradiction, so we have

L ∈ [τ(CautTar)TxtGBc]⇒ L ⊆ PowFin(N).

This concludes the proof.

We overcome this issue by observing that witness-based behaviour may be obtained whenever

the learner is defined, solely on languages it is supposed to learn it needs to be target-cautious. The

idea is that, when being target-cautious, any wrong guess may still be changed when observing a

missing element from the target-language. Now we can provide the general versions of the discussed

results of Kinber and Stephan (1995), Kötzing and Palenta (2016) and Kötzing and Schirneck (2016).

Starting with Gold-style learners, Kötzing and Palenta (2016) show that target-cautious Gold-style

learners may be assumed weakly monotone, cautious and conservative without losing learning

power. We show that these even may be assumed witness-based. Furthermore, within a single

theorem, we show that this is not only the case when dealing with partial learners.
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Theorem 6 Let I be an R-monoid and S ⊆ Pow(N) closed under subsets. Let L be a class of

languages. Then, the following are equivalent.

(1) L can be TxtGWbEx-learned by an I-learner which is Wb also on Txt(S).

(2) L can be TxtGCautTarEx-learned by an I-learner which is defined also on Txt(S).

Proof The direction (1)⇒(2) follows immediately. For the other direction, we follow and expand the

proof of [TxtGConvEx] = [TxtGCautTarEx], see Kötzing and Palenta (2016, Thm. 13). Let

h ∈ I be a learner and L be TxtGCautTarEx-learnable by h which is also defined on Txt(S).
By Theorem 4 we can assume h ∈ I to be syntactically decisive on Txt(L) and Txt(S). Let

p ∈ R be such that

Wp(σ) =
⋃

t∈N











content(σ), if ¬(content(σ) ⊆W t
h(σ)),

W t
h(σ), else, if ∀ρ ∈ (W t

h(σ))
≤t : h(σ) = h(σ⌢ρ),

∅, otherwise.

Note that for all sequences σ we have

Wp(σ) ⊆ content(σ) ∪Wh(σ). (4)

For given sequences σ and τ , we define

τ E σ :⇔ content(τ) ⊆ content(σ) ∧ |τ | ≤ |σ|.

Given finite sequences σ, σ′ and τ , we define the computable predicate

Qσ(σ
′, τ)⇔ content(σ′) ( content(σ) ∧ h(σ′) 6= h(τ) ∧ content(τ) 6⊆W

|τ |−1
h(σ′) .

Given a sequence σ we can define the learner h′ as follows. For convenience, for σ 6= ε, let σ′ be

such that h′(σ−) = p(σ′). Then, we define

h′(σ) =











p(ε), if σ = ε,

p(τ⌢σ), else, if ∃τ, σ′ ⊆ τ E σ : Qσ(σ
′, τ),

h′(σ−), otherwise.

We motivate the intuition behind the learner h′. Given a sequence σ 6= ε, let σ′ be the sequence

h′ based its previous guess on. Then, if not consistent, h′ only changes its mind if there exists an

extension τ of σ′ on which h made a mind change and if there exist elements in content(τ) not yet

enumerated by W
|τ |−1
h(σ′) .

We first show that h′ converges on any text for a language L ∈ L. Let L ∈ L and T ∈ Txt(L).
Assume h′ does not converge on T . Let (p(σ′

i))i∈N be the sequence of hypotheses output by h′ on

text T . As h′ makes infinitely many mind changes, the sequence (p(σ′
i))i∈N contains infinitely many

different hypotheses. For any i where h′(T [i]) makes a mind change, the corresponding hypothesis

is, for apt τi, p(τi
⌢T [i]) instead of its previous hypothesis. Thus, in particular, for infinitely many

i, σ′
i+1 has the form τi

⌢T [i]. Thus, T ′ =
⋃

i∈N σ′
i is a text of L. As h′ makes infinitely many mind

9
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changes, for each σ′
i exists τi, σ

′
i ⊆ τi ⊆ σ′

i+1 with h(σ′
i) 6= h(τi), as seen in the second case of the

definition of h′. This contradicts the convergence of h on T ′.

Next, we show that h′ converges to the correct hypothesis on T . Let n0 be the point of conver-

gence, that is, n0 is minimal such that for all n ≥ n0 we have h′(T [n0]) = h′(T [n]). We abbreviate

σ := T [n0]. Let furthermore σ′ be such that h′ converges to p(σ′), that is, h′(σ) = p(σ′). We

consider the following two cases.

1. Case: σ′ is a locking sequence for h on L. Then, we have Wh(σ′) = L and, for all ρ ∈ (Wh(σ′))
∗,

we have h(σ′⌢ρ) = h(σ′). Thus, we get Wp(σ′) = Wh(σ′) = L.

2. Case: σ′ is not a locking sequence for h on L. As h′ converges, we have for all n and τ with

σ′ ⊆ τ E T [n] that ¬Qσ(σ
′, τ), that is, for all n ∈ N≥n0 and τ ∈ L∗, with σ′ ⊆ τ , we have

content(σ′) = content(T [n]) ∨ h(σ′) = h(τ) ∨ content(τ) 6⊆W
|τ |−1
h(σ′) .

We distinguish the following cases.

2.1. Case: For all n ∈ N≥n0 we have content(σ′) = content(T [n]). Then, content(σ′) = L.

Thus, L ⊆ Wp(σ′) by definition of p. Since h is CautTar, we have ¬(L ( Wh(σ′)).
Together with Inclusion (4), we get L = Wp(σ′).

2.2. Case: For all τ ∈ L∗, σ′ ⊆ τ we have h(σ′) = h(τ). So, h never changes its mind on

an extension of σ′ within the language L, but σ′ is no locking sequence either. This

means that Wh(σ) 6= L, meaning that h does not learn L on any text starting with σ′, a

contradiction.

2.3. Case: There exists n ∈ N≥n0 with ¬(content(σ′) = content(T [n])) and there exists

τ ∈ L∗, σ′ ⊆ τ such that h(σ′) 6= h(τ). Let n1 be minimal such that ¬(content(σ′) =
content(T [n1])). Let n ≥ n1. Note that content(σ′) ( content(T [n]) holds.

We proceed by showing L ⊆Wh(σ′) and afterwards Wp(σ′) = Wh(σ′). As h is CautTar,

this suffices in order to show L = Wp(σ′). Let τ ∈ L∗, σ′ ⊆ τ such that h(σ′) 6= h(τ)
as assumed to exist in this case. Then, for x ∈ L \ content(σ′), we have h(σ′) 6=
h(τ⌢x) by syntactic decisiveness of h, meaning that, as ¬QT [n](σ

′, τ⌢x), we have

content(τ⌢x) ⊆ W
|τ⌢x|−1
h(σ′) . Since this holds for all x ∈ L \ content(σ′) and since

content(σ′) ⊆ content(τ⌢x), we get L ⊆Wh(σ′).

It remains to be shown Wp(σ′) = Wh(σ′). The inclusion Wp(σ′) ⊆ Wh(σ′) follows from

Inclusion (4) and, as just shown, L ⊆ Wh(σ′). For the other direction, assume there

exists x ∈ Wh(σ′) \ Wp(σ′). Then, there exists a minimal tx such that x ∈ W tx
h(σ′).

But, as x is not in Wp(σ′), there also is ρ ∈ (W tx
h(σ))

∗, with |σ′⌢ρ| ≤ tx, such that

h(σ′) 6= h(σ′⌢ρ). We abbreviate τ := σ′⌢ρ. Due to h being syntactically decisive, we

also have h(σ′) 6= h(τ⌢x). By assumption, we have ¬QT [n](σ
′, τ⌢x), that is,

content(σ′) = content(T [n]) ∨ h(σ′) = h(τ⌢x) ∨ content(τ⌢x) ⊆W
|τ⌢x|−1
h(σ′) .

However, as n > n1, content(σ′) = content(T [n]) does not hold and neither does

h(σ′) = h(τ⌢x). Thus, content(τ⌢x) ⊆ W
|τ⌢x|−1
h(σ′) . But the fact that x ∈ W

|τ⌢x|−1
h(σ′)

and |τ⌢x| − 1 < tx contradict the choice of tx.

10
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Finally, we show that h′ is witness-based on Txt(L) and Txt(S). Let σ be a sequence where

h′ makes a mind change, that is, for some τ with σ′ ⊆ τ E σ such that Qσ(σ
′, τ), we have

p(σ′) = h′(σ−) 6= h′(σ) = p(τ⌢σ). We show that

(

content(σ) ∩Wh′(σ)

)

\Wh′(σ−) 6= ∅.

As, by definition of p, Wh′(σ) = Wp(τ⌢σ) ⊇ content(τ⌢σ) ⊇ content(σ), it suffices to show

content(σ) \Wh′(σ−) 6= ∅.

Furthermore, as later hypotheses of h′ are built on extensions of τ⌢σ, this is sufficient in order to

show that h′ is witness-based. We proceed with showing content(σ) \Wh′(σ−) 6= ∅. Assume the

opposite, that is, content(σ) ⊆ Wh′(σ−) = Wp(σ′). Since Qσ(σ
′, τ), we have that content(σ′) (

content(σ), h(σ′) 6= h(τ) and content(τ) 6⊆ W
|τ |−1
h(σ′) . In particular, as content(σ′) ( content(σ),

Wp(σ′) has to enumerate content(σ) by means of the second condition in the definition of p. Let

t > |τ |− 1 be a step where such a enumeration could take place, that is, W t
h(σ′) ⊇ content(σ). The

condition t > |τ | − 1 follows from the third condition of Qσ(σ
′, τ), that is, content(τ) 6⊆ W

|τ |−1
h(σ′) .

Now, there exists some ρ ∈ (W t
h(σ′))

≤t such that τ = σ′⌢ρ. However, h(σ′) 6= h(τ) = h(σ′⌢ρ),

meaning that Wp(σ′) does not enumerate W t
h(σ′). Thus, Wp(σ′) 6⊇ content(σ), a contradiction.

For example, if one is to take I = R (which is anR-monoid), one gains the same observation as

for partial learners, namely that target-cautious learners may be assumed witness-based. However,

this theorem provides another interesting result. With I = R and S = Pow(N), Theorem 6 shows

that any anywhere defined learner (that is, any total learner) may be assumed everywhere (that is,

globally) witness-based. However, it maintains its learning power solely on languages it learns

target-cautiously. With the observation of Kötzing and Palenta (2016) that any G-learner may be

assumed total, we get this property even for arbitrary learners instead of total ones.

Using our general framework we extend this result even further. Kötzing and Schirneck (2016)

show that (possibly partial) target-cautious partially set-driven learners may be assumed witness-

based. We observe that this also holds true for a variety of different learners.

Theorem 7 Let I be an R-monoid and S ⊆ Pow(N) closed under subsets. Furthermore, let L be

a class of languages. Then, the following are equivalent.

(1) L can be TxtPsdWbEx-learned by an I-learner which is Wb also on Txt(S).

(2) L can be TxtPsdCautTarEx-learned by an I-learner which is defined also on Txt(S).

Proof The direction (1)⇒(2) follows immediately. For the other direction, we follow the proof of

[TxtPsdWbEx] = [TxtPsdCautTarEx], see Kötzing and Schirneck (2016, Thm. 3.5). Let

h ∈ I be a learner and L be TxtPsdCautTarEx-learnable by h which is also defined on Txt(S).
First, we show that we may assume h to be strongly locking.

Claim 1 The learner h may be assumed strongly locking.

11
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Proof [Claim] We adapt the proof of Kötzing and Schirneck (2016) for partial Psd-learners. For

any finite set D and any number t ≥ |D|, define the learner ĥ(D, t) = h(D, 2t). As h ∈ I , so is ĥ.

Furthermore, ĥ is target-cautious as h is. Let L ∈ L and let T ∈ Txt(L). Note that h learns L on

text T̂ defined as, for any i ∈ N,

T̂ (2i) = T (i) ∧ T̂ (2i + 1) = #.

Furthermore, note that, for any n ∈ N,

ĥ∗(T [n]) = ĥ(content(T [n]), n) = h(content(T̂ [2n]), 2n) = h∗(T̂ [2n]). (5)

As h learns L on text T̂ , there exists n0 such that, for all n ≥ n0, we have h∗(T̂ [n]) = h∗(T̂ [n0])
and W

h∗(T̂ [n]) = L. In particular, this holds for all even n and together with Equation (5), we get

that also ĥ converges correctly on text T .

It remains to be shown that ĥ is strongly locking. Let L ∈ L and let σ0 be a locking sequence

of the starred learner h∗. Let T ∈ Txt(L). We show that ĥ is locking on T . Let n0 ≥ |σ0| such

that content(T [n0]) ⊇ content(σ0). We show that (content(T [n0]), n0) is a locking information.

Let n ≥ n0. As

|content(T [n]) \ content(σ0)|+ |σ0| ≤ |content(T [n])|+ |σ0| ≤ n+ n0 ≤ 2n,

there exists a sequence τ ∈ L∗ such that content(σ⌢τ) = content(T [n]) and |σ0|+ |τ | = 2n. As

σ0 is a locking sequence for h∗ we get

ĥ(content(T [n]), n) = h(content(T [n]), 2n) = h∗(σ⌢τ) = h∗(σ).

So, ĥ is strongly locking. (Claim)

Now, we build the desired TxtPsdWbEx-learner h′ which is also witness-based on Txt(S)
in the following way. Following Kötzing and Schirneck (2016), we mimic the strongly locking

learner h. Given some information, the main idea is to delay until refutation, that is, we wait with

abandoning a hypothesis until we see some datum witnessing the current hypothesis being incorrect.

Secondly, we search for locking information, a method often applied when mimicking learners. This

way, we assure correct convergence. Furthermore, to overcome the problem of multiple possible

previous hypotheses, we assume the information appeared in strictly ascending order without pause

symbols, that is, we simulate h on ascending text. Next, we poison hypotheses when witnessing

them being incorrect, that is, once a possible later mind change is witnessed, we stop enumerating

more data into this hypothesis. Lastly, we delay until consistency, that is, we do not accept a new

hypothesis until we see it to be consistent with new data.

For this sketched strategy to work, we have to overcome two major problems. Firstly, when sim-

ulating h on ascending text, we run into problems learning finite languages, as the learner may learn

such languages way after all data has been presented to it. We overcome this problem by searching

for such mind changes and returning an index for the finite language in question, unless we have

found a consistent hypothesis before. As h is target-cautious, once a hypothesis overgeneralizes the

information it got, the given information cannot be the final target.

The second problem is that partially set-driven learners have multiple previous hypotheses. We

solve this problem by assuming the information to be presented in strictly ascending order. However,

12
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this poses the following difficulty. For example, given the sequence 0, 1, 3, 2, our new learner may

base its hypothesis on {0, 1, 2} without ever considering {0, 1, 3} as possible input. We oppose this

problem in the following way. For finite D, we only use a conjecture h(D, |D|) when it contains

at least D and one additional element. Furthermore, we remove all data from this this conjecture

which is less than max(D), but not in D. This way, we may change the conjecture built on {0, 1, 3}
as it does not contain the 2. Additionally, conjectures based on {0, 1, 2} will contain all of {0, 1, 2}
as we only use conjectures which are consistent. Since we can determine consistency only in the

limit, we have to delay conjectures until consistency.

In order to define the desired learner, we continue with the formal details. For any given D,D′ ⊆
N and t′ ∈ N such that (D, |D|) � (D′, t′), define the predicate

refuted(D,D′, t′)⇔ ∃(D′′, t′′) : (D, |D|) � (D′′, t′′) � (D′, t′) ∧ h(D, |D|) 6= h(D′′, t′′).

The function refuted tells us whether there is a mind change between (D, |D|) and (D′, t′). Fix,

for any set S and any x ∈ N, the notation S>x for the set of all elements in S which are larger than

x. The set S≤x is defined analogously. Furthermore, let c ∈ R such that, for any hypothesis e and

any finite set D,

Wc(e,D) = (We)>max(D) ∪D.

The function c(e,D) enumerates the set D itself and all elements of We which are larger than

max(D). Lastly, let p ∈ R such that

Wp(D) =
⋃

t≥0

{

W t
h(D,|D|), if ¬refuted(D,D ∪W t

h(D,|D|), |D|+ t+ 1),

∅, otherwise.

The function p enumerates the same as Wh(D,|D|) until, if ever, a mind change is witnessed. Then,

it stops enumerating more data. We combine the previously introduced functions by letting, for all

finite D ⊆ N, q(D) := c(p(D),D). The function q does exactly what we explained before: while

no mind change is witnessed, it enumerates all of Wh(D,|D|) which is larger than any element given

and the set D itself as well.

To assure convergence later on, we show for all L ∈ L and all k ∈ N, we have that if

(L[k], k) is a locking information of h on L, then Wq(L[k]) = L. Let (L[k], k) be a locking in-

formation. Thus, no refutation will be witnessed on any extending information of the language.

Hence, Wp(L) = Wh(L[k],k) = L. Since L[k] contains the information in ascending order, we have

(Wh(L[k],k))≤max(L[k]) = L[k]. Thus,

Wq(L[k]) = Wc(p(L[k]),L[k]) = (Wh(L[k],k))>max(L[k]) ∪ L[k] = Wh(L[k],k) = L.

In order to define that learner h′ we need the following decision procedure. We show that for

D,D′ and t′ such that D′[|D|] = D and refuted(D,D′, t′), there exists an algorithm taking D,D′

and t′ as input and deciding D′ ⊆Wq(D). Namely, the algorithm computes the finite set

A =
⋃

t≤t′−(|D|+1)

{

W t
h(D,|D|), if ¬refuted(D,D ∪W t

h(D,|D|), |D|+ t+ 1),

∅, otherwise.
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Algorithm 1: Witness-based learner h′.

Parameter: Learner h.

Input: Finite set D ⊆ N and t ≥ |D|.
Output: New hypothesis h′(D, t).
for k = 0 to |D| − 1 do

if refuted(D[k],D, t) ∧D ⊆Wq(D[k]) then

return q(D[k])
end

end

if ∀k ≤ |D| : refuted(D[k],D, t) then
return ind(D)

end

k0 ← min{k ≤ |D| : ¬refuted(D[k],D, t)}
for s = k0 to t do

for k = k0 to min(s, |D|) do

if ∀k′ < k0 : refuted(D[k′],D[k], s) ∧D[k] 6⊆Wq(D[k′]) then

if k < |D| ∧D[k + 1] ⊆W t
q(D[k0])

then

return q(D[k0])
else

return ind(D[k])
end

end

end

end

Now, either D′ ⊆ A, in which case D′ ⊆ Wq(D). Otherwise D′ 6⊆ Wq(D), as the enumeration

would have to stop before enumerating the last element of D′ because it would make the mind

change visible.

Lastly, we need the following notation. For any set D and any k ∈ N, we use D[k] to denote the

set of the first k elements of D (in ascending order). If k > |D|, we let D[k] = D. Furthermore, let

σD be the sequence of elements in D in strictly ascending order without pause-symbols.

Finally, we can formalise h′ as in Algorithm 1. First, note that h ∈ I by construction. We

proceed by showing that L ⊆ TxtPsdEx(h′). For L ∈ L, we distinguish the following cases.

1. Case: L is finite. We, again, distinguish multiple cases.

1.1. Case: There exist k < |L| and t0 such that, for all t > t0, refuted(L[k], L, t) and L ⊆
Wq(L[k]). Let k0 be minimal such. Then, by lines 1 to 1, h′ will converge to q(L[k0])
on any text of L. We have L ⊆ Wq(L[k]) ⊆ Wh(L[k],k). As h is target-cautious, we get

L = Wh(L[k],k) and, thus, L = Wq(L[k]) as desired.

1.2. Case: There exists t0 such that, for all k < |L| and t > t0, we have refuted(L[k], L, t)
and L 6⊆ Wq(L[k]). In this case, Algorithm 1 does not halt before line 1. Then, if

refuted(L,L, t), the algorithm outputs ind(L) from lines 1 and 1. Otherwise, the al-

gorithm does not terminate before line 1 and we have k0 = |L|. Then, the algorithm

outputs ind(L) from line 1.
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1.3. Case: None of any of the previous cases applies. Then, as Case 1.1 does not apply, the al-

gorithm does not terminate within lines 1 to 1. Furthermore, since additionally Case 1.2

does not apply either, the algorithm does not terminate before line 1 and we have that

k0 < |L|. Moreover, for any k with k0 ≤ k ≤ |L|, we have h(L[k], k) = h(L[k0], k0)
as the hypotheses are not refuted. In particular, h(L[k0], k0) is the final hypothesis of h,

implying Wh(L[k0],k0) = L and Wq(L[k0]) = L. Let s be minimal such that there exists

k1 with k0 ≤ k1 ≤ |L| and

∀k′ < k0 : refuted(L[k
′], L[k1], s) ∧ L[k1] 6⊆Wq(L[k′]).

Let k1 be minimal such. As L = Wq(L[k0]), we have that for all t large enough L =
W t

q(L[k0])
. For the if-clause in line 1, we distinguish the following cases. If k1 = |L|,

this shows convergence of h′ to ind(L[k1]). If k1 < |L|, then h′ converges to q(L[k0]).

2. Case: L is infinite. Let T be the canonical text for L. Let kT be minimal such that (T [kT ], kT )
is a locking information for h on L. For D, t, with content(T [kT ]) ⊆ D ⊆ L and t ≥ kT ,

large enough, we have for all k′ < kT that refuted(L[k′],D, t). Since poisoning either stops

the enumeration of data (making Wq(L[k′]) finite) or some data from L is missing in Wq(L[k′]),

we have L 6⊆ Wq(L[k′]). Thus, once D contains enough data, the algorithm does not halt on

lines 1 to 1.

For all k ≥ kT and all D ⊆ L, t ≥ kT large enough, we have ¬refuted(L[k],D, t),
h(L[k], k) = h(L[kT ], kT ) and Wq(L[kT ]) = L. Thus, the algorithm does not halt before

line 1 with k0 = kT . Let s be minimal such that there exists k1 with kT ≤ k1 ≤ s and

∀k′ < kT : refuted(D[k′],D[k1], s) ∧D[k1] 6⊆Wq(D[k′]).

Let k1 be minimal such. As L = Wq(L[kT ]) and L is infinite, we have that, for all t large

enough, D[k1 + 1] ⊆W t
q(L[k1])

. Thus, by line 1, h′ converges to q(L[kT ]), an index for L.

Finally, we show that h′ is witness-based on Txt(L) and Txt(S). Let T be an according text. For

all i ∈ N, let Di = content(T [i]). Furthermore, let ki be such that Algorithm 1 on information

(Di, i) returns either ind(Di[ki]) or q(Di[ki]). We first note that, for all i ∈ N, we have

(Wh′(Di,i))≤max(Di[ki]) = Di[ki]. (6)

Intuitively, h′(Di, i) is consistent on Di[ki] and does not contain any other elements which are

smaller than any element thereof. This is immediate if the output is ind(Di[ki]). When the output

is q(Di[ki]), the corresponding consistency has to be witnessed, see line 1 and line 1, respectively.

Smaller elements cannot be enumerated since q applies function c. This proves that Equation 6

holds.

Now, let a, b and d, with a < d ≤ b, be such that h′(Da, a) 6= h′(Dd, d). We show

(Db ∩Wh′(Db,b)) \Wh′(Da,a) 6= ∅.

We distinguish the following cases.

1. Case: Db[kb] ( Da[ka]. It is straightforward to verify that, by Algorithm 1, the only way this

is possible is by having h′(Db, b) = q(Db[kb]) from line 1, while, for k ≥ kb and therefore

k ≥ ka, Db[k + 1] ⊆Wq(Db[kb]) as desired.

15
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2. Case: ∃x ∈ Db \ Da[ka]∃y ∈ Da[ka] : x < y. Let x be minimal such. Using Equation (6)

it suffices to show that x ∈ Db[kb]. Assume the opposite. We get that Db[kb] ( Da[ka].
Thus, as in the previous case, we get h′(Db, b) = q(Db[kb]) from line 1 and h′(Da, a) =
ind(Da[ka]) from line 1. This yields a contradiction, as the hypothesis on Db[kb] was rejected

when producing the output h′(Da, a) (as ka > kb).

3. Case: Da[ka] = Db[kb] and ka ≤ kb. Here, we distinguish four cases depending on what line in

Algorithm 1 led to the output of h′(Da, a).

3.1. Case: h′(Da, a) = q(Da[ka]) from line 1. We consider Algorithm 1 on input (Db, b).
If refuted(Da[ka],Db, b) ∧Db ⊆ Wq(Da[ka]), then there was no mind change between

h′(Da, a) and h′(Db, b), a contradiction to what we assumed. As refuted(Da[ka],Da, a)
and the predicate refuted is monotone in its second and third component, we get Db 6⊆
Wq(Da[ka]). This shows kb > ka. Thus, if h′(Db, b) = ind(Db) (from line 1), we get

(Db ∩Wh(Db,b)) \Wh(Da,a) = Db \Wh(Da,a) 6= ∅ as desired.

Otherwise, we get that kb is such that, with k0 as chosen by Algorithm 1 on (Db, b),

∀k′ < k0 : refuted(Db[k
′],Db[kb], s) ∧Db[kb] 6⊆Wq(Db[k′]).

Since we assumed a mind change between h′(Da, a) and h′(Db, b), we get ka < k0.

Thus, we have Db[kb] 6⊆ Wq(Da[ka]), while Db[kb] ⊆ Wh′(Db,b) from Equation (6), as

desired.

3.2. Case: h′(Da, a) = ind(Da[ka]) from line 1. Particularly, it holds that Da = Da[ka]. If

Db = Da, there could not be a mind change between h′(Da, a) and h′(Db, b). Hence,

Da ( Db. Now, we also have kb > ka. By Equation (6), we get Db[kb] ⊆ Wh′(Db,b).

Altogether, as desired we have

(

(Db ∩Wh′(Db,b)) \Wh′(Da,a)

)

⊇ (Db[kb] \Db[ka]) 6= ∅.

3.3. Case: h′(Da, a) = q(Da[ka]) from line 1. By assumption, q(Da[ka]) was abandoned until

(Db, b). Hence, we have refuted(Da[ka],Db, b) and Db 6⊆ Wq(Da[ka]). If h′(Db, b)
comes from lines 1 or 1, we have Db ⊆ Wh′(Db,b) as desired. Otherwise, if h′(Db, b)
comes from lines 1 or 1, by definition, we an output which contains elements not in

Wq(Da[ka]) as desired.

3.4. Case: h′(Da, a) = ind(Da[ka]) from line 1. This case is almost completely analogous to

the previous, except if, for some k0, h′(Db, b) = q(Db[k0]) from line 1 and ka = kb. In

this case, we have

(

(Db ∩Wh′(Db,b)) \Wh′(Da,a)

)

⊇ (Db[kb + 1] \Db[ka]) 6= ∅.

This is what we desired for.

This result shows that a similar situation as for G-learners holds true for Psd-learners. Ad-

mittedly, it is not true that every Psd-learner may be assumed total, as for example is shown by

Kötzing and Schirneck (2016) who provide an example of such a learner. However, the work of
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Doskoč and Kötzing (2020) shows that, in particular, Gold-style target-cautious learners may be as-

sumed partially set-driven. This result does not suffice for our needs however, as it is only stated for

(possibly) partial learners. We extend this result within our framework to fit our needs and obtain a

powerful normal form for partially set-driven witness-based learners, see Corollary 9.

Theorem 8 Let I be an R-monoid and S ⊆ Pow(N) closed under subsets. Furthermore, let L be

a class of languages. Then, the following are equivalent.

(1) L can be TxtGCautTarEx-learned by an I-learner which is defined also on Txt(S).

(2) L can be TxtPsdCautTarEx-learned by an I-learner which is defined also on Txt(S).

Proof We generalize the proof of [TxtGCautTarEx] = [TxtPsdCautTarEx] as can be found

in Doskoč and Kötzing (2020, Thm. 2). The direction (2)⇒(1) is immediate. For the other, let

h ∈ I be a learner which TxtGCautTarEx-learns L and is defined on Txt(S). To ensure correct

learning on Txt(L), we define a learner h′ to search for the minimal, possible locking sequence

given a finite set D and t ≥ 0 as information. This will also maintain h′ being defined on Txt(S).
Formally, with D≤t

# being the set of all sequences of elements in D# := D ∪ {#} of at most length

t, we define h′ as

MD,t :=
{

σ ∈ D≤t
# | ∀τ ∈ D≤t

# : h(σ) = h(στ)
}

,

h′(D, t) :=

{

h (min(MD,t)) , if MD,t 6= ∅,

h(ε), otherwise.

Obviously, if h is defined on T ∈ Txt(S) then so is h′. Next, we show that h′ TxtGCautTarEx-

learns L. Let L ∈ L and let T ∈ Txt(L). By Blum and Blum (1975) there exists a locking

sequence σ for h on L. Let σ0 be a minimal such locking sequence. Now, let n0 be large enough

such that, with D0 := content(T [n0]) for notational convenience,

• content(σ0) ⊆ D0,

• |σ0| ≤ n0 and

• for all σ′ < σ0 there exists τ ′ ∈ (D0)
≤n0
# witnessing σ′ /∈MD0,n0 .

Then, min(MD0,n0) = σ0. Thus, for n ≥ n0 we have h′(content(T [n]), n) = h(σ0), and

Wh′(content(T [n]),n) = Wh(σ0) = L. Thus, L ∈ TxtPsdEx(h′). As h′ mimics h on sequences

in L∗, we also have that h′ is CautTar.

Corollary 9 We have that [τ(Wb)TxtPsdEx] = [TxtGCautTarEx].

This result cannot be extended to set-driven learners, as these are known to be weaker than

partially set-driven ones, see Kinber and Stephan (1995) or Doskoč and Kötzing (2020). Another

difference is that set-driven learners may be assumed conservative, weakly monotone and cautious

without loss of generality, compare the results of Kinber and Stephan (1995) and Kötzing and Palenta

(2016). Nonetheless, we again provide a general result including witness-based learners.
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Theorem 10 Let I be an R-monoid and S ⊆ Pow(N) closed under subsets. Let L be a class of

languages. Then, the following are equivalent.

(1) L can be TxtSdWbEx-learned by an I-learner which is Wb also on Txt(S).

(2) L can be TxtSdEx-learned by an I-learner which is defined also on Txt(S).

Proof The direction (1)⇒(2) is immediate. For the other, we follow the proof of [TxtSdEx] =
[TxtSdConvEx], see Kinber and Stephan (1995, Thm. 7.1). Let L be TxtSdEx-learned by an

I-learner h which is defined on Txt(S). By Theorem 4, we may assume h ∈ I to be syntactically

decisive on Txt(L) and Txt(S). We show that L can be TxtSdWbEx-learned by an I-learner

h′ which is Wb on Txt(S).
In order to define learner h′, we need the following auxiliary function. For a set D and x ∈ N,

we write D>x for the set of all elements in D which are larger than x. Analogously, we use the

notation D<x for the set of all elements in D which are less than x. Then, for finite D ⊆ N, we

define p as

Wp(D) = D∪
⋃

t∈N



































∅, if ¬(D ⊆W t
h(D)),

∅, else, if ∃D′,D ⊆ D′ ⊆W t
h(D) :

• h(D′) is not defined after t steps, or

• ∃D′′,D ⊆ D′′ ⊆W t
h(D) : h(D) = h(D′) 6= h(D′′),

(W t
h(D))>max(D), otherwise.

Now, we define h′. For finite D ⊆ N and k ∈ N, we write D[k] for the set of the k smallest elements

in D. If k > |D|, then D[k] = D. For finite D ⊆ N, let kD ≤ |D| be minimal such that, for all

D′ ∈ [D[kD],D], h(D′) = h(D). Then, we define

h′(D) = p(D[kD]).

Intuitively, h′ mimics h on the smallest set (sorted in ascending order) on which no mind change is

witnessed. There, it only enumerates larger elements which do not cause a mind change.

We show that h′ TxtSdWbEx-learns L and is witness-based on Txt(S). First, we show that

h′ TxtSdEx-learns L. Let L ∈ L and let D0 ⊆ L be a locking set for h on L. Without loss

of generality, we may assume that (L \ D0)<max(D0) = ∅, that is, there are no elements smaller

than max(D0) which are in L but not in D0. Let D such that D0 ⊆ D ⊆ L. We show that

Wh′(D) = L. First, note that we have that p(D[kD]) = p(D0[kD0 ]). Hence, by definition, we get

h′(D) = p(D0[kD0 ]). Then, for all D′ with D0 ⊆ D′ ⊆ L, we have that h(D′) is defined and

h(D0) = h(D′). Thus, Wp(D0[kD0
]) = L.

Lastly, we show that h′ is Wb on Txt(L) and Txt(S). Let T be an according text. Let

n1 < n2 and D1 = content(T [n1]) and D2 = content(T [n2]) with h′(D1) 6= h′(D2). Let

n3 > n2 with D3 = content(T [n3]). For i ∈ {1, 2, 3}, let D′
i be such that h′(Di) = p(D′

i). We

show that

(D3 ∩Wp(D′

3)
) \Wp(D′

1)
6= ∅.

We distinguish the following cases.

1. Case: D′
1 ⊆ D′

3. Assume Wp(D′

1)
⊇ D′

3. Then, by definition of p, for D′′ = D′
3 we have that

D′
1 ⊆ D′′ ⊆Wp(D′

1)
and h(D′

1) = h(D′′), a contradiction.
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2. Case: D′
3 \ D

′
1 6= ∅, but not D′

1 ⊆ D′
3. Let X = D′

3 \ D
′
1. By definition of D′

3, we have

that h(D′
3) = h(D3). Note that these are not equal to h(D′

1) = h(D1) as h is syntactically

decisive. Thus, as D′
3 = D′

1 ∪X but h(D′
1) 6= h(D′

3), we have that Wp(D′

1)
cannot contain

all of D′
3.

By the search h′ conducts upon choosing its hypothesis, the case D′
1 \D

′
3 6= ∅ cannot be realized.

Thus, the proof is concluded.

Immediately, we see that any total Sd-learner may be assumed globally witness-based and any

(possibly) partial Sd-learner may be assumed witness-based on the languages it learns. In contrast

to G- and Psd-learners, we show set-driven learners may not be assumed total in general. We

provide a separating class using self-learning classes as presented in Case and Kötzing (2016).

Theorem 11 We have that [TxtSdEx] \ [RTxtSdEx] 6= ∅.

Proof We show the separation using the Operator Recursion Theorem (ORT). In order to define the

TxtSdEx-learner h, we need the auxiliary predicate Q defined as, for all e, e′, k ∈ N,

Q(e, e′, k)⇔ ∀k′ < k : ϕe′(〈〈e, e
′, k′〉〉) 6= ϕe′(〈〈e, e

′, k′ + 1〉〉).

For finite D, let kD = max(π2(D)) and

h(D) =























ind(∅), if D = ∅,

e, else, if π0(D) = {e} ∧ π1(D) = {e′} ∧Q(e, e′, kD),

ind(〈〈e, e′, kD〉〉), else, if π0(D) = {e} ∧ π1(D) = {e′} ∧ ¬Q(e, e′, kD),

↑, otherwise.

Intuitively, learner h waits with its decision until it sees what a possible learner ϕe′ does. Then,

it outputs its hypothesis accordingly. Let L = TxtSdEx(h) and assume there exists some total

learner h′ such that L ⊆ RTxtSdEx(h′). Let e′ be such that ϕe′ = h′. Using ORT, there exists e
such that

We = {〈e, e
′, i〉 : i ∈ N ∧Q(e, e′, i)}.

We show that we can find a language which h learns, but h′ cannot. We distinguish the following

cases.

1. Case: We is infinite. Then h learns We as it, given finite non-empty D ⊆ We, outputs e. That

is the correct behaviour. On the other hand, h′ cannot learn We as it makes infinitely many

mind changes on the text T : n 7→ 〈e, e′, n〉.

2. Case: We is finite. Let k = max(π2(We)). We show that h learns

L1 := We,

L2 := We ∪ {〈e, e
′, k + 1〉}.

For non-empty D ⊆ L1, h outputs e. Once h sees 〈e, e′, k+1〉 it outputs ind(〈〈e, e′, k+1〉〉).
Thus, it learns L1 and L2 correctly. However, as ¬Q(e, e′, k + 1) and k is minimal such, we

have

h′(L1) = ϕe′(L1) = ϕe′(L2) = h′(L2).
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So, h′ cannot distinguish between L1 and L2 and, thus, is not able to learn both languages

simultaneously.

Altogether, we obtain the following normal form for explanatory set-driven witness-based learn-

ers. Any (total) set-driven learner may be assumed (globally) witness-based, respectively. However,

total set-driven learners lack the learning power of their (possibly) partial counterpart.

Corollary 12 The following equalities hold, while the two classes separate.

[TxtSdWbEx] = [TxtSdEx] and [τ(Wb)TxtSdEx] = [RTxtSdEx].

4. Semantic Witness-based Learning

Transitioning the results of the previous section to behaviourally correct learners is not immediate

since the connection between cautious, weakly monotone and semantically conservative, the seman-

tic counterpart to conservative learning, learners is yet to be discovered in this setting. The work of

Doskoč and Kötzing (2020) shows that (target-) cautious learners solely rely on the content of the

information given, that is, they may be assumed set-driven in general. We show that the same holds

true for semantically witness-based learners, the semantic counterpart to witness-based learners.

Expanding the findings of Kötzing et al. (2017), who show that semantically conservative learners

may be assumed semantically witness-based, we show the main result of this section, namely that

globally semantically witness-based behaviourally correct Sd-learners are as powerful as (possibly

partial) Gold-style semantically conservative ones.

We observe that the mentioned relaxation of constraints works in three ways. Firstly, we

may vary the information we give to the learner without forfeiting learning power, that is, full-

information learners are equally powerful as set-driven ones. Secondly, we may swap between the

requirement of semantically witness-based and semantically conservative learning. Lastly, we may

assume these restrictions to hold globally, that is, on arbitrary text. In this section, Theorems 14

to 16 provide the proof for the following theorem.

Theorem 13 We have that [τ(SemWb)TxtSdBc] = [TxtGSemConvBc].

We give an overview on how we proceed to obtain this result. We show the equality from right

to left. Firstly, we show that semantically conservative learners may be assumed so globally. Then,

we show that Gold-style globally semantically conservative learners maintain the same learning

power even when only basing their hypotheses on the content of the information given, that is, they

may be assumed set-driven without loss of learning power. This significantly extends the results of

Kötzing et al. (2017), where such learners are shown to be equally powerful when being partially

set-driven or set-driven. Then, lastly, in order to “jump” from globally semantically conservative

learning to its semantically witness-based counterpart, we generalize the result for the non-global

case provided by Kötzing et al. (2017).

It follows the detailed process. We start with a TxtGSemConvBc-learner h. Firstly, we

show how to make h globally semantically conservative. The idea here is to monitor all possible

prior and posterior hypotheses simultaneously. Especially here, Gold-style learners come in handy

as they have all information about prior hypotheses at hand. It is important to the learner whether
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any previous hypothesis is consistent with the current information. If so, the learner, on this hypoth-

esis, simply follows this prior hypothesis’ lead. For this to work out, one has to closely monitor what

the learner does on future hypotheses. Here, we take advantage of a peculiar property of consistent

semantically conservative learners. Such learners need to include all seen data while not overgener-

alizing the target language, meaning that finite languages are learnt as soon as all information of it is

seen. Thus, it suffices to just consider information without repetition or pause-symbols. Hence, even

a check for all possible future hypotheses, which usually is not achievable for Gold-style learners

as the crucial correct mind change may come way after all data is seen, is possible in this scenario.

The following theorem holds.

Theorem 14 We have that [τ(SemConv)TxtGBc] = [TxtGSemConvBc].

Proof The inclusion [τ(SemConv)TxtGBc] ⊆ [TxtGSemConvBc] follows immediately.

For the other, let h be a learner and let L = TxtGSemConvBc(h). Without loss of generality,

we may assume that h is consistent, see Kötzing et al. (2017). We provide a learner h′ which

τ(SemConv)TxtGBc-learns L.

We do so with the help of an auxiliary τ(SemConv)TxtGBc-learner ĥ, which only operates

on sequences without repetitions or pause symbols. For convenience, we omit explicitly mentioning

pause symbols. When h′ is given a sequence with repetitions, say (7, 1, 5, 1, 4,#, 3, 1), it mimics

ĥ given the same sequence without duplicates, that is, h′(7, 1, 5, 1, 4,#, 3, 1) = ĥ(7, 1, 5, 4, 3).
First, note that this mapping of sequences preserves the ⊆-relation on sequences, thus making h′

also a τ(SemConv)-learner. Furthermore, it suffices to focus on sequences without duplicates.

This is the case since consistent, semantically conservative learners cannot change their mind when

presented a datum they have already witnessed (or a pause symbol). Thus, ĥ will be presented

sufficient information for the learning task, which then again is transferred to h′. With this in mind,

we only consider sequences without repetitions (or pause symbols) for the entirety of this proof.

Sequences where duplicates may potentially still occur (for example when looking at the initial

sequence of a text) are also replaced as described above. To ease notation, given a set A, we write

S(A) for the subset of A∗
# where the sequences do not contain repetitions. Now, we define the

auxiliary learner ĥ.

Consider the learner ĥ as in Algorithm 2 with parameter h. Given some input σ, the intuition is

the following. Once ĥ, on any previous sequence σ′, is consistent with the currently given informa-

tion content(σ), the learner only enumerates the same as such hypotheses (see lines 2 to 2). While

no such hypothesis is found, ĥ does a forward search (see lines 2 to 2) and only enumerates elements

if all visible future hypotheses also witness these elements. As already discussed, ĥ operates only

on sequences without repetitions, thus making it possible to check all future hypotheses.

First we show that for any L ∈ L and any T ∈ Txt(L) we have, for n ∈ N,

W
ĥ(T [n]) ⊆Wh(T [n]). (7)

Note that, while the (infinite) text T may contain duplicates, the (finite) sequence T [n] does not by

our assumption. Now, we show Equation (7) by induction on n. The case n = 0 follows immedi-

ately. Assume Equation (7) holds up to n. As content(T [n + 1]) ⊆ Wh(T [n+1]) by consistency of

h and as, for n′ ≤ n, Wh(T [n′]) = Wh(T [n+1]) whenever content(T [n+ 1]) ⊆Wh(T [n′]), we get

W
ĥ(T [n+1]) ⊆

⋃

n′≤n,
content(T [n+1])⊆W

ĥ(T [n′])

W
ĥ(T [n′]) ∪Wh(T [n+1]) ⊆Wh(T [n+1]).
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Algorithm 2: The auxiliary τ(SemConv)-learner ĥ used in the proof of Theorem 14

Parameter: TxtGSemConv-learner h.

Input: Finite sequence σ ∈ S(N).
Semantic Output: W

ĥ(σ) =
⋃

t∈N Et.

Initialization: t′ ← 0, E0 ← content(σ) and, for all t > 0, Et ← ∅.
for t = 0 to∞ do

if ∃σ′ ( σ : content(σ) ⊆W t

ĥ(σ′)
then

Σ′ ← {σ′ ( σ | content(σ) ⊆W t

ĥ(σ′)
}

Et+1 ← Et ∪
⋃

σ′∈Σ′ W t

ĥ(σ′)

else if ∀σ′ ( σ : content(σ) 6⊆W t
h(σ′) then

if ∀τ ∈ S
(

W t′

h(σ) \ content(σ)
)

:
⋃

τ ′∈S
(

W t′

h(σ)
\content(σ)

) W t′

h(στ ′) ⊆W t
h(στ) then

Et+1 ← Et ∪W t′

h(σ)

t′ ← t′ + 1
end

else
Et+1 ← Et

end

end

The first inclusion follows as the big union contains all previous hypotheses found in the first if-

clause (lines 2 to 2) and as Wh(T [n+1]) contains all elements possibly enumerated by the second

if-clause (lines 2 to 2). Note that the latter also contains content(T [n + 1]), thus covering the ini-

tialization. The second inclusion follows by the induction hypothesis and semantic conservativeness

of h.

We continue by showing that ĥ TxtGBc-learns L. To that end, let L ∈ L and T ∈ Txt(L).
We distinguish the following two cases.

1. Case: L is finite. Then there exists n0 such that content(T [n0]) = L. Let n ≥ n0. By

SemConv and consistency of h, we have Wh(T [n]) = L. Thus, we have W
ĥ(T [n]) = L as

L = content(T [n]) ⊆W
ĥ(T [n])

(7)

⊆ Wh(T [n]) = L.

2. Case: L is infinite. Let n0 be minimal such that Wh(T [n0]) = L. Then, due to h being semantic

conservative, T [n0] is a Bc-locking sequence for h on L and we have

∀i < n0 : content(T [n0]) 6⊆Wh(T [i]).

Thus, elements enumerated by W
ĥ(T [n0])

cannot be enumerated by the first if-clause (lines 2

to 2) but only by the second one (lines 2 to 2). We show W
ĥ(T [n0])

= L. The ⊆-direction

follows immediately from Equation (7). For the other direction, let t′ be the current step of

enumeration. As T [n0] is a Bc-locking sequence, we have, for all τ ∈ S(W t′

h(T [n0])
),

⋃

τ ′∈S
(

W t′

h(T [n0])
\content(T [n0])

)

W t′

h(T [n0])⌢τ ′ ⊆Wh(T [n0]⌢τ) = L.
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Thus, at some step t, Et+1 ←W t′

h(T [n0])
and, then, the enumeration continues with t′ ← t′+1.

In the end we have L ⊆W
ĥ(T [n0])

and, altogether, L = W
ĥ(T [n0])

.

We now show that, for any n > n0, L = W
ĥ(T [n]) holds. At some point content(T [n]) ⊆

W
ĥ(T [n0])

will be witnessed. Thus, W
ĥ(T [n]) will enumerate the same as W

ĥ(T [n0])
= L,

and it follows that L ⊆ W
ĥ(T [n]). By Equation (7), W

ĥ(T [n]) will not enumerate more than

Wh(T [n]) = L, that is, W
ĥ(T [n]) ⊆Wh(T [n]) = L, concluding this part of the proof.

It remains to be shown that ĥ is SemConv on arbitrary text T ∈ Txt. The problem is that

when a previous hypothesis becomes consistent with information currently given, the learner may

have already enumerated incomparable data in its current hypothesis. This is prevented by closely

monitoring the time of enumeration, namely by waiting until the enumerated data will certainly

not cause such problems. We prove that ĥ is τ(SemConv) formally. Let n < n′ be such that

content(T [n′]) ⊆W
ĥ(T [n]). We show that W

ĥ(T [n]) = W
ĥ(T [n′]) by case distinction.

⊆: The inclusion W
ĥ(T [n]) ⊆W

ĥ(T [n′]) follows immediately, as by assumption content(T [n′]) ⊆

W
ĥ(T [n]), meaning that at some point the first if-clause (see lines 2 and 2) will find T [n] as a

candidate and then W
ĥ(T [n′]) will enumerate W

ĥ(T [n]).

⊇: Assume there exists x ∈ W
ĥ(T [n′]) \Wĥ(T [n]). Let x be the first such enumerated and let tx

be the step of enumeration with respect to h(T [n′]), that is, x ∈ W tx
h(T [n′]) but x /∈W tx−1

h(T [n′]).

Furthermore, let tcontent be the step where content(T [n′]) ⊆ W
ĥ(T [n]) is witnessed for the

first time. Now, by the definition of ĥ, we have

W
ĥ(T [n′]) ⊆W tcontent−1

h(T [n′]) ∪W
ĥ(T [n]),

as W
ĥ(T [n′]) enumerates at most W tcontent−1

h(T [n′]) until it sees the consistent prior hypothesis,

namely ĥ(T [n]). This happens exactly at step tcontent − 1, at which W
ĥ(T [n′]) stops enu-

merating elements from W tcontent−1
h(T [n′]) and continues to follow W

ĥ(T [n]). Now, observe that

tx < tcontent as x ∈W
ĥ(T [n′]) but x /∈W

ĥ(T [n]). But then

x ∈
⋃

τ ′∈S
(

W
tcontent
h(T [n])

\content(T [n])
)

W tcontent
h(T [n]⌢τ ′) ⊆W

ĥ(T [n]),

which must be witnessed in order for W
ĥ(T [n]) to enumerate content(T [n′]) via the second if-

clause (lines 2 to 2), that is, to get content(T [n′]) ⊆W
ĥ(T [n]). This contradicts x /∈W

ĥ(T [n]),

concluding the proof.

Applying this result, we may assume h to be globally semantically conservative. Next, we show

that even restricting the learners memory does not affect its learning power. In particular, we show

that h may be assumed set-driven. This significantly extends the result shown by Kötzing et al.

(2017) where (not necessarily globally) semantically conservative partially set-driven learners may

be assumed set-driven. While the latter result relies on such learners requirement to include all

seen data while not being allowed to overgeneralize, our result originates from another fact. Being
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semantically conservative and therefore consistent (Kötzing et al., 2017) at the same time means

that, given any information, whenever the learner h overgeneralizes it may not change its mind on

information from this overgeneralization. Thus, we may pretend that the information given came in

a certain, for the sake of simplicity say ascending, order. Then, if the learner suggests an element

out of this order in its hypothesis, one simply checks whether learner guesses the current informa-

tion extended by this element on the shortest string of information not containing this element but

maintaining the order. If so, both hypotheses are the same and thus both may include this element.

Otherwise, the learner skips that element. We provide the rigorous proof.

Theorem 15 We have that

[τ(SemConv)TxtSdBc] = [τ(SemConv)TxtPsdBc] = [τ(SemConv)TxtGBc].

Proof We show all three equalities at once. Let h be a learner andL = τ(SemConv)TxtGBc(h).
Without loss of generality, we may assume h to be globally consistent, as shown in Kötzing et al.

(2017). We provide a learner h′ such that L ⊆ τ(SemConv)TxtSdBc(h′). To that end, we

introduce the following auxiliary notation which we use throughout this proof. For each x ∈ N and

each finite set D ⊆ N, let

d := max(D),

σD := canonical sequence of D,

D<x := {y ∈ D | y < x}.

The latter definition can be extended to ≤, > and ≥, as well as infinite sets in a natural way. Now,

let h′ be such that

Wh′(D) = D ∪
(

Wh(σD)

)

>d
∪
{

x ∈
(

Wh(σD)

)

<d
: D ∪ {x} ⊆Wh(σ(D<x))

}

.

Intuitively, h′(D) simulates h assuming it got the information in the canonical order, that is, h′(D)
simulates h(σD). All elements x ∈ Wh(σD) such that x > d can be enumerated, as any later,

consistent hypothesis will do so as well. If x < d, then we check whether the learner h given the

canonical sequence up to x is consistent with D ∪ {x}, that is, whether D ∪ {x} ⊆ Wh(σ(D<x)). If

so, we enumerate x as it will be done by the previous hypotheses as well. Note that, for each finite

D ⊆ N, we have

Wh′(D) ⊆Wh(σD). (8)

We proceed by proving that h′ τ(SemConv)TxtSdBc-learnsL. First, we show the TxtSdBc-

convergence. The idea here is to find a Bc-locking sequence of the canonical text. Doing so ensures

that even if elements are shown out of order they will be enumerated as h will not make a mind

change and thus the consistency condition will be observed. To that end, let L ∈ L. We distinguish

whether L is finite or not.

1. Case: L is finite. We show that Wh′(L) = L. By definition of h′, we have L ⊆ Wh′(L). For the

other inclusion, note that as h is consistent and semantically conservative (which in particular

implies it being target-cautious), we have that Wh(σL) = L. Then, by Equation (8), we have

that Wh′(L) ⊆Wh(σL) = L, concluding this case.
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2. Case: L is infinite. Let Tc be the canonical text of L, and let σ0 be a Bc-locking sequence for

h on Tc. Such a Bc-locking sequence exists, as h is strongly Bc-locking, see Kötzing et al.

(2017, Thm. 7). Let D0 := content(σ0). For any input D ⊆ L such that D ⊇ D0, we show

that Wh′(D) = L. By Equation (8), we get Wh′(D) ⊆Wh(σD) = L. To show L ⊆Wh′(D), let

x ∈ L. We distinguish the relative position of x and d.

x > d: In this case we have x ∈Wh′(D) by definition of h′.

x ≤ d: In this case either x ∈ D and we immediately get x ∈ Wh′(D), or we have to check

whether D ∪ {x} ⊆ Wh(σ(D<x)). Since σ0 is an initial segment of the canonical text

of L, it holds that x > max(content(σ0)) and, thus, we get σ0 ⊆ σ(D<x). Now

Wh(σ(D<x)) = L, meaning that D ∪ {x} ⊆ Wh(σ(D<x)) will be observed at some point

in the computation. Thus, x ∈Wh′(D) in this case as well.

Altogether, we get Wh′(D) = L and thus TxtSdBc-convergence. It remains to be shown that h′

is τ(SemConv). Let D′ ⊆ D′′ and D′′ ⊆ Wh′(D′). The trick here is that upon checking for

consistency with elements shown out of order, the learner has to check the same, minimal sequence

regardless whether the input is D′ or D′′. We proceed with the formal proof. Therefore, we expand

the initially introduced notation of this proof. For any x ∈ N define

σ′ := σD′ ,

d′ := max(D′),

σ′
<x := σ(D′

<x)
.

Analogously, we use σ′′, d′′ and σ′′
<x when D′′ is the underlying set. First, we show that Wh(σ′) =

Wh(σ′′). Since Wh′(D′) enumerates D′′, that is, D′′ ⊆ Wh′(D′), we have for all y ∈ (D′′ \D′)<d′

that D′ ∪ {y} ⊆Wh(σ′

<y)
by definition of h′. Thus, we have

Wh(σ′

<y)
= Wh(σ′). (9)

Note that, if (D′′ \D′)<d′ is empty, then σ′
<d′+1 = σ′. Thus, Equation (9) also holds true for

m :=

{

min(D′′
<d′ \D

′), if D′′
<d′ \D

′ 6= ∅,

d′ + 1, otherwise.

Furthermore, it holds true that for any x ≤ m we have

σ′
<x = σ′′

<x. (10)

By Equations (8) and (9), we have D′′ ⊆ Wh′(D′) ⊆ Wh(σ′) = Wh(σ′

<m). As, by Equation (10),

σ′
<m = σ′′

<m ⊆ σ′′ and h is τ(SemConv), we get

Wh(σ′) = Wh(σ′′). (11)

We conclude the proof by showing that Wh′(D′) = Wh′(D′′). We check each direction separately

by checking every possible position of an element, which is a candidate for enumeration, relative to

the given information D′ and D′′.
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⊇: Let x ∈ Wh′(D′′). For x ∈ D′′ we have x ∈ Wh′(D′) by assumption. Otherwise, by Equa-

tions (8) and (11), we get x ∈ Wh(σ′). Thus, x will be considered in the enumeration of

Wh′(D′). We distinguish the relation between x and d′.

x > d′: In this case x ∈ (Wh(σ′))>d′ ⊆Wh′(D′).

x < d′: As d′ ≤ d′′ and since x is enumerated into Wh′(D′′), we have D′′ ∪ {x} ⊆ Wh(σ′′

<x)
.

We, again, distinguish the relative position of x and m and get

x < m: D′ ∪ {x} ⊆ D′′ ∪ {x} ⊆Wh(σ′′

<x)
(10)
= Wh(σ′

<x)
,

m < x < d′: D′ ∪{x} ⊆ D′′ ∪{x} ⊆Wh(σ′′

<x)
(∗)
= Wh(σ′′)

(11)
= Wh(σ′)

(9)
= Wh(σ′

<m)
(∗)
= Wh(σ′

<x)
.

We use h being τ(SemConv) in the steps marked by (∗). Thus, x ∈Wh′(D′).

⊆: Let x ∈Wh′(D′). For x ∈ D′′ we have x ∈Wh′(D′′) by definition of h′. Otherwise, note that

x ∈ D′′ ∪ {x} ⊆Wh′(D′) ⊆Wh(σ′)
(11)
= Wh(σ′′).

Thus, x will be considered in the enumeration of Wh′(D′′). We now distinguish between the

possible relation of x and d′′.

x > d′′: In this case x ∈Wh′(D′′) by definition of h′.

x < d′′: Here, we show that D′′ ∪ {x} ⊆ Wh(σ′′

<x)
is witnessed and, thus, x is enumerated by

Wh′(D′′). We distinguish the following cases.

x < m : D′′ ∪ {x} ⊆Wh(σ′

<x)
(10)
= Wh(σ′′

<x)
,

m < x < d′ : D′′ ∪ {x} ⊆Wh(σ′

<x)
(∗)
= Wh(σ′

<m)
(10)
= Wh(σ′′

<m)
(∗)
= Wh(σ′′

<x)
,

d′ < x < d′′ : D′′ ∪ {x} ⊆Wh(σ′) = Wh(σ′

<m) = Wh(σ′′

<m)
(10)
= Wh(σ′′

<x)
.

We use h being τ(SemConv) in the steps marked by (∗). In the end, x ∈Wh′(D′′).

Thus, we may assume h to be globally semantically conservative set-driven. Lastly, by ex-

tending the result of Kötzing et al. (2017), who show that SemWb- and SemConv-learners are

equally powerful for all considered interaction operators, to hold for the global counterpart as well,

we see that h remains equally powerful even when being globally semantically witness-based. The

following result concludes the proof of Theorem 13 and, therefore, also this section.

Theorem 16 For β ∈ {G,Psd,Sd}, we have that

[τ(SemWb)TxtβBc] = [τ(SemConv)TxtβBc].

Proof Kötzing et al. (2017, Thm. 8) show that SemWb and SemConv allow for consistent Bc-

learning. This also holds true when the restrictions are global, thus, [τ(ConsSemWb)TxtβBc] =
[τ(SemWb)TxtβBc] and [τ(ConsSemConv)TxtβBc] = [τ(SemConv)TxtβBc]. Since

Cons∩SemWb = Cons∩SemConv, as shown by Kötzing et al. (2017, Lem. 11), the theorem

holds.
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5. Conclusion and Future Work

In this work, we study the behaviour of witness-based learners in different settings. Being a special-

ization to important restrictions within inductive inference, first studies of witness-based learners

have been provided by Kötzing and Schirneck (2016) and Kötzing et al. (2017). With this work,

we provide a thorough investigation of the behaviour of these learners and provide normal forms

thereof. In particular, we provide a general framework with which we obtain results for witness-

based explanatory learners with multiple additional restrictions. Most notably, we show that glob-

ally witness-based Psd-learners are equally powerful as target-cautious G-learners. Furthermore,

we provide results in the behaviourally correct case, showing that globally semantically witness-

based set-driven learners are equally powerful as semantically conservative full-information learn-

ers. The latter result is vital in order to obtain a full map for delayable restrictions in the be-

haviourally correct case, which is left as future work.
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