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Abstract. In this article, we review existing probabilistic models for
modeling abundance of fixed-length strings (k-mers) in DNA sequenc-
ing data. These models capture dependence of the abundance on various
phenomena, such as the size and repeat content of the genome, heterozy-
gosity levels, and sequencing error rate. This in turn allows to estimate
these properties from k-mer abundance histograms observed in real data.
We also briefly discuss the issue of comparing k-mer abundance between
related sequencing samples and meaningfully summarizing the results.
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1 Introduction

Rapid growth of the volume and complexity of available DNA sequencing data
encourages research into efficient algorithms and data structures. A very fruitful
approach is to represent individual sequences (usually sequencing reads) as sets
of their subwords of a fixed length k called k-mers.

Many efficient methods, both exact and approximate, were developed for
counting the occurrences of all k-mers in large sequencing datasets [9]. However,
the focus has lately shifted to representing the sets of constituent k-mers without
the abundance counts [3]. This leads to reduced memory requirements, allowing
representation of large collections of data sets [11]. This capability is important
in the field of pangemomics, with its focus on replacing a single reference genome
with a collection of individual genomes, often represented in the form of a graph
built from k-mers occurring in these genomes [25].

In this paper, however, we focus on k-mer abundance. Abundances are clearly
essential for studying transcript abundance in RNA-seq data or large-scale copy
number variation [18,12]. However, usefulness of k-mer abundance information
is not limited to these applications, but can also be used to assess fundamental
properties of newly sequenced genomes.

To demonstrate this point, we review existing probabilistic models of k-mer
abundance, which can be used to estimate genome size and other properties
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based on a very succinct summary of the data set—the histogram of k-mer
abundance. In Section 2, we define k-mer abundance and its spectrum. In Section
3, we outline probabilistic models for capturing various genome and read set
properties, including genome size, repeat content, heterozygosity, and sequencing
error rate. Finally, in Section 4, we concentrate on comparing k-mer abundances
in two different datasets and summarizing the results in a meaningful way.

2 Preliminaries

A k-mer is a string of a length k over a given finite alphabet Σ; in this paper we
consider the DNA alphabet Σ = {A,C,G, T}. We say that a k-mer w matches a
sequence S at position `, if w is equal to the substring of S of length k starting
at position `. The number of matching positions of the k-mer w in the sequence
S is called the abundance of w in S.

Given a sequence S, we define an absolute k-mer spectrum of S as the func-
tion hS,k : N → N, where hS,k(j) is the number of k-mers that have absolute
abundance in S equal to j. If we normalize the absolute k-mer spectrum so that
the sum of all values is one, we obtain the relative k-mer spectrum of S, which
we denote hrS,k. These definitions can be easily extended from a single string S
to (multi)sets of strings, such as the set of chromosomes in a known genome or
a set of sequencing reads.

For example, string S = ACTACGCG contains dimers CT , TA, and GC
once, and dimers AC and CG twice. Therefore, the absolute dimer spectrum
has values hS,2(1) = 3, hS,2(2) = 2; the relative dimer spectrum has values
hrS,2(1) = 3/5, hrS,2(2) = 2/5. For j > 2, we have hS,2(j) = hrS,2(j) = 0.

Several variations of k-mers and their abundances were considered in the lit-
erature. For example, the quality-adjusted version of k-mer abundance takes into
account the probabilities of sequencing errors occurring at individual positions
in the sequencing reads, which are typically available in the form of base quality
scores. Each occurrence of a k-mer thus can be weighted by the probability that
this occurrence is indeed correct [7,5].

The notion of canonical k-mers helps to handle the double-stranded struc-
ture of DNA molecules. Both strands are usually sequenced with roughly equal
probability, and therefore, it is not necessary to distinguish between a k-mer and
its reverse complement. The canonical representation of a k-mer w is the lexi-
cographically smaller string among w and its reverse complement. The absolute
abundance of a canonical k-mer is defined as the sum of the absolute abundances
of the k-mers it represents. While most canonical k-mers represent two k-mers,
for even k there are 4k/2 palindromic canonical k-mers that represent only one
k-mer. To avoid this unevenness, it is common to use only odd values of k for
canonical representations.

Finally, spaced k-mers are motifs over an extended DNA alphabet Σ =
{A,C,G, T,N}, whereN stands for a “blank” or “don’t care” nucleotide [15,1,22].
We say that a spaced k-mer w matches sequence S at position `, if the substring
of S of length k starting at position ` agrees with w at all non-blank positions.
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We can consider abundances of all spaced k-mers that have blank symbols at
predefined locations. The main advantage of spaced k-mers is a smaller depen-
dence between k-mer occurrences at adjacent positions of a sequence, resulting
in a smaller variance of statistics used in phylogeny [15].

3 Models of k-mer Spectra

Spectra of k-mer abundance represent a very compact summary of large sequenc-
ing data sets. Assuming that genome sequencing can be modeled as a stochastic
process, the corresponding k-mer spectrum will reflect important properties of
the genome, such as its size, repeat content, the level of heterozygosity in diploid
genomes, and will also depend on the parameters of the sequencing process, such
as the length of sequencing reads, error rate, or sequencing biases.

All of these factors make modeling k-mer spectra an interesting problem.
In particular, given basic parameters of the genome and the sequencing pro-
cess, collectively denoted as θ, we would like to predict the corresponding k-mer
spectrum hrθ.

Such a model can then be used to interpret observed spectrum hr. In partic-
ular, our goal is to find parameters θ, for which the predicted k-mer spectrum
hrθ will be as close as possible to the observed k-mer spectrum hr. This is typi-
cally done by searching for θ∗ minimizing a loss function, such as cross-entropy
−
∑
i hr(i) log hrθ∗(i) or L2-norm

∑
i(hr(i)−hrθ∗(i))2. Both criteria can be op-

timized by general-purpose optimization algorithms supporting box constraints
on parameter values, such as L-BFGS-B [29], and this process is typically very
efficient due to the compact data representation.

In this way, just based on the observed k-mer spectrum, one can estimate
key parameters of an unknown genome, such as the genome size, without at-
tempting a complex process of genome assembly. Figure 1 shows 21-mer spectra
for Illumina reads produced from E. coli genome at 10× coverage and 2× cover-
age. The model used to analyze this data set contained parameters for genome
size, sequencing errors, and a simple model of genome repeat content [6]. For
high-coverage data sets, low-abundance k-mers originating from sequencing er-
rors are clearly separable from correct k-mers, and thus an estimate of read
coverage can be obtained from the mode of the error-free k-mers (Figure 1 left).
For low-coverage data sets such a task is no longer easy (Figure 1 right).

In the rest of this section, we discuss models of k-mer spectra, incorporat-
ing a variety of parameters representing properties of genome sequences or the
sequencing process itself.

A simple model. In the simplest model, we assume that the target genome is
a single circular chromosome of length L with no repeating k-mers, starting
positions of N reads are sampled uniformly independently, the reads contain no
errors, and have the same length r. Under these assumptions, the probability that
a given read will cover a given k-mer from the genome is p = (r− k+ 1)/L, and
thus the absolute abundance of each of the L k-mers from the genome is a random
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Fig. 1. Absolute 21-mer spectrum of Illumina reads for the E. coli genome at coverage
10 (left) and 2 (right) shown in black, and the fit of a model including sequence repeats
and sequencing errors in colors. Data and model are taken from Hozza et al. [6].

variable from the binomial distribution with parameters N and p. A genome with
linear chromosomes behaves similarly, only k-mers near chromosome ends will
have a smaller probability of being covered by a read. If the read length is much
smaller than the chromosome lengths, this effect is negligible.

Given an observed k-mer spectrum (and assuming values N , k, and r are
known), we may therefore seek parameter p of the binomial distribution that
would well match the spectrum and then estimate the genome size L using the
value that corresponds to this value of p. Note that the binomial distribution
gives a non-zero probability to the event that a k-mer in a genome will be covered
by zero reads, but such k-mers are not included in our observed spectra. For low-
coverage data sets, we may need to account for this observation bias by using
a truncated binomial distribution. More precisely, let X be a variable from the
binomial distribution, and Y from the truncated distribution, where 0 cannot
be observed, then P (Y = k) = P (X = k)/P (X > 0).

In practice, the binomial distribution can be approximated by the Poisson
distribution [24,6] or replaced by more complex distributions to compensate for
unmodelled biases. These include the Gaussian distribution [4,7] and the negative
binomial distribution [26,27]. In the rest of this section, we discuss extensions
of this basic model that take into account important phenomena influencing the
observed spectra.

Modeling genomic repeats. A significant fraction of k-mers in real genomes oc-
curs in the genome more than once, due to the presence of transposons, simple
tandem repeats, and segmental duplications. Thus we have to consider the k-mer
spectrum of the genome itself, which is usually unknown. The absolute abun-
dance of a k-mer in a genome is usually referred to as its copy number. Under
the assumption of uniform sequencing, k-mers with higher copy numbers should
appear proportionally more frequently in sequencing data. The k-mer spectrum
of a read set can be thus represented as a mixture of simple distributions. Each
component of the mixture corresponds to a certain copy number and its weight is
defined by the relative genome spectrum. Therefore, a relative read set spectrum
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(a) (b)

Fig. 2. A theoretical spectrum of a genome with repeats. A genome with equal propor-
tions of 21-mers with copy numbers 1, . . . , 5 is modeled as a mixture of binomial dis-
tributions. Individual distributions scaled by their weights and the mixture are shown
as lines. The relative spectrum sampled from the mixture is shown as a light blue
histogram. Single-copy regions of the genome have expected coverage 50 (a) and 5 (b).

model can be written as

hrR(j) =

∞∑
i=1

hrS(i) · φ(j; i, θ),

where hrR is the relative read set spectrum, hrS is the relative genome spec-
trum, and φ(j; i, θ) is the probability of a k-mer with copy-number i and some
shared parameters θ having exactly j occurrences in the read set. The distribu-
tion φ(j; i, θ) can be modeled by one of the distributions discussed for modeling
genomes without repeats. For example, when using the (truncated) Poisson dis-
tribution, parameter λi for copy number i will have form λi = ic, where c is
a free parameter representing coverage of single-copy k-mers. At high coverage,
individual components of the mixture create clearly visible peaks in the relative
spectrum, but at lower coverage levels, these peaks get closer together and are
more difficult to identify (Figure 2).

It remains to model the k-mer spectrum of an unknown genome. The simplest
option is to let the whole genome spectrum up to some maximum value be free
parameters estimated from the data [26,24,27]. However, this approach has a high
number of parameters, including some configurations that are not plausible. For
example, a fit of similar quality can be obtained by using copy numbers 1,2,3,. . . ,
or by lowering the baseline coverage and using copy numbers 2,4,6,. . . (assigning
very low weights to odd copy numbers).

Another approach is to model copy numbers by a distribution, reducing
the number of free parameters. A popular choice is the Zeta (ζ) distribution,
which has only one free parameter, governing the shape [7,4]. It is also possible
to employ a hybrid technique, where the lowest copy-numbers are left as free
parameters and the rest is modeled as a simple parametric distribution [6].

Modeling sequencing errors. Sequencing errors heavily influence k-mer spectra
of a read set by lowering the coverage of the true genomic k-mers and creating
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spurious k-mers, which typically have a low abundance (Figure 1). One way
to handle this problem is to discard the lowest abundances from the spectrum and
to assume that higher abundances correspond to true k-mers [27,26,21]. Another
option is to include spurious k-mers explicitly in the model of the spectrum by
a mixture model with two components corresponding to true and spurious k-
mers, respectively.

The distribution of spurious k-mers can be modeled as a parametric distribu-
tion without any interpretation and its weight can be also left as a free parameter
[7,4,24]. Another option is to use a simple substitution error model [13,6], which
assumes that every base has a probability ε to be sequenced incorrectly. Under
these assumptions, the probability of observing k-mer y when reading k-mer x is
equal to εs(1− ε)k−s3−s, where s is the Hamming distance of x and y. If k-mer
x is read c times, the expected number of times we observe k-mer y is equal to
λs := cεs(1 − ε)k−s3−s. The resulting distribution is then a mixture of k + 1
distributions with means λs, where s goes from 0 to k.

Modeling polyploid genomes. Many organisms, including humans, are diploid,
meaning that they have two sets of homologous chromosomes. The heterozygous
sites in a diploid organism have two different alleles, producing two different
k-mers instead of one. Therefore, homozygous k-mers should have on average
twice the coverage of the heterozygous ones. This can be again represented as a
mixture model, in which the homozygous component has the coverage parameter
fixed as twice the coverage parameter of the heterozygous [4,26]. The weights of
these components are governed by a free parameter related to the heterozygosity
of the genome. The situation is more complex in organisms with higher ploidy,
where a single position occurs in more than two homologous chromosomes and
may contain more than two alleles [21].

4 Comparison of k-mer Frequencies Between Samples

The problem of differential analysis of sequencing samples arises in many areas:
identifying differences between two individuals [23], comparing cancer samples
with healthy tissues from the same individual [16], identification of differentially
expressed transcripts in RNA-seq samples [2,18], or comparing a control sample
with the sample biochemically treated to enrich or deplete particular functional
elements (such as chromatin immunoprecipitation [28,14] or a treatment by en-
zymes depleting telomeric sequences [19]).

Typically, one first aligns the reads from two or more samples to an as-
sembled genome or transcriptome reference and then identifies regions (genes,
transcripts, or sequence windows) with significant differences in read coverage
between samples. Such alignment-first approaches work well assuming that we
have a reliable reference sequence and that we are able to map the reads to the
reference uniquely. However, in cases where these conditions are violated, such
approach may fail. This may be because there is a structural difference between
the reference and both sequenced samples or the reference may be improperly
assembled in some regions (such as highly repetitive regions).
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In this section, we concentrate on a different approach that can at least par-
tially overcome these limitations by comparing abundances of individual k-mers
between two sequencing experiments instead of mapping the sequencing reads to
the reference. Such approaches avoid potentially time-consuming alignment step,
but more importantly, they can handle repetitive regions where reads cannot be
reliably mapped and where even the assembly quality can be lower.

For example, if we sequence samples from two individuals, which share the
same expansion of a particular locus, but the number of repeats is different from
the reference sequence, the traditional reference-based methods would still iden-
tify this region and report a false positive, since both samples differ from the
reference. On the other hand, the alignment-free approach would correctly iden-
tify that there is no significant difference in the k-mer abundances corresponding
to that locus, and thus there is no reason to highlight this repeat.

In methods based on k-mer abundances, we first compare the abundances of
k-mers in the two sets and identify k-mers which are significantly underrepre-
sented in one of the read sets [2]. Only then the results are interpreted in the
context of the reference sequence, for example by mapping k-mers back to the
reference genome and identifying windows of the sequence that are significantly
enriched for the underrepresented k-mers.

The window-based interpretation of the results helps us to relate found win-
dows to annotated genome features, such as genes, and thus to assign them a
biological meaning, which would be difficult for individual unmapped k-mers.
Second, by requiring multiple underrepresented k-mers near each other, we filter
out many false positives, that is, individual k-mers that appear underrepresented
purely by chance. Conversely, considering whole windows allows us to avoid po-
tential problems with local assembly errors which introduce incorrect k-mers to
a window. If a window is sufficiently long, these will be compensated by the
remaining correct k-mers. Note that this approach is not completely alignment-
free, but the alignment to the reference is only used to interpret the results.
Therefore we call this an alignment-last approach. Note that this window-based
method is unsuitable when searching for very short differences, such as single
nucleotide polymorphisms.

To illustrate the advantages of alignment-last methods, we demonstrate their
simple application to a simulated dataset using chromosome IV of the yeast Sac-
charomyces cerevisiae as a starting point. We simulated two sequencing data sets
by selecting random substrings of length 100 and adding substitution errors with
probability 0.1% at each position. The control read set used the reference chro-
mosome as an underlying string, while the second, depleted set, was generated
from an underlying string featuring several large-scale deletions.

To simulate inaccuracies typical for draft genomes of newly sequenced species,
we used a draft assembly produced from simulated nanopore sequencing reads
by standard methods. This draft assembly has a single contig covering 99.8% of
the original chromosome IV and has 0.5% error rate.

In the baseline alignment-first method, we have mapped both read sets to
the draft assembly using Bowtie [8] and assigned the ratio between depleted
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and control coverages to each base pair. Base pairs having this ratio lower than
a user-selected threshold are marked as depleted regions. In the k-mer based
alignment-last method, k-mer abundances were counted using Jellyfish [10]. For
each k-mer in the genome, ratio of abundance between the depleted and control
set was computed. The draft assembly was split into non-overlapping 100bp
windows, and the score of each window was computed as the median ratio of
k-mers starting in this window. Windows having the score below a user-selected
threshold are then marked as depleted regions. The accuracy of each method is
summarized by using the area under curve (AUC) statistics.

Figure 3 (left) shows the results for depletion of a 6 kbp long unique sequence.
For such long unique sequences both methods can reliably identify the depleted
region even at small coverages. In Figure 3 (right) we show the results for a more
complex case, where two retrotransposons and one duplicated region of lengths
between 6-7 Kbp were depleted. Here, alignment-last k-mer method shows clear
advantage over the baseline alignment-first method.

Fig. 3. Comparison of searching for depleted regions either by the alignment-first base-
line method or by k-mer abundance in windows of size 100bp on simulated data sets.
On the left, the depleted region is a 6kb long single-copy sequence, on the right, two
retrotransposons and one duplicated region of lengths 6-7kb were depleted. We report
the AUC measure for different k-mer coverage levels averaged over five data sets.

5 Conclusion

In this paper, we summarized techniques used in various published models of
k-mer spectra. Although the models cover many phenomena influencing k-mer
abundance, some issues still remain to be explored. One example is the influence
of GC content on read coverage, which is taken into account in RNA-seq studies
[17]. More complex errors models, taking into account indels and context biases
would also be appropriate, particularly for third-generation sequencing data.

An important practical issue involves DNA molecules that are present in cells
in high copy numbers, leading to increased read coverage in sequencing. Exam-
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ples include mitochondrial genomes in eukaryotes and plasmids in prokaryotes.
Repeat-aware models consider such molecules as repeats present in many copies
and thus inflate the estimated genome size. Pflug et al. filter out mitochondrial
reads before applying k-mer models for genome size estimation [20], but perhaps
a simple model of these short chromosomes could be incorporated instead.

Finally, it would be worthwhile to apply abundance models developed for
k-mer spectra to the task of read set comparison.

Acknowledgments. Our research was supported by grants from the Slovak Re-
search and Development Agency APVV-18-0239, the Scientific Grant Agency
VEGA 1/0463/20 to BB and VEGA 1/0458/18 to TV, the European Union’s
Horizon 2020 research and innovation program (PANGAIA project #872539
and ALPACA project #956229) and Comenius University Grant UK/278/2020
to AG.

References
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motif discovery in ChIP-Seq data without peak calling. Bioinformatics (2020)

15. Morgenstern, B., Zhu, B., Horwege, S., Leimeister, A.A.: Estimating evolutionary
distances between genomic sequences from spaced-word matches. Algorithms for
Molecular Biology 10(1), 5 (2015)

16. Narzisi, G., Corvelo, A., Arora, K., Bergmann, E.A., Shah, M., Musunuri, R.,
Emde, A.K., Robine, N., Vacic, V., Zody, M.C.: Genome-wide somatic variant
calling using localized colored de Bruijn graphs. Communications Biology 1(1),
1–9 (2018)

17. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C.: Salmon provides
fast and bias-aware quantification of transcript expression. Nature Methods 14(4),
417–419 (2017)

18. Patro, R., Mount, S.M., Kingsford, C.: Sailfish enables alignment-free isoform quan-
tification from RNA-seq reads using lightweight algorithms. Nature Biotechnology
32(5), 462–464 (2014)
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