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13, Rue du Four, 75006 Paris, France

Abstract. Precisely framing a formal notion of explanation is a hard
problem of great relevance for several areas of scientific investigation
such as computer science, philosophy and mathematics. We study a
notion of formal explanation according to which an explanation of a
formula F must contain all and only the true formulae that concur in
determining the truth of F . Even though this notion of formal explanation
is defined by reference to derivability in classical logic, the relation that
holds between the explained formula and the formulae explaining it has
a distinct substructural flavour, due to the fact that no redundancy is
admitted among the explaining formulae. We formalise this intuition and
prove that this notion of formal explanation is essentially connected, in a
very specific sense, to derivability in a substructural calculus.
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1 Introduction

Precisely framing a notion of explanation in formal contexts is a hard problem
of great relevance for several areas of scientific investigation, as, for instance,
computer science [12,10], philosophy [1,3], mathematics [19,9], and the natural
sciences [8,17]. A research line essentially concerned with the formal definition
and study of explanation relations is the one investigating the relation of logical
grounding. According to this approach, a multiset of formulae � formally explains
a complex formula F if � is a logical ground of F , that is, if F is true in virtue
of the truth of the elements of �. Several endeavours along these lines have
appeared in the contemporary literature, see, for instance, [18,5,16,4,13,14].

According to the strictest, and hence most informative, of these technical
notions of formal explanation [13,14], a formal explanation of a true statement
F must mention all and only the true statements that concur in determining
the truth of F . This characterisation is captured by two formal conditions on
the multiset � of explaining formulae. First, truth of the formulae in � must
determine the truth of F . Second, the multiset � of explaining formulae must
be a maximal multiset of, possibly negated, disjoint occurrences of subformulae
of the explained formula F . Even though this notion of formal explanation is
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defined by reference to derivability in classical logic [13,15], the relation that
holds between the explained formula and the multiset of formulae explaining it
has a distinct substructural flavour, as discussed in [15]. In the present work we
present a study of the formal connection between derivability in substructural
logics and this notion of formal explanation.

Intuitively, the complexity constraints required to define this notion—which
now on we will simply call formal explanation—impose a strict correspondence
between the formulae occurring in the explanation and the syntactical parts of
the formula explained. A formal explanation, indeed, is supposed to mention
exactly those parts of the explained formula in virtue of which it is true, and
no redundancy is admitted. Since the substructural logics in which the rules
of weakening and contraction are not admissible can be seen as resource-aware
reasoning systems in which the usage of redundant or duplicated hypotheses is
limited, this feature of explanation raises the question whether there exists a
substructural logic for which it is possible to spell out a rigorous connection with
the relation of formal explanation. In the present work, we positively answer this
question by defining a suitable substructural calculus and formally proving its
connection with formal explanation. In order to do so, we define the substructural
calculus SL which can be either seen as a fragment of FLe (Full Lambek Calculus
with the Exchange rule) [6], or as a fragment of Linear Logic [7] extended by
an axiom for the lattice bottom ?.1 We then show that the relation of formal
explanation is essentially connected, in a very specific and formal sense, to
derivability in SL.

The article is structured as follows. In Section 2, we define the notion of
formal explanation in the traditional way, that is, by employing derivability
classical logic. In Section 3, we present the substructural calculus SL that we will
employ to show the relationship between formal explanation and substructural
derivability. In Section 4, we show that formal explanation can be characterised
by employing derivability conditions formulated in the calculus SL. In Section 5,
we conclude with some remarks and a discussion of future work directions.

2 Formal Explanation

We present now the relation of formal explanation for classical logic formulae
as introduced in [13]. The language that we will employ for classical logic is the
following:

' ::=  | ' ^ ' | ' _ ' | '! ' | ¬'

 ::= p1 | p2 | p3 . . .

where p1, p2, p3 . . . is a list of all the propositional variables of the language. In
the following, we will employ capital Latin letters as metavariables for formulae
and capital Greek letters as metavariables for multisets of formulae.

1 The symbol ? is used in [7] for a weaker falsity constant which is often denoted by 0
in other works, see [11, p. 42] for a comparison table of di↵erent notations used for
linear logic. In SL, no constant corresponds to Girard’s constant 0.
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In order to introduce the relation of formal explanation, we have to define
some technical notions. We start from the converse of a formula.

Definition 1. For any natural number n, we indicate by ¬nA the formula
¬ . . .¬A where A does not have ¬ as outermost connective and is preceded
by a sequence of n negations ¬.

For any formula A, the notation A⇤ represents the converse of A:

– if A = ¬2nB then A⇤ = ¬A
– if A = ¬2n+1B then A⇤ = ¬2nB

For any multiset of formulae � , we denote by � ⇤ the multiset {A⇤ | A 2 �}.

Notice in particular that, for any formula A, (A⇤)⇤ = A since ((¬2nB)⇤)⇤ =
(¬2n+1B)⇤ = ¬2nB and ((¬2n+1B)⇤)⇤ = (¬2nB)⇤ = ¬2n+1B.

We can now define the notion of explanatory subformulae of a formula (exp-
subformulae, for short). Intuitively, a set of exp-subformulae of a formula A
contains either a positive occurrence or a negative occurrence (formalised by the
notion of converse) of each maximal proper subformula of A the truth of which
determines the truth of A.2

Definition 2. The set of sets of exp-subformulae es(A) of a classical formula A
is defined as follows:

– es(B ^ C) = es(B _ C) = es(B ! C) = es(¬(B ^ C)) = es(¬(B _ C)) =
es(¬(B ! C)) = {{B,C}, {B,C⇤}, {B⇤, C}, {B⇤, C⇤}}

– es(p) = es(¬p) = ;
– es(¬¬B) = {{B}, {B⇤}}

We can finally define our notion of formal explanation for classical logic
formulae. In order to do so, we first introduce the relation of immediate formal
explanation, an instance of which intuitively corresponds to a basic step of
explanation which displays the immediate reasons why a formula is true. Then,
we introduce the relation of mediate formal explanation. This relation generalises
that of immediate formal explanation and captures the idea that the process
of explaining a statement can be iterated in order to find simpler and simpler
reasons for our original statement.

Definition 3. For any consistent multiset {C} [ � where C is a formula of
classical logic and � is a multiset of formulae of classical logic, we say that,
under the robust condition C (which might not occur), � is an immediate formal
explanation of A, in symbols [C]� � A, if and only if:

2 For the philosophical motivation behind the definition of exp-subformulae, see the
notion of g-subformulae in [13]. Notice also that the notion of g-subformula is closed
under commutativity and associativity of conjunction and disjunction. In the present
work, for the sake of simplicity, we omit this requirement. This, nevertheless, does
not imply a loss of generality since also the corresponding substructural connectives
⌦ and t of SL are commutative and associative.
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– � ` A (positive derivability),
– C,� ⇤ ` A⇤ (negative derivability),
– {C} [ � is a set of exp-subformulae of A, see Definition 2.

where ` indicates derivability any system for classical logic.

The notion of mediate formal explanation can be defined as follows via the
notion of immediate formal explanation.

Definition 4. For any consistent multiset of classical formulae � [ � and
classical formula A, [� ]� �m A if, and only if, one of the following conditions is
satisfied:

– [� ]� � A
– [G]�0 � B and [� 0]�00, B �m A where

• � = �0 [�00

• � = � 0 [ {G}.

As shown in [15, pp. 14–16], positive and negative derivability characterize
mediate formal explanation as well.

Proposition 1. For any classical formula A and pair of multisets of classical
formulae � and �, we have that if [� ]� �m A holds, then � ` A and �,�⇤ ` A⇤.

Given Definition 3, it is possible to list all potential immediate formal expla-
nations for the complex formulae of classical logic.3 A complete enumeration of
all valid schemata of explanations of this kind is the following:

A,B � A ^B
A,B � A _B [A⇤]B � A _B [B⇤]A � A _B
A⇤, B � A ! B [A]B � A ! B [B⇤]A⇤ � A ! B
A � ¬¬A
A⇤, B⇤ � ¬(A ^B) [A]B⇤ � ¬(A ^B) [B]A⇤ � ¬(A ^B)
A⇤, B⇤ � ¬(A _B)
A,B⇤ � ¬(A ! B)

3 The Substructural Calculus

We introduce now the substructural calculus SL which will be used to show that
the derivability conditions defining formal explanations in classical logic can be
expressed in a substructural calculus.

The language that we will employ for the substructural calculus SL is the
following:

' ::=  | ? | '⌦ ' | ' t ' | '( '

 ::= p1 | p2 | p3 . . .
3 We talk here of potential explanations because, in order to have an actual explanation,
we must also guarantee that all formulae occurring in the explanation are true.
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where p1, p2, p3 . . . is a list of all the propositional variables of the language.

The constant ? for falsity corresponds to the lattice bottom, see [6, p. 83] and
[11, p. 42]; the connective ⌦ is the multiplicative conjunction;4 t is the additive
disjunction;5 and ( is the multiplicative implication.

Rules and axioms of the substructural calculus SL are shown in Table 1.

A ) A �,? ) C
� ) A �, A ) B

�,� ) B
cut

� ) A � ) B
�,� ) A⌦B

⌦r
�, A,B ) C

�, A⌦B ) C
⌦l

� ) A
� ) A tB

tr � ) B
� ) A tB

tr
�, A ) C �, B ) C

�, A tB ) C
tl

�, A ) B

� ) A ( B
( r

� ) A �, B ) C

�,�, A ( B ) C
( l

Table 1. The substructural calculus SL

The calculus SL can be directly seen as a fragment of FLe (Full Lambek
Calculus with the Exchange rule)—see, for instance, [6]. Otherwise, it is possible
to consider SL as a fragment of Linear Logic—see, for instance, [11]—to which
we add the axiom for the lattice bottom ?.

Definition 5. We define ⇠ A as A ( ?, and we introduce the following two
rules for ⇠ by simplifying the rules for (:

�, A ) ?
� )⇠ A

⇠ r � ) A
�,�,⇠ A ) C

⇠ l

Notice that we omitted a premise of the form �,? ) C from the ⇠ r rule since
this premise is always an axiom of the calculus.

We extend the definition of converse formula also for the language of SL.

Definition 6. For any formula A in the language of SL, the converse A⇤ of A
is defined according to Definition 1 where instead of the classical negation ¬ we
use the substructural negation ⇠.

4 The multiplicative conjunction is sometimes also called group-theoretical conjunction
[11].

5 The additive disjunction is sometimes also called lattice-theoretical disjunction [11].
This connective is often denoted by _, but here we reserve the symbol _ for the
disjunction of classical logic.
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4 Formal Explanation by Substructural Proofs

We show that the positive and negative derivability conditions used to define the
formal explanation relation for classical logic can be expressed as derivability con-
ditions in SL. In order to do this, we interpret classical formulae as substructural
formulae according to the following recursive translation t:

t(A ^B) = t(A)⌦ t(B)

t(A _B) = t(A) t t(B) t (t(A)⌦ t(B))

t(A ! B) = t(¬A _B) = ⇠ t(A) t t(B) t (⇠ t(A)⌦ t(B))

t(¬A) = ⇠ t(A)

For any multiset � of classical formulae, we denote by t(� ) the multiset {t(A) |
A 2 �} of substructural formulae.

The translations of conjunction and negation are self-explanatory. The case of
disjunction requires a clarification. Indeed, it is not enough to translate classical
disjunction _ by the substructural t because, while the multiset of formulae
{A,B} is a legitimate immediate formal explanation of A _B, the substructural
sequent A,B ) A tB is not derivable. This is due to the fact that the calculus
SL enables us to prove a complex formula only if we have the exact amount of
hypotheses required to introduce the outermost connective of the formula, and
not one hypothesis more. For A t B, in particular, we have that A ) A t B
and B ) A tB are derivable, but A,B ) A tB is not, because, in the latter
sequent, one formula between A and B is redundant. In more conceptual terms,
if A and B are true, both formulae have to be mentioned in order to provide
the complete reason why A _ B is true, and hence both of them have to be
in the formal explanation of A _ B; from a substructural perspective, on the
other hand, using both A and B to obtain A t B is a waste of resources and
hence is not allowed. Therefore, in order to faithfully encode the behavior of
classical disjunction with respect to formal explanation in our substructural
calculus SL, we need to translate classical disjunction by a weakened version
of the substructural disjunction t. For similar reasons, we translate a classical
implication A ! B via its traditional encoding as the classical formula ¬A _B.

Before showing that the translation t enables us to formulate positive and
negative derivability as derivability in SL, we need to prove two propositions
concerning the converse relation.

Proposition 2. For any formula A and multiset � , the sequent �, A,A⇤ ) ?
is derivable.

Proof. By Definition 6, we have two cases: (i) A =⇠2n B where B does not have
⇠ as outermost connective, and (ii) A =⇠2n+1 B, where B does not have ⇠ as
outermost connective.

If (i), A⇤ =⇠ A and �, A,A⇤ ) ? can be derived as shown below on the left.
If (ii), A⇤ = (⇠2n+1 B)⇤ =⇠2n B and �, A,A⇤ ) ? can be derived as shown
below on the right.
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A ) A
�, A,⇠ A ) ? ⇠ l

⇠2n B )⇠2n B
�,⇠2n+1 B,⇠2n B ) ? ⇠ l

Proposition 3. For any formula A, the sequent A⇤ )⇠ A is derivable.

Proof. By Definition 6, we have two cases: (i) A =⇠2n B where B does not have
⇠ as outermost connective, and (ii) A =⇠2n+1 B, where B does not have ⇠ as
outermost connective.

If (i), A⇤ =⇠ A and A⇤ )⇠ A is an axiom and hence derivable.
If (ii), A⇤ = (⇠2n+1 B)⇤ =⇠2n B and A⇤ )⇠ A can be derived as follows:

⇠2n B )⇠2n B
⇠2n B,⇠2n+1 B ) ? ⇠ l

⇠2n B )⇠2n+2 B
⇠ r

Theorem 1. The positive and negative derivability conditions for formal expla-
nation in classical logic can be expressed as derivability conditions in SL.

Proof. Since the rules of SL are clearly sound with respect to classical logic, we
have that, if the conditions of positive and negative derivability are met with
respect to SL through the translation t, then they are also met with respect to
classical logic. Which means that if a suitably partitioned multiset of formulae
C,�, D verifies the complexity conditions of Definition 3 and its translation
enjoys positive and negative derivability in SL, then [C]� � D holds. Therefore,
in order to prove the statement it is enough to show that, if [C]� � D holds,
then the conditions of positive and negative derivability are met in SL for the
translation of the formulae C,D and of the multiset � . Hence, we consider all
valid instances of the formal explanation relation [C]� � D, we reason by cases
on the logical structure of the classical formula D, and we show in each case
that t(� ) ) t(D) and t(C), t(� )⇤ ) t(D)⇤ are derivable sequents. We only show
some interesting cases.

– A,B � A _B

Positive derivability:
A ) A B ) B
A,B ) A⌦B

A,B ) (A tB) t (A⌦B)
tr

Negative derivability:

A⇤, B⇤, A ) ? A⇤, B⇤, B ) ?
A⇤, B⇤, A tB ) ? tl

A⇤, B⇤, A,B ) ?
A⇤, B⇤, A⌦B ) ? ⌦l

A⇤, B⇤, (A tB) t (A⌦B) ) ? tl

A⇤, B⇤ )⇠ ((A tB) t (A⌦B))
⇠ r

where, by Proposition 2, the sequents A⇤, B⇤, A ) ? and A⇤, B⇤, B ) ?,
and the sequent A⇤, B⇤, A,B ) ? are derivable.
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– [B⇤]A � A _B

Positive derivability:
A ) A

A ) A tB
tr

A ) (A tB) t (A⌦B)
tr

Negative derivability:

B⇤, A⇤, A ) ? B⇤, A⇤, B ) ?
B⇤, A⇤, A tB ) ? tl

B⇤, A⇤, A,B ) ?
B⇤, A⇤, A⌦B ) ? ⌦l

B⇤, A⇤, (A tB) t (A⌦B) ) ? tl

B⇤, A⇤ )⇠ ((A tB) t (A⌦B))
⇠ r

where, by Proposition 2, the sequents B⇤, A⇤, A ) ? and B⇤, A⇤, B ) ?,
and the sequent B⇤, A⇤, A,B ) ? are all derivable.

– A � ¬¬A

Positive derivability:
A ) A

A,⇠ A ) ? ⇠ l

A )⇠⇠ A
⇠ r

Negative derivability: we have to derive the sequent A⇤ ) (⇠⇠ A)⇤. By
Definition 6, we have two cases: either A⇤ = (⇠2n B)⇤ =⇠ A and hence
(⇠⇠ A)⇤ =⇠⇠⇠ A; or A⇤ = (⇠2n+1 B)⇤ =⇠2n B and hence (⇠⇠ A)⇤ =⇠ A.
If A⇤ =⇠ A and (⇠⇠ A)⇤ =⇠⇠⇠ A, we have the derivation below on the
left. If A⇤ = (⇠2n+1 B)⇤ =⇠2n B and hence (⇠⇠ A)⇤ =⇠ A =⇠2n+2 B, we
have the derivation below on the right.

⇠ A )⇠ A
⇠ A,⇠⇠ A ) ? ⇠ l

⇠ A )⇠⇠⇠ A
⇠ r

⇠2n B )⇠2n B
⇠2n B,⇠2n+1 B ) ? ⇠ l

⇠2n B )⇠2n+2 B
⇠ r

– A⇤, B⇤ � ¬(A ^B)
Positive derivability: derivation below on the left. Negative derivability:
derivation below on the right.

A⇤, B⇤, A,B ) ?
A⇤, B⇤, A⌦B ) ? ⌦l

A⇤, B⇤ )⇠ (A⌦B)
⇠ r

(A⇤)⇤ ) A (B⇤)⇤ ) B

(A⇤)⇤, (B⇤)⇤ ) A⌦B
⌦r

where, by Proposition 2, A⇤, B⇤, A,B ) ? is a derivable sequent; and, since
by Definition 6 we have that (A⇤)⇤ = A and (B⇤)⇤ = B, both sequents
(A⇤)⇤ ) A and (B⇤)⇤ ) B are derivable.

– A⇤, B⇤ � ¬(A _B)
Positive derivability:

A⇤, B⇤, A ) ? A⇤, B⇤, B ) ?
A⇤, B⇤, A tB ) ? tl

A⇤, B⇤, A,B ) ?
A⇤, B⇤, A⌦B ) ? ⌦l

A⇤, B⇤, (A tB) t (A⌦B) ) ? tl

A⇤, B⇤ )⇠ ((A tB) t (A⌦B))
⇠ r

where, by Proposition 2, the sequents A⇤, B⇤, A ) ? and A⇤, B⇤, B ) ?,
and the sequent A⇤, B⇤, A,B ) ? are derivable.
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Negative derivability:

(A⇤)⇤ ) A (B⇤)⇤ ) B

(A⇤)⇤, (B⇤)⇤ ) A⌦B
⌦r

(A⇤)⇤, (B⇤)⇤ ) (A tB) t (A⌦B)
tr

where, since by Definition 6 we have that (A⇤)⇤ = A and (B⇤)⇤ = B , the
sequents (A⇤)⇤ ) A and (B⇤)⇤ ) B are derivable.

The previous proof also indicates that the other obvious choices of substructural
connectives would not be suitable to characterise immediate formal explanation.
Indeed, for additive conjunction u and multiplicative disjunction �, positive
derivability does not hold since the leaves of the following derivations are not
derivable:

A,B ) A A,B ) B
A,B ) A uB

A ) A,B
A ) A�B

Moreover, if we used the weaker falsity constant 0 instead of the lattice bottom
?, Proposition 2 would fail, because �, 0 ) 0 with � 6= ; is not derivable, and
thus the rule ⇠ l would not be strong enough to prove what is required.

We show that the generalisation of immediate formal explanation into mediate
formal explanation preserves the embeddability of formal explanations in SL.

Theorem 2. The construction of mediate formal explanations in classical logic
preserves positive and negative derivability in the calculus SL.

Proof. Consider any valid instance [� ]� �m A of the mediate formal explanation
relation. We show that the substructural sequents t(�) ) t(A) and t(� ), t(�)⇤ )
t(A)⇤ are derivable in SL.

According to Definition 4, the instance [� ]� �m A is valid if, and only
if, it can be justified by a finite number of instances of the immediate formal
explanation relation. The proof is by induction on the number of instances of the
immediate formal explanation relation used to justify [� ]� �m A.

In the base case, [� ]� �m A itself is a valid instance [� ]� � A of imme-
diate formal explanation and, by Theorem 1, we have that t(�) ) t(A) and
t(� ), t(�)⇤ ) t(A)⇤ are derivable in SL.

Suppose now that [� ]� �m A is justified by n > 1 instances of the immediate
formal explanation relation. Suppose, moreover, that all instances of mediate
formal explanation that are justified by less than n instances of immediate formal
explanation correspond to sequents derivable in SL. We show that the SL sequents
t(�) ) t(A) and t(� ), t(�)⇤ ) t(A)⇤ are derivable as well.

If [� ]� �m A is justified by n instances of the immediate formal explanation
relation, then, by Definition 4, we have that there is a valid immediate formal
explanation [G]�0 � B and a valid mediate formal explanation [� 0]�00, B �m A
which is justified by less than n instances of the immediate formal explanation
relation. Moreover, it holds that � = �0 [�00 and � = � 0 [ {G}. By induction
hypothesis, we have that the pair of sequents t(�0) ) t(B) and t(�00), t(B) )
t(A), and the pair of sequents t(G), t(�0)⇤ ) t(B)⇤ and t(� 0), t(�00)⇤, t(B)⇤ )
t(A)⇤ are derivable in SL. By applying the cut rule, we can obtain the desired
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derivation of t(� ), t(�) ) t(A):

t(�0) ) t(B) t(�00), t(B) ) t(A)

t(�0), t(�00) ) t(A)
cut

since t(�) = t(�0) [ t(�00); and the desired derivation of t(� ), t(�)⇤ ) t(A)⇤:

t(G), t(�0)⇤ ) t(B)⇤ t(� 0), t(�00)⇤, t(B)⇤ ) t(A)⇤

t(G), t(� 0), t(�0)⇤, t(�00)⇤ ) t(A)⇤
cut

since t(�)⇤ = t(�0)⇤ [ t(�00)⇤ and t(� ) = t(� 0) [ t(G).

Since formal explanations are often associated with analytic proofs [16], we
also prove that formal explanations in classical logic can always be represented
as analytic SL derivations.

Corollary 1. Formal explanations in classical logic can be represented as cut-free
SL derivations.

Proof. Since cut-elimination holds for SL, see, for instance, [2, p. 213], we have
that for each SL derivation used in Theorem 2, there is a cut-free SL derivation
with the same end-sequent.

5 Conclusions

We have fully characterised the notion of immediate formal explanation for
classical logic by the substructural calculus SL, which is both a fragment of FLe
(Full Lambek Calculus with the Exchange rule) and a fragment of Linear Logic
extended by an axiom for the lattice bottom. Moreover, we have proved that the
notion of mediate formal explanation—that is, the transitive closure of immediate
formal explanation—preserves all relevant derivability conditions in SL without
the cut rule. Thus, we have showed that formal explanation, in general, can be
fully characterised by complexity constraints and by analytic derivability in SL,
without any reference to derivability in classical logic. This notion of explanation,
as a consequence, does not only have a substructural flavour, but is actually
rigorously connected in an essential way to substructural derivability.

A further question remains open, though. Indeed, we conjecture that instead
of defining mediate formal explanation as the transitive closure of immediate
formal explanation, it should be possible to define it in a direct way by derivability
conditions formulated in SL and suitably adapted complexity conditions. In order
to prove this, since we already proved that mediate formal explanation preserves
positive and negative derivability in cut-free SL, it is enough to prove that, if
positive and negative derivability in SL hold for the translation of a suitable
multiset of formulae �,�, A, then [� ]� �m A holds as well. Even though we
conjecture that this is true, a formal proof of the result seems to require a rather
lengthy argument. We leave it, therefore, for future work.
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