
Learning Languages with Decidable Hypotheses

Julian Berger JULIAN.BERGER@STUDENT.HPI.UNI-POTSDAM.DE

Maximilian Böther MAXIMILIAN.BOETHER@STUDENT.HPI.UNI-POTSDAM.DE

Vanja Doskoč VANJA.DOSKOC@HPI.DE

Jonathan Gadea Harder JONATHAN.GADEAHARDER@STUDENT.HPI.UNI-POTSDAM.DE

Nicolas Klodt NICOLAS.KLODT@STUDENT.HPI.UNI-POTSDAM.DE

Timo Kötzing TIMO.KOETZING@HPI.DE

Winfried Lötzsch WINFRIED.LOETZSCH@STUDENT.HPI.UNI-POTSDAM.DE

Jannik Peters JANNIK.PETERS@STUDENT.HPI.UNI-POTSDAM.DE

Leon Schiller LEON.SCHILLER@STUDENT.HPI.UNI-POTSDAM.DE

Lars Seifert LARS.SEIFERT@STUDENT.HPI.UNI-POTSDAM.DE

Armin Wells ARMIN.WELLS@STUDENT.HPI.UNI-POTSDAM.DE

Simon Wietheger SIMON.WIETHEGER@STUDENT.HPI.UNI-POTSDAM.DE

Hasso Plattner Institute
University of Potsdam, Germany

Abstract
In language learning in the limit, the most common type of hypothesis is to give an enumerator
for a language. This so-called W -index allows for naming arbitrary computably enumerable lan-
guages, with the drawback that even the membership problem is undecidable. In this paper we
use a different system which allows for naming arbitrary decidable languages, namely programs
for characteristic functions (called C-indices). These indices have the drawback that it is now not
decidable whether a given hypothesis is even a legal C-index.

In this first analysis of learning with C-indices, we give a structured account of the learning
power of various restrictions employingC-indices, also when compared withW -indices. We estab-
lish a hierarchy of learning power depending on whether C-indices are required (a) on all outputs;
(b) only on outputs relevant for the class to be learned and (c) only in the limit as final, correct
hypotheses. Furthermore, all these settings are weaker than learning with W -indices (even when
restricted to classes of computable languages). We analyze all these questions also in relation to
the mode of data presentation.

Finally, we also ask about the relation of semantic versus syntactic convergence and derive the
map of pairwise relations for these two kinds of convergence coupled with various forms of data
presentation.
Keywords: language learning in the limit, inductive inference, decidable languages, characteristic
index

1. Introduction

We are interested in the problem of algorithmically learning a description for a formal language
(a computably enumerable subset of the set of natural numbers) when presented successively all
and only the elements of that language; this is called inductive inference, a branch of (algorithmic)
learning theory. For example, a learner h might be presented more and more even numbers. After
each new number, h outputs a description for a language as its conjecture. The learner h might
decide to output a program for the set of all multiples of 4, as long as all numbers presented are

© J. Berger et al.

ar
X

iv
:2

01
1.

09
86

6v
1

 [
cs

.L
O

]
 1

5
O

ct
 2

02
0

BERGER ET AL.

divisible by 4. Later, when h sees an even number not divisible by 4, it might change this guess to
a program for the set of all multiples of 2.

Many criteria for determining whether a learner h is successful on a language L have been
proposed in the literature. Gold (1967), in his seminal paper, gave a first, simple learning criterion,
TxtGEx-learning1, where a learner is successful if and only if, on every text for L (listing of all
and only the elements of L) it eventually stops changing its conjectures, and its final conjecture is a
correct description for the input language.

Trivially, each single, describable language L has a suitable constant function as a TxtGEx-
learner (this learner constantly outputs a description for L). Thus, we are interested in analyzing
for which classes of languages L is there a single learner h learning each member of L. This
framework is also known as language learning in the limit and has been studied extensively, using
a wide range of learning criteria similar to TxtGEx-learning (see, for example, the textbook Jain
et al. (1999)).

In this paper we put the focus on the possible descriptions for languages. Any computably enu-
merable language L has as possible descriptions any program enumerating all and only the elements
of L, called a W -index (the language enumerated by program e is denoted by We). This system has
various drawbacks; most importantly, the function which decides, given e and x, whether x ∈We is
not computable. We propose to use different descriptors for languages: programs for characteristic
functions (where such programs e describe the language Ce which it decides). Of course, only de-
cidable languages have such a description, but now, given a program e for a characteristic function,
x ∈ Ce is decidable. Additionally to many questions that remain undecidable (for example whether
C-indices are for the same language or whether a C-index is for a finite language), it is not decid-
able whether a program e is indeed a program for a characteristic function. Thich leads to a new set
of problems: learners cannot be (algorithmically) checked whether their outputs are viable (in the
sense of being programs for characteristic functions).

Based on this last observation we study a range of different criteria which formalize what kind
of behavior we expect form our learners. In the most relaxed setting, learners may output any
number (for a program) they want, but in order to Ex-learn, they need to to converge to a correct
C-index; we denote this restriction with ExC . Requiring additionally to only use C-indices in
order to successfully learn we denote by CIndExC ; requiring C-indices on all inputs (not just
for successful learning, but also when seeing input from no target language whatsoever) we denote
by τ(CInd)ExC . In particular, the last restriction requires the learner to be total; in order to
distinguish whether the loss of learning power is due to the totality restriction or truly due to the
additional requirement of outputtingC-indices, we also studyRCIndExC , that is, the requirement
CIndExC where additionally the learner is required to be total.

We note that τ(CInd)ExC is similar to learning indexable families. Indexable families are
classes of languages L such that there is an enumeration (Li)i∈N of all and only the elements of L
for which the decision problem “x ∈ Li” is decidable. Already for such classes of languages we
get a rich structure. A survey of previous work in this area can be found in Lange et al. (2008).
For a learner h learning according to τ(CInd)ExC we have that Lx = Ch(x) gives an indexing of
a family of languages, and h learns some subset thereof. We are specifically interested in the area
between this setting and learning with W -indices (ExW).

1. Txt stands for learning from a text of positive examples; G for Gold, indicating full-information learning; Ex stands
for explanatory.

2

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

The criteria we analyze naturally interpolate between these two settings. We show that we have
the following hierarchy: τ(CInd)ExC allows for learning strictly fewer classes of languages than
RCIndExC , which allow for learning the same classes as CIndExC , which again are fewer than
learnable by ExC , which in turn renders fewer classes learnable than ExW .

All these results hold for learning with full information. In order to study the dependence on
the mode of information presentation, we also consider partially set-driven learners (Psd, Blum
and Blum (1975); Schäfer-Richter (1984)), which only get the set of data presented so far and the
iteration number as input; set-driven learners (Sd, Wexler and Culicover (1980)), which get only
the set of data presented so far; iterative learners (It, Wiehagen (1976); Fulk (1985)), which only
get the new datum and its current hypothesis and, finally, transductive learners (Td, Carlucci et al.
(2007); Kötzing (2009)), which only get the current data. Note that transductive learners are mostly
of interest as a proper restriction to all other modes of information presentation.

We show that full-information learners can be turned into partially set-driven learners without
loss of learning power. Furthermore, iterative learning is strictly less powerful than set-driven learn-
ing, in all settings. Altogether we analyze 25 different criteria and show how each pair relates. All
these results are summarized in Figure 1 as one big map stating all pairwise relations of the learn-
ing criteria mentioned, giving 300 pairwise relations in one diagram, proven with 13 theorems in
Section 3. Note that the results comparing learning criteria with W -indices were previously known,
and some proofs could be extended to also cover learning with C-indices.

Figure 1: Relation of various requirements when to output characteristic indices paired with var-
ious memory restrictions. We omit mentioning Txt to favour readability. Black solid
lines imply trivial inclusions (bottom-to-top, left-to-right). Dashed lines imply non-trivial
inclusions (bottom-to-top, left-to-right). Furthermore, greyly edged areas illustrate a col-
lapse of the enclosed learning criteria and there are no further collapses.

3

BERGER ET AL.

We derive a similar map considering a possible relaxation on ExC-learning: while ExC requires
syntactic convergence to one single correct C-index, we consider behaviorally correct learning,
BcC for short, where the learner only has to semantically converge to correctC-indices (but may use
infinitely many different such indices). We again consider the different modes of data presentation
and determine all pairwise relations in Figure 2.

Figure 2: Relation of learning criteria under various memory restrictions. On the left-hand side
we require syntactic convergence to characteristic indices and semantic on the right-hand
side. We omit mentioning Txt in favour of readability. Black solid lines imply trivial
inclusions (bottom-to-top, left-to-right). The dashed line between Sd and It indicates
that [TxtItExC]REC ([TxtSdExC]REC. Furthermore, greyly edged areas illustrate
a collapse of the enclosed learning criteria and there are no further collapses.

Before getting to our results in detail, we continue with some (mathematical) preliminaries in
Section 2.

2. Preliminaries

In this section we discuss the used notation. Unintroduced notation follows the textbook of Rogers Jr.
(1987). For learning criteria we follow the system introduced by Kötzing (2009).

2.1. Mathematical Notations and Learning Criteria

With N we denote the set of all natural numbers, namely {0, 1, 2, . . .}. We denote the subset and
proper subset relation between two sets with ⊆ and (, respectively. With ⊆Fin we denote the finite
subset relation. We use ∅ and ε to denote the empty set and empty sequence, respectively. For any set
A, the set of all subsets of A is denoted by Pow(A). The set of all computable functions is denoted
by P , the subset of all total computable functions by R. If a function f is (not) defined on some
argument x ∈ N, we say that f converges (diverges) on x, denoting this fact with f(x)↓ (f(x)↑).
We fix an effective numbering {ϕe}e∈N of P . For any e ∈ N, we let We denote the domain of ϕe
and call e a W -index of We. This set we call the e-th computably enumerable set. We call e ∈ N a

4

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

C-index (characteristic index) if and only if ϕe is a total function such that for all x ∈ N we have
ϕe(x) ∈ {0, 1}. Furthermore, we let Ce = {x ∈ N | ϕe(x) = 1}. For a computably enumerable
set L, if some e ∈ N is a C-Index with Ce = L, we write ϕe = χL. Note that, if a set has a
C-index, it is recursive. The set of all recursive sets is denoted by REC. For a finite set D ⊆ N,
we let ind(D) be a C-index for D. Note that ind ∈ R. Furthermore, we fix a Blum complexity
measure Φ associated with ϕ, that is, for all e, x ∈ N, Φe(x) is the number of steps the function
ϕe takes on input x to converge, see (Blum, 1967). The padding function pad ∈ R is an injective
function such that, for all e, n ∈ N, we have ϕe = ϕ

pad(e,n)
. We use 〈·, ·〉 as a computable, bijective

function that codes a pair of natural numbers into a single one. We use π1 and π2 as computable
decoding functions for the first and section component, i.e., for all x, y ∈ N we have π1(〈x, y〉) = x
and π2(〈x, y〉) = y.

We learn computably enumerable sets L, called languages. We fix a pause symbol #, and
let, for any set S, S# := S ∪ {#}. Information about languages is given from text, that is, total
functions T : N → N ∪ {#}. A text T is of a certain language L if its content is exactly L, that is,
content(T) := range(T) \ {#} is exactly L. We denote the set of all texts as Txt and the set of all
texts of a language L as Txt(L). For any n ∈ N, we denote with T [n] the initial sequence of the
text T of length n, that is, T [0] := ε and T [n] := (T (0), . . . , T (n − 1)). Given a language L and
t ∈ N, the set of sequences consisting of elements of L ∪ {#} that are at most t long, is denoted
by L≤t# . Furthermore, we denote with Seq all finite sequences over N# and define the content of
such sequences analogous to the content of texts. The concatenation of two sequences σ, τ ∈ Seq is
denoted by σ_τ . Furthermore, we write ⊆ for the extension relation on sequences and fix a order
≤ on Seq interpreted as natural numbers.

Now, we formalize learning criteria following the system introduced by Kötzing (2009). A
learner is a partial function h ∈ P . An interaction operator β is an operator that takes a learner
h ∈ P and a text T ∈ Txt as input and outputs a (possibly partial) function p. Intuitively, β defines
which information is available to the learner for making its hypothesis. We consider Gold-style or
full-information learning (Gold (1967)), denoted by G, partially set-driven learning (Psd, Blum
and Blum (1975); Schäfer-Richter (1984)), set-driven learning (Sd, Wexler and Culicover (1980)),
iterative learning (It, Wiehagen (1976); Fulk (1985)) and transductive learning (Td, Carlucci et al.
(2007); Kötzing (2009)). To define the latter formally, we introduce a symbol “?” for the learner to
signalize, that the information given is insufficient. Formally, for all learners h ∈ P , texts T ∈ Txt
and all i ∈ N, define

G(h, T)(i) = h(T [i]);

Psd(h, T)(i) = h(content(T [i]), i);

Sd(h, T)(i) = h(content(T [i]));

It(h, T)(i) =

{
h(ε), if i = 0;

h(It(h, T)(i− 1), T (i− 1)), otherwise;

Td(h, T)(i) =


?, if i = 0;

Td(h, T)(i− 1), else, if h(T (i− 1)) = ?;

h(T (i− 1)), otherwise.

For any of the named interaction operators β, given a β-learner h, we let h∗ (the starred learner)
denote a G-learner simulating h, i.e., for all T ∈ Txt, we have β(h, T) = G(h∗, T). For example,

5

BERGER ET AL.

let h be a Sd-learner. Then, intuitively, h∗ ignores all information but the content of the input,
simulating h with this information, i.e., for all finite sequences σ, we have h∗(σ) = h(content(σ)).

For a learner to successfully identify a language, we may oppose constraints on the hypotheses
the learner makes. These are called learning restrictions. A famous example was given by Gold
(1967). He required the learner to be explanatory, i.e., the learner must converge to a single, correct
hypothesis for the target language. We hereby distinguish whether the final hypothesis is interpreted
as a C-index or as a W -index, denoting this by ExC and ExW , respectively. Formally, for any
sequence of hypotheses p and text T ∈ Txt, we have

ExC(h, T)⇔ ∃n0 : ∀n ≥ n0 : p(n) = p(n0) ∧ ϕp(n0) = χcontent(T);

ExW (h, T)⇔ ∃n0 : ∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T).

We say that explanatory learning requires syntactic convergence. If there exists a C-index (or W -
index) for a language, then there exist infinitely many. This motivates to not require syntactic but
only semantic convergence, i.e., the learner may make mind changes, but it has to, eventually, only
output correct hypotheses. This is called behaviorally correct learning (BcC or BcW , Case and
Lynes (1982); Osherson and Weinstein (1982)). Formally, let p be a sequence of hypotheses and let
T ∈ Txt, then

BcC(p, T)⇔ ∃n0 : ∀n ≥ n0 : ϕp(n) = χcontent(T);

BcW (p, T)⇔ ∃n0 : ∀n ≥ n0 : Wp(n) = content(T).

In this paper, we consider learning with C-indices. It is, thus, natural to require the hypotheses
to consist solely of C-indices, called C-index learning, and denoted by CInd. Formally, for a
sequence of hypotheses p and a text T , we have

CInd(p, T)⇔ ∀i, x : ϕp(i)(x) ∈ {0, 1} .

For two learning restrictions δ and δ′, their combination is their intersection, denoted by their juxta-
position δδ′. We let T denote the learning restriction that is always true, which is interpreted as the
absence of a learning restriction.

A learning criterion is a tuple (α, C, β, δ), where C is the set of admissible learners, usually P
or R, β is an interaction operator and α and δ are learning restrictions. We denote this criterion
with τ(α)CTxtβδ, omitting C if C = P , and a learning restriction if it equals T. We say that
an admissible learner h ∈ C τ(α)CTxtβδ-learns a language L if and only if, for arbitrary texts
T ∈ Txt, we have α(β(h, T), T) and for all texts T ∈ Txt(L) we have δ(β(h, T), T). The set
of languages τ(α)CTxtβδ-learned by h ∈ C is denoted by τ(α)CTxtβδ(h). With [τ(α)CTxtβδ]
we denote the set of all classes τ(α)CTxtβδ-learnable by some learner in C. Moreover, to compare
learning with W - and C-indices, these classes may only contain recursive languages, which we
denote as [τ(α)CTxtβδ]REC.

2.2. Normal Forms

When studying language learning in the limit, there are certain properties of learner that are use-
ful, e.g., if we can assume a learner to be total. Kötzing and Palenta (2016) and Kötzing et al.
(2017) study under which circumstances learners may be assumed to be total. Importantly, this

6

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

is the case for explanatory Gold-style learners obeying delayable learning restrictions and for be-
haviorally correct learners obeying delayable restrictions. Intuitively, a learning restriction is de-
layable if it allows hypotheses to be arbitrarily, but not indefinitely postponed without violating the
restriction. Formally, a learning restriction δ is delayable, if and only if for all non-decreasing, un-
bounded functions r : N→ N, texts T, T ′ ∈ Txt and learning sequences p such that for all n ∈ N,
content(T [r(n)]) ⊆ content(T ′[n]) and content(T) = content(T ′), we have, if δ(p, T), then also
δ(p ◦ r, T ′). Note that ExW , ExC , BcW , BcC and CInd are delayable restrictions.

Another useful notion are locking sequences. Intuitively, these contain enough information such
that a learner, after seeing this information, converges correctly and does not change its mind any-
more whatever additional information from the target language it is given. Formally, let L be a
language and let σ ∈ L∗#. Given a G-learner h ∈ P , σ is a locking sequence for h on L if and
only if for all sequences τ ∈ L∗# we have h(σ) = h(στ) and h(σ) is a correct hypothesis for L,
see Blum and Blum (1975). This concept can immediately be transferred to other interaction op-
erators. Exemplary, given a Sd-learner h and a locking sequence σ of the starred learner h∗, we
call the set content(σ) a locking set. Analogously, one transfers this definition to the other inter-
action operators. It shall not remain unmentioned that, when considering Psd-learners, we speak
of locking information. In the case of BcW -learning we do not require the learner to syntactically
converge. Therefore, we call a sequence σ ∈ L∗# a BcW -locking sequence for a G-learner h on L
if, for all sequences τ ∈ L∗#, h(στ) is a correct hypothesis for L, see Jain et al. (1999). We omit
the transfer to other interaction operators as it is immediate. It is an important observation by Blum
and Blum (1975), that for any learner h and any language L it learns, there exists a (BcW -) locking
sequence. These notions and results directly transfer to ExC- and BcC-learning. When it is clear
from the context, we omit the index.

3. Requiring C-Indices as Output

This section is dedicated to proving Figure 1, giving all pairwise relations for the different settings
of requiring C-indices for output in the various mentioned modes of data presentation. In general,
we observe that the later we require C-indices, the more learning power the learner has. This holds
except for transductive learners which converge to C-indices. We show that they are as powerful as
CInd-transductive learners.

Although we learn classes of recursive languages, the requirement to converge to characteristic
indices does heavily limit a learners capabilities. In the next theorem we show that even transductive
learners which converge to W -indices can learn classes of languages which no Gold-style ExC-
learner can learn. We exploit the fact that C-indices, even if only conjectured eventually, must
contain both positive and negative information about the guess.

Theorem 1 We have that [TxtTdExW]REC \ [TxtGExC]REC 6= ∅.

Proof We show this by using the Operator Recursion Theorem (ORT) to provide a separating class
of languages. To this end, let h be the Td-learner with h(#) = ? and, for all x, y ∈ N, let
h(〈x, y〉) = x. Let L = TxtTdExW (h) ∩ REC. Assume L can be learned by a TxtGExC-
learner h′. By Kötzing and Palenta (2016), we can assume h′ ∈ R. Then, by ORT there exist
indices e, p, q ∈ N such that

L := We = range(ϕp);

7

BERGER ET AL.

∀x : T̃ (x) := ϕp(x) = 〈e, ϕq(T̃ [x])〉;
ϕq(ε) = 0;

∀σ 6= ε : σ̄ = min{σ′ ⊆ σ | ϕq(σ′) = ϕq(σ)};

∀σ 6= ε : ϕq(σ) =


ϕq(σ̄), if ∀σ′, σ̄ ⊆ σ′ ⊆ σ : Φh′(σ′)(〈e, ϕq(σ̄) + 1〉) > |σ|;
ϕq(σ̄) + 1, else, for min. σ′ contradicting the previous case, if

ϕh′(σ′)(〈e, ϕq(σ̄) + 1〉) = 0;

ϕq(σ̄) + 2, otherwise.

Here, Φ is a Blum complexity measure, see Blum (1967). Intuitively, to define the next ϕp(x), we
add the same element to content(T̃) until we know whether 〈e, T̃ [x] + 1〉 ∈ Ch′(σ̄) holds or not.
Then, we add the element contradicting this outcome.

We first show thatL ∈ L and afterwards thatL cannot be learned by h′. To show the former, note
that either L is finite or T̃ is a non-decreasing unbounded computable enumeration of L. Therefore,
we have L ∈ REC. We now prove that h learns L. Let T ∈ Txt(L). For all n ∈ N where T (n)
is not the pause symbol, we have h(T (n)) = e. With n0 ∈ N being minimal such that T (n0) 6= #,
we get for all n ≥ n0 that Td(h, T)(n) = e. As e is a correct hypothesis, h learns L from T and
thus we have that L ∈ TxtTdExW (h). Altogether, we get that L ∈ L.

By assumption, h′ learns L from the text T̃ ∈ Txt(L). Therefore, there exists n0 ∈ N such
that, for all n ≥ n0,

h′(T̃ [n]) = h′(T̃ [n0]) and χL = ϕh′(T̃ [n]),

that is, h′(T̃ [n]) is a C-index for L. Now, as h′ outputs C-indices when converging, there are
t, t′ ≥ n0 such that

Φh′(T̃ [t′])(〈e, ϕq(T̃ [n0]) + 1〉) ≤ t.

Let t′0 and t0 be the first such found. We show that h′(T̃ [t′0]) is no correct hypothesis of L by
distinguishing the following cases.

1. Case: ϕh′(T̃ [t′0])(〈e, ϕq(T̃ [n0]) + 1〉) = 0. By definition of ϕq and by minimality of t′0, we

have that 〈e, ϕq(T̃ [n0]) + 1〉 ∈ L, however, the hypothesis of h′(T̃ [t′0]) says differently, a
contradiction.

2. Case: ϕh′(T̃ [t′0])(〈e, ϕq(T̃ [n0]) + 1〉) = 1. By definition of ϕq and by minimality of t′0, we have

that 〈e, ϕq(T̃ [n0])+2〉 ∈ L, but 〈e, ϕq(T̃ [n0])+2〉 /∈ L. However, the hypothesis of h′(T̃ [t′0])
conjectures the latter to be in L, a contradiction.

Furthermore, known equalities from learning W -indices directly apply in the studied setting as
well. These include the following.

Theorem 2 (Kinber and Stephan (1995), Fulk (1990)) We have that

[TxtItExW]REC ⊆ [TxtSdExW]REC and [TxtPsdExW]REC = [TxtGExW]REC.

8

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

The remaining separations we will show in a more general way, see Theorems 11 and 12. We
continue by showing that the latter result, namely that Gold-style learners may be assumed partially
set-driven, transfers to all considered cases. We generalize the result by Schäfer-Richter (1984) and
Fulk (1990). The idea here is to, just as in the ExW -case, mimic the given learner and to search for
minimal locking sequences. Incorporating the result of Kötzing and Palenta (2016) that unrestricted
Gold-style learners may be assumed total, we even get a stronger result.

Theorem 3 For δ, δ′ ∈ {CInd,T}, we have that

[τ(δ)TxtGδ′ExC]REC = [τ(δ)RTxtPsdδ′ExC]REC.

Proof We modify the proof as seen in Fulk (1990). The inclusion [τ(δ)RTxtPsdδ′ExC]REC ⊆
[τ(δ)TxtGδ′ExC]REC follows immediately. For the other, let h be a τ(δ)TxtGδ′ExC-learner,
which can assumed to be total by Kötzing and Palenta (2016) and let L = τ(δ)TxtGδ′ExC(h) ∩
REC. We define, for each finite set D ⊆ N and t ∈ N,

p(D, t) =
{
σ ∈ D≤t

∣∣ ∀τ ∈ D≤t : h(σ) = h(στ)
}
,

which, intuitively, contains potential locking sequences of h. We define a τ(δ)RTxtPsdδ′ExC-
learner h′ for all finite sets D and t ∈ N as

h′(D, t) =

{
h(min(p(D, t))), if p(D, t) 6= ∅;
ind(∅), otherwise.

Note that h′ ∈ R since h ∈ R. To show that every language learned by h is also learned by h′, let
L ∈ L and T ∈ Txt(L). Let σ0 be a minimal locking sequence for h on L. Let n0 be sufficiently
large such that

• content(σ0) ⊆ content(T [n0]),

• |σ0| ≤ n0, and

• for all σ′ ∈ L∗#, with σ′ < σ0, there exists τ ∈ (content(σ0))≤n0

with h(σ′) 6= h(σ′τ).

Now, for all n ≥ n0, we have min(p(T [n], n)) = σ0 and, thus, h′ outputs a correct hypothesis
on T [n] which shows that L ∈ τ(δ)RTxtPsdδ′ExC(h′).

It remains to be shown that h′ preserves the restrictions imposed on h. This is clear whenever
the restriction equals T. For the remaining, we consider the following cases.

1. Case: δ = CInd. In this case, h always outputs C-indices. Since h′ mimics h or outputs
ind(∅), which also is an C-index, we have that h′ preserves δ.

2. Case: δ′ = CInd. Let L ∈ L, T ∈ Txt(L) and n ∈ N. If p(content(T [n]), n) = ∅,
h′(content(T [n]), n) outputs the C-index ind(∅). Otherwise, if p(content(T [n]), n) 6= ∅,
let σ = min(p(content(T [n]), n)) ∈ L∗. Then, we have that h′(content(T [n]), n) = h(σ)
which also is a C-index.

9

BERGER ET AL.

Also the former result of Theorem 2 holds in all considered cases, as the same simulating argu-
ment (where one mimics the iterative learner on ascending text with a pause symbol between two
elements) suffices regardless the exact setting. We provide the general result.

Theorem 4 Let δ, δ′ ∈ {CInd,T} and C ∈ {R,P}. Then, we have that

[τ(δ′)CTxtItδExC]REC ⊆ [τ(δ′)CTxtSdδExC]REC.

Proof We adapt the proof of Kinber and Stephan (1995). Let a h be a learner and let L =
τ(δ′)CTxtItδExC(h). We show that the following learner h′ τ(δ′)CTxtSdδExC-learns L. To
that end, for any set D, let sort#(D) be the sequence of the elements in D sorted in ascending
order, with a # between each two elements, and let h∗ be the starred form of h. Now, we define h′

as, for all finite sets D,

h′(D) =

{
h∗(sort#(D)), if h∗(sort#(D)) = h∗(sort#(D)_#);

ind(D), otherwise.

Note that h′ outputs a C-index, whenever h does so or when it outputs ind. Thus, h′ preserves
the CInd-restrictions of h. Moreover, if h is total, then so is h′. To show that h′ learns L, let
L ∈ L. If L is finite, then either h∗(sort#(L)) = h∗(sort#(L)_#), in which case h converges
to h′(L) = h∗(sort#(L)) on text sort#(L)_#∞. Otherwise, we have h′(L) = ind(L). In both
cases, h′ learns L as h′(L) is a correct C-index for L.

On the other hand, if L is infinite, then hmust converge to aC-index for L on the text sort#(L).
Let σ0 be the start sequence of sort#(L) after which h is converged and let D0 = content(σ0).
Then, for all x ∈ L \D0, we have h∗(σ0

_x) = h∗(σ0) = h∗(σ0
_#) as h is iterative. Therefore,

for allD′ withD0 ⊆ D′ ⊆ L, we have h∗(sort#(D′)) = h∗(sort#(D′)_#) and h∗(sort#(D′)) =
h∗(sort#(D0)), which is a correct hypothesis for L. As h′(D′) = h(sort#(D′)), we have conver-
gence of h′ to a correct C-index for L and thus h′ learns L.

Interestingly, totality is no restriction solely for Gold-style (and due to the equality also partially
set-driven) learners. For the other considered learners with restricted memory, being total lessens
the learning capabilities. This weakness results from the need to output some guess. A partial
learner can await this guess and outperform it. This way, we obtain self-learning languages (Case
and Kötzing, 2016) to show each of the three following separations.

Theorem 5 We have that [RTxtSdCIndExC]REC ([TxtSdCIndExC]REC.

Proof The inclusion [RTxtSdCIndExC]REC ⊆ [TxtSdCIndExC]REC is straightforward.
Suppose, by way of contradiction, that [RTxtSdCIndExC]REC = [TxtSdCIndExC]REC.
Let h be a learner such that, for all finite sets D ⊆ N

h(D) =

{
ϕmax(D)(0), if D 6= ∅;
ind(∅), otherwise.

We now show that L = TxtSdCIndExC(h) ∩ REC is a separating class contradicting the as-
sumption that both classes are equally powerful. To that end, assume there exists a total learner
h′ with L ⊆ RTxtSdCIndExC(h′). By the Operator Recursion Theorem (ORT) there exist an

10

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

index e ∈ N, a strictly monotonically increasing function T ∈ R and c ∈ R such that, for all
n, x ∈ N,

L = range(T);

ϕe = χL;

c(n) = content(T [n]);

ϕT (n)(x) =

{
e, if ∀n′ ≤ n : h′(c(n′ + 1)) 6= h′(c(n′ + 2));

ind(c(n+ 1)), otherwise.

Note that there is aC-index for range(T) because T is strictly monotonically increasing. Intuitively,
if h′ always makes mind changes on the start of the text T , then ϕT (n) is a function that constantly
outputs an index for a infinite set, and otherwise, if h′ repeats a hypothesis, then ϕT (n) is constantly
an index for a finite set.

We now show that there exists a language that is learned by h but not by h′. For this purpose,
we consider the following cases.

Case 1: ∀n : h′(c(n+ 1)) 6= h′(c(n+ 2)). In this case L ∈ L holds because h will always output
e on every sequence of a text for L, which is a correct C-index for L. But h′ makes infinitely
many mind changes on text T and thus L * RTxtSdCIndExC(h′).

Case 2: ∃n : h′(c(n+ 1)) = h′(c(n+ 2)). Let n0 be the smallest such n. Then, h learns the lan-
guages c(n0 + 1) and c(n0 + 2) because the maximum of these sets is T (n0) and T (n0 + 1),
respectively. Thus, h will output the correct hypothesis ind(c(n0 + 1)) or ind(c(n0 + 2)),
respectively. But h′ cannot differentiate between those two different languages. Thus, it learn
both simultaneously. Therefore, we again have L * RTxtSdCIndExC(h′).

Theorem 6 We have that [RTxtItCIndExC]REC ([TxtItCIndExC]REC.

Proof The inclusion [RTxtItCIndExC]REC ⊆ [TxtItCIndExC]REC follows immediately.
We prove that we have a proper inclusion by providing a separating class using the Operator Re-
cursion Theorem (ORT). Suppose now, by way of contradiction, that [RTxtItCIndExC]REC =
[TxtItCIndExC]REC. Let h be a TxtItCIndExC-learner such that h(ε) = pad(0, 0) and, for
all e, k, x ∈ N,

h(pad(e, k), x) =


↑, if ϕx(0)↑;
pad(e, k), if k > π2(ϕx(0));

pad(π1(ϕx(0)), π2(ϕx(0))), otherwise.

Recall that π1, π2 are the inverse functions to the pairing function 〈·, ·〉. Intuitively, h interprets each
datum x as the index of a function and outputs the first component of ϕx(0) where the second com-
ponent of ϕx(0) is maximal. Now, let L = TxtItCIndExC(h) ∩ REC. By our assumption there
is a RTxtItCIndExC-learner h′ that learns L. For notational convenience, we use the starred
learner (h′)∗. With the ORT there exist an index e ∈ N and a strictly monotonically increasing
T ∈ R such that, for all n, x ∈ N,

L := Ce = range(T);

11

BERGER ET AL.

ϕT (n)(x) =

〈e, 0〉,
if ∀n′ ≤ n : (h′)

∗
(T [n′]) 6= (h′)

∗
(T [n′ + 1]) ∨

(h′)
∗
(T [n′ + 1]) 6= (h′)

∗
(T [n′ + 2]);

〈ind(content(T [n+ 1])), n〉, otherwise.

Note that we can find a C-index for range(T) because T is strictly monotonically increasing. We
now consider the following cases.

Case 1: ∀n ∈ N : (h′)∗(T [n]) 6= (h′)∗(T [n+ 1]) ∨ (h′)∗(T [n+ 1]) 6= (h′)∗(T [n+ 2]). On any
element x ∈ L, h outputs pad(e, 0), which is a correct C-Index for L. Thus, once h sees the
first non-pause symbol, it converges correctly and, thus, L ∈ L. But h′ makes infinitely many
mind changes on text T and thus cannot learn L.

Case 2: ∃n ∈ N : (h′)∗(T [n]) = (h′)∗(T [n + 1]) ∧ (h′)∗(T [n + 1]) = (h′)∗(T [n + 2]). Let
n0 be the smallest such n. Then, h learns the finite languages content(T [n0 + 1]) and
content(T [n0 + 2]) because ϕT (n0)(0) and ϕT (n0+1)(0) have the maximum second com-
ponent in the respective set and, thus, h converges to pad(ind(content(T [n0 + 1])), n0) and
pad(ind(content(T [n0 + 2])), n0 + 1), respectively. But by the assumption of this case,
h′ converges to same hypothesis on the texts T [n0]_T (n0)∞ and T [n0 + 1]_T (n0 + 1)∞,
which are texts of different languages. Thus, h cannot learn L.

Theorem 7 We have that [RTxtTdCIndExC]REC ([TxtTdCIndExC]REC.

Proof The inclusion [RTxtTdCIndExC]REC ⊆ [TxtTdCIndExC]REC follows immediately.
To prove that the inclusion is proper, we provide a separating class using the Operator Recursion
Theorem (ORT). Let h be a Td-learner with h(#) = ? and, for all x ∈ N, h(x) = ϕx(0). Let L =
TxtTdCIndExC(h). Now, assume there exists a learner h′ with L ⊆ RTxtTdCIndExC(h′).
Then, with ORT there exists a ∈ R such that for all x, n ∈ N

ϕa(n)(x) =

{
ind({a(0), a(1)}), if h′(a(0)) 6= h′(a(1));

ind({a(n)}), otherwise.

Intuitively, if h′ suggests different hypotheses for a(0) and a(1) then both are in the same language
and vice versa. We now show that in both cases, there is a language learned by h which cannot be
learned by h′. We distinguish the following cases.

Case 1: h′(a(0)) 6= h′(a(1)). Then, we have {a(0), a(1)} ∈ L, as h outputs a C-Index for this
set on both elements of the set. But h′ does not converge on the text (a(0)a(1))∞ and thus
cannot learn this set.

Case 2: h′(a(0)) = h′(a(1)). Then, by construction, we have {a(0)} , {a(1)} ∈ L. But h′ sug-
gests the same hypothesis on a(0)∞ and a(1)∞ and thus can learn at most one of these two
sets.

Next, we show the gradual decrease of learning power the more we require the learners to
output characteristic indices. We have already seen in Theorem 1 that converging to C-indices

12

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

lessens learning power. However, this allows for more learning power than outputting these indices
during the whole learning process as shows the next theorem. The idea is that such learners have
to be certain about their guesses as these are indices of characteristic functions. When constructing
a separating class using self-learning languages (Case and Kötzing, 2016), one forces the CInd-
learner to output C-indices on certain languages to, then, contradict its choice there. This way, the
ExC-learner learns languages the CInd-learner cannot. The following theorem holds.

Theorem 8 We have that [TxtItExC]REC \ [TxtGCIndBcC]REC 6= ∅.

Proof We prove this by contradiction by providing a class of languages in [TxtItExC]REC which
is not in [TxtGCIndBcC]REC. Let h be the following It-learner. Let pN be an index for the set
of all natural numbers. For any e, x ∈ N, we define

h(ε) = ind(∅);

h(e, x) =


e, if π2(e) = 1 ∧ π2(x) = 1 ∧ π1(x) < π1(e);

〈π1(x), 1〉, else, if π2(e) 6= 1 ∧ π2(x) = 1;

〈π1(x), 2〉, else, if π2(e) = 0 ∨ (π2(x) = 2 ∧ π1(x) < π1(e));

e, otherwise.

Without loss of generality, we may assume that ind(∅) = 〈0, 0〉. This way, we can distinguish
whether it was the previous hypothesis or not. Intuitively, while h only sees elements with sec-
ond component two, it outputs the minimal 〈π1(x), 2〉 it has seen. Once it sees an element with
second component one, it outputs the coded tuple 〈π1(x), 1〉, which, if no other such elements
are presented, is its final hypothesis. Otherwise, h outputs the minimal 〈π1(x), 1〉. Now, let
L = TxtItExC(h)∩REC and assume there exists a learner h′ which TxtGCIndBcC-learns L,
that is, L ⊆ TxtGCIndBcC(h′). By the Operator Recursion Theorem (ORT), there exist total
computable increasing functions a, ã ∈ R and indices e, p ∈ N such that for all n, x ∈ N

ã(x) = 〈a(x), 2〉;
Ln := content(ã[n]) ∪ {〈a(n), 1〉};

L := Ce = range(ϕp);

T (x) := ϕp(x) =


〈a(2x), 2〉, if ϕh′(ϕp[x])(〈a(2x), 2〉) = 0;

〈a(2x+ 1), 2〉, else, if ϕh′(ϕp[x])(〈a(2x), 2〉) = 1;

↑, otherwise.

ϕ〈a(n),2〉(x) = ϕe(x) =


1, if 〈a(2x), 2〉 ∈ content(T [x+ 1]);

0, else, if 〈a(2x+ 1), 2〉 ∈ content(T [x+ 1]);

↑, otherwise.

ϕ〈a(n),1〉(x) = ϕind(Ln)(x) = χLn(x);

First, note that, for any n ∈ N, h learns Ln as it eventually outputs 〈a(n), 1〉, a C-index for Ln,
and never changes its mind again. As h′ learns these as well, it outputs a C-index on every initial
sequence of elements in range(ã). Thus, ϕp is total and there exists a C-index e for its range. We
now show, that h learns the decidable language L, while h′ does not. As for any x ∈ L there exists

13

BERGER ET AL.

n ∈ N such that we have x = 〈a(n), 2〉 and ϕx = ϕ〈a(n),2〉 = ϕe, we have that h identifies L
correctly once it sees the minimal such element in L. On the other hand, we show that h′ cannot
learn L from text T . Let x ∈ N and consider the following cases.

1. Case: ϕh′(ϕp[x])(〈a(2x), 2〉) = 0. Thus, 〈a(2x), 2〉 is not in the hypothesis of h′, but it is in L.

2. Case: ϕh′(ϕp[x])(〈a(2x), 2〉) = 1. Here, 〈a(2x), 2〉 is in the hypothesis of h′, but, as a is strictly
monotonically increasing, it is not in L.

Thus, none of the hypothesis h′(T [x]) identifies L correctly.

Since languages which can be learned by iterative learners can also be learned by set-driven
ones (see Theorem 4), this result suffices. Note that the idea above requires some knowledge on
previous elements. Thus, it is no coincidence that this separation does not include transductive
learners. Since these learners base their guesses on single elements, they cannot see how far in the
learning process they are. Thus, they are forced to always output C-indices. The following theorem
holds.

Theorem 9 We have that [TxtTdCIndExC]REC = [TxtTdExC]REC.

Proof The inclusion [TxtTdCIndExC]REC ⊆ [TxtTdExC]REC is immediate. For the other,
let h be a TxtTdExC-learner and L = TxtTdExC(h) ∩ REC. We show that h is, in particular,
a CInd-learner, i.e., L = TxtTdCIndExC(h) holds as well. Assume the contrary, that is,
L 6= TxtTdCIndExC(h). Then there exists a L ∈ L and a x ∈ L such that h(x) is no C-index.
Now, given any text T ∈ Txt(L), consider the text, for all n ∈ N,

T ′(n) =

{
T (n), if n is even,
x, otherwise.

This text of the language L contains infinitely many occurrences of x and, therefore, the Td-learner
h cannot converge to a C-index on this text.

For the remainder of this section, we focus on learners which output characteristic indices on
arbitrary input, that is, we focus on τ(CInd)-learners. First, we show that the requirement of
always outputting C-indices lessens a learners learning power, even when compared to total CInd-
learners. To provide the separating class of self-learning languages, one again awaits the τ(CInd)-
learner’s decision and then, based on these, learns languages this learner cannot. The following
result holds.

Theorem 10 We have that [RTxtTdCIndExC]REC \ [τ(CInd)TxtGBcC]REC 6= ∅.

Proof We prove the result by providing a separating class of languages. Let h be the Td-learner
with h(#) = ? and, for all x, y ∈ N, let h(〈x, y〉) = x. By construction, h is total and computable.
Let L = RTxtTdCIndExC(h) ∩ REC. We show that there is no τ(CInd)TxtGBcC-learner
learning L by way of contradiction. Assume there is a τ(CInd)TxtGBcC-learner h′ which learns
L. With the Operator Recursion Theorem (ORT), there are e, p ∈ N such that for all x ∈ N

L := range(ϕp);

14

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

ϕe = χL;

T̃ (x) := ϕp(x) =

{
〈e, 2x〉, if ϕh′(ϕp[x])(〈e, 2x〉) = 0;

〈e, 2x+ 1〉, otherwise.

Intuitively, for all x either ϕp(x) is an element of L if it is not in the hypothesis of h′ after see-
ing ϕp[x], or there is an element in this hypothesis that is not in content(T̃). As any hypothesis
of h′ is a C-index, we have that ϕp ∈ R and, as ϕp is strictly monotonically increasing, that L is
decidable.

We now prove that L ∈ L and afterwards that L cannot be learned by h′. First, we need to
prove that h learns L. Let T ∈ Txt(L). For all n ∈ N where T (n) is not the pause symbol,
we have h(T (n)) = e. Let n0 ∈ N with T (n0) 6= #. Then, we have, for all n ≥ n0, that
Td(h, T)(n) = e and, since e is a hypothesis of L, h learns L from T . Thus, we have that
L ∈ RTxtTdCIndExC(h) ∩ REC.

By assumption, h′ learns L and thus it also needs to learn L on text T̃ . Hence, there is x0 such
that for all x ≥ x0 the hypothesis h′(T̃ [x]) = h′(ϕp[x]) is a C-index for L. We now consider the
following cases.

1. Case: ϕh′(ϕp[x])(〈e, 2x〉) = 0. By construction, we have that T̃ (x) = 〈e, 2x〉. Therefore,
〈e, 2x〉 ∈ L, which contradicts h′(ϕp[x]) being a correct hypothesis.

2. Case: ϕh′(ϕp[x])(〈e, 2x〉) = 1. By construction, we have that T̃ (x) 6= 〈e, 2x〉 and thus, because
T̃ is strictly monotonically increasing, 〈e, 2x〉 /∈ L = content(T̃). This, again, contradicts
h′(ϕp[x]) being a correct hypothesis.

As in all cases h′(ϕp[x]) is a wrong hypothesis, h′ cannot learn L.

It remains to be shown that memory restrictions are severe for such learners as well. First,
we show that partially set-driven learners are more powerful than set-driven ones. As witnessed
originally by Schäfer-Richter (1984) and Fulk (1990) (for W -indices), this is solely due to the lack
of learning time. We provide the following theorem. We already separate from behaviorally correct
learners, as we will need this stronger version later on.

Theorem 11 We have that [τ(CInd)TxtPsdExC]REC \ [TxtSdBcW]REC 6= ∅.

Proof We prove the theorem by providing a separating class L. For all e ∈ N, we define

Le = {〈e, x〉 | x ∈ N} ;

L′e = {〈e, x〉 | ϕe(0)↓ ∧ x ≤ ϕe(0)} ;

L =
⋃
e∈N

({Le | ϕe(0)↑} ∪
{
L′e
∣∣ ϕe(0)↓

}
).

Note thatL ⊆ REC. First, we provide a learner h such thatL ⊆ τ(CInd)TxtPsdExC(h)∩REC.
To define h, we need the following auxiliary functions. Due to the S-m-n Theorem there exist
f, p, p′ ∈ R such that for all finite sets D and all e, x ∈ N

f(D) =

{
π1(min(D)), if D 6= ∅;
0, otherwise;

15

BERGER ET AL.

ϕp(e) = χLe ;

ϕp′(e,x) = χ{〈e,y〉 | y≤x}.

Intuitively, we use f to recover the first component of the minimal given element. With p and p′ we
can generate C-Indices for Le and L′e, respectively. Now, we define the learner h as, for all finite
sets D and all t ∈ N,

h(D, t) =


ind(∅), if D = ∅;
p(f(D)), else, if Φf(D)(0) > t;

p′(f(D), ϕf(D)(0)), otherwise.

Intuitively, given elements of the form 〈e, x〉, h suggests Le until it witnesses ϕe(0)↓, whereupon it
suggests L′e. Note that h is a τ(CInd)-learner by construction.

To show that L ⊆ τ(CInd)TxtPsdExC(h), let e ∈ N. If ϕe(0)↑, h needs to learn Le. After
seeing the first non-pause symbol, h constantly outputs p(e), which is a correct index for Le. If,
otherwise, ϕe(0)↓, h needs to learn L′e. Let T ∈ Txt(L′e) and n0 ∈ N big enough such that
T [n0] 6= ∅ and n0 ≥ Φe(0). Then for all n ≥ n0 we have h(T [n], n) = p′(e, ϕe(0)) and thus h
learns L′e as well.

It remains to be shown that there is no learner h′ such that L ⊆ TxtSdBcW (h′). Assume the
opposite, i.e., let h′ be a learner with L ⊆ TxtSdBcW (h′). By Kleenes Recursion Theorem there
exists an index e ∈ N such that, for all x ∈ N,

ϕe(x) =

{
m, if ∃m : 〈e,m+ 1〉 ∈ Ch′({〈e,x〉 | x≤m});
↑, otherwise.

If ever, we take the first such m found. We differentiate whether ϕe(0)↓ or not.

Case 1: ϕe(0)↓. Then h′ has to learn L′e. Let m = ϕe(0). By definition of e we have 〈e,m+ 1〉 ∈
Ch′(L′e). As 〈e,m+ 1〉 /∈ L′e, this contradicts h′ learning L′e.

Case 2: ϕe(0)↑. Then h′ has to learn Le. Let T ∈ Txt(Le) be the text with, for all i ∈ N,
T (i) = 〈e, i〉. By definition of e we have, for all m ∈ N,

〈e,m+ 1〉 /∈ Ch′({〈e,x〉 | x≤m}) = Ch′(content(T [m+1])).

Therefore, h′ cannot converge to a correct hypothesis for Le on T and, thus, not learn it.

In turn, this lack of time is not as severe as lack of memory. The standard class (of recursive
languages) to separate set-driven learners from iterative ones (Jain et al., 1999) can be transferred
to the setting studied in this paper. We obtain the following result.

Theorem 12 We have that [τ(CInd)TxtSdExC]REC \ [TxtItExW]REC 6= ∅.

Proof This is a standard proof and we include it for completeness (Jain et al., 1999). We show this
theorem by stating a class of languages that can be learned by a τ(CInd)TxtSdExC-learner, but

16

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

any TxtItExW -learner fails to do so. To that end, let L = {D ∪ {0} | D ⊆Fin N} ∪ {N+}. We
define the Sd-learner h for all finite sets D, with p being a C-Index for N+, as

h(D) =

{
ind(D), if 0 ∈ D;

p, otherwise.

It is easy to verify that L ⊆ τ(CInd)TxtSdExC(h). Now, assume there is a TxtItExW -learner
h′ that learns L and let σ be a locking sequence of h′ on N+ with x = max(content(σ)). The texts
σ_(x+ 1)_0∞ and σ_(x+ 2)_0∞ are texts for distinct languages from L but h′ suggests exactly
the same hypotheses on both texts and can therefore not be ExW -successful on both languages.

Lastly, we show that transductive learners, having basically no memory, do severely lack learn-
ing power. As they have to infer their conjectures from single elements they, in fact, cannot even
learn basic classes such as {{0}, {1}, {0, 1}}. The following result holds. It concludes the map
shown in Figure 1 and, therefore, also this section.

Theorem 13 For β ∈ {It,Sd}, we have that

[τ(CInd)TxtβExC]REC \ [TxtTdExW]REC 6= ∅.

Proof We include this standard proof for completeness. We follow Carlucci et al. (2007) and show
that L = {{0}, {1}, {0, 1}} is a separating class. Immediate, we have that L can be learned by a
τ(CInd)TxtβExC-learner and, thus, L ∈ [τ(CInd)TxtβExC]REC. Now, assume there exists
a learner h′ TxtTdExW -learning L. Consider the texts T0 = 0∞ ∈ Txt({0}) and T1 = 1∞ ∈
Txt({1}). As h′ must identify both languages on their respective text, we have that, for x ∈ {0, 1},
h′(x) must be a C-index for {x}. However, then h′ cannot output a C-index of {0, 1} on the text
T = 0_1∞, a contradiction.

4. Syntactic versus Semantic Convergence to C-indices

In this section we investigate the effects on learners when we require them to converge to charac-
teristic indices. We study both syntactically converging learners as well as semantically converging
ones. In particular, we compare learners imposed with different well-studied memory restrictions.

Surprisingly, we observe that, although C-indices incorporate and, thus, require the learner to
obtain more information during the learning process than W -indices, the relative relations of the
considered restrictions remain the same. We start by gathering results which directly follow from
the previous section. In particular, the following corollary holds.

Corollary 14 We have that

[TxtPsdExC]REC = [TxtGExC]REC, (Theorem 3),

[TxtItExC]REC ⊆ [TxtSdExC]REC, (Theorem 4),

[TxtGExC]REC \ [TxtSdBcC]REC 6= ∅, (Theorem 11),

[TxtSdExC]REC \ [TxtItExC]REC 6= ∅, (Theorem 12),

[TxtItExC]REC \ [TxtTdExC]REC 6= ∅, (Theorem 13).

17

BERGER ET AL.

We show the remaining results. First, we show that, just as for W -indices, behaviorally correct
learners are more powerful than explanatory ones. We provide a separating class exploiting that
explanatory learners must converge to a single, correct hypothesis. We collect elements on which
mind changes are witnessed, while maintaining decidability of the obtained language. The following
result holds.

Theorem 15 We have that [TxtSdBcC]REC \ [TxtGExC]REC 6= ∅.

Proof In order to provide a separating class of languages, we consider the learner, for all finite
D ⊆ N, h(D) = max(D). Let L = TxtSdBcC(h) ∩ REC. We show that there exists no
learner h′ that TxtGExC-learns L. To that end, assume there exists such a learner h′, that is,
L ⊆ TxtGExC(h′). Without loss of generality, we may assume h′ to be total, as is shown in
Kötzing and Palenta (2016).

Using the Operator Recursion Theorem (ORT), there exist an interleaved increasing 2 function
a ∈ R, a sequence of sequences (σj)j∈N and functions f, i0, s ∈ P such that, for all i, j, k, t, x ∈ N
and b ∈ {0, 1}, we have

Pj(t)⇔ h′(σj
_a(0, |σj |)t) 6= h′(σj) ∨ h′(σj_a(1, |σj |)t) 6= h′(σj);

s(j) = µt.Pj(t);

σ0 = ε;

σj+1 =


↑, if s(j)↑;
σj
_a(0, |σj |)s(j), else, if h′(σj_a(0, |σj |)s(j)) 6= h′(σj);

σj
_a(1, |σj |)s(j), otherwise.

ϕa(b,i)(x) =


1, if x = a(b, i);

0, else, if x = a(1− b, i);
f(b′, k′), else, if ∃k′ ∈ N ∃b′ ∈ {0, 1} : x = a(b′, k′);

0, otherwise.

i0(k) = max{j | σj↓ ∧ |σj | ≤ k};

f(b, k) =


0, if k > |σi0(k)|;
1, else, if s(i0(k))↓ ∧ a(b, k) ∈ content(σi0(b,k)+1);

0, else, if s(i0(k))↓;
↑, otherwise.

Note that b′ and k′ in the third case of ϕa(b,i)(x) are, if they exist, unique as a is interleaved in-
creasing. The intuition is the following. For j ∈ N, we extend the sequence σj as soon as h′

makes a particular mind change, if ever. This guarantees that h′ cannot learn certain languages h
can. Furthermore, for suitable b, i ∈ N, every element a(b, i) of the sequence encodes the language⋃
j∈N,σj↓ content(σj) (as C-index). This encoding is done using function f which, given the right

circumstances, can decide whether an element belongs to the mentioned language or not. We first
provide a proof for this claim.

2. A function a is called interleaved increasing if, for all n, we have a(0, n) < a(1, n) < a(0, n+ 1).

18

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

Claim 1 Let b ∈ {0, 1} and j0 such that σj0 is defined. Let k = |σj0 |. Then, if σj0+1 is defined,
f(b, k) correctly decides whether a(b, k) ∈

⋃
j∈N,σj↓ content(σj).

Proof Let σj0+1 be defined. Then, j0 = i0(k) and s(j0)↓ and we have that, by definition, f cor-
rectly decides whether a(b, k) ∈

⋃
j∈N,σj↓ content(σj). (Claim)

We show that there exists a language h can learn, but h′ cannot. To that end, we distinguish the
following cases.

1. Case: For all j ∈ N, σj is defined. Let T̃ =
⋃
j∈N σj and let L = content(T̃). We first show

that h learns L. Let T ∈ Txt(L) and let n0 be minimal such that content(T [n0]) 6= ∅.
Let n ≥ n0 and D := content(T [n]). Furthermore, let b ∈ {0, 1} and i ∈ N be such that
a(b, i) = max(D) = h(D). We show that Ca(b,i) = L.

⊇: To show Ca(b,i) ⊇ L, let x ∈ L. We show that ϕa(b,i)(x) = 1. As x ∈ L, there exists
k′ ∈ N and b′ ∈ {0, 1} such that x = a(b′, k′). If b = b′ and i = k′, then ϕa(b,i)(x) = 1
by definition. Otherwise, as all σj are defined, by Claim 1, we have f(b′, k′) = 1, which
is exactly the output of ϕa(b,i)(x).

⊆: To show Ca(b,i) ⊆ L, let x /∈ L. Now, either there exist no k′ ∈ N and b′ ∈ {0, 1}
such that x = a(b′, k′). Then, ϕa(b,i)(x) = 0 by definition. Else, let k′ and b′ such that
x = a(b′, k′). If b′ = 1 − b and k′ = i, then ϕa(b,i)(x) = 0 by definition. Otherwise,
again as all σj are defined, by Claim 1, f(b′, k′) = 0, which is exactly the output of
ϕa(b,i)(x).

Thus, Ca(b,i) = L. So, h learns L. On the other hand, h′ does not, as it makes infinitely many
mind changes on text T̃ .

2. Case: There exists j such that σj is defined, but σj+1 is not. Let j′ be minimal such. Let
m := |σj′ | and consider the texts

T0 = σj′
_a(0,m)∞,

T1 = σj′
_a(1,m)∞,

as well as the languages L0 = content(T0) and L1 = content(T1). We show that h can
learn both L0 and L1, while h′ cannot. To show that h learns L0, let T ∈ Txt(L0). As
L0 is finite, there exists n0 such that content(T [n0]) = L0. Then, for all n ≥ n0, we have
h(content(T [n])) = max(content(T [n])) = a(0,m) as a is interleaved increasing. We
show that Ca(0,m) = L0.

⊇: To show Ca(0,m) ⊇ L0, let x ∈ L0. If x = a(0,m), then x ∈ Ca(0,m) by definition of
ϕa(0,m)(x). Otherwise, there exist k′ < m and b′ ∈ {0, 1} such that x = a(b′, k′). Note
that i0(k′) < j′. Thus we can apply Claim 1 and get f(b′, k′) = 1 which is exactly the
output of ϕa(0,m)(x).

⊆: To show Ca(0,m) ⊆ L0, let x /∈ L0. Now, either there exist no k′ ∈ N and b′ ∈ {0, 1}
such that x = a(b′, k′). Then, ϕa(0,m)(x) = 0 by definition. Else, let k′ and b′ such that
x = a(b′, k′). We distinguish the following cases to show that x /∈ Ca(0,m).

19

BERGER ET AL.

• If k′ = m, then ϕa(b,i)(x) = 0 by definition.
• In the case of k′ > m, we have k′ > |σi0(k′)| and thus f(b′, k′) = 0.
• Given the case k′ < m, again by Claim 1, f(b′, k′) = 0.

Thus, Ca(0,m) = L0 as desired. The reasoning for L1 is analogous.

So, h learns both L0 and L1. However, h′ converges to the same hypothesis on both T0 and
T1 rendering it incapable to learn both languages simultaneously.

Next, we show that, just as for W -indices, a padding argument makes iterative behaviorally
correct learners as powerful as Gold-style ones.

Theorem 16 We have that [TxtItBcC]REC = [TxtGBcC]REC.

Proof The inclusion [TxtItBcC]REC ⊆ [TxtGBcC]REC follows immediately. For the other,
we apply a padding argument as in the proof of [TxtItBcW] = [TxtGBcW] as given in Kötzing
et al. (2017). Let h ∈ P be a learner and let L = TxtGBcC(h) ∩ REC. Recall that pad ∈ R
is a padding function, that is, for all e ∈ N and all finite sequences σ we have ϕe = ϕpad(e,σ).
For any finite sequence σ, we define the iterative learner (h′)∗(σ) = pad(h(σ), σ). Intuitively, the
learner h′ simulates h in the following way. At every iteration, given a datum x and its previous
guess pad(h(σ), σ), the learner unpads σ, attaches x to it and makes the guess pad(h(σ_x), σ_x).
While this is syntactically different hypothesis, it has the same semantics as h(σ_x).

We show that h′ TxtItBcC-learns L. Let L ∈ L and T ∈ Txt(L). Then, for every n ∈ N, we
have Ch(T [n]) = C(h′)∗(T [n]). Thus, h′ learns L as h does.

We show that the classes of languages learnable by some behaviorally correct Gold-style (or,
equivalently, iterative) learner, can also be learned by partially set-driven ones. We follow the proof
of Doskoč and Kötzing (2020) after a private communication with Sanjay Jain. The idea there is to
search for minimal Bc-locking sequences without directly mimicking the G-learner. We transfer
this idea to hold when converging to C-indices as well. We remark that, while doing the necessary
enumerations, one needs to make sure these are characteristic. One obtains this as the original
learner eventually outputs characteristic indices.

Theorem 17 We have that [TxtPsdBcC]REC = [TxtGBcC]REC.

Proof The inclusion [TxtPsdBcC]REC ⊆ [TxtGBcC]REC follows immediately. For the other,
we follow an idea how TxtGBc-learning can be made partially set-driven, as given in Doskoč and
Kötzing (2020) following a private communication with Sanjay Jain. To that end, let h be a learner
and let L = TxtGBcC(h) ∩ REC. By Kötzing and Palenta (2016), we may assume h to be total.
Now, define the Psd-learner h′ as follows. For x, a ∈ N and for finite D ⊆ N and t ≥ 0, we
first define the auxiliary total predicate Q(x, a, (D, t)) which holds true if and only if there exists a
sequence σ ∈ D≤t# such that both

(1) for all τ ∈ D≤t# we have that ϕh(στ)(x) = a, and

(2) for all σ′ < σ, with σ′ ∈ D∗#, there exists τ ′ ∈ D≤t# such that ϕh(σ′τ ′)(x) = a.

20

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

With the help of Q we define the learner h′ such that, for finite D ⊆ N, t ≥ 0 and for all x ∈ N,

ϕh′(D,t)(x) =

{
1, if Q(x, 1, (D, t));

0, otherwise.

Intuitively, we check whether the information given is enough to witness a (minimal) BcC-locking
sequence. Then, for every element, we evaluate whether it belongs to the language or not. Note that
upon correct learning, no element can be witnessed to be both part of the language and not part of
it.

We first show that h′(D, t) is well defined. Assume there exists some x ∈ N and some natural
number a 6= 1 such that Q(x, a, (D, t)) and Q(x, 1, (D, t)) simultaneously, witnessed by σa and
σ1 respectively. Without loss of generality, suppose σa < σ1. Then, by Condition (2) of σ1, there
exists some τ ′ ∈ D≤t# such that ϕh(σaτ ′)(x) = 1. However, by Condition (1) of σa, for all τ ∈ D≤t# ,
we have ϕh(σaτ)(x) = a, a contradiction.

Let L ∈ L. We proceed by proving L ∈ TxtPsdBcC(h′). For that, let T ∈ Txt(L). By
Blum and Blum (1975), there exists a BcC-locking sequence for h on L. Let α be the least such
BcC-locking sequence with respect to <. By Osherson et al. (1986), for each α′ < α such that
content(α′) ⊆ L, there exists τα′ such that α′τα′ is a BcC-locking sequence for h on L. Now, let
n0 ∈ N be large enough such that

• n0 ≥ |α|,

• content(α) ⊆ content(T [n0]) and

• for all α′ < α such that content(α′) ⊆ L, we have content(α′τα′) ⊆ content(T [n0]) and
|τα′ | ≤ n0.

We claim that for t ≥ n0 and D = content(T [t]), we have Ch′(D,t) = L. Let x ∈ N and
a ∈ N such that χL(x) = a. As D and t are chosen sufficiently large, α is a candidate for the
enumeration of Ch′(D,t). Since α is a BcC-locking sequence, for every τ ∈ D≤t# , we will witness
ϕh(ατ)(x) = a. Thus, Condition (1) is witnessed. On the other hand, observe that for every σ′ < α,
with content(σ′) ⊆ D, we have τσ′ ∈ D≤t# . So, we will witness ϕh(σ′τσ′)

(x) = a for some

τσ′ ∈ D≤t# , that is, the Condition (2).
As an element cannot be witnessed to be part of the language and not part of it simultaneously,

we finally have χL = ϕh′(D,t), concluding the proof, as L ∈ TxtPsdBcC(h′).

Lastly, we investigate transductive learners. Such learners base their hypotheses on a single
element. Thus, one would expect them to benefit from dropping the requirement to converge to
a single hypothesis. Interestingly, this does not hold true. This surprising fact originates from C-
indices encoding characteristic functions. Thus, one can simply search for the minimal element on
which no “?” is conjectured. The next result finalizes the map shown in Figure 2 and, thus, this
section.

Theorem 18 We have that [TxtTdExC]REC = [TxtTdBcC]REC.

Proof The inclusion [TxtTdExC]REC ⊆ [TxtTdBcC]REC is immediate. For the other di-
rection, let h be a learner and L = TxtTdBcC(h) ∩ REC. We provide a learner h′ such that

21

BERGER ET AL.

L ⊆ TxtTdExC(h′). Let L ∈ L. We note that, for any x ∈ L, if not h(x) = ?, then h(x) is a
C-index for the language L, that is, Ch(x) = L. Assume there exists an x ∈ L where h(x) 6= ? is
no C-index of L. Then, on a text with infinitely many occurrences of x the language L cannot be
TxtTdBcC-learned using h. Now, we define the TxtTdExC-learner h′ for all x ∈ N as

h′(x) =

{
?, if h(x) = ?;

h(min{x ∈ Ch(x) | h(x) 6= ?}), otherwise.

It is straightforward to verify the correctness of h′.

Acknowledgments

This work was supported by DFG Grant Number KO 4635/1-1.

References

Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125–155, 1975.

Manuel Blum. A machine-independent theory of the complexity of recursive functions. Journal of
the ACM, 14:322–336, 1967.

Lorenzo Carlucci, John Case, Sanjay Jain, and Frank Stephan. Results on memory-limited u-shaped
learning. Inf. Comput., 205:1551–1573, 2007.

John Case and Timo Kötzing. Strongly non-U-shaped language learning results by general tech-
niques. Information and Computation, 251:1–15, 2016.

John Case and Christopher Lynes. Machine inductive inference and language identification. In
Proc. of the International Colloquium on Automata, Languages and Programming (ICALP),
pages 107–115, 1982.

Vanja Doskoč and Timo Kötzing. Cautious limit learning. In Proc. of the International Conference
on Algorithmic Learning Theory (ALT), 2020.

Mark Fulk. A Study of Inductive Inference Machines. PhD thesis, 1985.

Mark A. Fulk. Prudence and other conditions on formal language learning. Information and Com-
putation, 85:1–11, 1990.

E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.

Sanjay Jain, Daniel Osherson, James S. Royer, and Arun Sharma. Systems that Learn: An Introduc-
tion to Learning Theory. MIT Press, Cambridge (MA), Second Edition, 1999.

Efim B. Kinber and Frank Stephan. Language learning from texts: Mindchanges, limited memory,
and monotonicity. Inf. Comput., 123:224–241, 1995.

22

LEARNING LANGUAGES WITH DECIDABLE HYPOTHESES

Timo Kötzing and Raphaela Palenta. A map of update constraints in inductive inference. Theoretical
Computer Science, 650:4–24, 2016.

Timo Kötzing, Martin Schirneck, and Karen Seidel. Normal forms in semantic language identifi-
cation. In Proc. of the International Conference on Algorithmic Learning Theory (ALT), pages
76:493–76:516, 2017.

Timo Kötzing. Abstraction and Complexity in Computational Learning in the Limit. PhD thesis,
University of Delaware, 2009.

Steffen Lange, Thomas Zeugmann, and Sandra Zilles. Learning indexed families of recursive lan-
guages from positive data: A survey. Theor. Comput. Sci., 397:194–232, 2008.

Daniel Osherson, Michael Stob, and Scott Weinstein. Systems that Learn: An Introduction to Learn-
ing Theory for Cognitive and Computer Scientists. MIT Press, Cambridge (MA), 1986.

Daniel N. Osherson and Scott Weinstein. Criteria of language learning. Information and Control,
52:123–138, 1982.

Hartley Rogers Jr. Theory of recursive functions and effective computability. Reprinted by MIT
Press, Cambridge (MA), 1987.

Gisela Schäfer-Richter. Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien. PhD
thesis, RWTH Aachen University, Germany, 1984.

Kenneth Wexler and Peter W. Culicover. Formal principles of language acquisition. MIT Press,
Cambridge (MA), 1980.

Rolf Wiehagen. Limes-erkennung rekursiver funktionen durch spezielle strategien. J. Inf. Process.
Cybern., 12:93–99, 1976.

23

	1 Introduction
	2 Preliminaries
	2.1 Mathematical Notations and Learning Criteria
	2.2 Normal Forms

	3 Requiring C-Indices as Output
	4 Syntactic versus Semantic Convergence to C-indices

