Skip to main content

Minimum Classical Extensions of Constructive Theories

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12813))

Abstract

Reverse constructive mathematics, based on the pioneering work of Kleene, Vesley, Kreisel, Troelstra, Bishop, Bridges and Ishihara, is currently under development. Bishop constructivists tend to emulate the classical reverse mathematics of Friedman and Simpson. Veldman’s reverse intuitionistic analysis and descriptive set theory split notions in the style of Brouwer. Kohlenbach’s proof mining uses interpretations and translations to extract computational information from classical proofs. We identify the classical content of a constructive mathematical theory with the Gentzen negative interpretation of its classically correct part. In this sense HA and PA have the same classical content but intuitionistic and classical two-sorted recursive arithmetic with quantifier-free countable choice do not; \(\varSigma ^0_1\) numerical double negation shift expresses the precise difference. Other double negation shift and weak comprehension principles clarify the classical content of stronger constructive theories. Any consistent axiomatic theory S based on intuitionistic logic has a minimum classical extension S\(^{+g}\), obtained by adding to S the negative interpretations of its classically correct consequences. Subsystems of Kleene’s intuitionistic analysis and supersystems of Bishop’s constructive analysis provide interesting examples, with the help of constructive decomposition theorems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\mathrm {\langle x,y \rangle = 2^x\cdot 3^y}\) is Kleene’s code for the ordered pair of x and y; similarly for n-tuples.

  2. 2.

    Over EL or IRA, \(\mathrm {\lnot \lnot \, \Pi ^0_1}\)-CF\(_0\) entails the principle \(\mathrm {\lnot \lnot \Pi ^0_1}\)-LEM in [5], and similarly for \(\mathrm {\lnot \lnot \, \Sigma ^0_1}\)-CF\(_0\) and \(\mathrm {\lnot \lnot \Sigma ^0_1}\)-LEM.

  3. 3.

    Only the special case \(\mathrm {\Sigma ^0_1{\text {-}}{-}DNS_1}\) is needed for the version of bar induction labeled \(^x\)26.3b in [12]; cf. [14, 15].

References

  1. Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom of choice. J. Symb. Logic 63(2), 600–622 (1998)

    Article  MathSciNet  Google Scholar 

  2. Brouwer, L.E.J.: Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. In: Heyting, A. (ed.), L. E. J. Brouwer: Collected Works, vol. I, pp. 150–190. North-Holland/American Elsevier (1975)

    Google Scholar 

  3. Dyson, V., Kreisel, G.: Analysis of Beth’s semantic construction of intuitionistic logic. Technical report 3, Applied mathematics and statistics laboratory, Stanford University (1961)

    Google Scholar 

  4. Fujiwara, M.: Bar induction and restricted classical logic. In: Iemhoff, R., Moortgat, M., de Queiroz, R., (eds.) Logic, Language, Information and Computation: WoLLIC Proceedings, pp. 236–247 (2019)

    Google Scholar 

  5. Fujiwara, M., Kohlenbach, U.: Interrelation between weak fragments of double negation shift and related principles. J. Symb. Logic 81(3), 991–1012 (2018)

    Article  MathSciNet  Google Scholar 

  6. Gentzen, G.: Über das Verhältnis zwischen intuitionistischer und klassischer Logik. Arch. Math. Logik Grund. 16, 119–132 (1974). Accepted by Math. Annalen in 1933, but withdrawn. English trans. In: Szabo (ed.), Gentzen: Collected Papers

    Google Scholar 

  7. Gödel, K.: Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines math. Koll. 4, 34–38 (1933)

    MATH  Google Scholar 

  8. Ilik, D. Double-negation shift as a constructive principle. arXiv:1301.5089v1

  9. Ishihara, H.: Constructive reverse mathematics: compactness properties. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis, pp. 245–267. Clarendon Press, Oxford (2005)

    Chapter  Google Scholar 

  10. Ishihara, H., Schuster, P.: A continuity principle, a version of Baire’s theorem and a boundedness principle. J. Symb. Logic 73, 1354–1360 (2008)

    Article  MathSciNet  Google Scholar 

  11. Kleene, S.C.: Introduction to Metamathematics. D. van Nostrand Company Inc., Princeton (1952)

    MATH  Google Scholar 

  12. Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions, North Holland (1965)

    Google Scholar 

  13. Loeb, I.: Questioning constructive reverse mathematics. Constructivist Found. 7, 131–140 (2012)

    Google Scholar 

  14. Moschovakis, J.R.: Calibrating the negative interpretation. arXiv:2101.10313. Expanded extended abstract for 12th Panhellenic Logic Symposium, June 2019

  15. Moschovakis, J.R.: Solovay’s relative consistency proof for FIM and BI. arXiv:2101.05878v1. Historical note, to appear in Notre Dame J. Formal Logic

  16. Moschovakis, J.R.: Classical and constructive hierarchies in extended intuitionistic analysis. J. Symb. Logic 68, 1015–1043 (2003)

    Article  MathSciNet  Google Scholar 

  17. Moschovakis, J.R., Vafeiadou, G.: Some axioms for constructive analysis. Arch. Math. Logik 51, 443–459 (2012). https://doi.org/10.1007/s00153-012-0273-z

    Article  MathSciNet  MATH  Google Scholar 

  18. Scedrov, A., Vesley, R.: On a weakening of Markov’s principle. Arch. Math. Logik 23, 153–160 (1983). https://doi.org/10.1007/BF02023022

    Article  MathSciNet  MATH  Google Scholar 

  19. Troelstra, A. S.: Intuitionistic formal systems. In: Troelstra, A.S. (ed.) Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. LNM, vol. 344. Springer, Heidelberg (1973). https://doi.org/10.1007/BFb0066740

  20. Troelstra, A.S.: Note on the fan theorem. J. Symb. Logic 39, 584–596 (1974)

    Article  MathSciNet  Google Scholar 

  21. Troelstra, A.S.: Corrections to some publications. University of Amsterdam, 10 December 2018. https://eprints.illc.uva.nl/1650/1/CombiCorr101218.pdf

  22. Vafeiadou, G.: A comparison of minimal systems for constructive analysis. arXiv:1808.000383

  23. Vafeiadou, G.: Formalizing Constructive Analysis: a comparison of minimal systems and a study of uniqueness principles. Ph.D. thesis, University of Athens (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Rand Moschovakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moschovakis, J.R., Vafeiadou, G. (2021). Minimum Classical Extensions of Constructive Theories. In: De Mol, L., Weiermann, A., Manea, F., Fernández-Duque, D. (eds) Connecting with Computability. CiE 2021. Lecture Notes in Computer Science(), vol 12813. Springer, Cham. https://doi.org/10.1007/978-3-030-80049-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80049-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80048-2

  • Online ISBN: 978-3-030-80049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics