
ar
X

iv
:2

01
1.

14
16

0v
2

 [
m

at
h.

L
O

]
 8

 F
eb

 2
02

1

Positive enumerable functors

Barbara F. Csima1, Dino Rossegger[0000−0003−3494−9049]2, and Daniel Yu3

1 Department of Pure Mathematics, University of Waterloo, Canada

csima@uwaterloo.ca
2 Department of Pure Mathematics, University of Waterloo, Canada

dino.rossegger@uwaterloo.ca
3 University of Waterloo, Canada zy3yu@uwaterloo.ca

Abstract. We study reductions well suited to compare structures and

classes of structures with respect to properties based on enumeration

reducibility. We introduce the notion of a positive enumerable functor

and study the relationship with established reductions based on functors

and alternative definitions.

1 Introduction

In this article we study notions of reductions that let us compare classes of struc-
tures with respect to their computability theoretic properties. Computability
theoretic reductions between classes of structures can be formalized using effec-
tive versions of the category theoretic notion of a functor. While computable
functors have already been used in the 80’s by Goncharov [Gon80], the formal
investigation of this notion was only started recently after R. Miller, Poonen,
Schoutens, and Shlapentokh [Mil+18] explicitly used a computable functor to
obtain a reduction from the class of graphs to the class of fields. Their result
shows that fields are universal with respect to many properties studied in com-
putable structure theory.

In [Ros17] the third author studied effective versions of functors based on enu-
meration reducibility and their relation to notions of interpretability. There, it
was shown that the existence of a computable functor implies the existence of
an enumerable functor effectively isomorphic to it. In that article there also ap-
peared an unfortunately incorrect claim that enumerable functors are equivalent
to a variation of effective interpretability, a notion equivalent to computable func-
tors [Har+17]. Indeed, it was later shown in Rossegger’s thesis [Ros19], that the
existence of a computable functor implies the existence of an enumerable functor
and thus enumerable functors are equivalent to the original notion. Hence, enu-
merable functors are equivalent to the original version of effective interpretability.
In this paper we provide a simple proof of the latter result. It is not very surpris-
ing that enumerable and computable functors are equivalent, as the enumeration
operators witnessing the effectiveness of an enumerable functor are given access
to the atomic diagrams of structures, which are total sets.

The main objective of this article is the study of positive enumerable functors,
an effectivization of functors that grants the involved enumeration operators

http://arxiv.org/abs/2011.14160v2

2 Barbara F. Csima, Dino Rossegger, and Daniel Yu

access to the positive diagrams of structures instead of their atomic diagrams.
While computable functors are well suited to compare structures with respect
to properties related to relative computability and the Turing degrees, positive
enumerable functors provide the right framework to compare structures with
respect to their enumerations and properties related to the enumeration degrees.

The paper is organized as follows. In Section 2, we first show that computable
functors and enumerable functors are equivalent, and then begin the study of
positive enumerable functors and reductions based on them. We show that re-
ductions by positive enumerable bi-transformations preserve enumeration de-
gree spectra, a generalization of degree spectra considering all enumerations of a
structure introduced by Soskov [Sos04]. We then exhibit an example consisting
of two structures which are computably bi-transformable but whose enumeration
degree spectra are different. This implies that positive enumerable functors and
computable functors are independent notions. Towards the end of the section we
compare different possible definitions of positive enumerable functors and extend
our results to reductions between arbitrary classes of structures.

2 Computable and enumerable functors

In this article we assume that our structures are in a relational language (Ri)i∈ω

where each Ri has arity ai and the map i 7→ ai is computable. We furthermore
only consider countable structures with universe ω. We view classes of structures
as categories where the objects are structures in a given language L and the
morphisms are isomorphisms between them. Recall that a functor F : C → D

maps structures from C to structures in D and maps isomorphisms f : A → B
to F (f) : F (A) → F (B) preserving composition and identity.

The smallest classes we consider are isomorphism classes of a single structure A,

Iso(A) = {B : B ∼= A}.

We will often talk about a functor from A to B, F : A → B when we mean a
functor F : Iso(A) → Iso(B). Depending on the properties that we want our
functor to preserve we may use different effectivizations, but they will all be of
the following form. Generally, an effectivization of a functor F : C → D will
consist of a pair of operators (Φ, Φ∗) and a suitable coding C such that

1. for all A ∈ C, Φ(C(A)) = C(F (A)),

2. for all A, B ∈ C and f ∈ Hom(A, B), Φ(C(A), C(f), C(B)) = C(F (f)).

In this article the operators will either be enumeration or Turing operators. If
the coding is clear from context we will omit the coding function, i.e., we write
Φ(A) instead of Φ(C(A)). The most common coding in computable structure
theory is the following.

Positive enumerable functors 3

Definition 1. Let A be a structure in relational language (Ri)i∈ω. Then the
atomic diagram D(A) of A is the set

⊕

i∈ω

RA
i ⊕

⊕

i∈ω

¬RA
i .

In the literature one can often find different definitions of the atomic diagram. It
is easy to show that all of these notions are Turing and enumeration equivalent.
The reason why we chose this definition is that it is conceptually easier to define
the positive diagram and deal with enumerations of structures like this. We are
now ready to define various effectivizations of functors.

Definition 2 ([Mil+18],[Har+17]). A functor F : C → D is computable if
there is a pair of Turing operators (Φ, Φ∗) such that for all A, B ∈ C

1. ΦD(A) = D(F (A)),
2. for all f ∈ Hom(A, B), ΦD(A)⊕Graph(f)⊕D(B) = F (f).

Definition 3. A functor F : C → D is enumerable if there is a pair (Ψ, Ψ∗)
where Ψ and Ψ∗ are enumeration operators such that for all A, B ∈ C

1. ΨD(A) = D(F (A)),

2. for all f ∈ hom(A, B), Ψ
D(A)⊕Graph(f)⊕D(B)
∗ = Graph(F (f)).

In [Ros17] enumerable functors were defined differently, using a Turing operator
instead of an enumeration operator for the homomorphisms. The definition was
as follows.

Definition 4 ([Ros17]). A functor F : C → D is ⋆-enumerable if there is a
pair (Ψ, Φ∗) where Ψ is an enumeration operator and Φ∗ is a Turing operator
such that for all A, B ∈ C

1. ΨD(A) = D(F (A)),

2. for all f ∈ hom(A, B), Φ
D(A)⊕Graph(f)⊕D(B)
∗ = Graph(F (f)).

It turns out that the two definitions are equivalent and we will thus stick with
Definition 3 which seems to be more natural.

Proposition 5. A functor F : A → B is enumerable if and only if it is ⋆-
enumerable.

Proof. Say we have an enumerable functor given by (Ψ, Ψ∗) and an isomorphism
f : Ã → Â for Ã ∼= Â ∼= A. We can compute the isomorphism F (f) by enumer-

ating Graph(F (f)) using Ψ Ã⊕f⊕Â
∗ . For every x we are guaranteed to enumerate

(x, y) ∈ Graph(F (f)) for some y as the domain of A is ω. This is uniform in Ã,
f and Â. Thus there is a Turing operator Φ∗ such that (Ψ, Φ∗) witnesses that F
is ⋆-enumerable.

4 Barbara F. Csima, Dino Rossegger, and Daniel Yu

Now, say F is ⋆-enumerable as witnessed by (Ψ, Φ∗). For every σ, x, y with
Φσ

∗ (x) ↓= y such that σ can be split into σ0 ⊕ σ1 ⊕ σ2 where σ0, σ2 are par-
tial characteristic functions of finite structures in a finite sublanguage L of the
language of A and σ1 is the partial graph of a function, consider the set

Xx,y
σ = {(B ⊕ Graph(τ) ⊕ C, 〈x, y〉) : B, C are atomic diagrams of finite

L-structures, B compatible with σ0, C compatible with σ2,

σ1(u, v) = 1 → τ(u) = v, and σ1(u, v) = 0 → τ(u) = z

where z 6∈ range(σ1)}.

We can now define our enumeration operator as Ψ⋆ =
⋃

x,y,σ:Φσ
⋆

(x)↓=y Xx,y
σ . Given

an enumeration of Φ∗ we can produce an enumeration of Ψ∗, so Ψ∗ is c.e. It

remains to show that Ψ Â⊕f⊕Ã
∗ = ΦÂ⊕f⊕Ã

∗ .

Say ΦÃ⊕f⊕Â
∗ (x) = y. Then there is σ � Ã ⊕ f ⊕ Â such that (σ, x, y) ∈ Φ∗ and

thus by the construction of Xσ there is B ⊆ D(Ã), C ⊆ D(Â) and Graph(τ) ⊆

Graph(f) such that (B ⊕ Graph(τ) ⊕ C, 〈x, y〉) ∈ Xσ. Thus 〈x, y〉 ∈ Ψ Ã⊕f⊕Â
∗ .

On the other hand say 〈x, y〉 ∈ Ψ Ã⊕f⊕Â
∗ . Then, there is (B ⊕ Graph(τ) ⊕

C, 〈x, y〉) ∈ Ψ∗ with B ⊆ Ã, Graph(τ) ⊆ Graph(f) and C ⊆ Â. Further-

more, there is σ � χB⊕Graph(τ)⊕C such that (σ, x, y) ∈ Φ∗. Thus Ψ Ã⊕f⊕Â
∗ =

Graph(F (f)) for any Â ∼= Ã ∼= A and f : Ã ∼= Â and hence F is enumerable.
⊓⊔

In [Ros17] it was shown that the existence of an enumerable functor implies the
existence of a computable functor and in [Ros19] the converse was shown. We
give a simple proof of the latter.

Theorem 6. If F : A → B is a computable functor, then it is enumerable.

Proof. Given a computable functor F we will show that F is ⋆-enumerable. That
F is then also enumerable follows from Proposition 5.

Let D(LA) be the collection of finite atomic diagrams in the language of A. To
every p ∈ D(LA) we associate a finite string αp in the alphabet {0, 1, ↑} so that
if p specifies that Ri holds on elements coded by u, then we set that ¬Ri does
not hold on these elements. More formally, αp(x) = 1 if x ∈ p, αp(x) = 0 if
x = 2〈i, u〉 and 2〈i, u〉 + 1 ∈ p or x = 2〈i, u〉 + 1 and 2〈i, u〉 ∈ p , and αp(x) =↑ if
x is less than the largest element of p and none of the other cases fits. We also
associate a string α̃p ∈ 2|αp| with p where α̃p(x) = 1 if and only if αp(x) = 1
and α̃p(x) = 0 if and only if αp(x) = 0 or αp(x) ↑.

Let the computability of F be witnessed by (Φ, Φ∗). We build the enumeration
operator Ψ as follows. For every p ∈ D(LA) and every x if Φα̃p(x) ↓= 1 and
every call to the oracle during the computation is on an element z such that
αp(z) 6=↑, then enumerate (p, x) into Ψ . This finishes the construction of Ψ .

Positive enumerable functors 5

Now, let Â ∼= A. We have that x ∈ Ψ Â(x) if and only if there exists p ∈ D(LA)
such that p ⊆ D(Â) and (p, x) ∈ Ψ . We further have that (p, x) ∈ Ψ if and only

if Φα̃p (x) ↓= 1 if and only if ΦÂ(x) = 1. Thus F is enumerable using (Ψ, Φ∗). ⊓⊔

Combining Theorem 6 with the results from [Ros17] we obtain that enumer-
able functors and computable functors defined using the atomic diagram of a
structure as input are equivalent notions. This is not surprising. After all, the
atomic diagram of a structure always has total enumeration degree and there is
a canonical isomorphism between the total enumeration degrees and the Turing
degrees. In order to make this equivalence precise we need another definition.

Definition 7 ([Har+17]). A functor F : C → D is effectively isomorphic
to a functor G : C → D if there is a Turing functional Λ such that for any
A ∈ C, ΛA : F (A) → G(A) is an isomorphism. Moreover, for any morphism
h ∈ Hom(A, B) in C, ΛB ◦ F (h) = G(h) ◦ ΛA. That is, the diagram below
commutes.

F (A)

F (B)

G(A)

G(B)

ΛA

ΛB

F (h) G(h)

The following is an immediate corollary of Theorem 6 and [Ros17, Theorem 2].

Theorem 8. Let F : A → B be a functor. Then F is computable if and only if
there is an enumerable functor G : A → B effectively isomorphic to F .

Definition 9 ([Har+17]). Suppose F : C → D, G : D → C are functors
such that G ◦ F is effectively isomorphic to IdC via the Turing functional ΛC

and F ◦ G is effectively isomorphic to IdD via the Turing functional ΛD. If

furthermore, for any A ∈ C and B ∈ D, Λ
F (A)
D

= F (ΛA
C

) : F (A) → F (G(F (A)))

and Λ
G(B)
C

= G(ΛB
D

) : G(B) → G(F (G(B))), then F and G are said to be pseudo
inverses.

Definition 10 ([Har+17]). Two structures A and B are computably bi-
transformable if there are computable pseudo-inverse functors F : A → B and
G : B → A.

If the functors in Definition 10 are enumerable instead of computable then we
say that A and B are enumerably bi-transformable. As an immediate corollary
of Theorem 8 we obtain the following.

Corollary 11. Two structures A and B are enumerably bi-transformable if and
only if they are computably bi-transformable.

6 Barbara F. Csima, Dino Rossegger, and Daniel Yu

3 Effectivizations using positive diagrams

We now turn our attention to the setting where we only have positive information
about the structures. We follow Soskov [Sos04] in our definitions. See also the
survey paper by Soskova and Soskova [SS17] on computable structure theory
and enumeration degrees.

Definition 12. Let A be a structure in relational language (Ri)i∈ω. The positive
diagram of A, denoted by P (A), is the set

= ⊕ 6= ⊕
⊕

i∈ω

RA
i .

We are interested in the degrees of enumerations of P (A). To be more precise
let f be an enumeration of ω and for X ⊆ ωn let

f−1(X) = {〈x1, . . . , xn〉 : (f(x1), . . . , f(xn)) ∈ X}.

Given A let f−1(A) = f−1(=) ⊕ f−1(6=) ⊕ f−1(RA
0) ⊕ Notice that if f = id,

then f−1 is just the positive diagram of A.

Definition 13. The enumeration degree spectrum of A is the set

eSp(A) = {de(f−1(A)) : f is an enumeration of ω}.

If a is the least element of eSp(A), then a is called the enumeration degree of
A.

In order to obtain a notion of reduction that preserves enumeration spectra we
need an effectivization of functors where we use positive diagrams of structures
as coding. It is clear that for computable functors this makes no difference as
P (A) ≡T D(A). For enumerable functors it does make a difference. We also
need to replace the Turing operators in the definition of pseudo inverses with
enumeration operators. The new notions are as follows.

Definition 14. A functor F : C → D is positive enumerable if there is a pair
(Ψ, Ψ∗) where Ψ and Ψ∗ are enumeration operators such that for all A, B ∈ C

1. ΨP (A) = P (F (A)),

2. for all f ∈ hom(A, B), Ψ
P (A)⊕Graph(f)⊕P (B)
∗ = Graph(F (f)).

Definition 15. A functor F : C → D is enumeration isomorphic to a functor
G : C → D if there is an enumeration operator Λ such that for any A ∈ C,
ΛP (A) : F (A) → G(A) is an isomorphism. Moreover, for any morphism h ∈
Hom(A, B) in C, ΛP (B) ◦ F (h) = G(h) ◦ ΛP (A).

Positive enumerable functors 7

Definition 16. Suppose F : C → D, G : D → C are functors such that G ◦ F
is enumeration isomorphic to IdC via the enumeration operator ΛC and F ◦ G
is enumeration isomorphic to IdD via the enumeration operator ΛD. If, further-

more, for any A ∈ C and B ∈ D, Λ
P (F (A))
D

= F (Λ
P (A)
C

) : F (A) → F (G(F (A)))

and Λ
P (G(B))
C

= G(Λ
P (B)
D

) : G(B) → G(F (G(B))), then F and G are said to be
enumeration pseudo inverses.

Definition 17. Two structures A and B are positive enumerably bi-transform-
able if there are positive enumerable enumeration pseudo-inverse functors F :
A → B and G : B → A.

Theorem 18. Let A and B be positive enumerably bi-transformable. Then eSp(A) =
eSp(B).

Proof. Say A and B are positive enumerably bi-transformable by F : A →
B and G : B → A. Let f be an arbitrary enumeration of ω, then, view-
ing f−1(A)/f−1(=) as a structure on ω by pulling back a canonical enumer-
ation of the least elements in its =-equivalence classes, we have that there
is Â ∼= A such that P (Â) = f−1(A)/f−1(=) and P (Â) ≤e f−1(A). As F
is positive enumerable we have that f−1(A) ≥e P (F (Â)). Furthermore, we
shall see that f−1(F (Â)) ≤e f−1(A) and that f−1(A)/f−1(=) = P (F (Â)).
Given an enumeration of f−1(A) and an enumeration of P (F (Â)), we may first
order the equivalence classes of f−1(=) by their least elements and then, if
Ri(a1, . . . , an) ∈ P (F (Â)) we enumerate Ri(b1, . . . , bn) for all b1, . . . , bn ∈ ω such
that bj is in the aj

th equivalence class of f−1(=). It is not hard to see that this

gives an enumeration of a set X such that f−1(=) ⊕ f−1(6=) ⊕ X = f−1(F (Â)),
that f−1(F (Â))/f−1(=) = P (F (Â)), and since by construction f−1(F (Â)) ≤e

P (F (Â)) ⊕ f−1(A) we have f−1(F (Â)) ≤e f−1(A).

We can apply the same argument with G in place of F and F (Â) in place of A
to get that f−1(G(F (Â)))/f−1(=) = P (G(F (Â))) and

f−1(G(F (Â))) ≤e f−1(F (Â)) ≤e f−1(A).

At last, recall that, as A and B are positive enumerably bi-transformable, there is

an enumeration operator Ψ such that ΨP (G(F (Â))) is the enumeration of the graph
of an isomorphism i : G(F (Â)) ∼= Â. But then (f ◦ i)−1(G(F (Â))) = f−1(A)
and

f−1(A) ≤e f−1(G(F (Â))) ≤e f−1(F (Â)) ≤e f−1(A).

This shows that eSp(A) ⊆ eSp(B). The proof that eSp(B) ⊆ eSp(A) is analo-
gous. ⊓⊔

Proposition 19. There are computably bi-transformable structures A and B
such that eSp(A) 6= eSp(B). In particular, A and B are not positive enumerably
bi-transformable.

8 Barbara F. Csima, Dino Rossegger, and Daniel Yu

Proof. Let A = (ω, 0, s, K) where s is the successor relation on ω, 0 the first ele-
ment, and K the membership relation of the halting set. Assume B = (ω, 0, s, K)
is defined as A except that K(x) if and only if ¬K(x). There is a computable

functor F : A → B taking Â = (ω, 0Â, sÂ, KÂ) ∼= A to F (Â) = (ω, 0Â, sÂ, ¬KÂ)
and acting as the identity on isomorphisms. Furthermore, F has a computable
inverse and thus A is computably bi-transformable to B.

However, A has enumeration degree 0′
e and B has enumeration degree 0′

e. Thus
there cannot be a positive enumerable functor from B to A. ⊓⊔

The following shows that computable functors and positive enumerable functors
are independent.

Proposition 20. There are structures A and B such that A is positive enu-
merably bi-transformable with B but A is not computably bi-transformable with
B.

Proof. Let A be as in Proposition 19, i.e., A = (ω, 0, s, K) and B = (ω, 0, s).
Then it is not hard to see that A is positive enumerably bi-transformable with
B. However, there can not be a computable functor from B to A as B has Turing
degree 0 and A has Turing degree 0′. ⊓⊔

We have seen in Proposition 5 that ⋆-enumerable functors and enumerable func-
tors are equivalent. Positive enumerable functors also admit a different definition.

Definition 21. A functor F : C → D is positive ⋆-enumerable if there is a pair
(Ψ, Φ∗) where Ψ is an enumeration operator and Φ∗ is a Turing operator such
that for all A, B ∈ C

1. ΨP (A) = P (F (A)),

2. for all f ∈ hom(A, B), Φ
P (A)⊕Graph(f)⊕P (B)
∗ = Graph(F (f)).

Proposition 22. Every positive enumerable functor is positive ⋆-enumerable.

Proof. Let F : A → B be given by (Ψ, Ψ∗) and let f : Ã ∼= Â for Ã ∼= Â ∼=
A. Now we can define a procedure computing F (f) as follows. Given x, and

Ã ⊕ f ⊕ Â enumerate Ψ Ã⊕f⊕Â
∗ until 〈x, y〉 ց Ψ Ã⊕f⊕Â

∗ for some y. This is
uniform in Ã ⊕ f ⊕ Â and thus there exists a Turing operator Φ∗ with this
behaviour. The pair (Ψ, Φ∗) then witnesses that F is ⋆-enumerable. ⊓⊔

Theorem 23. There is positive ⋆-enumerable functor that is not enumeration
isomorphic to any positive enumerable functor.

Proof. We will build two structures A and B such that there is a positive ⋆-
enumerable functor F : A → B that is not positive enumerable. The structure

Positive enumerable functors 9

A is a graph constructed as follows. It has a vertex a with a loop connected to
a and a cycle of size n for every natural number n. If n ∈ ∅′ then there is an
edge between a and one element of the n cycle, otherwise there is no such edge.

Clearly, degT (P (A)) = 0′ and P (A) 6≥e ∅
′
.

The structure B is a typical graph that witnesses that there is a structure with
degree of categoricity 0′ (that is, 0′ is the least degree computing an isomorphism
between any two computable copies of B). Let us recap how we build two copies
of B, B1 and B2 such that 0′ is the least degree computing isomorphism between
B1 and B2. Both graphs consist of an infinite ray with a loop at its first element.
Let vi be the ith element in the ray in B1 and v̂i be the ith element in the ray
in B2. Now for every vi there are two elements ai and bi with viEai and viEbi.
Likewise for every v̂i there are two elements âi and b̂i with v̂iEâi and v̂iEb̂i.
Furthermore there are additional vertices si, ŝi with aiEsi and âiEŝi.

Take an enumeration of ∅′. If i ց ∅′, then add vertices biE · E· and ŝiE·, b̂iE·.
This finishes the construction of B. It is not hard to see that there is a unique

isomorphism f : B1 → B2 and that deg(f) = 0′ and Graph(f) ≥e ∅
′
.

We now construct the functor F . Given an enumeration of P (Â) for Â ∼= A we
wait until we see the cycle containing 0 (any natural number would work). If it
is of even length, or 0 is the special vertex a, we let F (Â) = B1 and if it is of
odd length we let F (Â) = B2. Clearly given any enumeration of a copy of A this
procedure produces an enumeration of a copy of B.

As B is rigid we just let F (f : Â → Ã) = g : F (Â) → F (Ã) where g is the unique
isomorphism between F (Â) and F (Ã). Note that there is a Turing operator Θ

such that ΘP (Â) = ∅′ for any Â ∼= A and that the isomorphism between F (Â)
and F (Ã) can be computed uniformly from P (F (Â)) ⊕ P (F (Ã)) ⊕ ∅′. Thus,
there is an operator Φ∗ witnessing that F is positive ⋆-enumerable.

To see that F is not positive enumerable consider two copies Â and Ã of A with
dege(P (Â)) = dege(P (Ã)) = 0′

e such that 0 is part of an even cycle in Â and part
of an odd cycle in Ã. Notice that there is f : Â → Ã such that P (Â) ⊕ P (Ã) ≥e

P (Â) ⊕ Graph(f : Â → Ã) ⊕ P (Ã), and also that P (Â) ⊕ P (Ã) 6≥e ∅
′
. But

Graph(g : F (Â) → F (Ã)) ≥e ∅
′

as F (Â) = B1 and F (Ã) = B2. Thus there can
not be an enumeration operator witnessing that F is positive enumerable.

Assume F was enumeration isomorphic to a positive enumerable functor G and
that this isomorphism is witnessed by Λ. Then, taking Â, Ã and f : Â → Ã as
in the above paragraph we have that P (Â) ⊕ P (Ã) ≥e Graph(G(f)). But then

P (Â) ⊕ P (Ã) ≥e Graph(ΛP (Â) ◦ G(f) ◦ ΛP (Ã)
−1

) = Graph(F (f)) ≥e ∅
′
.

This is a contradiction since dege(P (Â) ⊕ P (Ã)) = 0′
e. ⊓⊔

10 Barbara F. Csima, Dino Rossegger, and Daniel Yu

4 Reductions between arbitrary classes

So far we have seen how we can compare structures with respect to computabil-
ity theoretic properties. Our notions can be naturally extended to allow the
comparison of arbitrary classes of structures.

Definition 24 ([Har+17]). Let C and D be classes of structures. The class
C is uniformly computably transformably reducible, short u.c.t. reducible, to D

if there are a subclass D
′ ⊆ D and computable functors F : C → D

′ ⊆ D and
G : D′ → C such that F and G are pseudo-inverses.

Definition 25. Let C and D be classes of structures. The class C is uniformly
(positive) enumerably transformably reducible, short u.e.t., (u.p.e.t.) reducible,
to D if there is a subclass D

′ ⊆ D and (positive) enumerable functors F : C →
D

′ ⊆ D and G : D′ → C such that F and G are pseudo-inverses.

Propositions 19 and 20 show that u.p.e.t. and u.c.t reductions are independent
notions.

Corollary 26. There are classes of structures C1,C2 and D1,D2 such that

1. C1 is u.c.t. reducible to D1 but C1 is not u.p.e.t. reducible to D1.
2. C2 is u.p.e.t. reducible to D2 but C2 is not u.c.t. reducible to D2.

Similar to Corollary 11 we obtain the equivalence of u.e.t. and u.c.t reductions.

Corollary 27. Let C and D be arbitrary classes of countable structures. Then
C is u.e.t. reducible to D if and only if it is u.c.t. reducible to D.

References

[Gon80] S. S. Goncharov. “Problem of the Number of Non-Self-Equivalent
Constructivizations”. In: Algebra and Logic 19.6 (1980), pp. 401–414.

[Har+17] Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller, and
Antonio Montalbán. “Computable Functors and Effective Interpretabil-
ity”. In: The Journal of Symbolic Logic 82.1 (2017), pp. 77–97.

[Mil+18] Russell Miller, Bjorn Poonen, Hans Schoutens, and Alexandra Shlapen-
tokh. “A Computable Functor from Graphs to Fields”. In: The Jour-
nal of Symbolic Logic 83.1 (2018), pp. 326–348.

[Ros17] Dino Rossegger. “On Functors Enumerating Structures”. In: Siberian
Electronic Mathematical Reports 14 (2017), pp. 690–702.

[Ros19] Dino Rossegger. “Computable structure theory with respect to equiv-
alence relations”. Technische Universität Wien, 2019.

[Sos04] Ivan N. Soskov. “Degree Spectra and Co-Spectra of Structures”. In:
Ann. Univ. Sofia 96 (2004), pp. 45–68.

[SS17] Alexandra Soskova and Mariya Soskova. “Enumeration Reducibility
and Computable Structure Theory”. In: Computability and Complex-
ity. Springer, 2017, pp. 271–301.

	Positive enumerable functors

