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Abstract. We show that the (truth-table) Medvedev degree KLR of
Kolmogorov–Loveland randomness coincides with that of Martin-Löf ran-
domness, MLR, answering a question of Miyabe. Next, an analogue of
complex packing dimension is studied which gives rise to a set of weak
truth-table Medvedev degrees isomorphic to the Turing degrees.
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1 Introduction

Computability theory is concerned with the relative computability of reals, and
of collections of reals. The latter can be compared by various means, including
Medvedev and Muchnik reducibility. Among the central collections considered
are those of completions of Peano Arithmetic, Turing complete reals, Cohen
generic reals, random reals, and various weakenings of randomness such as reals
of positive effective Hausdorff dimension.

Perhaps the most famous open problem in algorithmic randomness [2,9] is
whether Kolmogorov–Loveland randomness is equal to Martin-Löf randomness.
Here we show that at least they are Medvedev equivalent.

Randomness extraction in computability theory concerns whether reals that
are close (in some metric) to randoms can compute random reals. A recent exam-
ple is [4]. That paper does for Hausdorff dimension what was done for a notion
intermediate between packing dimension and Hausdorff dimension in [3]. That
intermediate notion, complex packing dimension, has a natural dual which we
introduce in this article. Whereas our result on KL-randomness is positive, we
establish some negative (non-reduction) results for our new inescapable dimen-
sion and for relativized complex packing dimension (in particular Theorem 14).
These results are summarized in Figure 1.

Let CR, SR, KLR, and MLR be the classes of computably random, Schnorr
random, Kolmogorov-Loveland random, and Martin-Löf random reals, respec-
tively. For basic definitions from algorithmic randoness, the reader may consult
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Fig. 1. Truth-table Medvedev degrees of mass problems associated with randomness
and dimension. Here C → D means C ≥s D, dotted arrow means C 6≥s D and we assume
A 6≤T B.

two recent monographs [2,9]. Let ≤s denote the uniform (strong) reducibility
of mass problems known as Medvedev reducibility, and let ≤w denote the non-
uniform (weak) version known as Muchnik reducibility. It was shown by Nies,
Stephan and Terwijn [10] that CR ≤w SR. Miyabe [8] obtains an interesting
counterpoint by showing as his main theorem that CR 6≤s SR.

Theorem 1 ([7]). Given a KL-random set A = A0 ⊕ A1, at least one of A0,
A1 is ML-random.

As a corollary, MLR ≤w KLR. Miyabe [8] posed one open problem — is
MLR ≤s KLR? — which we answer in Theorem 2.

Let K(σ) denote the prefix-free Kolmogorov complexity of a string σ ∈ 2<ω,
and let Ks(σ) be a computable nonincreasing approximation of K(σ) in stages
s ∈ ω. The prefix of A of length n is denoted A ↾ n.

Theorem 2. MLR ≤s KLR.

Proof. Given a KL-random set A = A0 ⊕A1, we output bits of either A0 or A1,
switching whenever we notice that the smallest possible randomness deficiency
(c such that ∀n (K(Ai ↾ n) ≥ n− c)) increases.

This constant c depends on s and changes at stage s+ 1 if

(∃n ≤ s+ 1) Ks+1(Ai ↾ n) < n− cs.



By Theorem 1, one of A0, A1 is ML-random, hence switching will occur only
finitely often. Thus our output will have an infinite tail that is ML-random, and
hence be itself ML-random. ⊓⊔

Inspection of the proof of Theorem 2 shows that we do not need the full power
of Turing reductions, but have a truth-table reduction with use ϕ(n) ≤ 2n.

2 Complex packing dimension and its analogue

Let K(σ) denote the prefix-free Kolmogorov complexity of a string σ ∈ 2<ω.
The prefix of A of length n is denoted A ↾ n.

Viewed in terms of complexity [1,6], the Hausdorff and packing dimensions
are dual to one another:

Definition 1. Let A ∈ 2ω. The effective Hausdorff dimension of A is defined
by

dimH(A) = sup
m∈N

inf
n≥m

K(A ↾ n)

n
.

The effective packing dimension of A is

dimp(A) = inf
m∈N

sup
n≥m

K(A ↾ n)

n
.

Another notion of dimension was defined in previous work by Kjos-Hanssen
and Freer [3], which we review here. Let D denote the collection of all infinite
∆0

1 elements of 2ω. The complex packing dimension is defined as

Definition 2. dimcp(A) = sup
N∈D

inf
n∈N

K(A ↾ n)

n
.

This leads naturally to a new notion, the dual of complex packing dimension:

Definition 3. dimi(A) = inf
N∈D

sup
n∈N

K(A ↾ n)

n
.

This is the inescapable dimension of A, so named because if dimi(A) = α,
every infinite computable collection of prefixes of A must contain prefixes with
relative complexity arbitrarily close to α. For such a real, there is no (com-
putable) escape from high complexity prefixes.

As Freer and Kjos-Hanssen show in [3], for any A ∈ 2ω,

0 ≤ dimH(A) ≤ dimcp(A) ≤ dimp(A) ≤ 1.

The expected analogous result also holds:

Theorem 3. For any A ∈ 2ω, 0 ≤ dimH(A) ≤ dimi(A) ≤ dimp(A) ≤ 1.



Proof. As the sets [n,∞) are computable subsets of N, dimi(A) ≤ dimp(A). For
the second inequality, notice that for all m ∈ N and all N ∈ ∆0

1,

inf
n∈[m,∞)

K(A ↾ n)

n
≤ inf

n∈N∩[m,∞)

K(A ↾ n)

n

≤ sup
n∈N∩[m,∞)

K(A ↾ n)

n
≤ sup

n∈N

K(A ↾ n)

n
. ⊓⊔

Unexpectedly, this is the best one can do. As we will see in the next sec-
tion, while the Hausdorff dimension of a real is always lower than its packing
dimension, any permutation is possible for the complex packing and inescapable
dimensions of a real.

3 Incomparability for inescapable dimension

We begin with a proof that the inescapable and complex packing dimensions
are incomparable in the following sense: dimcp(A) ≤ dimcp(B) does not imply
dimi(A) ≤ dimi(B), nor vice versa. In fact we show a stronger statement:

Theorem 4. There exist A and B in 2ω such that dimcp(A) < dimcp(B), but
dimi(B) < dimi(A).

Recall that a real A meets a set of strings S if there is some σ ∈ S such that
σ is a prefix of A. Moreover, A is weakly 2-generic if for each dense Σ0

2 set of
strings S, A meets S [5].

For a real A, let us write A[m,n] to denote the string A(m)A(m+1) . . . A(n−
1). For two functions f(n), g(n) we write f(n) ≤+ g(n) to denote ∃c∀n f(n) ≤
g(n) + c. We write f(n) = O(g(n)) to denote ∃M∃n0∀n > n0 f(n) ≤ Mg(n). It
will also be useful to have the following theorem of Schnorr at our disposal:

Theorem 5. A is Martin-Löf random iff n ≤+ K(A ↾ n).

Finally, for a real A and n ∈ ω we use the indicator function 1A defined by

1A(n) =

{

1 if n ∈ A,

0 otherwise.

Proof (of Theorem 4). Let A be a weakly 2-generic real, and let R be a Martin-

Löf random real. Let sk = 2k
2

, kn = max{k | sk ≤ n}, C = (01)ω. Define

B(n) = R (n− skn
) · 1C(kn).

Unpacking this slightly, this is

B(n) =

{

R (n− sk) if sk ≤ n < sk+1 for some even k,

0 otherwise.



In this proof, let us say that an R-segment is a string of the form
B ↾ [s2m, s2m+1) for some m, and say that a 0-segment is a string of the form
B ↾ [s2m+1, s2m+2) for some m. These are named so that a 0-segment consists
of zeros, and an R-segment consists of random bits. Notice that by construc-
tion, each such segment is much longer than the combined length of all previous
segments. This guarantees certain complexity bounds at the segments’ right end-
points. For instance, B has high complexity at the end of R-segments: for any
even k ∈ N,

sk+1 − sk ≤+ K (B [sk, sk+1])

≤+ K(B ↾ sk) +K(B ↾ sk+1) ≤+ 2sk +K(B ↾ sk+1).

The first inequality holds by Theorem 5 because B [sk, sk+1] = R ↾ (sk+1 −
sk). The second (rather weak) inequality holds because from descriptions of
B ↾ sk and B ↾ sk+1 we can recover B[sk, sk+1]. Finally, K(σ) ≤+ 2|σ| is a
property of prefix-free Kolmogorov complexity K. Combining and dividing by
sk+1 gives

sk+1 − 3sk ≤+ K(B ↾ sk+1)

1− 3 · 2−(2k+1) ≤ K(B ↾ sk+1)

sk+1
+O

(

2−(k+1)2
)

as k → ∞. (1)

Dually, the right endpoints of 0-segments have low complexity: for odd k ∈ N,

K(B ↾ sk+1) ≤+ K(B ↾ sk) +K(B[sk, sk+1]) ≤+ 2sk + 2 log(sk+1 − sk).

The first inequality is again the weak bound that B ↾ sk+1 can be recovered
from descriptions of B ↾ sk and B[sk, sk+1]. For the second, we apply the 2|σ|
prefix-free complexity bound to B ↾ sk, but also notice that since B[sk, sk+1] =
0sk+1−sk , it can be recovered effectively from a code for its length. Combining
and dividing by sk+1, we have

K(B ↾ sk+1) ≤+ 2sk + 2(k + 1)2

K(B ↾ sk+1)

sk+1
≤ 2−(2k+1) +O

(

2−(k+1)2
)

as k → ∞. (2)

Now we can examine the dimensions of A and B.

Claim 1: dimcp(B) = 1.
Let Rn be the set of right endpoints of R-segments of B, except for the first
n of them — that is, Rn = {s2k+1}∞k=n. Then the collection of these Rn is a
subfamily of D, so that a supremum over D will be at least the supremum over
this family.

sup
N∈D

inf
n∈N

K(B ↾ n)

n
≥ sup

n∈N

inf
s∈Rn

K(B ↾ s)

s

≥ sup
n∈N

inf
s∈Rn

1− 3 · 2−(2s+1) = sup
m∈N

1− 3 · 2−(2m+1) = 1



by (1).
Claim 2: dimi(B) = 0.
Let Zn be the set of right endpoints of 0-segments of B, except for the first n of
them: Zn = {s2k}∞k=n. Similarly to Claim 1, we obtain

inf
N∈D

sup
n∈N

K(B ↾ n)

n
≤ inf

n∈N

sup
s∈Zn

K(B ↾ s)

s

≤ inf
n∈N

sup
s∈Zn

2−(2s+1) = inf
m∈N

2−(2m+1) = 0

by (2).
Claim 3: dimcp(A) = 0.
For each natural k and N in D, the following sets are dense Σ0

1 :

{

σ ∈ 2<ω : |σ| ∈ N and (∃s) Ks(σ) < |σ|/k]
}

.

As A is weakly 2-generic, it meets all of them. Hence

sup
N∈D

inf
m∈N

K(σ ↾ m)

m
= 0.

Claim 4: dimi(A) = 1.
For each natural k and N in D,

{

σ ∈ 2<ω : |σ| ∈ N and (∀s) Ks(σ) > |σ|(1− 1/k)
}

is a dense Σ0
2 set. As A is weakly 2-generic, it meets all of these sets. Hence

inf
N∈D

sup
m∈N

K(A ↾ m)

m
= 1. ⊓⊔

We say that A is finite-to-one reducible to B if there is a total computable
function f : ω → ω such that the preimage of each n ∈ ω is finite and for all n,
n ∈ A ⇐⇒ f(n) ∈ B.

Definition 4. Let B be a class of infinite sets downward closed under finite-to-
one reducibility. For A ∈ 2ω, we define

dimisB(A) = inf
N∈B

sup
n∈N

K(A ↾ n)

n
and dimsiB(A) = sup

N∈B

inf
n∈N

K(A ↾ n)

n
.

Notice that for any oracleX , the classes of infinite sets that are∆0
n(X), Σ0

n(X)
or Π0

n(X) are downward closed under finite-to-one reducibility, and so give rise
to notions of dimension of this form. We will label these Dn(X), Sn(X), and
Pn(X) respectively, leaving off X when X is computable. Interestingly, for fixed
n, the first two give the same notion of dimension.

Theorem 6. For all A ∈ 2ω and n ∈ N, dimisΣ0
n
(A) = dimis∆0

n
(A).



Proof. We prove the unrelativized version of the statement, n = 1.
[≤] As ∆0

1 ⊆ Σ0
1 , this direction is trivial.

[≥] As every infinite Σ0
1 set N contains an infinite ∆0

1 set N ′, we have

dimisΣ0
1
(A) = inf

N∈S1

sup
n∈N

K(A ↾ n)

n
≥ inf

N∈S1

sup
n∈N ′

K(A ↾ n)

n

≥ inf
N∈D1

sup
n∈N

K(A ↾ n)

n
= dimis∆0

1
(A).⊓⊔

By a similar analysis, the analogous result for si dimensions is also true.

Theorem 7. For all A ∈ 2ω and n ∈ N, dimsiΣ0
n
(A) = dimsi∆0

n
(A).

What about the Π0
n dimensions? Unlike the Σ0

1 case, these do not collapse
to any other dimension. Two lemmas will be useful in proving this. The first
(which was implicit in Claims 1 and 2 of Theorem 3) will allow us to show that
an si-dimension of a real is high by demonstrating a sequence that witnesses this.
The second is a generalization of the segment technique, forcing a dimension to
be 0 by alternating 0- and R-segments in a more intricate way, according to the
prescriptions of a certain real. The constructions below proceed by selecting a
real that will guarantee that one dimension is 0 while leaving room to find a
witnessing sequence for another.

Lemma 1 (Sequence Lemma). Let B be a class of infinite sets downward
closed under finite-to-one reducibility, and let N = {nk | k ∈ ω} ∈ B.

1. If lim
k→∞

K(X ↾ nk)

nk

= 1, then dimsiB(X) = 1.

2. If lim
k→∞

K(X ↾ nk)

nk

= 0, then dimisB(X) = 0.

Proof. We prove (1); (2) is similar.
Form the infinite family of sets {Nm} defined by Nm = {nk | k ≥ m}. From

the definition of the limit, for any ε > 0 there is an l such that

inf
Nl

K(X ↾ nk)

nk

> 1− ε.

As ε was arbitrary,

sup
m

inf
Nm

K(X ↾ nm)

nm

= 1.

Thus as B is closed under finite-to-one reduction, the Nm form a subfamily of
B, so that supN∈B

infn∈N K(X ↾ n)/n = 1. ⊓⊔

Recall that an infinite real A is said to be immune to a class B if there is no
infinite member B ∈ B such that B ⊆ A as sets, or co-immune to a class B if
its complement is immune to B. We will sometimes refer to these properties as
B-immunity or B-co-immunity, respectively.



Lemma 2 (Double Segment Lemma). Let X0 ∈ 2ω be such that X0 is B-
immune for a class B of infinite sets downward closed under finite-to-one re-
ducibility. Set X = X0 ⊕X0. Let sk = 2k

2

, and kn = max{odd k | sk ≤ n}. Let
A be an arbitrary real and let R be Martin-Löf random.

1. If B = A (n− skn
) · 1X(kn), then dimsiB(B) = 0.

2. If B = R (n− skn
) · 1X(kn), then dimisB(B) = 1.

Again, we will give a detailed proof of only the dimsiB result (though the nec-
essary changes for dimisB are detailed below). Unpacking the definition of B,

B(n) =

{

A (n− sk) if kn ∈ X

0 otherwise.

B is here built out of segments of the form B [skn
, skn+2] for odd k. Here a seg-

ment is a 0-segment if kn 6∈ X , or an A-segment if kn ∈ X , which by definition
is a prefix of A. These segments are now placed in a more intricate order accord-
ing to X , with a value n being contained in a 0-segment if X(kn) = 0, and in
an A-segment if X(kn) = 1. With some care, this will allow us to leverage the
B-immunity of X0 to perform the desired complexity calculations.

Specifically, we want to show that for any N ∈ B, infN K(B ↾ n)/n = 0. It
is tempting to place the segments according to X0 and invoke its B-immunity
to show that for any N ∈ B, there are infinitely many n ∈ N such that n is in
a 0-segment, and argue that complexity will be low there. The problem is that
we have no control over where in the 0-segment n falls. Consider in this case
the start of any segment following an A-segment: n = skn

for kn − 1 ∈ X0 and
kn ∈ X0. We can break A and B into sections to compute

K(A ↾ n) ≤+ K(A ↾ (n− skn−1)) +K(A[n− skn−1, n])

= K(B[skn−1, n]) +K(A[n− skn−1, n]) (kn − 1 ∈ X0)

≤+ K(B ↾ n) +K(B ↾ skn−1) +K(A[n− skn−1, n])

K(A ↾ n) ≤+ K(B ↾ n) + 4skn−1 (K(σ) ≤+ 2|σ|)
Even if n is the start of a 0-segment, if K(A ↾ n) is high, K(B ↾ n) may not be
as low as needed for the proof. Our definition of X avoids this problem:

Proof (of Theorem 2). Suppose for the sake of contradiction that for some
N ∈ B, there are only finitely many n ∈ N with kn, kn − 1 ∈ X, i.e., that
are in a 0-segment immediately following another 0-segment. Removing these
finitely many counterexamples we are left with a set N ′ ∈ B such that for all
n ∈ N ′, ¬[(kn 6∈ X)∧ (kn − 1 6∈ X)]. As kn is odd, the definition of X gives that
⌊kn/2⌋ ∈ X0. By a finite-to-one reduction from N ′, the infinite set {⌊kn/2⌋}n∈N ′

is a member of B and is contained in X0 - but X0 is immune to such sets.
Instead it must be the case that there are infinitely many n ∈ N in a 0-

segment following a 0-segment, where the complexity is

K(B ↾ n) ≤+ K
(

B ↾ snk−1

)

+K
(

B
[

snk−1
, n

])

≤+ 2 · snk−1
+ 2 log

(

n− snk−1

)

.



Here the second inequality follows from the usual 2|σ| bound and the fact that

B
[

snk−1
, n

]

contains only 0s. As 2k
2
n ≤ n, we can divide by n to get

K(B ↾ n)

n
≤+ 2k

2
n
−2kn

2k
2
n

+
2 log(n)

n
= 2−2kn +

2 log(n)

n
.

As there are infinitely many of these n, it must be that infn∈N K(B ↾ n)/n = 0.
This holds for every real N with property B, so taking a supremum gives the
result.

The dimisB version concerns reals B constructed in a slightly different way.
Here, the same argument now shows there are infinitely many n ∈ N in an R-
segment following an R-segment. At these locations, the complexity K(B ↾ n)
can be shown to be high enough that supN K(B ↾ n)/n = 1, as desired. ⊓⊔

With these lemmas in hand, we are ready to prove the following theorem:

Theorem 8. For all natural n there is a set A with dimsiΠ0
n
(A) = 1 and

dimsi∆0
n
(A) = 0.

Proof. We prove the n = 1 case, as the proofs for higher n are analogous.
Let S0 be a co-c.e. immune set, and let R be Martin-Löf random. Set S =

S0 ⊕ S0, and define kn = max{odd k | 2k2 ≤ n}. To build A out of 0-segments

and R-segments, define A(n) = R
(

n− 2k
2
n

)

· 1S(kn).
As S0 is Π0

1 , so is S. Thus the set of right endpoints of R-segments,

M =
{

2k
2 | k is odd and k − 1 ∈ S

}

is also Π0
1 . By construction limm∈M K(A ↾

m)/m = 1 and thus the Sequence Lemma 1 gives that dimsiΠ0
1
(A) = 1.

As the complement of a simple set is immune, the Double Segment Lemma
2 shows that dimsi∆0

1
(A) = 0. ⊓⊔

The proof of analogous result for the is-dimensions is similar, using the same

S0 and S, and the real defined by B(n) = R
(

n− 2k
2
n

)

· 1S(kn).

Theorem 9. For all n ≥ 1 there exists a set B with dimisΠ0
n
(B) = 1 and

dimis∆0
n
(B) = 0.

It remains to show that the ∆0
n+1 and Π0

n dimensions are all distinct. We
can use the above lemmas for this, so the only difficulty is finding sets of the
appropriate arithmetic complexity with the relevant immunity properties.

Lemma 3. For all n ≥ 1, there is an infinite ∆0
n+1 set S that is Π0

n-immune.

Proof. We prove the unrelativized version, n = 1. Let C be a ∆0
2 cohesive set

that is not co-c.e, i.e., for all e either We ∩C or We ∩C is finite. As C is not c.e.
it cannot finitely differ from any We, so for all e, We \ C = We ∩ C is infinite.
Hence if We ⊆ C, then by cohesiveness, We ∩ C = We is finite. ⊓⊔

Theorem 10. For all n ≥ 1 there exists a set A with dimsi∆0
n+1

(A) = 1 and

dimsiΠ0
n
(A) = 0.



Proof. This is exactly like the proof of Theorem 8, but S0 is now the Π0
1 -immune

set guaranteed by Lemma 3. ⊓⊔

Again, the analogous result for is-dimensions is similar:

Theorem 11. For all n ≥ 1 there exists a set B with dimisΠ0
n
(B) = 1 and

dimis∆0
n+1

(B) = 0.

After asking questions about the arithmetic hierarchy, it is natural to turn
our attention to the Turing degrees. As the familiar notion of B-immunity for
an oracle is exactly ∆0

1(B)-immunity for a class, we have access to the usual
lemmas. We shall embed the Turing degrees into the si-∆0

1(A) dimensions (and
dually, is-∆0

1(A)). First, a helpful lemma:

Lemma 4 (Immunity Lemma). If A �T B, there is an S ≤T A such that S
is B-immune.

Proof. Let S be the set of finite prefixes of A. If S contains a B-computable
infinite subset C, then we can recover A from C, but then A ≤T C ≤T B. ⊓⊔

Theorem 12 (si-∆0
1 Embedding Theorem). Let A,B ∈ 2ω. Then A ≤T B

iff for all X ∈ 2ω, dimsi∆0
1
(A)(X) ≤ dimsi∆0

1
(B)(X).

Proof. [⇒] Immediate, as ∆0
1(A) ⊆ ∆0

1(B).
[⇐] This is again exactly like the proof of Theorem 8, now using the set guar-
anteed by the Immunity Lemma 4 as S0. ⊓⊔

The result for is-dimensions is again similar:

Theorem 13 (si-∆0
1 Embedding Theorem). Let A,B ∈ 2ω. Then A ≤T B

iff for all X ∈ 2ω, dimis∆0
1
(A)(X) ≥ dimis∆0

1
(B)(X).

We can push this a little further by considering weak truth table reductions:

Definition 5. A is weak truth table reducible to B (A ≤wtt B) if there exists
a computable function f and an oracle machine Φ such that ΦB = A, and the
use of ΦX(n) is bounded by f(n) for all n (ΦX(n) is not guaranteed to halt).

Theorem 14. If A 6≤T B, then for all wtt-reductions Φ there exists an X such
that dimsi∆0

1
(A)(X) = 1 and, either ΦX is not total or dimsi∆0

1
(B)(Φ

X) = 0.

Proof. Let A 6≤T B, and let Φ be a wtt-reduction. Let f be a computable bound
on the use of Φ, and define g(n) = max{f(i) | i ≤ n}, so that K(ΦX ↾ n) ≤+

K(X ↾ g(n)) + 2 log(n). For notational clarity, for the rest of this proof we will
denote inequalities that hold up to logarithmic (in n) terms as ≤log.

Next, we define two sequences ℓk and λk which play the role 2k
2

played in
previous constructions:

ℓ0 = λ0 = 1, λk = λk−1 + ℓk−1, ℓk = min
{

2n
2 | g(λk) < 2n

2
}

.



These definitions have the useful consequence that limk ℓk−1/ℓk = 0. To see this,

suppose ℓk−1 = 2(n−1)2 . As g is an increasing function, the definitions give

ℓk > g(λk) ≥ λk = λk−1 + ℓk−1 ≥ ℓk−1 = 2(n−1)2 .

Hence ℓk ≥ 2n
2

, so that ℓk−1/ℓk ≤ 2−2n+1. As ℓk > ℓk−1 for all k, this ratio can
be made arbitrarily small, giving the limit.

A triple recursive join operation is defined by

2
⊕

i=0

Ai = {3k + j | k ∈ Aj , 0 ≤ j ≤ 2}, A0, A1, A2 ⊆ ω.

Let S0 ≤T A be as guaranteed by Lemma 4, and define S =
⊕2

i=0 S0.
Let R be Martin-Löf random, and define X(n) = R (n− ℓkn

) · 1S(kn), where
kn = max{k = 2 (mod 3) | ℓk ≤ n}. This definition takes an unusual form com-
pared to the previous ones we have seen in order to handle the interplay between
λk and ℓk - specifically the growth rate of g(n). We are effectively “tripling up”
bits of S0 (rather than doubling them as before) to account for the possibility
that g(n) grows superexponentially, with the condition that k = 2 (mod 3) re-
placing the condition that k is odd.

Claim 1: dimsi∆0
1
(A)(X) = 1.

Proof: As N = {ℓk}k∈S is an A-computable set, by the Sequence Lemma 1 it
suffices to show that limk∈S K(X ↾ ℓk)/ℓk = 1. For ℓk ∈ N ,

K(X ↾ ℓk) ≥log K(X [ℓk−1, ℓk])−K(X ↾ ℓk−1)

≥ K(R ↾ (ℓk − ℓk−1))− 2ℓk−1 (as k ∈ S)

≥log ℓk − ℓk−1 − 2ℓk−1 (as R is Martin-Löf random)

K(X ↾ ℓk)

ℓk
≥log ℓk − 3ℓk−1

ℓk
= 1− 3

ℓk−1

ℓk
.

which gives the desired limit by the above.
Claim 2: dimsi∆0

1
(B)(Φ

X) = 0.
Proof: Suppose N ≤T B. For notation, define a = kg(n). By mimicking the proof
of Lemma 2, we can use the B-immunity of S to show that there are infinitely
many n ∈ N such that g(n) is in a 0-segment following two 0-segments, i.e.,
a− 2, a− 1, a 6∈ S. By the definition of X ,

X [ℓa−2, ℓa+1] = 0ℓa+1−ℓa−2 .

Suppose the value X(m) is queried in the course of computing ΦX ↾ n. By
the definitions of g, a, and ℓk, m ≤ g(n) < ℓa+1. Hence either m < ℓa−2 or
m ∈ [ℓa−2, ℓa+1], so that X(m) = 0. Thus to compute ΦX ↾ n, up to a constant
it suffices to know X ↾ ℓa−2. Thus

K(ΦX ↾ n) ≤+ K(X ↾ ℓa−2) ≤+ 2ℓa−2



As g(n) > ℓa it must be that n > λa. Dividing by n, we find that

K(ΦX ↾ n)

n
≤+ 2ℓa−2

λa

<
2ℓa−2

λa−1 + ℓa−1
<

2ℓa−2

ℓa−1
.

As there are infinitely many of these n, it must be that infn∈N K(ΦX ↾ n)/n = 0.
This holds for every N ≤T B, so taking a supremum gives the result. ⊓⊔
Remark. We only consider si-dimensions for this theorem, as it is not clear
what an appropriate analogue for is-dimensions would be. The natural dual
statement for is-dimensions would be that for all reductions Φ there is an X
such that dimis∆0

1
(A)(X) = 0, and either ΦX is not total or dimis∆0

1
(B)(Φ

X) = 1.

But many reductions use only computably much of their oracle, so that ΦX is
a computable set. This degenerate case is not a problem for the si theorem,
as its conclusion requires dim∆0

1
(B)(Φ

X) = 0. But for an is version, it is not

even enough to require that ΦX is not computable - consider the reduction that
repeats the nth bit of X 2n− 1 times, so that n bits of X suffice to compute n2

bits of ΦX . Certainly ΦX ≡wtt X , so that ΦX is non-computable iff X is. But

K(ΦX ↾ n)

n
≤+ K(X ↾

√
n)

n
≤+ 2

√
n

n

for all n, so that dimp(Φ
X) = 0, and hence all other dimensions are 0 as well.
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