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Abstract. Despite the evolution of norms and regulations to mitigate the harm                       
from biases, harmful discrimination linked to an individual’s unconscious                 
biases persists. Our goal is to better understand and detect the physiological and                         
behavioral indicators of implicit biases. This paper investigates whether we can                     
reliably detect racial bias from physiological responses, including heart rate,                   
conductive skin response, skin temperature, and micro-body movements. We                 
analyzed data from 46 subjects whose physiological data was collected with                     
Empatica E4 wristband while taking an Implicit Association Test (IAT). Our                     
machine learning and statistical analysis show that implicit bias can be                     
predicted from physiological signals with 76.1% accuracy. Our results also                   
show that the EDA signal associated with skin response has the strongest                       
correlation with racial bias and that there are significant differences between the                       
values of EDA features for biased and unbiased participants. 
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1 Introduction 

Unconscious or implicit biases, which are unfair "prejudice[s] in favor of or against                         
one thing, person, or group compared with another" [14], continue to be a pressing                           
social issue. People can hold biases against or for others based on characteristics such                           
as the individual’s age, gender, gender identity, physical abilities, religion, sexual                     
orientation, or weight [14]. Due to their automatic and unintentional nature – and                         
often unrecognized impact on judgment and behavior – implicit biases can lead                       
people, even those most committed to egalitarian ideals, to be unsuspecting                     
perpetrators of discrimination.  

Existing bias interventions have two primary shortcomings: (1) they have been                       
designed as "one-shot", "one size fits all" solutions and (2) they have not successfully                           
aided individuals in identifying bias-triggering contexts or situations as they occur in                       
real time. These shortcomings are in large part due to the difficulty and lack of                             
feasibility of assessing or detecting bias as it manifests itself in daily life.  

Our research aims to understand and detect the physiological and behavioral                       
associates of implicit bias and, ultimately, to build technology that uses this                       
knowledge to integrate bias mitigation strategies into personal devices, such as                     
smartphones and wearables. In this study, we use machine learning modeling to                       
understand the links between racial bias and involuntary physiological responses                   
using Photoplethysmography (PPG), Electrodermal Activity (EDA), Skin             



Temperature (SKT), and Accelerometer (ACC) signals. To our knowledge, this is the                       
first study to investigate the feasibility of using machine learning to detect racial bias                           
from physiological signals collected from a wearable wristband. 

In the following sections, we discuss prior research on implicit bias and its                           
physiological counterparts. We then describe our data collection study, our analysis                     
methods, and our preliminary results. 

2 Background and Related Work 

2.1 Detecting bias via the Implicit Association Test (IAT) 

Implicit biases are typically measured through the Implicit Association Test (IAT) [2],                       
a test that measures how long it takes participants to categorize contrasted concepts,                         
like Black and good, or white and kind [11]. For example, a participant is described as                               
having an unconscious bias towards white appearing faces if they are faster at                         
completing the task when white faces are paired with words like "good" and Black                           
appearing faces are paired with words like "bad." Based on the differences in                         
participants' speed in pairing faces and evaluations in Black-good/White-bad and                   
Black-bad/White-good conditions, participants are categorized as having no bias, a                   
slight bias, a moderate bias, or a strong bias [12]. A meta-analysis of 122 studies of                               
the IAT found that the predictive validity of the IAT is greater for social sensitive                             
topics, such as race, where the test has greater predictive validity for bias than                           
self-report measures [11]. Even small differences between individuals on the IAT                     
have been linked to differences in discrimination in hiring, in salary, in criminal                         
proceedings, in school discipline and grading, and in health care decisions [10]. What                         
the IAT fails to tell us, however, is whether there are also physiological responses                           
associated with bias. 

2.2 Physiological Sensing and its Relation to Bias 

Our ultimate goal is to identify the triggers and internal indicators of bias so that we                               
can provide individuals with just-in-time information they can use to reduce the                       
impact of biases on their judgments and actions. Prior work has begun to establish one                             
avenue for such interventions: the linking of unconscious bias activation with distinct                       
patterns of concomitant physiological activity, patterns that are consistent with threat                     
responses in intergroup contexts. Researchers have found that learned threat responses                     
to outgroup members are indicated by distinct patterns of neural activity (e.g.,                       
amygdala activation: [3, 4]); cardiovascular reactivity [6, 13]; and skin conductance                     
[8]). For example, the intensity of participants’ neural activity is related to differences                         
in assessed levels of prejudice. Participants’ anterior cingulate cortex activity is                     
greater for participants with more assessed prejudice than their less prejudiced peers                       
when they are asked to engage in a labelling activity after being shown Black                           
appearing faces [5]. Similarly, in another study, when participants were confronted                     
with individuals who appeared Asian, but had Southern American accents, the                     
participants demonstrated unusual cardiovascular responses, had poorer task               
performance, and manifested negative and defeat-related behaviors [6]. In studies of                     



bias against individuals with mental illness, researchers found that the reactions and                       
decisions of participants when interacting with individuals with mental health                   
concerns were correlated with skin conductance measures, indicating a possible                   
relationship between skin conductance measures and bias [8].   

While these early studies on the relationship between implicit biases and                       
physiological responses are encouraging, our research is motivated by gaps in the                       
literature. We are not aware of any research in this domain that captures and                           
investigates a combination of physiological responses and measures of implicit biases.                     
Our study helps to 1) better understand and confirm that such relationships exist, 2)                           
identify the most significant physiological responses to bias, and 3) identify the                       
overlapping and combined physiological responses to bias.  

3 Methods 

3.1 Data Collection 

We used Empatica [1], a wristband designed to gather high-quality physiological                     
signals to capture physiological responses. The Empatica has four sensors:                   
Electrodermal Activity (EDA), Photoplethysmography (PPG), Infrared Thermopile             
(TEMP), and Accelerometer (ACC). The PPG sensor is capable of measuring Blood                       
Volume Pulse (BVP) from which Heart Rate (HR), Heart Rate Variability (HRV),                       
Inter-Beat-Interval (IBI) and many other cardiovascular features can be extracted. The                     
EDA sensor is used to measure sympathetic nervous system arousal and monitor                       
emotional states, such as stress, excitement, and focus. The accelerometer and                     
Infrared Thermopile are used to track body movements and to monitor changes in                         
skin temperature. 

As part of a larger study on simulated practice, the data collection took place in two                                 
of eight sections of an Introduction to Teaching course at a large university in the                             
Southeast. Of the 76 students in the two sections, 46 consented to wearing an                           
Empatica E4 wristband while completing the study measures and had enough                     
biometric data for analysis. All participants completed the IAT and surveys during                       
course sections, observed by the researchers.  

The participants resembled their course peers in gender, interest in teaching, and                         
languages spoken at home, but were slightly more white than the students in the                           
course sections as a whole (61% to 51%) and from slightly wealthier families (54% to                             
42%). Overall, the participants were almost equally split between men and women,                       
generally spoke only English in the home, and were more likely to have attended a                             
primarily white high school than a mixed race school or one primarily consisting of                           
students of color (50% primarily white, 39% mixed race, and 11% primarily students                         
of color).  

3.2 Data Processing 

IAT data processing. The initial IAT test results had eight categories. The IAT                           
categorized participants as having either a strong preference, moderate preference,                   
slight preference, or no preference for either white or Black appearing faces. We                         



designed our machine learning analysis as a binary classification task to infer whether                         
or not a person has bias towards any racial group. We, therefore, categorized all                           
strong and moderate preferences as 'biased' and all slight or no preferences as                         
'unbiased'. Out of the 46 participants, 26 scored as biased and 20 scored as unbiased. 

Feature Extraction. We calculated a total of 91 features from SKT, HR, BVP,                           
EDA, and ACC signals as described in Table 1. Statistical features such as maximum,                           
mean, and standard deviation were common across all signals, and other features such                         
as  rms and skewness were extracted from EDA and BVP signals.  

The temperature and blood volume pulse signals (BVP) from the Empatica were                         
measured at a sampling frequency of 4 Hz and 64 Hz respectively. Heart rate (HR)                             
was derived from BVP signals by an algorithm built into the Empatica E4. The 3-axis                             
acceleration signal was measured at a sampling frequency of 32 Hz. Because we were                           
more interested in the degree of movement than the direction of the movement, we                           
derived the magnitude of the x, y, and z axes from the accelerometer signals using the                               
following equation: 

Magnitude =  √x2 + y2 + z2  
The EDA signals were measured at a sampling frequency of 4 Hz. The cvxEDA                             

library [9] was used to separate the phasic and tonic components of EDA signals. This                             
allowed us to extract features from the main, phasic, and tonic parts of the EDA                             
signal, which is helpful in analyzing stimulus responses. The tonic part of the signal is                             
more correlated to physiological arousal and alertness, while the phasic component is                       
more connected to attention, significance, and novelty [7]. The features of EDA and                         
BVP signals, including rms, kurtosis, skewness, zero_cross, and pow_spec were                   
extracted using Python libraries HeartPy [15] and pyphysio [5].  

3.3 Machine Learning Analysis 

We used machine learning to understand 1) how accurately we could classify the                         
biased group from the unbiased sample, 2) what physiological responses were most                       
indicative of the existence of racial bias in individuals, and 3) what temporal patterns                           
could be observed in the physiology of the sample population during the IAT that                           
might provide useful insights into the onset of an individual’s bias-reaction. 

We used XGBoost, a machine learning ensemble meta-algorithm that uses decision                       
trees as base-learner algorithms, under the framework of Bootstrap Aggregation                   
(Bagging) and Boosting mechanisms. This method can also report the ranking of each                         
feature from its average importance and its contribution to the algorithm's                     
decision-making process. Since the number of biased and unbiased participants was                     
imbalanced (26 biased vs. 20 unbiased), we applied oversampling technology in the                       
leave-one-participant-out cross validation to balance the number of participants in                   
both groups. We divided the signal stream of each sensor into 5 second intervals and                             
extracted features as discussed in previous sections. We used this short time window                         
to capture fine-grained and micro features from data. This process generated a dataset                         
of 5-second samples as rows and sensor features as columns. We then applied our                           
machine learning algorithms on the 5-second sample dataset in a leave-one-person-out                     
cross validation. This approach classified each 5-second sample of each participant's                     



data into the two labels of 0 (unbiased) or 1 (biased). The process resulted in                             
sequences of 0 and 1s for each participant (see Figure 1). We developed an algorithm                             
to iteratively smooth the sequence and generate consecutive blocks of 0 and 1 labels.                           
First, the sequence was parsed and blocks of labels with length of 1 were replaced                             
with the neighboring majority label on both sides. For example, 1101 was smoothed                         
to 1111. Then segments with length of 2 were checked and smoothed in the same                             
way. The process continued until either at most three consecutive windows were                       
created or the frequencies of the remaining segments were greater than the mean value                           
of the original segments' frequencies. We then chose the label that had the largest                           
consecutive block in the sequence as the final label. 
 
Table 1. Extracted features from physiological signals (EDA, BVP, HR, SKT, and Magnitude                         
(extracted from Accelerometer)). 

 
This strategy generated the ranking of features during the cross validation. We                         

further analyzed the set of features that had a high importance rate in more than half                               
of the iterations. To measure the performance of the algorithms, we calculated                       
accuracy, F1 score, precision, and recall statistics for the biased and unbiased groups. 



 
Fig. 1. Smoothing process 

4 Results 

Our machine learning analysis focused on 1) demonstrating the feasibility of using                       
physiological responses to measure racial bias, 2) identifying physiological features                   
and their importance in influencing the decision of algorithms in classifying biased vs.                         
unbiased participants, and 3) identifying patterns of significant change in participants'                     
time series data that might relate to their racial bias.  

In addition to the accuracy of classifying biased vs. unbiased samples, we wanted                           
to identify temporal patterns that might emerge in participants’ physiology during the                       
IAT. With the ratio of majority class (biased samples) as baseline (56.5%), our results                           
indicated that XGBoost provided an overall accuracy of 19.6% above the baseline                       
respectively (Accuracy = 76.1% and F1 =75.8%,). The algorithms could accurately                     
label the majority of samples belonging to the biased class (Recall of 76.9%)                         
compared to the unbiased class, which was expected given that the majority of the                           
samples belong to the biased class. The higher impact of accurate classification of                         
samples in the biased class to some degree compensates for more false negatives in                           
the unbiased samples (Recall of 75%). 

 
Fig. 2. Frequently highly ranked features based on XGBoost algorithm. 

Figure 2 shows the features that had highest ratings in the majority of the iterations                               
during the cross-validation. We only show the features with the frequency above 23,                         



which is half the number of participants (46). The majority of those features were                           
from the EDA signals.  

To understand the temporal patterns in the physiological responses, we looked at                         
the location of the majority window of true predicted labels in smoothed sequences                         
belonging to participants whose sequence was accurately labeled as biased to see if                         
any patterns emerged. For 66% of participants, the majority window was placed at the                           
end of the sequence, indicating that physiological reactions in biased participants                     
became stronger as the test progressed. While more analyses will be necessary to                         
draw conclusions on this observation, this finding suggests that timing and duration of                         
physiological responses could serve as additional indicators of bias reactions. 

 

5 Discussion 

Our machine learning analyses provide preliminary evidence of the feasibility of                     
using physiological responses to measure and understand racial bias. The EDA                     
measures of skin conductivity had the strongest related to bias. The EDA measures                         
constituted the majority of highly ranked features, and the EDA measure of standard                         
deviation differed the most between the biased and unbiased groups. Further, the                       
increase in participants' physiological reactions over the duration of the IAT indicates                       
that bias responses themselves might increase over prolonged interactions, which has                     
important practical implications for designing bias interventions. Our findings on skin                     
conductivity demonstrate the need for more research on physiological indicators and                     
bias, so that we can learn if this finding is limited to just the race IAT, just these                                   
participants, or if the finding is broadly true for more biases, situations, and samples.  

While the findings of this study have broad implications for the study of implicit                           
bias, they are only preliminary and more research is needed to confirm them. The                           
sample for this study consists of only 46 students, and the findings might vary with a                               
larger sample. In addition, the small sample size created a severe class imbalance and                           
limited our ability to do multi-class classification to infer different levels of bias.                         
While we mitigated this problem by grouping the data samples into two categories of                           
biased and unbiased, ideally, we would only use data samples that were labeled as                           
highly biased or not biased to have a clear distinction between the two categories, as                             
would be possible with a larger sample. Further, the data we collected came when                           
students were taking the IAT and not when they were in everyday situations where                           
bias might be triggered. The Covid-19 pandemic interrupted the planned data                     
collection and the next steps for research are to both collect data from more                           
participants and to collect data when participants are engaged in real or simulated                         
environments that might trigger bias to confirm the real-world applications of the                       
work.  

6 Conclusion 

The purpose of this paper was to understand the relationship between bias as                         
measured by the IAT and involuntary physiological responses. Our preliminary                   
findings with a sample of undergraduate students both build on and expand the                         



literature on the relationship between bias and physiological responses and the use of                         
the wearable devices for understanding psychological constructs. These preliminary                 
findings on the relationship between bias as measured by the IAT and physiological                         
indicators have profound implications for bias mitigation and measurement and                   
warrant further investigation.  
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