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Abstract. Industrial processes produce a considerable volume of data and thus information. Whether it is 

structured sensory data or semi- to unstructured textual data, the knowledge that can be derived from it is 

critical to the sustainable development of the industrial process. A key challenge of this sustainability is the 

intelligent management of the generated data, as well as the knowledge extracted from it, in order to utilize 

this knowledge for improving future procedures. This challenge is a result of the tailored documentation 

methods and domain-specific requirements, which include the need for quick visibility of the documented 

knowledge. In this paper, we utilize the expert knowledge documented in chip-design failure reports in 

supporting user access to information that is relevant to a current chip design. Unstructured, free, textual data 

in previous failure documentations provides a valuable source of lessons-learned, which expert design-

engineers have experienced, solved and documented. To achieve a sustainable utilization of knowledge within 

the company, not only the inherent knowledge has to be mined from unstructured textual data, but also the 

relations between the lessons-learned, uncovering potentially unknown links. In this research, a knowledge 

graph is constructed, in order to represent and use the interconnections between reported design failures. A 

search engine is developed and applied onto the graph to answer queries. In contrast to mere keyword-based 

searching, the searchability of the knowledge graph offers enhanced search results beyond direct matches and 

acts as a mean for generating explainable results and result recommendations. Results are provided to the 

design engineer through an interactive search interface, in which, the feedback from the user is used to further 

optimize relations for future iterations of the knowledge graph. 

Keywords Knowledge graphs, Graph-based search, Text mining, Explainable search results, Lessons 
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1 Introduction and Research Purpose 

Sufficient utilization of well-documented lessons-learned for an application in the domain of semiconductor 

design is a non-trivial task. With a multitude of design cases, their relevant failures and corresponding solutions, 

user’s access to relevant past experiences presents a challenge in the industrial environment [1]. Traditional 

information retrieval, e.g. keyword-based search, is not sufficient to discover and define similarities in semi- and 

unstructured textual data in chip-design documentations [2]. Moreover, processing free textual input for search 

queries itself reveals multiple challenges, such as the multilingual nature of documentation, the domain-specific 

terminology, abbreviations, misspellings, grammatical mistakes and incomplete sentences. 

Defining the relevancy of a current design case to other failures, which occurred in the past, requires a semantic 

understanding of the domain-specific description of those failures. Natural language processing (NLP) and text 

mining pipelines offer the first step in this understanding. However, their strength in handling textual inputs is 

still limited when multiple representations of information are extracted from different data sources. This can 

happen when integrating basic textual documentation with structural metadata representations of the chip modules 

and their corresponding elements. To address this challenge, a semantic definition of interlinked networks of 

available knowledge is needed to represent the relations between entities, which are extracted from multisource, 

multitype data [3], [4]. This fusion and semantic definition of knowledge entities, extracted from the lessons-

learned information, is accomplished in this research through the construction of a multidimensional knowledge 

graph.  

In the graph, not only failure cases are represented in form of lessons-learned, but also their structural information 

and semantic relations. A graph search functionality is then designed to boost the exploitation of previous lessons-

learned for search queries and thus establish an easy access to their documentation. This is then used to provide 



previous expert-knowledge to new design engineers. Such search functionality is offered through an interface that 

supports a feedback loop for assessing retrieved results and enabling a sustainable learning and knowledge update. 

However, providing the feedback is also strongly influenced by user’s understanding of the reasons behind 

retrieving a certain search result from the knowledge graph. Therefore, this research designs a graph-based 

explainability approach, to offer the user explanations on the reasons that led the system to consider a certain 

search result relevant to their search query and design scenario. Explanations are generated from the NLP 

functionality and the knowledge graph structure. They are provided to the users in textual and visual formats 

through the interface.  

In the following sections of this paper, we highlight the literature background of the conducted research in section 

2. In section 3, the developed methods, including system and graph structures, graph-based explainability and the 

interactive interface, are presented and discussed. Section 4 provides an overview on the archived results; and the 

work is concluded with future highlights in section 5. 

2 Background and Related Work 

Methods that are intended to analyze structured, semi-structured and unstructured textual data utilize text mining 

pipelines and techniques [5], [6]. Hybridizing multiple techniques is also a method that can be used for further 

enhancing models in the industrial context [7]. A suitable preparation of the textual data is essential to achieve the 

goal of text mining. Each domain-specific corpus of text requires special data pre-processing, based on the 

methods of documentation, data storage and the domain terminology itself [2]. Therefore, in the context of 

semantic representation, the utilization of domain-specific features plays a considerable role in relation extraction, 

and thus in constructing knowledge graphs from the information extracted from the text. An example is the work 

of Subasic et al. [8], where the solution to adapt the knowledge graph to the domain terminology was to build the 

graph on two levels: a static level,  corresponding to predefined databases, and a dynamic level, that corresponds 

to the special terminology. 

Knowledge graphs have emerged as a graphical representation of a knowledge base; and got integrated with 

multiple technologies and applications [9]. Among the tasks that knowledge graphs have been involved in, 

enhancing search and matching is a promising field, especially with the advances in search engines and semantic 

web. Supported by text mining, Tiwari et al. [10] developed a concept to  integrate the Resource Description 

Framework (RDF) with natural language understanding, in order to find a common format that supports human 

and machine understanding together. This, in turn, supports the representation and retrieval of information from 

heterogeneous and distributed data sets. Our approach intersects with the previous examples in terms of utilizing 

domain-specific text mining in constructing the knowledge graph for search and information retrieval. However, 

we propose an approach to integrate domain information in the graph structure itself, in order to enable:  

1) Domain-specific relation extraction alongside the text-mining-based relation extraction. 

2) Domain-specific search and information retrieval. 

3) An easy integration of new knowledge in the graph, supporting a dynamic process of transferring lessons-

learned from the past and present to future design scenarios. 

4) An explainable information retrieval process, both verbally and visually, with the utilization of NLP and the 

knowledge graph structure. 

In order to achieve those contributions, a range of knowledge extraction, interlinking and management methods 

have been used, which are discussed in detail in the following section. 

3 Search Methods 

3.1 Multidimensional Domain-specific Knowledge Graph 

In the handled industrial scenario, multiple information sources provide insights into the lessons-learned from 

previous design failures. In order to harvest the information from those sources and extract the knowledge within 

them, we design a knowledge graph structure that is capable of reflecting domain-specific features in 

heterogeneous data sources. Proposed knowledge graph consists of multiple types of nodes, each corresponding 

to a different data source, and thus, a different dimension of the available information in design processes. Those 



multi-type nodes are connected through text-mining-based semantic relations, in order to model the relationships 

between them, and enhance the visibility of the lessons-learned documents.  

 

 

Fig. 1  Proposed multi-node-type knowledge graph 

The nodes in the proposed graph concept, see Fig.1, include: 

• Design Case Nodes: This type of nodes corresponds to the lessons that are learned from previous design failures 

and solutions. The node includes detailed information about the failure description, its reasons and solution. It 

represents the design document that has been generated when handling the failure. 

• Project Element Nodes:  This type of nodes corresponds to the meta-data that expresses a structural 

dependency of design projects. It reflects the relationships between project modules and the chip elements. 

Relations between this type of nodes can uncover the relevance between failure cases that occur in multiple 

modules, whether within the same project or within multiple projects. 

• Linking Nodes: This type of nodes is the part of the proposed solution, which tailors the graph structure itself 

to reflect data mining results and domain-specific features. Linking nodes play two main roles in the graph: 1) 

representing the text mining techniques that discover similarities between past and future design cases. 2) 

representing the domain-specific terminology used in the context of chip-design documentation. In this research, 

we use Term Frequency and Inverse Document Frequency (TFIDF) to provide a simple mean of ranking the 

similarities and reflecting an order of relevance [11]. To overcome the limitations of TFIDF, we utilize an N-gram 

approach and a specialized technical-term classifier, in order to correspond to documentation patterns and domain-

specific terminology, such as the writing styles of design engineers, technical vocabulary and abbreviations. An 

entity recognition approach has been utilized to identify certain categories of vocabulary that are commonly used 

to describe failures and their solutions. A pre-study revealed a high tendency of design engineers to use certain 

entities as domain-dependent vocabulary in their documentations. This vocabulary emerges from the specific 

nature of the technical domain. Therefore, we exploit those entities in the form of highly weighted linking nodes 

that reflect a relational priority in the search functions within the graph. This, in turn, integrates the domain-

specific information effectively in the information retrieval task. 

Design cases

Linking Nodes

Project Nodes



In addition to defining graph node types, relation extraction is the following essential task that allows graph 

structure to represent the application domain, and thus enhance the domain-specific information retrieval. Relation 

extraction in the proposed approach is based on three levels:  

1) Extracting relations between the lessons-leaned documents themselves. 

2) Extracting relations to linking nodes and structural nodes in the graph.  

3) Adding new relations that reflect newly added lessons-learned. 

The first type of relations reflects the semantic inter-relations between design-failure descriptions. It inherits a 

cause and effect logic from the structure of the documented design reports. Relations of this type are weighted 

based on the TFIDF scores and the expert knowledge. The second type of relations represents the influence of 

domain specific terminology and project structure. It relates lessons-learned nodes to each other through the 

domain-specific linking nodes and project structural nodes. This type of relations has a high priority in the search 

and retrieval task, since domain experts have expressed a particular interest for retrieving results based on domain-

specific terminology. The third type of relations represents the dynamic potential of updating the knowledge graph 

with accumulated design-experience through new lessons-learned. This plays the important role of ensuring a 

sustainable knowledge update in the organization. 

Those multiple levels of relations are also designed to: 1) provide a mean of ordering retrieved search results, 2) 

provide multiple levels of result explanation to the user. Explainable results are meant to support the user’s ability 

of assessing the relevancy of retrieved documents to their current design scenario. In the proposed approach, we 

utilize this feature to support a feedback loop, in which the expert user can effectively evaluate the retrieved result, 

in order to enable future relation analysis and update of the graph structure. These are continuous feedback and 

enhancement processes during the deployment of the system, especially with new lessons-learned being added 

dynamically to the graph. 

3.2 Explainable Graph Search Functionality 

The goal of the proposed solution is to support design engineers with quick accessibility to previous chip design 

cases, including their descriptions and solutions. Therefore, the use-case of the proposed approach takes the form 

of a search engine, which provides the possibility to retrieve relevant design cases to a current one. The engine 

allows users to search previous lessons learned with a short description of either the failure itself, the module in 

which the failure occurs or other failure-related details. Search functionality that is designed for this solution 

follows the prioritized relations in the graph, to produce an ordered list of relevant, previous, design cases. From 

the information included in graph’s relations, search functions can retrieve results and also generate a high-level 

explanation regarding the reasons behind retrieving these results.  

Graph-based search plays a considerable role in the proposed system for retrieving not only directly related search 

results, but also relevant results that are not shown to the user with traditional key-word searches. In the proposed 

search engine, search strategies define direct-hit results, which are retrieved from graph nodes corresponding to a 

direct match to the search query. The strategy then utilizes graph shortest-path calculation, starting from the direct-

hit node, in order to find relevant nodes to the search query. Shortest paths represent a certain length of defined 

relations between two nodes. Therefore, the well-defined types of graph relations in section 3 perform a key role 

in finding those relevant results in the constructed graph. Both direct hits and relevant results are then ordered, 

equipped with a generated textual explanation, and provided to the user through the search interface, as shown in 

Fig.2. This allows the expert to navigate to the retrieved result, get the information they are looking for and provide 

any necessary feedback, if needed. 

From a diverse spectrum of explanation methods, verbal and visual explanations were selected for this research. 

Verbal explanations were a direct result of the text analysis in the developed pipeline. It enabled the algorithm of 

following the feature similarity between two documents. Moreover, the structure of the knowledge graph revealed 

transitive relations between documents that are relevant to each other due to a third document that intermediates 

the two. Graph relations are also expressed verbally, alongside the document features in a template-based, human-

understandable explanation. This explanation method was also supported by a visual component, which is based 

on the graph structure itself. It was provided to the user as a partial graph, containing their search input and all 

retrieved results, as an interlinked network of documents. This way, the user is able to see the relations directly, 

read their reasons in the graph, and easily differentiate the search direct results from the transitively retrieved 

ones. 



 

Fig. 2   Proposed graph-based search interface 

3.3 Search Interface and Feedback Collection 

Enhancing the visibility of previous lessons-learned depends on the underlying representation methods of those 

lessons. In the application field of this research, expert design-engineers can utilize a filtered, use-case-driven 

document accessibility, which enables a goal-oriented retrieval of lessons learned. This is due to the considerable 

amounts of available information in the chip design scenario. Following that principle, an interactive search 

interface has been proposed to design engineers, supported by tailored features, such as semi-assisted, dictionary-

based writing feature, color-coded results, result explanations and quick feedback fields for a continuous online 

evaluation. Semi-assisted search fields provide expert users with an intermediate validation of the availability of 

typed-in search terms. This dictionary-based method is quicker than graph scan. It evaluates the searched terms 

based on their potential existence in the text corpus of the lessons-learned. When a search term is missing from 

the corpus, the writing assistant suggests similar vocabulary that is assured to retrieve results once searched within 

the knowledge graph. Explanations in the interface accompany each retrieved result, in order to enable the user to 

better assess the suitability and relevance of the that result to their current design. Feedback fields are designed to 

be simple and quick, including the user’s assessment of the result’s relevance and value-added. This feedback can 

be potentially utilized in enhancing the graph structure and relations for better domain-specific retrieval. 

4 Evaluation and Results 

In order to evaluate the value-added to the design engineer, we define a set of domain-specific key performance 

indicators (KPIs), which reflect the need for higher visibility of information regarding similar previous design 

cases. Defined KPIs include quantitative measures, which reflect the change in number of results through the 

utilization of graph relations; as well as qualitative measures that have been defined to reflect the satisfaction level 

of users and the value-added through the explanations. 

The experiment setup for testing the proposed system included experts in the domain and developers. Domain 

experts defined multiple combinations of challenging search terms, which are usually documented in different 

ways depending on the engineer who is writing the report. Developers have generated variations of the search 

terms to cover the multiple searching methods the interface offers. Search test-combinations were then fed to the 

system. Retrieved results were validated in terms of the defined KPIs, i.e. their numbers in comparison to key-

word search (see Fig. 3), the result’s relevancy to the current design scenario, the ability of the system to find 

semantically similar documents, as well as the reasoning and ratio of the graph-based transitively retrieved results 

to the direct-hits ones. Moreover, the feedback loop was evaluated by the experts on two levels: 1) the potential 

to assess retrieved result based on the generated explanations, and 2) the ability to dynamically modify the graph 
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structure based on the provided feedback. The latter point was evaluated by the time needed to get an updated 

version of the graph, which reflects the provided feedback. 

 

 

Fig. 3  Quantitative Comparison of Search Results 

Preliminary qualitative results showed that the expert users were able to reach relevant documents that are 

semantically related to their current design, despite the fact that failure descriptions used different vocabulary. 

The relation between those failures was discovered from the contextual information of the failure, which is 

successfully embedded in the knowledge graph. Qualitative evaluation of the system also revealed that the 

explanations have provided the experts with new insights of the documentation process itself. Experts reported 

that they were able to identify multiple documentation practices that should be enhanced in the company, in order 

to enhance the information retrieval in the future. An example of such practices is the use of similar, yet different, 

expressions to describe the failure’s location on the chip.  

Fig.3 represents a preliminary outlook on the quantitative change in the number of retrieved results, through the 

comparison between a normal key-word search in the database, and the search through extracted relations in the 

knowledge graph. In this figure, a group of 22 sample searches is used. The numbers show an increase of relevant 

results, which are retrieved from the graph-database through their semantic relations. It is noticeable also that 

direct search results themselves are different from the key-word results, since they are improved by the 

implemented text-mining techniques. On average, a 75.6% increase of result retrieval, and thus visibility to the 

user, is achieved with the adoption of the proposed solution. 

5 Conclusion and Future Perspectives 

In this research, a domain-specific search engine has been proposed in the field of semiconductor chip design. 

Proposed system is developed to support design engineers with a quick, filtered and use-case-oriented visibility 

of lessons-learned from previous design failures. A knowledge graph forms the base of the proposed search 

engine, which captures the semantic relations between information extracted from multiple documentation 

sources. Textual semi- and un-structured data, along with project metadata are mined and fused in one knowledge 

graph. The graph is then equipped with an explainable search functionality, which allows the retrieval of direct 

and relevant search results based on the graph semantic relations. An interactive search interface has been designed 

to provide color-coded search results along with their explanations, allowing users to provide their feedback on 

the retrieved results. Feedback loop is meant to support future enhancements of the graph relation extraction and 

prediction. The developed system is being tested on-site with end users to collect their quantitative and qualitative 

feedback. 

Future steps of the development include the design of rating functions that provide more refined weights of the 

search results, keeping the domain-specific needs as the main focus of the information retrieval process. 
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