
ar
X

iv
:2

00
9.

05
25

7v
4

 [
cs

.D
C

]
 2

5
N

ov
 2

02
0

Hierarchical Roofline Performance Analysis for

Deep Learning Applications

Charlene Yang, Yunsong Wang

Steven Farrell

National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory

Berkeley, CA USA

{cjyang, yunsongwang, sfarrell}@lbl.gov

Thorsten Kurth

NVIDIA Corporation

Santa Clara, CA USA

tkurth@nvidia.com

Samuel Williams

Computational Research Division

Lawrence Berkeley National Laboratory

Berkeley, CA USA

swwilliams@lbl.gov

Abstract—This paper presents a practical methodology for
collecting performance data necessary to conduct hierarchical
Roofline analysis on NVIDIA GPUs. It discusses the extension of
the Empirical Roofline Toolkit for broader support of a range of
data precisions and Tensor Core support and introduces a Nsight
Compute based method to accurately collect application per-
formance information. This methodology allows for automated
machine characterization and application characterization for
Roofline analysis across the entire memory hierarchy on NVIDIA

GPUs, and it is validated by a complex deep learning application
used for climate image segmentation. We use two versions of the
code, in TensorFlow and PyTorch respectively, to demonstrate
the use and effectiveness of this methodology. We highlight how
the application utilizes the compute and memory capabilities on
the GPU and how the implementation and performance differ in
two deep learning frameworks.

Index Terms—Roofline Model, Performance Analysis, Memory
Hierarchy, NVIDIA GPUs, Deep Learning, Image Segmentation

I. INTRODUCTION

The Roofline model [1] is an intuitive performance model

that can offer valuable insights into application performance,

performance bottlenecks, and possible optimization opportuni-

ties. Its capability to extract the key computational character-

istics and abstract away the complexity of modern computer

architectures has gained its popularity in recent years in both

traditional high-performance computing (HPC) and machine

learning. Roofline is a throughput-oriented model centered

around the interplay of computational capabilities, memory

bandwidth, and data locality. Data locality is expressed as the

arithmetic intensity (AI), the reuse of data once it is being

loaded from memory, and it is commonly calculated as the

ratio of the floating-point operations performed to the data

movement, i.e. FLOPs per byte. The sustained performance

(GFLOP/s) is then bound by two terms:

GFLOP/s ≤ min

{

Peak GFLOP/s

Peak GB/s × Arithmetic Intensity
(1)

The Roofline model conventionally only focuses on one

level in the memory hierarchy, but this has been extended in re-

cent years to the full memory system to help understand cache

reuse and data locality and provide additional insights into

code performance. To facilitate the Roofline study, many tools

and workflows have sprung to life, for example, the Empirical

Roofline Toolkit (ERT) developed at the Lawrence Berkeley

National Laboratory, for more accurate machine characteriza-

tion [2], [3], and other tools, methodologies, and workflows

for more streamlined application performance data collection

in [4]–[7]. A range of studies have also been conducted on

the application of Roofline in both traditional HPC [7]–[12]

and Machine Learning [7], [13], [14], and the extension and

refinement of the model to other related topics such as instruc-

tion Roofline [15], time-based Roofline [14], Roofline scaling

trajectories [16], performance portability analysis based on

Roofline [3], and power and energy Roofline [17], [18].

Deep learning has become one of the most dominant tools

in areas such as pattern recognition, object detection, image

segmentation, and language processing [19], [20], and its

training or inference process usually takes a long time and

requires significant computational resources. To tackle this

problem, many innovative methods have been proposed [21],

[22] to scale up such applications, and in this paper, we will

focus on the Roofline-based performance modeling to analyze

and examine how well various deep learning frameworks are

utilizing the different aspects of the computer architecture,

especially NVIDIA GPUs.

We will propose a practical methodology for collecting

necessary performance data to conduct hierarchical Roofline

analysis on NVIDIA GPUs. There are two components to this

methodology, machine characterization using the Empirical

Roofline Toolkit (ERT) [2] and application characterization

using Nsight Compute [23]. We will discuss the extension

of ERT for support on multiple data precisions and Tensor

Core operations, and the Nsight Compute metrics used

to measure application performance such as the run time,

sustained throughput, and data movement across the entire

memory hierarchy. This methodology then will be validated by

a state-of-the-art deep learning application, DeepCAM [21], in

climate image segmentation, to demonstrate its effectiveness

in application analysis. Two versions of the code will be

examined, in TensorFlow and PyTorch respectively, and some

insights will be highlighted on how deep learning applica-

tions, in general, utilize the compute/memory capabilities on

NVIDIA GPUs and how the two deep learning frameworks,

http://arxiv.org/abs/2009.05257v4

TensorFlow and PyTorch, can differ in implementation and

performance.

II. METHODOLOGIES

In this section, we will discuss the extension work done

on the Empirical Roofline Toolkit (ERT) in order to support

multiple data precisions (such as FP16) and Tensor Core

operations on NVIDIA GPUs, and the set of metrics in

Nsight Compute that can be used to measure application

performance such as run time, sustained throughput and data

movement at different levels of the memory hierarchy. These

two components together comprise the complete data collec-

tion methodology for machine and application characterization

in a hierarchical Roofline analysis on NVIDIA GPUs.

A. ERT Extensions for Machine Characterization

The Empirical Roofline Toolkit (ERT) [2] is developed and

maintained by the Lawrence Berkeley National Laboratory.

It consists of micro-kernels that are finely tuned to test the

various aspects of computer architecture such as memory

bandwidth and compute throughput. Compared to theoretical

values or marketing numbers from vendors, this provides a

more accurate understanding of the architecture’s capability

in real programming environments with real power, thermal

constraints, and programming models.

ERT is essentially a Python script that wraps around a range

of micro-kernels written in C++ and parallelized with various

programming models on different architectures. For example,

OpenMP and MPI are used on Intel CPUs, CUDA is used on

NVIDIA GPUs, and more micro-kernels are currently being

added to support AMD architectures, IBM Power processors,

and Intel GPUs. These micro-kernels are specifically tuned to

test different aspects of the architecture and provide an upper

bound for real-life applications on them, i.e. if such kernels

can not reach certain performance, there is almost no hope for

large complex applications in real life to achieve it.

100 101 102 103 104

Arithmetic Intensity [FLOPs/Byte]
103

104

105

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

TENSOR: 103742.3 GFLOP/s

FP16: 29181.6 GFLOP/s

FP32: 15158.2 GFLOP/s

FP64: 7669.1 GFLOP/s

HB
M:
 82

8.8
 GB

/s

Fig. 1: Roofline graph generated by empirical results for V100

GPU including the new reduced-precision and tensor core

ceilings.

The ERT prior to this paper only supports double precision

(FP64) performance characterization and in this section, we

will detail how we have extended it to support single-precision

(FP32), and half-precision (FP16), as well as Tensor Core op-

erations on NVIDIA GPUs. The resultant Roofline ceilings are

shown in Fig. 1, with 7.7 TFLOP/s for FP64, 15.2 TFLOP/s

for FP32, 29.2 TFLOP/s for FP16 on the CUDA core, and

103.7 TFLOP/s on the Tensor Core, on V100 GPUs.

1) Single-Precision (FP32) and Half-Precision (FP16):

The original ERT is written in C and only supports double

precision (FP64) measurements. While this can be easily

extended to single-precision (FP32) by replacing ‘double’ by

‘single’ in the code, it requires work to support half-precision

(FP16). For maintainability and future extensibility purposes,

we have rewritten ERT in C++ and leverage C++ templates to

support multiple data types.

TABLE I: FP16 Performance on CUDA Core on V100 GPUs

Version Implementation Performance (TFLOP/s)

v1 naive 15.421

v2 replace half with half2 20.142

v3 uint32 t for indexing 28.152

v4 inline intermediate variables 28.376

v5 uint32 t only 29.182

For FP32, we have easily obtained 15.2 TFLOP/s peak per-

formance, which is within 5% of the advertised 15.7 TFLOP/s

performance [24].

For FP16 (on the CUDA Core), some performance tuning

is required as detailed in Tab. I. The naive implementation

(v1) simply passes half as the data type to the templated

functions and that resulted in a similar performance to the

FP32 precision’s, 15.4 TFLOP/s. This is because V100s do

not support FP16 directly on the CUDA Core [24] and each

FP16 operation is essentially executed as an FP32 operation

(i.e. going through the same pipeline). To efficiently perform

FP16 operations (even though utilizing the Tensor Core would

be a good option), on the CUDA Core, a vector type half2

can be used to pack two FP16 values together to one FP32

register and be executed in one FP32 instruction. In ERT, we

have implemented this using intrinsic functions and obtained

an improved performance of 20.1 TFLOP/s (v2) in Tab. I. In

real life, it is not feasible to implement large scale applications

in intrinsics but out the implementation is an attempt to push

the Roofline ceiling as high as we possibly can.

The rest three versions v3-v5 in Tab. I are a series of

optimizations that have proved to be beneficial to the devel-

opment of ERT and are expected to be largely helpful to real-

life applications and their performance tuning as well. Out

of the three, replacing uint64 t indexing variables with the

uint32 t data type has proven to bring the most performance

gain, from 20.1 TFLOP/s to 28.2 TFLOP/s. This is due to

the fact that V100s only support INT32 integer operations on

the hardware level and that there is constant type conversion

between uint64 t and uint32 t for the second version of ERT

(v2). With the inlining of intermediate variables in v4 and

conversion of all integers to uint32 t in v5, the FP16 CUDA

Core performance of ERT has been brought on par to the

theoretical peak with 29.2 TFLOP/s in Fig. 1.

2) Tensor Core: NVIDIA Tensor Cores are designed to

accelerate matrix-matrix multiplication operations, which rep-

resent the mathematical nature of many deep learning work-

loads, for example, convolutional neural networks (CNNs).

They operate on 4×4 matrices and can perform the following

matrix multiplication and accumulation extremely efficiently.

D = A×B + C (2)

where A and B are matrices in FP16, and C and D are matrices

in either FP16 or FP32. V100 has 80 SMs and 8 tensor cores

per SM, and at 1.312 GHz clock frequency, its theoretical

Tensor Core peak can be calculated as

80× 8× 1.312× 43 × 2 = 107.479 TFLOP/s (3)

To stress test the Tensor Cores on V100, we have imple-

mented ERT based on general matrix-matrix multiplications

(GEMMs), where α and β are constant coefficients:

D = α ∗A×B + β ∗ C (4)

In general, there are two ways to program on Tensor

Core, using the WMMA (Warp Matrix Multiply Accumu-

late) API in CUDA [25], or libraries such as cuBLAS [26]

and cuDNN [27]. The nvcuda::wmma namespace in CUDA

provides specialized matrix load, multiply, accumulate and

store operations and allows for direct programming on Tensor

Cores. cuBLAS and cuDNN libraries, on the other hand,

shields users away from low-level CUDA programming and

provides a very versatile, and highly-tuned, high-level user

API for GEMM and other operations.

For a given GEMM in Equation 4 with matrix size M ×N
for A, N×K for B, and M×K for C and D, if M = N = K ,

the total number of FLOPs performed in this kernel can

be calculated as M3 × 2. This is an estimation without

including the constant efficiency multiplications, which usually

are performed on the CUDA Core, not Tensor Core, and are

negligible. With the run time t, we can then estimate the

FLOP/s performance of the kernel as (M3 × 2)/t for a given

matrix size in Fig. 2.

It is clear that as the matrix size increases, so does the

performance of both wmma and cuBLAS approaches. At the

largest with M = N = K = 32768, we have obtained

103.7 TFLOP/s at 96.5% of the theoretical peak from the

cuBLAS approach, and 58 TFLOP/s at 54% from the wmma

approach. This is largely due to the optimizations in cuBLAS

such as the use of shared memory, data padding (to avoid bank

conflicts in shared memory), highly tuned thread block size,

tile size, and other parameters.

For the rest of this paper, we will use 103.7 TFLOP/s as

the Tensor Core peak; however, the 58 TFLOP/s performance

provides an empirical upper bound for users who program in

wmma on the Tensor Core.

B. Nsight Compute Metrics for Application Characterization

The application characterization methodology for Roofline

analysis on NVIDIA GPUs has been evolving with the de-

veloper toolchain change. The first proposed methodology

128 256 512 1024 2048 4096 8192 16384 32768
Matrix Size (in one dimension)

0

20

40

60

80

100

TF
LO

PS

wmma
cuBLAS

Fig. 2: Tensor Core Performance as a function of matrix size

for cuBLAS and hand-optimized WMMA implementations of

matrix multiplication.

was based on nvprof [28] in [7], and then an Nsight

Compute [29] based methodology is developed at [30] and

briefly presented in [31]. In this paper, we will discuss in detail

how the Nsight Compute metrics can be used for hierar-

chical Roofline analysis on NVIDIA GPUs and demonstrate

its effectiveness in analyzing deep learning applications.

The Nsight profiling toolkit is replacing nvprof as the

new performance tool suite for NVIDIA GPU developers. It

consists of three components, Nsight Systems, Nsight

Compute, and Nsight Graphics, with the first two being

most relevant to scientific application and machine learning

application development. Nsight Systems can provide a

system-wide visualization of application performance and help

users identify issues such as insufficient parallelism on the

GPU, unnecessary device-host data transfers, and inefficient

kernel synchronization, while Nsight Compute dives a

bit deeper and allows for the collection of more detailed

performance metrics such as warp issues statistics, instruction

pipeline utilization, and memory access pattern.

Between the two generations of developer tools, nvprof

and Nsight Compute have a few major differences.

• nvprof uses CUPTI [32] while Nsight Compute is

based on PerfWorks [33], a new framework for perfor-

mance metric collection.

• The metrics in Nsight Compute are more nuanced

than in nvprof, with some metrics broken down into

more in Nsight Compute.

• The naming and organizing convention in Nsight

Compute is more structured as well, with components

such as unit, subunit, interface, counter name, rollup met-

ric and submetric, used to distinguish different metrics.

• Kernel replay when multiple metrics are being collected,

and profiling overhead, are more optimized in Nsight

Compute, to provide faster and more accurate hardware

and software counter measurements.

To construct a hierarchical Roofline on NVIDIA GPUs, we

need to collect the following quantities, kernel run time, the

total number of FLOPs performed in each kernel, and the

number of bytes being read and written at each level of the

memory hierarchy. With Nsight Compute, we can use this

command to collect metrics listed in Tab. II.

nv-nsight-cu-cli --metrics metric ./application

1) Kernel Run Time: As shown in TABLE II, we use

the metric sm__cycles_elapsed.avg to obtain the total

number of elapsed cycles and its submetric per_second

to get the rate (number of cycles per second), in order to

calculate the kernel execution time:

time = cycles/rate (5)

2) FLOPs: To count the number of FLOPs performed

in the kernel, Nsight Compute doesn’t provide a unified

metric like flop_count_dp in nvprof. But for each

floating-point precision (FP64, FP32 and FP16), it splits the

measurement into three metrics based on the instruction type,

addition, multiplication, and fused multiply-add (FMA). Note

that each FMA is considered two FLOPs and the total number

of FLOPs can be calculated as add + 2 x fma + mul for

each data precision. Also, one can tell from the naming of the

metrics that only non-predicated threads are counted in these

FLOPs, i.e. masked operations are not included.

For Tensor Core, we count the number of warp instructions

by using the sm__inst_executed_pipe_tensor.sum

metric and the total Tensor Core FLOPs is

FLOPtc = Insttc × 512 (6)

3) Bytes: Metrics are listed in TABLE II for measuring the

data movement on each level of the memory hierarchy.

TABLE II: Nsight Compute metrics for hierarchical Roofline

Metrics

Time
sm cycles elapsed.avg

sm cycles elapsed.avg.per second

FP64 FLOPs
sm sass thread inst executed op hadd pred on.sum
sm sass thread inst executed op hmul pred on.sum
sm sass thread inst executed op hfma pred on.sum

FP32 FLOPs
sm sass thread inst executed op fadd pred on.sum
sm sass thread inst executed op fmul pred on.sum
sm sass thread inst executed op ffma pred on.sum

FP16 FLOPs
sm sass thread inst executed op hadd pred on.sum
sm sass thread inst executed op hmul pred on.sum
sm sass thread inst executed op hfma pred on.sum

Tensor Core FLOPs sm inst executed pipe tensor.sum

L1 Cache l1tex t bytes.sum

L2 Cache lts t bytes.sum

HBM dram bytes.sum

For device memory (or HBM), L2 cache, and L1 cache,

the latest Nsight Compute provides a unified byte metric

for each of them to facilitate measurement. Note that shared

memory transactions are not included in the current L1 metric.

Due to profiling overhead, it is recommended to restrict the

number of kernels to run Nsight Compute with at a time,

and these metrics can be collected on separate runs as well, as

long as the execution of the application is deterministic. Also,

note that as of 2020.1.0, Nsight Compute serializes multi-

stream execution so certain performance gain due to kernel

overlapping may be overlooked; however, the performance

analysis in this paper is still insightful in understanding

application performance on a kernel level.

III. EXPERIMENTAL SETUP

A. Hardware and Software Configuration

Results presented in this paper are obtained from the

Cori supercomputer, and in particular its GPU partition, at

the National Energy Research Scientific Computing Center

(NERSC), Lawrence Berkeley National Laboratory (LBNL).

The GPU partition is primarily deployed for GPU porting,

benchmarking, and testing efforts in the NERSC Exascale

Science Application Program (NESAP). Each node contains

two Intel Xeon Gold 6148 Skylake CPUs, 384GiB DDR4

memory, and 8 NVIDIA V100 GPUs. Each GPU has 16GiB

of HBM2 memory and 80 SMs, and GPUs on a node are

connected to each other in a ‘hybrid cube-mesh’ topology.

On the software side, we have used the TensorFlow 1 and

PyTorch implementation of the climate image segmentation

code in [34], and CUDA 10.2.89, cuDNN 7.6.5, Nsight

Compute 2020.1.0, Python 3.7, PyTorch 1.5.0, and TensorFlow

1.15.0 for this study.

B. DeepCAM Benchmark

DeepCAM [34] is a deep learning benchmark extracted

from the 2018 Gordon Bell winning project [21], used for

detection, classification, and localization of extreme weather

patterns in climate images. It has two different implementa-

tions, in TensorFlow and PyTorch respectively, with the Py-

Torch version being selected for MLPerf [35] HPC benchmark

suite. In this paper, we will compare the performance of

these two implementations using the methodology presented

in Sec. II-B. To ensure a fair comparison, we have tuned the

parameters to be as close as possible, for example, the number

of layers in the encoder-decoder architecture, layer parameters,

optimization algorithms, step rates, batch size, usage of batch

norm, and Automatic Mixed Precision (AMP) settings.

The DeepCAM model is a deep neural network for semantic

segmentation with an encoder-decoder architecture based on

DeepLabv3+ [36]. The encoder is a ResNet-50 network with

atrous spatial pyramid pooling. The decoder is a nine-layer

network with convolutional and de-convolutional layers and

two skip connections from the input and middle of the encoder.

To profile the code, the profile-from-start option

is disabled in Nsight Compute and we use CuPy [37] to

explicitly restrict the profiling region to include the iteration

loop only. To have relatively stable run time behavior during

profiling, we also set up a warm-up loop with 5 iterations

before the target profiling loop. We collect only one metric

during each execution to minimize the profiling overhead

which will result in random algorithmic choices due to the

TensorFlow runtime auto-tuning. To solve this issue, NVIDIA

TensorFlow Determinism [38] is employed to get rid of this

uncertainty.

If not otherwise stated, the default setting for the Tensor-

Flow DeepCAM implementation is with AMP-enabled, and

for PyTorch DeepCAM with AMP optimization level O1. The

source code and full raw results are available at [34].

IV. RESULTS

In this section, we will first apply the Nsight Compute

methodology in Sec. II-B on the DeepCAM benchmark

and discuss its performance implications. On the following

Roofline charts, each kernel is represented by a triplet of open

circles (blue for L1, red for L2 and green for HBM), and the

circle size is proportional to the kernel’s run time. Note that we

preset a minimum circle size to make all kernels visible on the

plot, and that the real run time difference between large and

small kernels can be more significant. Besides, there could be

many invocations of the same kernel and the data presented on

these Roofline charts is the aggregation of all these invocations

of the same kernel. One should expect blue, red, and green

circles near the L1, L2, and HBM ceilings respectively to show

high memory utilization. Triplets of circles close to each other

present a “streaming” data access pattern and indicate poor

cache locality. Circles to the top right corner show superior

performance over the others.

In the following subsections, we will discuss how perfor-

mance is different in the forward and backward pass in both

TensorFlow and PyTorch implementations, and the perfor-

mance impact of the NVIDIA Automatic Mixed Precision

package and the zero-AI kernels. Note that the backward

pass for TensorFlow DeepCAM includes both gradient calcu-

lation and gradient update, whereas the PyTorch DeepCAM

backward pass only includes gradient calculation (with its

‘optimizer’ being the gradient update step).

A. The TensorFlow version of DeepCAM

10−2 10−1 100 101 102 103
Arithmetic Intensit [FLOP/B te]

100

101

102

103

104

105

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
]

Tensor Core: 103.7 TFLOP/s

FP16: 29.2 TFLOP/s
FP32: 15.2 TFLOP/s

L1: 14336.0 GB/s

L2: 2996.8 GB/s

HBM: 828.8 GB/s

L1
L2
HBM

Fig. 3: Hierarchical Roofline of the TensorFlow DeepCAM in

the forward pass with default configurations. The dominant

kernel (with three largest circles) has very high Tensor Core

utilization and consume 33% of the overall run time.

Fig. 3 shows the hierarchical Roofline of the TensorFlow

version of DeepCAM in its forward pass. The main computa-

tional kernel represented by the three large circles under the

Tensor Core ceiling, indicates that it has very high Tensor Core

utilization, whereas many of the other circles either do not use

Tensor Core or are bandwidth bound. This major kernel’s L1

circle (in blue) slightly overlaps with its L2 circle (in red)

indicating a relatively low L1 cache locality; however, the

large gap between its L2 and HBM circles demonstrates that

L2 cache misses rarely happened and that the kernel benefits

from high L2 data locality. As for the rest of the kernels,

their L1, L2, and HBM kernels are generally close to each

other, implying a poor data locality across all levels of memory

hierarchies (“streaming” operations).

10−2 10−1 100 101 102 103
Arithmetic Intensit [FLOP/B te]

100

101

102

103

104

105

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
]

Tensor Core: 103.7 TFLOP/s

FP16: 29.2 TFLOP/s
FP32: 15.2 TFLOP/s

L1: 14336.0 GB/s

L2: 2996.8 GB/s

HBM: 828.8 GB/s

L1
L2
HBM

Fig. 4: Hierarchical Roofline of the TensorFlow DeepCAM

in the backward pass with default configurations. There are

more compute-intensive kernels than in the forward pass.

Collectively they constitute 41.9% of the run time and attain

near peak Tensor Core performance.

Fig. 4 shows the corresponding backward pass of the

TensorFlow DeepCAM. Instead of one single major kernel

appearing in the forward pass, two very time-consuming

kernels are found in the backward pass calculation. It is

obvious that these two kernels both require longer run time

than the major kernel in the forward pass (notice the size),

which implies that the backward pass has more compute-

intensive kernels than the forward pass and is generally more

time-consuming. Compared to a few kernels using Tensor Core

in the forward pass, we can find that more kernels benefit from

the Tensor Core pipeline in the backward pass since they are

sitting above the half-precision peak. Another observation is

that more kernel invocations are involved in the backward pass

than in the forward. Overall, we can conclude that in either

forward or backward pass, the main computational kernels are

compute-bound and are highly optimized for the underlying

architecture.

B. The PyTorch version of DeepCAM

Compared to the TensorFlow result (Fig. 3), no dominant

kernels (kernel run time significantly larger than the others)

can be found in the PyTorch forward pass (Fig. 5). The num-

ber one kernel is located slightly below the single-precision

performance peak, and based on the symbol distance between

different memory hierarchies, it has a better cache utilization

than the dominant kernel in TensorFlow (even though it runs

on the CUDA Core). Besides, similar to TensorFlow, a large

number of trivial kernels are HBM-bound in the PyTorch

implementation of DeepCAM.

10−2 10−1 100 101 102 103
Arithmetic Intensit [FLOP/B te]

100

101

102

103

104

105
Pe

rfo
rm

an
ce
 [G

FL
OP

/s
]

Tensor Core: 103.7 TFLOP/s

FP16: 29.2 TFLOP/s
FP32: 15.2 TFLOP/s

L1: 14336.0 GB/s

L2: 2996.8 GB/s

HBM: 828.8 GB/s

L1
L2
HBM

Fig. 5: Hierarchical Roofline of the PyTorch DeepCAM in

the forward pass with default configurations. No single kernel

requires significantly longer run time than the others (no

extremely large circles).

10−2 10−1 100 101 102 103
Arithmetic Intensit [FLOP/B te]

100

101

102

103

104

105

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
]

Tensor Core: 103.7 TFLOP/s

FP16: 29.2 TFLOP/s
FP32: 15.2 TFLOP/s

L1: 14336.0 GB/s

L2: 2996.8 GB/s

HBM: 828.8 GB/s

L1
L2
HBM

Fig. 6: Hierarchical Roofline of the PyTorch DeepCAM in its

backward pass with default configurations. One can observe

the highly compute intensive, but low performing kernel.

Fig. 6 shows the PyTorch DeepCAM performance in the

backward pass, with default configurations. Surprisingly, the

number one time-consuming kernel does not utilize Tensor

Core and delivers only about 1 TFLOP/s performance. How-

ever, this implementation’s overall run time is still lower

than that of the TensorFlow case, seen by the size of the

circles, thanks to optimizations in other kernels or the overall

execution of kernels.

Compared to TensorFlow, PyTorch has more flexibility

when profiling the model, and the ‘optimizer’ step can be

easily separated from the gradient calculation step in the back-

propagation. The optimization step is mainly to update model

parameters with newly calculated gradients and is usually low

on arithmetic intensity. Fig. 7 confirms this, where all the

‘optimizer’ kernels are memory-bound and have a much lower

FLOP/s performance than some of the kernels in Fig. 5 or

Fig. 6. It should be noted that there are 2709 kernel invocations

involved in this process, even though there are only a few

circles visible. These kernel invocations have very similar

arithmetic intensity and performance, and are thus overlapping.

10−2 10−1 100 101 102 103
Arithmetic Intensit [FLOP/B te]

100

101

102

103

104

105

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
]

Tensor Core: 103.7 TFLOP/s

FP16: 29.2 TFLOP/s
FP32: 15.2 TFLOP/s

L1: 14336.0 GB/s

L2: 2996.8 GB/s

HBM: 828.8 GB/s

L1
L2
HBM

Fig. 7: Hierarchical Roofline of the PyTorch DeepCAM in its

‘optimizer’ step. The gradient update step consists of numer-

ous streaming operations and has poor arithmetic intensity and

FLOP/s performance.

10−2 10−1 100 101 102 103
Arithmetic Intensit [FLOP/B te]

100

101

102

103

104

105

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
]

Tensor Core: 103.7 TFLOP/s

FP16: 29.2 TFLOP/s
FP32: 15.2 TFLOP/s

L1: 14336.0 GB/s

L2: 2996.8 GB/s

HBM: 828.8 GB/s

L1
L2
HBM

Fig. 8: Hierarchical Roofline of our FP16 implementation of

DeepCAM in TensorFlow (backward pass). AMP (shown in

Fig. 4) can deliver the same performance without manual type

conversion.

C. Automatic Mixed Precision

The Automatic Mixed Precision (AMP) package developed

at NVIDIA is dedicated to accelerating deep learning pro-

cesses by partially converting single-precision data to half-

precision to reduce data movement and improve computational

throughput. It allows for automatic type conversion of certain

model parameters and also implements schemes such as loss

scaling to ensure numerical correctness and accuracy. We have

implemented an FP16 version of DeepCAM in TensorFlow

manually, by picking out the appropriate variables by hand and

typecasting them explicitly. Fig. 8 shows that the backward

pass performance of this implementation is very close to

that of the FP32 DeepCAM with AMP-enabled (shown in

Fig. 4), demonstrating that even without the knowledge of the

implementation details of the network, the AMP package can

effectively apply type conversion and leverage lower-precision

operations for performance.

AMP provides implementation for both TensorFlow and

PyTorch, and for PyTorch, there are more detailed optimization

levels, rather than just on or off. According to the AMP

10−2 10−1 100 101 102 103
Arithmetic Intensit [FLOP/B te]

100

101

102

103

104

105
Pe

rfo
rm

an
ce
 [G

FL
OP

/s
]

Tensor Core: 103.7 TFLOP/s

FP16: 29.2 TFLOP/s
FP32: 15.2 TFLOP/s

L1: 14336.0 GB/s

L2: 2996.8 GB/s

HBM: 828.8 GB/s

L1
L2
HBM

Fig. 9: Hierarchical Roofline of the PyTorch DeepCAM in its

backward pass with AMP O0.

documentation [39], O0 level for PyTorch is used to establish

a stable baseline for the auto mixed-precision acceleration;

O1 follows a conservative type conversion and numerical

properties are highly preserved; O2 however, implements a

more aggressive FP32 to FP16 conversion and extra care needs

to be taken for model convergence concerns.

Our default setting is O1 and the backward pass perfor-

mance of the PyTorch DeepCAM with this setting is shown

in Fig. 6. From the O0 optimization level in Fig. 9, to the

O1 in Fig. 6, kernel run time has been largely reduced and

many kernels have been moved to execute on the Tensor

Core, providing a much higher computational throughput and

demonstrating the effectiveness of the O1 optimization level.

D. Zero-AI kernels

Compared to traditional HPC applications where users usu-

ally have full control of kernel invocations, high-level Python-

based deep learning frameworks tend to implicitly invoke

many subsidiary kernels, either for data conversion or device-

host transfer purposes. TABLE III shows the ratio of these

kernel invocations to the total number of invocations. Around

40-50% of the invocations are for such zero-AI kernels,

where no floating-point operation is performed. This may not

inadvertently affect the overall performance much if these

kernels are perfectly overlapped with other kernel executions,

but it is very hard to achieve that in reality. As hardware

constantly evolves, new computer architectures tend to provide

higher and higher FLOP/s performance and bandwidth, but

with less progressive improvement on kernel launch overhead.

To avoid becoming overhead-bound, it is recommended that

these deep learning applications avoid such “implicit” zero-

AI kernels as much as possible by fusing them or overlapping

with the non-zero-AI kernels.

E. Overall Performance

Despite minor differences in implementation (even though

we have tried to make an apples-to-apples comparison), the

two codes, TensorFlow DeepCAM and PyTorch DeepCAM,

have achived similar runtime and convergence performance.

The previous subsections presented a deep analysis of these

TABLE III: Zero-AI kernel invocations in TensorFlow Deep-

CAM and PyTorch DeepCAM

TensorFlow DeepCAM Forward Backwarda Total

zero-AI 304 (54.7%) 1833 (40.1%) 2137

non zero-AI 252 (45.3%) 2740 (59.9%) 2992

Total 556 (100%) 4573 (100%) 5129

PyTorch DeepCAM Forward Backward Optimizer Total

zero-AI 437 (54.8%) 609 (38.7%) 0 (0%) 1046

non zero-AI 360 (45.2%) 966 (61.3%) 2709 (100%) 4035

Total 797 (100%) 1557 (100%) 2709 (100%) 5081
aThis includes both gradient calculation and update, i.e. the backward pass and
optimizer in the PyTorch case.

two implementations on hierarchical Roofline, and it is discov-

ered that TensorFlow tends to utilize Tensor Core more, com-

pared to PyTorch, as seen by the locations of the most time-

consuming kernels in Fig. 3-6. These two frameworks have

similar cache utilization pattern on L1, L2 and HBM levels,

with PyTorch having slightly more high-AI kernels scattered

in the range of 100 FLOPs/Byte and 1000 FLOPs/Byte on

Fig. 5 and Fig. 6.

Overall, similar numbers of kernels are launched in Tensor-

Flow DeepCAM and PyTorch DeepCAM, with TensorFlow

using over double the amount of zero-AI kernels than in

PyTorch, 2137 versus 1046 in Tab. III. These zero-AI kernels

may have been launched over multiple streams and overlapped

with computational kernels, however, reducing them could

further improve the launch overhead and overall run time.

These kernels are mostly used for converting data from one

precision to another, or for rearranging data layout. They may

be fused or done on the host (asynchronous to the GPU

computation) in order to save run time.

Another note is that the NVIDIA AMP package has been

proven to be very effective, through the comparison of Fig. 4

and Fig. 8 for TensorFlow, and Fig. 6 and Fig. 9 for PyTorch.

V. CONCLUSIONS

In this paper, we first revisited the need for mixed-precision

performance analysis and extended ERT to incorporate single-

precision, half-precision, and Tensor Core performance mea-

surements. Then, based on the previous nvprof hierarchi-

cal Roofline methodology, we established a new Nsight

Compute methodology to collect Roofline data on NVIDIA

GPUs. In the third part of this paper, we applied this new

methodology to a representative real-life deep learning bench-

mark, DeepCAM, with its two implementations in Tensor-

Flow and PyTorch. Results show that this new methodology

is very effective in analyzing and better understanding the

performance of deep learning applications. Useful perfor-

mance insights are discussed, for example, computational

characteristics of different stages of the training process, the

performance impact of the automatic mixed precision (AMP)

package and zero-AI kernels. This should be largely helpful

to deep learning programmers and framework developers, as

it captures data localities within each level of the cache hier-

archy, demonstrates overall hardware utilization and indicates

potential optimization efforts (get rid of zero-AI kernels to

minimize kernel launch latency and improve overall FLOP

rate).

In the future, we would like to extend the current Nsight

Compute methodology to incorporate cross-node perfor-

mance analysis. New methodologies for alternate architectures

and mixed-precision performance ceilings in Roofline will be

investigated as well.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Ad-

vanced Scientific Computing Research Program in the U.S.

Department of Energy, Office of Science, under Award Num-

ber DE-AC02-05CH11231. This research used resources of

the National Energy Research Scientific Computing Center

(NERSC) which is supported by the Office of Science of

the U.S. Department of Energy under Contract No. DE-

AC02-05CH11231. We thank NVIDIA Corporation for their

willingness to answer our myriad of questions on Nsight

metrics.

REFERENCES

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for floating-point programs and multicore
architectures,” Lawrence Berkeley National Lab.(LBNL), Berkeley, CA
(United States), Tech. Rep., 2009.

[2] “Empirical Roofline Toolkit (ERT),” ac-
cessed: 2020-08-01. [Online]. Available:
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master/

[3] C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo,
B. Friesen, B. Cook, D. Doerfler, L. Oliker, J. Deslippe, and S. Williams,
“An Empirical Roofline Methodology for Quantitatively Assessing Per-
formance Portability,” in 2018 IEEE/ACM International Workshop on

Performance, Portability and Productivity in HPC (P3HPC). IEEE,
2018, pp. 14–23.

[4] NERSC Roofline Model Documentation. [Online]. Available:
https://docs.nersc.gov/development/performance-debugging-tools/roofline/

[5] C. Yang, B. Friesen, T. Kurth, B. Cook, and S. Williams, “Toward
Automated Application Profiling on Cray Systems,” in Cray User Group

Conference (CUG), 2018.
[6] J. R. Madsen, M. G. Awan, H. Brunie, J. Deslippe, R. Gayatri, L. Oliker,

Y. Wang, C. Yang, and S. Williams, “Timemory: Modular Performance
Analysis for HPC,” in International Conference on High Performance

Computing. Springer, 2020, pp. 434–452.
[7] C. Yang, T. Kurth, and S. Williams, “Hierarchical Roofline

Analysis for GPUs: Accelerating Performance Optimization for
the NERSC-9 Perlmutter System,” Concurrency and Computation:

Practice and Experience, p. e5547, 2019. [Online]. Available:
https://doi.org/10.1002/cpe.5547

[8] D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth,
M. Lobet, T. Malas, J.-L. Vay, and H. Vincenti, “Applying the roofline
performance model to the intel xeon phi knights landing processor,” in
International Conference on High Performance Computing. Springer,
2016, pp. 339–353.

[9] T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry,
Z. Zhao, R. Gayatri, H. Shan, L. Oliker, J. Deslippe, R. Green, and
S. Williams, “A Novel Multi-Level Integrated Roofline Model Approach
for Performance Characterization,” in International Conference on High

Performance Computing. Springer, 2018, pp. 226–245.
[10] M. Del Ben, C. Yang, S. Louie, and J. Deslippe, “Accelerating Large-

Scale GW Calculations on Hybrid GPU-CPU Systems,” Bulletin of the

American Physical Society, vol. 65, 2020.
[11] R. Gayatri, C. Yang, T. Kurth, and J. Deslippe, “A Case Study For

Performance Portability Using OpenMP 4.5,” in International Workshop

on Accelerator Programming Using Directives. Springer, 2018, pp. 75–
95.

[12] C. Yang. 8 Steps to 3.7 TFLOP/s on NVIDIA V100
GPU: Roofline Analysis and Other Tricks. [Online]. Available:
https://arxiv.org/abs/2008.11326

[13] M. H. Javed, K. Z. Ibrahim, and X. Lu, “Performance analysis of deep
learning workloads using roofline trajectories,” CCF Transactions on

High Performance Computing, vol. 1, no. 3, pp. 224–239, 2019.

[14] Y. Wang, C. Yang, S. Farrel, Y. Zhang, T. Kurth, and S. Williams,
“Time-Based Roofline for Deep Learning Performance Analysis,” in
2020 IEEE/ACM Deep Learning on Supercomputers Workshop, 2020.
[Online]. Available: https://arxiv.org/abs/2009.04598

[15] N. Ding and S. Williams, “An Instruction Roofline Model for GPUs,” in
2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation

of High Performance Computer Systems (PMBS). IEEE, 2019, pp.
7–18.

[16] K. Z. Ibrahim, S. Williams, and L. Oliker, “Performance Analysis ff
GPU Programming Models Using the Roofline Scaling Trajectories,” in
International Symposium on Benchmarking, Measuring and Optimiza-

tion. Springer, 2019, pp. 3–19.

[17] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A Roofline Model of
Energy,” in 2013 IEEE 27th International Symposium on Parallel and

Distributed Processing, 2013, pp. 661–672.

[18] A. Lopes, F. Pratas, L. Sousa, and A. Ilic, “Exploring GPU Performance,
Power And Energy-Efficiency Bounds with Cache-aware Roofline Mod-
eling,” in 2017 IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS), 2017, pp. 259–268.

[19] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[21] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica et al., “Exascale
deep learning for climate analytics,” in SC18: International Conference

for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 649–660.

[22] W. Joubert, D. Weighill, D. Kainer, S. Climer, A. Justice, K. Fagnan,
and D. Jacobson, “Attacking the opioid epidemic: Determining the
epistatic and pleiotropic genetic architectures for chronic pain and opioid
addiction,” in SC18: International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 717–
730.

[23] “Nsight compute cli - metric compari-
son,” accessed: 2020-08-01. [Online]. Available:
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-metric-comparison

[24] T. NVIDIA, “V100 gpu architecture. the world’s most advanced data
center gpu. version wp-08608-001 v1. 1,” NVIDIA. Aug, p. 108, 2017.

[25] CUDA C++ wmma API. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[26] CUDA cuBLAS Library. [Online]. Available:
https://docs.nvidia.com/cuda/cublas/index.html

[27] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv

preprint arXiv:1410.0759, 2014.

[28] “Profiler user’s guide,” accessed: 2020-08-01. [Online]. Available:
https://docs.nvidia.com/cuda/profiler-users-guide/

[29] “Nvidia developer tools overview,” accessed: 2020-08-01. [Online].
Available: https://developer.nvidia.com/tools-overview

[30] “Roofline Methodology on NVIDIA GPUs.” [Online]. Available:
https://gitlab.com/NERSC/roofline-on-nvidia-gpus

[31] C. Yang. Hierarchical Roofline Analysis: How to Collect Data using
Performance Tools on Intel CPUs and NVIDIA GPUs. [Online].
Available: https://arxiv.org/abs/2009.02449

[32] NVIDIA CUPTI API reference guide. [Online]. Available:
https://docs.nvidia.com/cupti/Cupti/

[33] PerfWorks measurement library for
Nsight Compute. [Online]. Available:
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-structure

[34] Deep Learning Climate Segmentation Benchmark. [Online]. Available:
https://github.com/cyanguwa/DeepLearningProfiling

[35] MLPerf Benchmark. [Online]. Available: https://mlperf.org

[36] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European Conference on Computer Vision

(ECCV), September 2018.

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master/
https://docs.nersc.gov/development/performance-debugging-tools/roofline/
https://doi.org/10.1002/cpe.5547
https://arxiv.org/abs/2008.11326
https://arxiv.org/abs/2009.04598
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-metric-comparison
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/
https://developer.nvidia.com/tools-overview
https://gitlab.com/NERSC/roofline-on-nvidia-gpus
https://arxiv.org/abs/2009.02449
https://docs.nvidia.com/cupti/Cupti/
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-structure
https://github.com/cyanguwa/DeepLearningProfiling
https://mlperf.org

[37] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “Cupy: A
numpy-compatible library for nvidia gpu calculations,” in Proceedings

of Workshop on Machine Learning Systems (LearningSys) in The Thirty-

first Annual Conference on Neural Information Processing Systems

(NIPS), 2017.
[38] Deterministic Profiling for TensorFlow). [Online]. Available:

https://github.com/NVIDIA/tensorflow-determinism
[39] “apex.amp,” accessed: 2020-08-01. [Online]. Available:

https://nvidia.github.io/apex/amp

https://github.com/NVIDIA/tensorflow-determinism
https://nvidia.github.io/apex/amp

	I Introduction
	II Methodologies
	II-A ERT Extensions for Machine Characterization
	II-A1 Single-Precision (FP32) and Half-Precision (FP16)
	II-A2 Tensor Core

	II-B Nsight Compute Metrics for Application Characterization
	II-B1 Kernel Run Time
	II-B2 FLOPs
	II-B3 Bytes

	III Experimental Setup
	III-A Hardware and Software Configuration
	III-B DeepCAM Benchmark

	IV Results
	IV-A The TensorFlow version of DeepCAM
	IV-B The PyTorch version of DeepCAM
	IV-C Automatic Mixed Precision
	IV-D Zero-AI kernels
	IV-E Overall Performance

	V Conclusions
	References

