
Depth Self-Optimized Learning Toward
Data Science

Ziqi Zhang1

Tsinghua University, School of Life Science, China.
zhangzq20@mails.tsinghua.edu.cn

stevezhangz@163.com

Abstract. We propose a two-stage model called Depth Self-Optimized
Learning (DSOL), which aims to realize ANN depth self-configuration,
self-optimization as well as ANN training without manual intervention.
In the first stage of DSOL, it will configure ANN of specific depth accord-
ing to a specific dataset. In the second stage, DSOL will continuously op-
timize ANN based on Reinforcement Learning (RL). Finally, the optimal
depth is returned to the first stage of DSOL for training, so that DSOL
can configure the appropriate ANN depth and perform more reasonable
optimization when processing similar datasets again. In the experiment,
we ran DSOL on the Iris and Boston housing datasets, and the results
showed that DSOL performed well. We have uploaded the experiment
records and code to our Github1.

Keywords: Depth Self-Optimized Learning, Data Science

1 Introduction

Date back to the 1989s, the universal approximation theorem states that a fixed
depth neural network with arbitrary width and specific activation function such
as sigmoid could approximate any continuous functions on a compact set to
arbitrary accuracy[1][2]. Approximate arbitrary functions might be the key point
for a universal model, But when using this kind of ANN to process complex
datasets, the number of nodes or layer width will reach exponential level, so this
method is difficult to implement. Subsequently, people found that increasing the
depth of neural network can make neural network easily approximate functions
on some datasets that shallow neural network can’t[3][4][5][6]. Similar viewpoint
could be found in Goodfellow’s book−Deep learning[7] which states that in some
cases, deeper networks can generalize better, and this is not just because of the
larger number of parameters. Those views seems to be confirmed in real life,
from AlexNet to RestNet, it is obvious that the performance of ANN is positively
related to its depth, so it seems that only if we continuously increase the depth
then we can gain a universal model.
Unfortunately, according to the No Free Lunch theorem (NFL)[8], no model can

1 https://github.com/workharduwillwin/Depth-Self-Optimized-Learning-Toward-Data-Science

ar
X

iv
:2

01
1.

02
84

2v
2 

 [
cs

.L
G

] 
 1

1 
Ja

n 
20

21

https://github.com/workharduwillwin/Depth-Self-Optimized-Learning-Toward-Data-Science


2 Ziqi Zhang

be fully qualified for various tasks, which seems to contradict our wishes. Even if
we design a general model for a variety of different datasets within the allowable
error range, we do not need to use more complex methods for those tasks can
be completed by simple methods. Because it may waste too much computing
resources. However, if we try to understand the NFL from another perspective,
it seems that the theorem itself can be regarded as an excellent way to obviously
improve the generalized ability of ANN, that is to say, using the best ANN
according to specific dataset. In oreder to realize a universal mode based on the
idea mentioned above, we mainly focus on solving those problems summarized as
below:

1 How to design ANNs according according to specific datasets.
2 How to implement this design process through a model that can work inde-

pendently.

Before this work, the above-mentioned second problem has been studied for a
long time. In the past, people has realized Neural Architecture Search (NAS)
based on RL, evolutionary algorithms, and so on [9]. Although the original inten-
tion of this type of research is to help people better search the hyperparameters
of ANN, from another perspective, it is also an excellent way to realize ANN
self-tuning. The first problem mentioned above may be more challenging, but
we have gained some inspiration from human behavior, namely, we are trying to
make ANNs understand what they will do. Based on these ideas and researches,
we propose a two-stage model called Depth Self-Optimized Learning (DSOL).
In the experiment, we used the Boston housing and Iris dataset to test the first
stage of the DSOL. We set the True labels to 3, 10, 25, 50, 60, and train the first-
stage for 100 iterations in turn. Experimental results show that the first stage
of the DSOL can converge well on those two datasets, which indicates that the
first-stage of DSOL has a excellent approximation and generalizion capability to
some extent. Furthermore, when we normalize the training data, we find that
the predictions of the model becomes more accurate. Then, we test the second
stage of DSOL. Significantly, due to the limited performance of the device, we
can only set the maximum number of ANN layers to 15, that is to say, if the
prediction is greater than 15, then it will be regarded as 15. After training, the
second stage of DSOL and ANN converged. In addition, by visualizing the num-
ber of ANN layers, it can be observed that well-trained DSOL tends to choose
more deep ANNs to approximate on the dataset. Our contributions summarized
as below:

1 We proposed a two-stage model called self-optimization learning (DSOL) for
data science, which initially realizes ANN depth self-configuration and self-
optimization. The advantage of this model is that it brings the datasets into
the ANN parameter configuration process to know what they are doing.

Although we have achieved staged victories, we still have a long way to go
to achieve our ultimate goal. Our ultimate goal is to design a system that can
automatically, accurately, and quickly generate, train, optimize ANNs for various



Depth Self-Optimized Learning Toward Data Science 3

specific datasets so as to realize a real universal model, namely, we only have to
input dataset into it without doing any other things. In addition, this system can
utilize various potential functions and modules, and can continuously upgrade
the ANN in consideration of the performance of ANN and the feature of the
dataset rather than only the depth of ANN. Now our model still has many
limitations:

1 The second stage(RL-stage) of DSOL may fall into the cycle of local mini-
mum in some cases. As the matter of fact, we have considered this problem,
so we add a little randomness to the decision-making process of the second
stage, and solve this problem to some extent, but it is not very efficient.

2 If some ANNs with the depth have an obvious different performance on the
same dataset, the judgment of the RL model will be affected. However, the
parameters of ANN should be initialized with an appropriate method to
ensure it could attend the optimal level, namely, if we set all parameters to
0, the performance of ANN will be affected, which is contrary to our goal.
So we must find a balance between the stability of RL and the performance
of ANN.

3 The current architecture of the DSOL is not very complicated, so although
it can be used on small-dimensional dataset, its performance on large-scale
dataset is still unknown. At the same time, we know that the performance
of ANN is not only related to its depth, so we need to further improve the
model so that it can configure and optimize more kinds of ANN parameters.

In the introduction, we have briefly discussed the research background, solutions,
experiments, contributions, and limitations of this research. The rest of this
paper is as follows: In the second part of this paper, we will briefly introduce
some researches related to this work. In the third part, we will introduce in detail
the principles and architecture of DSOL. In the fourth part, we will analyze the
experimental results. In the fifth part, we made a summary and stated our next
research plan, and the last part is acknowledgement. Significantly, most of the
experimental data and figures are in the attachment.

2 Related work

In the past five years, Reinforcement Learning (RL) has solved many problems
that is difficult for traditional machine learning (ML). For example, RL has
reached a superhuman level in Atari game [10] and poker game [11]. In addition,
RL has some practical applications, such as self-driving cars [12], and so on. In
this paper, we mainly introduce its application in Neural Architecture Search
(NAS).
Bbarret zoph et al. [13] used RCNN which is optimized by Reinforcement Learn-
ing (RL) based on policy gradient method to search for the best hyperparameters
of ANN. They did it, but they used a lot of GPUs and ran for about a month,
which was beyond the experimental conditions of ordinary people. Barret Zoph
et al. [14] proposed another method based on RL. They did not search for the



4 Ziqi Zhang

complete ANN architecture, but first constructed a cell architecture, and then
obtained an optimal ANN architecture constructed by these cell architectures.
They used 500 GPUs and ran for about 4 days. These methods require a lot
of computing resources, but there are some studies that have gradually reduced
the requirement of computing source, such as some NAS researches based on Hi-
erarchical Representation [15], Weight sharing[16], Performance prediction, and
so on.
It is no doubt that NAS-related researches will make it more convenient for
people to configure and optimize the hyperparameters of ANN. Our goal is not
exactly the same as NAS, because we focus on developing a self-optimizing model
rather than only help people configure hyperparameters of ANN. But we have
some similarities, such as looking for a better ANN architecture.

3 Methods

Fig. 1. The Self-Optimization Learning model.

As shown in Fig.1, Algorithm 1, DSOL includes two stages. In the first stage,
the training dataset is input into the F-model to calculate the number of ANN
layers, and then the RL model will optimize the number of layers according
to the performance of the ANN. Significantly, ANN performance is realated
to its hyperparameters, thus a deep ANN doesn’t mean must be better than
a shallow one. However, using some methods such as Batchnormalization or
Dropout, and use Relu or LeakyRelu to replace sigmoid or no activation function
will efficientlly solve the problem of gradient disappearance so as to improve the
performence of ANN. In this paper, we use fixed 500 width Dense layer with Relu
activation function, and every Dense layer followed by a Dropout layer to build
ANN. Significantly, we initialize the bias of each Dense layer as 0, use Glorot
Uniform methods to initialize the weights of ANN layers, and in the subsections,
we will introduce the architecture and function of the DSOL in detail.



Depth Self-Optimized Learning Toward Data Science 5

Algorithm 1 Depth Self-Optimized Learning

Initialize the state-policy function π weightens with Glorot Uniform method.
Initialize the policy-value function Q weightens with Glorot Uniform method.
Initialize replay buffer ht to capacity N .
Initialize the F −model weights with Glorot Uniform method.
Initialize the minimum loss value minloss to a large interger.
for episode = 1,M do

Initialize the number of ANN layers by F model, build a neural network ANNt

Train ANN in fixed iterations I, return loss value losst.
for t = 1, T do

With probability ε select a random action at(Add or reduce a Dense layer).
Otherwise select at ← argmax(π(losst, layert; θ)).
Update layert to layert+1 according to at.
Rebuild the neural network to ANNt+1 according to layert+1.
Train ANNt+1 in fixed iterations I, return loss value losst+1.
if losst+1 < minloss then

minloss← losst+1

end if

rt =

{
losst−losst+1

losst+1
× 10 +

minloss−losst+1

minloss
× 10 if losst+1 > losst

losst−losst+1

losst
× 10 if losst+1 < losst

Store transition (losst, layert, losst+1, layert+1, rt) in ht.
Sample random minibatch (losst, layert, losst+1, layert+1, rt) from ht.
Update the parameters of the actor based on equation 4.
Update the parameters of critics according to equation 5.

end for
Return the optimal number of the ANN layers.
Update the parameters of the F −model based on gradient descent.

end for

3.1 F-model

The first stage of DSOL is F-model (Fig.2, Table.1, 2). F-model consists of two
convolutional layers, two pooling layers, and three or four fully-connected(FC)
layers in turn. Significantly, according to the code we provided, there is a judg-
ment in front of the FC layer that if necessary, add a Dense layer of appropriate
width between the first FC and the last CNN layers so that the model can be
successfully trained on various datasets(Table.1, Table.2). In addition, although
the architecture of the F-model has been shown in this paper, we can use more
powerful modules to replace it, such as combining RL with more powerful ANN
to replace its current architecture. However, In order to successfully implement
the ideas proposed in this paper, we will still use the initial design.

3.2 Reinforcemnet Learning stage

Now, we introduce the architecture of the Reinforcement Learning (RL) stage.
The principle of the RL stage is similar to the agent-environment interaction



6 Ziqi Zhang

Fig. 2. Architecture of the F-model. Using 100 samples from Boston dataset as training
dataset, the architecture of F-model is shown in this figure.

model. At the beginning of the t round of training, the environment will construct
ANNt according to the number of ANNt layers layert which is configured by the
F-model. After ANNt training, we obtain losst. In the experiment, both losst
and layert are regarded as the state of the agent. Input the state losst and layert
into the policy function π, and then we can get the next action at(Equation 1).
Optimize ANNt according to at so that obtain layert+1(Equation 2). Construct
ANNt+1 according to layert+1, after ANNt+1 training, we will get a new loss
value losst+1. If losst+1 is greater than losst, the action will be punished, on
the contrary, the action will be rewarded. Regardless of punishment or reward,
all of these can be represented by rt. Then, we will obtain the sequence data ht
(Equation 3), which will be used to train the policy function π and the value
function Q.

at = π(ht; θ) (1)

layert+1 = layert + at (2)

ht = {loss1, layer1, r1, loss2, layer2, r2, ..., losst, at, rt} (3)

γ is a constant decay rate range from 0 to 1(Here we use 0.8), and rt is a
reward based on the performance of ANNt. Therefore, the total reward in the
RL training stage can be represented by the reward function: Rt =

∑∞
t γt

′−trt′ .
In order to maximize Rt, we use the policy gradient (Equation 4) to optimize
the policy function π, and use the TD error (Equation 5) to optimize the value
function Q. Finally, we will obtain the optimal policy function π∗, and the value
function Q will also converge or reach the optimal level.

∇θπθ(st, at; θ) = (r + γQπ(st+1, at+1;w)−Qπ(st, at;w))∇θ log πθ(st, at; θ) (4)

loss(at+1;W ) =
1

2
‖rt + γQπ(St+1, at+1;w)−Qπ(St, at;w)‖2 (5)



Depth Self-Optimized Learning Toward Data Science 7

4 Experiment

4.1 F-model

In order to test the approximation ability of the F model, we input the training
and valid Boston housing dataset into the F-model, and set several integers: 3,
10, 25, 50, 60, 100 as True labels to train the F-model. It can be observed from
Fig.3 Fig.4 that the F-model converges in all cases. Subsequently, input valid
and training datasets into well-trained F-model in all cases for prediction. We
can observe that the trained F-model has a good approximation ability(Fig.4
and 5). Therefore, if we can obtain the best number of ANN layers and regard
them as True labels, then use the training dataset and True labels to train the
F-model, after training, when input similar dataset into the F-model, plausible
predictions will be obtained. In addition, we normalized the training data to
the range from 0 to 1, and trained the F-model as before, we found that the
approximation performance of the F-model is better than before (Fig.5, Fig.6
and Table.6). Although those experiments have proved that our model has good
approximation ability, we pay more attention to the generalization ability of F
model, because our original intention is to let ANN know what they want to do,
so F model should be able to approximate on two or more than two datasets.
Take the Iris and Boston housing datasets as input in turn, and set the True
labels to 3, 10, 25, 50, 60, 100 in turn, as shown in Fig.7, Fig.8, and Tbale.7.
The F-model can converge on both these two datasets at the same time, which
indicates that the F-model has a generalization ability. Significantly, the gen-
eralization ability of the F-model is of vital importance, because the feature of
the training dataset is not directly related to the RL stage, so the generalization
ability of DSOL is mainly reflected in the F-model.

4.2 RL-stage

First of all, let’s restate the constraints of the ANN parameters. We set the initial
layer number of ANN to 5 (Here we didn’t use F-model to initialize the num-
ber of ANN layers because the F-model has not been trained. In the final test
process of the experiment, we will use the trained F-model to initialize the layer
number of ANN), and in the subsequent training process, the number of ANN
layers should not exceed 15. In addition, we use the Golort Uniform method to
initialize the weights of the ANN and set the bias of the initialized ANN layer
to 0. In addition, except for the last and first layers of ANN, each Dense layer
is followed by a Dropout layer with a probability of 0.5.
In the training process of the RL model, there are a total of 70 episodes, and in
each episode, the RL model needs to optimize the ANN for 20 iterations. At the
same time, we did not set the states of early termination for RL, because we have
set the maximum number of ANN layers. According to related theories and some
attempts, under the conditions we set, the performance of ANN increases with
the number of layers. However, if we terminate the training of the model when



8 Ziqi Zhang

the number of ANN layers reaches the maximum, we cannot prove that the RL
model can stably set the ANN layer to the maximum in the subsequent training
process, which means that the model may not have collected all states, so we
should train the model as many times as possible without excessive interference.
The experimental results are shown in Fig.9, Fig.10, and Fig.11. According to
Fig.10 and Fig.11, we can observe that the loss function and accuracy of the
ANN gradually converge with the training process. According to Fig.9, Fig.10,
and Fig.11, it can be observed that the performance of ANN is positively corre-
lated with the increase in the number of ANN layers, and the well-trained RL
model tends to add more Dense layers to the ANN, which is consistent with our
expectations.
As mentioned in the methods section, we used the policy gradient ascent method
to update the parameters of policy function π and used TD error to optimize the
parameters of the value function Q. Thus, both of them should converge after
several episodes. Fortunately, the experimental results are consistent with the
theory. As shown in Fig.12, we can observe that both Q and π converge into 0,
which indicates that the RL stage has reached the optimal state. Significantly,
maximizing the reward value of RL is equal to minimizing the reward value of
RL multiplied by -1. Thus, in Fig. 12 the TD error converges to zero indicates
the RL model has attended to the maximum reward level. Finally, we use the
optimal number of ANN layers to train the F-model, and then get the trained
DSOL. As shown in Fig.13, well trained DSOL performs well on the training
dataset and can quickly optimize the number of layers of ANN to the optimal
state, so that the loss function of ANN is always maintained at the lowest level.

4.3 Validation

We input 200 valid samples of the Boston housing dataset into a well-trained
DSOL. As can be observed from Fig.14, at the beginning of ANN optimization,
DSOL sets the number of ANN layers to 15, and then in the subsequent ANN
training process, the number of ANN layers does not change. At the same time,
the loss function and accuracy of the ANN don’t fluctuate greatly. These results
show that the neural network has reached the optimal level in the initial stage of
training. Thus, the well-trained DSOL performs well on the valid Boston housing
dataset.

5 Conclusion and Perspective

We propose DSOL for data science. The model initially realized ANN depth
self-configuration and self-optimization, so that the best ANN can be obtained
on a specific dataset. In the experiment, we use 100 Boston housing training
dataset samples for training, and use 200 Boston housing valid dataset samples
to test the trained DSOL. According to the discussion in the experimental sec-
tion, DSOL performs well. Significantly, the generalization ability of DSOL is



Depth Self-Optimized Learning Toward Data Science 9

mainly reflected in the F-model. Therefore, an F-model with a certain general-
ization ability is equivalent to a DSOL with generalization ability. After testing
the F-model, we found that the F-model can approximate well on the Iris and
Boston housing datasets. Therefore, our DSOL has a certain generalization abil-
ity. However, DSOL is just an initial form. We hope to develop a self-optimized
system to handle various datasets in the future. In order to achieve this, we will
mainly focus on those things:

1 How to make the system optimize more kinds of ANN hyperparameters. We
have known many NAS algorithms, which have been proved to be able to
find new and feasible neural architectures. But we want to develop a model
that can design the ANN architectures while taking datasets into account.
That is to say, it’s just like when a person processes a task, he will make a
plan based on his analysis of the task.

2 How to make this system capable of dealing with more complex tasks rather
than only data science. At present, most NAS algorithms can work on image
datasets. However, this is a challenge for our model, because the image con-
tains more complex information, so it may need to be improved with more
complex logic to work.

6 Acknowledgement

We would like to acknowledge the two-month funding from the School of Life-
science in Tsinghua university, and thank one of my best friend Chuanxu Zhao
for assistance in writing, and the reviewers for their valuable suggestions. Finally,
best wishes to everyone who had ever encouraged and helpt me and everyone
who are working hard for scientific research.



10 Ziqi Zhang

References

1. George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals and Systems, 2(4):303–314.(1989)

2. Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366.(1989)

3. Matus Telgarsky. Benefits of depth in neural networks. In Conference on Learning
Theory.(2016)

4. Ronen Eldan,Ohad Shamir. The power of depth for feedforward neural networks.
In Conferenceon Learning Theory.(2016)

5. Henry W Lin, Max Tegmark,David Rolnick. Why does deep and cheap learning
work so well? Journal of Statistical Physics, 168(6):1223–1247.(2017)

6. Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and
Qianli Liao. Why and when can deep-but not shallow-networks avoid the curse
of dimensionality: A review. International Journal of Automation and Computing,
14(5):503–519.(2017)

7. Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning. The MIT
Press.(2016)

8. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82.(1997) doi:10.
1109/4235.585893.

9. Thomas Elsken and Jan Hendrik Metzen and Frank Hutter. Neural Architecture
Search: A Survey. arXiv preprint arXiv:1808.05377.(2019)

10. Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al.Human-level control
through deep reinforcementlearning. Nature. 518(7540): 529–533.(2015)

11. Brown, N. and T. Sandholm. Libratus: The Superhuman AIfor No-Limit Poker.
International Joint Conference on Artificial Intelligence.(2017)

12. You, Y., X. Pan, Z. Wang, and C. Lu. Virtual to Real Reinforcement Learning for
Autonomous Driving. arXiv preprint arXiv:1704.03952.2017.(2017)

13. Barret Zoph, Quoc V. Le. Neural Architecture Search with Reinforcement Learn-
ing. arXiv preprint arXiv:1611.01578.(2016)

14. Zoph, Barret and Vasudevan, Vijay and Shlens, Jonathon and Le, Quoc V. Learn-
ing Transferable Architectures for Scalable Image Recognition. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).(2018)

15. Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le, Learning
Transferable Architectures for Scalable Image Recognition. arXiv preprint
arXiv:1707.07012.(2017)

16. Cai H, Chen T, Zhang W, et al. Reinforcement Learning for Architecture Search
by Network Transformation. arXiv preprint arXiv:1707.04873. (2017)

doi: 10.1109/4235.585893.
doi: 10.1109/4235.585893.
http://arxiv.org/abs/1808.05377
http://arxiv.org/abs/1704.03952
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.04873


Depth Self-Optimized Learning Toward Data Science 11

A Architecture of Depth Self-Optimizing Learning

Table 1. F-model on Boston housing dataset.

Layer type Shape Param

Input (1,100, 13, 1) 0
Conv2D (1, 100, 13, 64) 1664

Maxpooling (1, 50, 6, 64) 0
Conv2D (1, 50,6,64) 102464

Maxpooling (1, 25,3, 64) 0
Flatten (4800) 0
Dense (1,128) 614528
Dense (1,64) 8256
Dense (1,1) 65

Total params: 726,977
Trainable params: 726,977
Non-trainable params: 0

Table 2. F-model trained on Iris dataset.

Layer type Shape Param

Input (1,100, 13, 1) 0
Conv2D (1, 100, 13, 64) 1664

Maxpooling (1, 50, 6, 64) 0
Conv2D (1, 50,6,64) 102464

Maxpooling (1, 25,3, 64) 0
Flatten (1600) 0

Dense(Relu) (1,4800) 7684800
Dense(Relu) (1,128) 614528
Dense(Relu) (1,128) 614528
Dense(Relu) (1,64) 8256
Dense(Relu) (1,1) 65

Total params: 8,411,777
Trainable params: 8,411,777

Non-trainable params: 0

Table 3. Policy function π

Input (1,2) 0
Dense(Relu) (1,10) 614528
Dense(Relu) (1,5) 8256

Dense(Softmax) (1,2) 65

Total params: 97
Trainable params: 97

Non-trainable params: 0

Table 4. Value function Q

Input (1,2) 0
Dense(Relu) (1,10) 614528
Dense(Relu) (1,5) 8256

Dense (1,2) 65

Total params: 97
Trainable params: 97

Non-trainable params: 0



12 Ziqi Zhang

B Experiments of F-model

Fig. 3. Visualization of F-model loss function on Boston housing dataset. The Boston
hosing dataset is used as the input data, the true labels are set to integers: 3, 10, 25,
50, 60, 100 so as to establish the mapping from the input data to those integers by
training F-model in turn. Then the loss function is plot in turn. From these functions,
we could observe that the F-model converges in all cases.

Fig. 4. Visualization of F-model accuracy on Boston housing dataset. Input the Boston
housing valid dataset into the trained F-model, we obtain the predictions, then by divid-
ing the predicted value with the true value, we get the precision shown in all cases.(True
label as 3, 10, 25, 50, 60, 100 in turn)



Depth Self-Optimized Learning Toward Data Science 13

Fig. 5. Visualization of F-model loss function on normalized Boston housing dataset.
After normalizing the Boston housing dataset, we observe an obvious enhancement of
the approximation capability of F-model.

Fig. 6. Visualization of F-model accuracy on normalized Boston housing dataset. Input
the normalized Boston housing valid dataset into the trained F-model, we obtain the
predictions, then by dividing the predicted value with the true value, we get the precision
shown in all cases.(True label as 3, 10, 25, 50, 60, 100 in turn)



14 Ziqi Zhang

Fig. 7. Visualization of F-model loss function on normalized Iris and Boston hous-
ing dataset. In order to test the generalization capability of F-model, we use the Iris
and Boston housing datasets as the Input in turn, and we can oberserve that F-model
converge on both of Iris dataset.

Fig. 8. Visualization of F-model accuracy on normalized Iris and Boston housing
datasets. Using Iris and Boston housing dataset to train F-model in turn, we can ob-
serve that F-model approximate well on Iris and Boston housing datasets.



Depth Self-Optimized Learning Toward Data Science 15

Table 5. Performance of F-model on Boston housing dataset Take the Boston housing
training dataset as input, and take 3, 10, 25, 50, 60, 100 as real labels to train F-
model in turn. The prediction results are shown in this table. In the first column, these
predictions are obtained by inputting the training dataset into the trained F-model. In
the second column, these predictions are obtained by inputting the valid dataset into
the trained F-model. In the last column, these values are the true labels configured by
ourselves.

Train dataset Valid dataset True layer

2.897 5.592 3.0
9.886 10.145 10.0
25.218 22.807 25
49.928 50.005 50.0
60.159 58.391 60.0
100.466 104.244 100.0

Table 6. Performance of F-model on normalized Boston housing dataset. We normalize
the Boston housing dataset to the range from 0 to 1, and still set integers: 3, 10, 25, 50,
60, 100 as true labels in turn. After training, we found that the approximation ability
of F-model has been significantly improved. So we should normalize the training data
before inputting it into F-model.

Train dataset Valid dataset True layer

2.944 2.936 3.0
9.932 10.139 10.0
24.962 25.426 25
49.766 50.902 50.0
59.958 60.906 60.0
98.728 100.162 100.0

Table 7. Generalization capability of F-model. In order to test the generalization ability
of the F-model, we use Iris and Boston housing training datasets as input to train F-
model in turn and then use iris and Boston housing test training datasets as input to
obtain the predictions shown in the table. The first column is the prediction obtained
by inputting Boston housing valid dataset into the F-model, the second column is the
prediction obtained by inputting the Iris test dataset into the F-model, and the third
column is the True label we set.

Boston housing Iris True layer

1.301 3.140 3.0
8.225 10.300 10.0
23.073 25.889 25
49.090 51.984 50.0
59.011 62.214 60.0
97.988 101.951 100.0



16 Ziqi Zhang

C Experiments of RL-stage

Fig. 9. Visualization of ANN layers. During the RL training process, we set up 70
episodes, and each episode contains 20 iterations. By plotting the changes in the number
of ANN layers from episodes 1, 12, 23, 34, 45, and 70, we can intuitively observe that
as the number of sets increases, the RL model tends to add more layers to the ANN.

Fig. 10. Visualization of the accuracy of ANN. We sample sequential accuracy values
from 1, 12, 23, 34, and 70 episodes in turn, and then plot these samples and total
accuracy. In the last picture, we can roughly get the change trend of accuracy. During
the ANN training process, its accuracy value gradually increases to about 1, and there
is no abrupt change after that. It is worth noting that in order to obtain the accuracy
value, we use the predicted value divided by the actual value, and then take the average
value to represent the accuracy. This is only an approximate representation method, so
the value obtained by this method may be greater than 1.



Depth Self-Optimized Learning Toward Data Science 17

Fig. 11. Visualization of the loss function of ANN. The loss function of ANNs corre-
spond to Fig.10.

Fig. 12. As shown in the left figure the loss value of the Policy function π converges
to 0, which proves that π has attend to the most stable state π∗. Significantly, during
the experimental process, in order to maximize the TD value, we multiply TD by - 1
and reduce the processed TD value by the Actor Critic method. Therefore, as shown in
the right figure when the processed TD value converges to 0, it also indicates that the
benefit of the model reaches the maximum at this time.

Fig. 13. Visualization of trained DSOL.Using trained DSOL to configure and optimize
the ANN. We can observe that the number of ANN layers is optimized to the optimal
level quickly by trained DSOL.



18 Ziqi Zhang

D Validation of trained DSOL

Fig. 14. Validation of trained DSOL Input 200 samples of valid Boston Housing dataset
into the trained DSOL, record the performance of ANN and DSOL. We can observe
that DSOL performs well on the valid Boston Housing dataset.


	Depth Self-Optimized Learning Toward Data Science

