Skip to main content

Predicting Resource Usage in Edge Computing Infrastructures with CNN and a Hybrid Bayesian Particle Swarm Hyper-parameter Optimization Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 284))

Abstract

As the computational needs of edge infrastructures increased, efficient resource management becomes a necessity. An accurate prediction of future resource usage provides insight into dynamic task offloading, proactive auto-scaling, virtual machine migration, and workload balancing. In this paper we propose the use of multi-output one-dimensional convolutional neural networks as resource usage predictors. Convolutional neural networks can manipulate resource usage observations as time series data with the advantage of an adaptive window size selection. In addition, we propose an innovative hybrid hyper-parameter optimization method that combines particle swarm optimization and Bayesian optimization in order to conclude to a close to optimal convolutional neural network architecture. To validate the efficiency of our approach, we conducted experiments with an edge computing infrastructure. The evaluation results show that the proposed regression model achieves higher accuracy as compared to other machine learning meta-predictors and state of the are resource usage models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rahmanian, A.A., Ghobaei-Arani, M., Tofighy, S.: A learning automata-based ensemble resource usage prediction algorithm for cloud computing environment. Futur. Gener. Comput. Syst. 79, 54–71 (2018). https://doi.org/10.1016/j.future.2017.09.049

    Article  Google Scholar 

  2. Amiri, M., Mohammad-Khanli, L.: Survey on prediction models of applications for resources provisioning in cloud. J. Netw. Comput. Appl. 82, 93–113 (2017). https://doi.org/10.1016/j.jnca.2017.01.016

    Article  Google Scholar 

  3. Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B., Chen, J.: An adaptive prediction approach based on workload pattern discrimination in the cloud. J. Netw. Comput. Appl. 80, 35–44 (2017). https://doi.org/10.1016/j.jnca.2016.12.017. ISSN 1084–8045

    Article  Google Scholar 

  4. Calzarossa, M.C., Massari, L., Tessera, D.: Workload characterization: a survey revisited. ACM Comput. Surv. 48(3), 1–43 (2016). https://doi.org/10.1145/2856127. Article 48

    Article  Google Scholar 

  5. Kousiouris, G., Cucinotta, T., Varvarigou, T.: The effects of scheduling, workload type and consolidation scenarios on virtual machine performance and their prediction through optimized artificial neural networks. J. Syst. Softw. 84(8), 1270–1291 (2011). https://doi.org/10.1016/j.jss.2011.04.013. ISSN 0164-1212

    Article  Google Scholar 

  6. Sadeka, I., Jacky, K., Kevin, L., Anna, L.: Empirical prediction models for adaptive resource provisioning in the cloud. Future Gener. Comput. Syst. 28(1), 155–162 (2012). https://doi.org/10.1016/j.future.2011.05.027. ISSN 0167-739X

    Article  Google Scholar 

  7. Litke, A., Tserpes, K., Varvarigou, T.: Computational workload prediction for grid oriented industrial applications: the case of 3D-image rendering. In: CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid, Cardiff, Wales, UK, vol. 2, pp. 962–969 (2005). https://doi.org/10.1109/CCGRID.2005.1558665

  8. Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R.: Workload prediction using Arima model and its impact on cloud applications’ QoS. IEEE Trans. Cloud Comput. 3(4), 449–458 (2015). https://doi.org/10.1109/TCC.2014.2350475

    Article  Google Scholar 

  9. Zhang, Q., Yang, L.T., Yan, Z., Chen, Z., Li, P.: An efficient deep learning model to predict cloud workload for industry informatics. IEEE Trans. Industr. Inf. 14(7), 3170–3178 (2018). https://doi.org/10.1109/TII.2018.2808910

    Article  Google Scholar 

  10. Tan, J., Dube, P., Meng, X., Zhang, L.: Exploiting resource usage patterns for better utilization prediction. In: 2011 31st International Conference on Distributed Computing Systems Workshops, Minneapolis, MN, pp. 14–19 (2011). https://doi.org/10.1109/ICDCSW.2011.53

  11. Cao, J., Zhang, Q., Shi, W.: Challenges and opportunities in edge computing. In: Edge Computing: A Primer. SCS, pp. 59–70. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02083-5_5

  12. Zhang, K., Zhu, Y., Leng, S., He, Y., Maharjan, S., Zhang, Y.: Deep learning empowered task offloading for mobile edge computing in urban informatics. IEEE Internet Things J. 6(5), 7635–7647 (2019). https://doi.org/10.1109/JIOT.2019.2903191

    Article  Google Scholar 

  13. Zeng, D., Gu, L., Pan, S., Cai, J., Guo, S.: Resource management at the network edge: a deep reinforcement learning approach. IEEE Netw. 33(3), 26–33 (2019). https://doi.org/10.1109/MNET.2019.1800386

    Article  Google Scholar 

  14. Yuan, Q., Li, J., Zhou, H., Lin, T., Luo, G., Shen, X.: A joint service migration and mobility optimization approach for vehicular edge computing. IEEE Trans. Veh. Technol. 69(8), 9041–9052 (2020). https://doi.org/10.1109/TVT.2020.2999617

    Article  Google Scholar 

  15. Borkowski, M., Schulte, S., Hochreiner, C.: Predicting cloud resource utilization. In: Proceedings of the 9th International Conference on Utility and Cloud Computing, New York, NY, USA, pp. 37–42, December 2016. https://doi.org/10.1145/2996890.2996907

  16. Thonglek, K., Ichikawa, K., Takahashi, K., Iida, H., Nakasan, C.: Improving resource utilization in data centers using an LSTM-based prediction model. In: 2019 IEEE International Conference on Cluster Computing (CLUSTER), pp. 1–8, September 2019. https://doi.org/10.1109/CLUSTER.2019.8891022

  17. Baig, S.-R., Iqbal, W., Berral, J.L., Carrera, D.: Adaptive sliding windows for improved estimation of data center resource utilization. Futur. Gener. Comput. Syst. 104, 212–224 (2020). https://doi.org/10.1016/j.future.2019.10.026

    Article  Google Scholar 

  18. Baig, S., Iqbal, W., Berral, J.L., Erradi, A., Carrera, D.: Adaptive prediction models for data center resources utilization estimation. IEEE Trans. Netw. Serv. Manage. 16(4), 1681–1693 (2019). https://doi.org/10.1109/TNSM.2019.2932840

    Article  Google Scholar 

  19. Kaur, G., Bala, A., Chana, I.: An intelligent regressive ensemble approach for predicting resource usage in cloud computing. J. Parallel Distrib. Comput. 123, 1–12 (2019). https://doi.org/10.1016/j.jpdc.2018.08.008

    Article  Google Scholar 

  20. Yaqub, M., et al.: State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sci. 10(7) (2020). https://doi.org/10.3390/brainsci10070427

  21. GitHub, T. Pagoulatou. https://github.com/titapag/HBPSHPO.git

  22. He, Y., Ma, W.J., Zhang, J.P.: The parameters selection of PSO algorithm influencing on performance of fault diagnosis. In: MATEC Web Conference, vol. 63, p. 02019 (2016). https://doi.org/10.1051/matecconf/20166302019

  23. Brochu, E., Cora, V.M., de Freitas, N.: A Tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599 [cs], December 2010

  24. GitHub, G. Rodola’, giampaolo/psutil. https://github.com/giampaolo/psutil

  25. GitHub, A. K. Mortensen, anderskm/gputil. https://github.com/anderskm/gputil

  26. Violos, J., Psomakelis, E., Tserpes, K., Aisopos, F., Varvarigou, T.: Leveraging user mobility and mobile app services behavior for optimal edge resource utilization. In: Proceedings of the International Conference on Omni-Layer Intelligent Systems, Crete, Greece, pp. 7–12, May 2019. https://doi.org/10.1145/3312614.3312620

  27. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, August 2016. https://doi.org/10.1145/2939672.2939785

  28. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 2962–2970. Curran Associates Inc. (2015)

    Google Scholar 

  29. Violos, J., Psomakelis, E., Danopoulos, D., Tsanakas, S., Varvarigou, T.: Using LSTM neural networks as resource utilization predictors: the case of training deep learning models on the edge. Presented at the 17th International Conference on the Economics of Grids, Clouds, Systems and Services (GECON), Zenodo. https://doi.org/10.5281/zenodo.4274441

  30. Schmitt, M., Wanka, R.: Particle swarm optimization almost surely finds local optima. Theoret. Comput. Sci. 561, 57–72 (2015). https://doi.org/10.1016/j.tcs.2014.05.017

    Article  MathSciNet  MATH  Google Scholar 

  31. Berkenkamp, F., Schoellig, A.P., Krause, A.: No-regret Bayesian optimization with unknown hyperparameters. J. Mach. Learn. Res. 20(50), 1–24 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is part of the ACCORDION project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Violos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Violos, J., Pagoulatou, T., Tsanakas, S., Tserpes, K., Varvarigou, T. (2021). Predicting Resource Usage in Edge Computing Infrastructures with CNN and a Hybrid Bayesian Particle Swarm Hyper-parameter Optimization Model. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-80126-7_40

Download citation

Publish with us

Policies and ethics