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Automated Data Processing of Bank Statements for Cash 

Balance Forecasting 

 

Abstract. The forecasting of cash inflows and outflows across multiple business 

operations plays an important role in the financial health of medium and large 

enterprises. Historically, this function was assigned to specialized treasury 

departments who projected future cash flows within different business units by 

processing available information on the expected performance of each business 

unit (e.g. sales, expenditures). We present an alternative forecasting approach 

which uses historical cash balance data collected from standard bank statements 

to systematically predict the future cash positions across different bank accounts. 

Our main contribution is on addressing challenges in data extraction, curation, 

and pre-processing, from sources such as digital bank statements. In addition, we 

report on the initial experiments in using both conventional and machine learning 

approaches to forecast cash balances. We report forecasting results on both 

univariate and multivariate, equally-spaced cash balances pertaining to a small, 

representative subset of bank accounts. 

Keywords: Time Series Forecasting, Cash Flow Forecasting, Data Wrangling. 

1 Introduction 

Cash flow forecasting is a critical task for corporations of all sizes and across the whole 

spectrum of business activities. The more diverse these activities are, the more 

demanding it is for the company stakeholders to make informed financial decisions. 

Teams of experienced treasurers are involved in estimating the future available cash of 

corporations and making investment decisions based upon these estimations. Every 

hour spent on investigating the financial information results in a non-negligible 

opportunity cost to the business stakeholders, especially in volatile times when the 

distribution of resources needs to be closely monitored. The benefits of using analytical 

methods to issue cash flow forecasts based on historical data are, therefore, twofold. 

Firstly, there is the potential to improve the forecasting accuracy, which optimizes the 

resource allocation across the business and, secondly, the potential to improve the 

performance of the treasury departments, shifting the focus from low-yield data 

collection tasks to lucrative investment decision making. 

This paper addresses the problem of forecasting daily cash balances of corporate 

bank accounts by modeling the data as equally-spaced time series. In line with the 

typical cash operations of medium and large enterprises, the forecasting time horizon 

of our predictive models has been set to one full month (22 business days). This 

requirement for predictions over larger time spans seems to be a distinguishing feature 

and additional challenge addressed in this work, when compared to other common 



financial time series modelling tasks (e.g., stock prices movement). The data in this 

research is extracted from bank statements, which are collected through the SWIFT 

network (see Section 4.1). The information contained in bank statements is aimed at 

providing live cash visibility and transparency across bank accounts. These are a 

standardized form of communicating financial information, which means that a 

forecasting system that consumes bank statements can be used by a large number of 

companies. By focusing on reporting the overall liquidity within the account, bank 

statements often neglect reporting information at the transactional level, which impedes 

the flexibility of analytical forecasting methods. In our approach, we have identified 

and addressed some significant challenges (Section 4) in data collection and pre-

processing, as well as with forecasting itself. Some of these challenges, such as 

inconsistency of transactional data reconciliation, irregularity of the statement issue 

time and missing data, are faced while reconstructing the cash balance data from the 

bank statements of different accounts. Other challenges revealed in the modeling 

process are related to the reduced historical data, operational outliers and pattern 

changes in cash balances. The main contribution of this paper is the assessment of these 

practical challenges and the proposal of solutions to alleviate them, with a view of 

scoping the prediction of cash balances based on bank statement data as a pure time 

series forecasting problem. By addressing the challenges, this paper exemplifies the use 

of both conventional (SARIMA, TES) and machine learning (ANN) models to issue 

cash balance forecasts in an automated and scalable manner. The scalability of the 

approach presented in this paper is compared to the historical (and still conventional) 

method used in cash flow forecasting. This method requires manual data aggregations 

and domain experts to estimate the expected performance of different business units 

within an organisation. 

This paper is organized as follows: Relevant terminology is first introduced in 

Section 2, followed by a description of the data in Section 3. Section 4 describes data 

challenges associated with account balance forecasting. Section 5 presents related work 

on both conventional and machine learning methods applied to the problem of time 

series forecasting. Section 6 describes the experimental methodology used to compare 

the performance of several conventional and machine learning methods across cash 

balance accounts selected to illustrate the identified challenges. Section 7 presents the 

conclusions and future directions. 

2 Terminology and Notation 

A time series dataset is a series of values of one variable (univariate) or multiple 

variables (multivariate) that are organized in an ordered structure provided by the time 

component of the series. The time component of a time series not only enriches the 

series with information, but also sets constraints on the dependencies between the 

values of the variables in the series. In that respect, all entries of a time series are 

interdependent, which constraints the sampling methods that can be applied to the data. 

A forecast of a time series is defined as an ordered prediction of the future values of 

the series. We define a time series 𝑦𝑘 , where 𝑦𝑘  takes values from the ordered group 

𝑦1, 𝑦2, … , 𝑦𝑛. A forecast 𝐹𝑛+1, 𝐹𝑛+2, . . , 𝐹𝑛+𝑚 of the series is defined as a prediction the 

values of the series 𝑦𝑘 , over the period of 𝑛, 𝑛 + 𝑚 days, where m is the forecasting 



horizon. The accuracy of a forecast is inferred from the deviation of the forecast from 

the actual values of the series over the forecasting horizon. There are multiple functions 

that can be used to compute the deviation. In this paper, we used the normalized root 

mean squared error (NRMSE) and the symmetric mean absolute percentage error 

(SMAPE) defined below: 

 𝑁𝑅𝑀𝑆𝐸 = √
∑ (𝐹𝑖 − 𝑦𝑖)2
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A transfer function f is used to map a subset of the past values of the series to the 

forecasted values. Depending on the forecasting methods used, the subset of past values 

can vary in size. A good way to choose the subset size is by analyzing the 

autocorrelation function of the series. The autocorrelation function is the correlation of 

the signal with a lagged copy of itself as a function of the lagging steps. A strong 

correlation for a certain number of lagged steps l indicates that the value of the 𝑘𝑡ℎ 

entry in the series has a strong influence on the  (𝑘 + 1)𝑡ℎ entry, and therefore can be 

used to predict it. Similarly, a rapid drop in the autocorrelation function at lag 𝑙′ 
indicates that the entries past the 𝑙′𝑡ℎ do not influence the prediction power of the 

transfer function, suggesting feeding the function a subset of 𝑙′ series entries. So far, 

only the univariate time series forecasting problem has been discussed. A multivariate 

time series problem can contain, along the target series 𝑦𝑘 , both endogenous and 

exogenous variables. An input variable is exogenous if it influences the target variable 

without being influenced by it; and endogenous if it can be influenced by the target 

variable. For example, the day in the month might influence the corporate cash balance 

due to the seasonality of cash operations, however, the cash balance does not influence 

what day it is. In contrast, the largest daily transaction within a bank account influences 

and is influenced by the daily cash balance of the account. 

 

3 Data Description 

The format of the data collected for this work is standardized by the Society for 

Worldwide Interbank Financial Telecommunication (SWIFT), the provider of a global 

network used for financial transactions. Depending on the scope of the information 

transferred, SWIFT uses different messaging types (MT). The types referring to cash 

management are under the format MT9xx. The two messaging types used in this work 

are MT940 and MT942. MT940 is the format used for end-of-day bank account 

statements whereas MT942 is the format used for intraday reporting. An MT940 

statement includes the list of transactions having cleared during a business day and a 

MT942 statement includes a subset of the transactions cleared from the previous 

statement onwards. Although the standard of the messaging types for cash management 



services is ensured by SWIFT, different banking entities have different data submission 

conventions maintained within their various legacy systems. 
The bank statements issued for corporate users are similar in format to the retail 

bank statements. They contain a header detailing the account name, identification code, 
datetime of issue and the opening balance and closing balance. The bulk statement 
contains the list of transactions that sum up to the difference between the closing and 
the opening balance. Each transaction has an entry date, value date, amount, and several 
optional references: funds code, transaction type, identification code, reference to 
account owner and information for account owner. A subset of relevant features 
synthetized from a statement is: “’datetime’: ’2020-01-30 21:30’, ‘open’: £400000, 
‘close’: £387000, ‘transactions’: {‘value date’: ’2020-01-31 00:00’, 

‘value':+£4000, ‘identification code’: ’CHK’, ’ref’:’12354538 Cheque Company A’,  
etc.}”. 

This section outlined the richness of the information contained in a standard bank 
statement. Section IV will discuss the specific challenges associated with the extraction 
of consistent and ordered cash balances from various bank statements. 

 

4 Account Balance Data Challenges 

The challenges presented by time series forecasting are well known. Fine-tuned models 

developed through conventional or machine learning methods suffer from time 

instability due to the lack of stationarity, degrees of uncertainty in historical time 

periods and the restrictions on train, test and validation splits due to time sequences, 

see e.g. [1]. Time Series data corresponding to financial transactions, however, pose 

additional difficulties, which do not seem to have been addressed in the academic 

literature yet. 

 

4.1 Reconstruction Challenges 

Inconsistency of Transactional Data Reconciliation. Some challenges of integrating 

merging financial time series data into a consistent format were discussed in [2]. Due 

to the global nature of many corporations, international payments and markets have an 

effect on statement data. Statements received from the bank are given relative 

timestamps based on time zones, meaning that collating transactions from multiple 

regions can lead to discrepancies. One such discrepancy often occurs when aggregating 

intraday statements (MT942) and reconciling against end of day statements (MT940), 

due to transactions having value dates past the issue date of the end of day statements. 

 

Irregularity in Statement Time of Issue. In addition to reconciling transactional 

information within bank statements at the global market scale, a forecasting system 

needs to consider the temporal component of the cash balance time series obtained from 

bank statements. The temporal component of a statement of a bank account can be 

inferred as the time of issue of the statement by the banking institution managing the 

account. Because different banking institutions have different legacy systems for 

collating transactional information into statements, the statement reporting offering 



varies across regions and legislations but also across banks within the same country. 

Most affected by this inconsistency are the intraday statements which need to be 

assigned an accurate date and time to allow for the reconstruction of the corresponding 

time series. With the statements arriving at different times during the day, only an 

intermittent time series can be reconstructed. Additionally, the average number of 

statements collected per day is between 2 to 5, limiting the potential of resampling 

methods as a solution to the series intermittence. Given the circumstances, we chose to 

de-scope the use of intraday statements from the current study. 

 

Missing Data. Notwithstanding the irregularity in time of issue, assuming that there 

are a small number of transactions at the time when the end of day statement is collated 

(usually mid-night), the reconstructed time series of the end of day balances should be 

continuous and equally spaced. However, there are other factors that influence the data 

collection process, within a live environment. For example, there can be a temporal 

downtime of a service yielding interruptions or duplications of data that needs to be 

investigated manually. A specific example is the closing available balance which might 

be reported only sparsely or not reported at all for some bank accounts. 
It is important to note that in other contexts that data seemingly missing at random 

can have a hidden serious bias (see e.g. [3]). Here, much of the data is missing purely 
due to different financial reporting conventions associated with the different accounts. 
Rather than being a specific problem with missing data per se, it is possible that there 
may be some hidden structure in the data associated with an intra-monthly effect 
identified by practitioners. This is something we wish to explore in a continuous-time 
model in future research [4]. 

 

4.2 Forecasting Challenges 

Reduced Historical Data - Many of the state-of-art linear forecasting algorithms of 

univariate time series are based upon the extraction of seasonal patterns. These patterns 

are either extracted directly, in the case of stationary seasonality, or are indirectly 

trained upon through feeding the algorithms additional exogenous features of the time 

component (e.g. day of month, month of year, etc.). However, when the time series has 

less than one full period of a season, little information can be inferred on the seasonal 

pattern of the series. In the context of this study, many of the corporate accounts 

considered were recorded for between 6 to 9 months, which posed a challenge in 

modelling any potential pattern manifested for longer than a quarter. Additionally, 

depending on the commercial agreement between the client and their banking partners, 

the cash balances of the client’s bank accounts are reported with different granularities. 

Some accounts are reported on every calendar day, accounts are only reported on 

working days, and others are reported at different days during the month. For example, 

there are accounts which are set to report only on the first Wednesday, Thursday and 

Friday of each month (Figure 1). The resulting time series of cash balances is sparse, 

with the balance information being populated at irregular time intervals that depend on 

the day of week rather than the calendar day. In both these situations, we chose to put 

the accounts with insufficient data points out of scope of this paper. Consequently, we 

excluded the bank accounts for which the reconstructed cash balance contained less 

than 15 data points per month (missing data) or less than 6 months’ worth of data. 



 

Fig. 1. Sparsely reported account. The y axis is a scaled true cash flow of the account. 

Operational Outliers - Barring the stochastic component of the cash inflows and 

outflows, which are guided by external factors such as market volatility or client 

performance, the data contained within the statements issued for a business bank 

account is, a genuine representation of the cyclical business activities managed by the 

account. However, within the treasury management sector, it is often the case that 

seemingly random interventions of the domain specialists blurs away the valuable 

insights that the data has to offer (e.g. Figure 2). Operations such as inter-subsidiary 

lending, long term investments, mergers or acquisitions are traced in the cash balance 

as irregular sparks or dips which are challenging to be picked up through univariate 

modelling of the time series. The immediate solution to the challenges posed by the 

operational outliers is to flag out and eliminate the transactions corresponding to these 

outliers from the reconstructed cash balance and only model those transactions that are 

inherent to the business operations performed through the account. However, due to the 

subjective nature of the treasury management decisions, flagging these manual 

interventions has proven to be challenging even for domain experts that are external to 

the company department making the treasury decisions. Applying tests based on 

statistical metrics such as the standard deviation did not yield an improvement in 

forecasting performance. In the future we plan to use more sophisticated metrics for 

identifying the operational outliers, including smoothing functions and designated 

anomaly detection models. 

 



 Fig. 2. Operational outliers revealed in an account sample. The y axis is a scaled true cash 

balance of the account. 

Pattern Changes in Cash Balances - Large enterprise clients managing multiple 

production lines, brands and businesses present an additional layer of complexity into 

their cash balance sheets. Due to the volatility of the different markets their products 

address, decisions of cash allocations are being made at an increased pace, resulting in 

bank accounts being opened, closed or put out of use at various times during the year. 

One example of a cash balance with pattern change is shown in Figure 3. In this 

instance, the average cash balance suddenly drops during the period April to October 

2019 with no respective behavior for the same period of 2018. Similar anomalies in the 

cash balances were considered separately by applying transformations to the time series 

and optimizing the model hyper-parameters in a manual manner. 

 

Fig. 3. Account sample demonstrating a pattern change in the period April - October 2019. The 

y axis represents the scaled true cash balance of the account. 

5 Data Description 

This section provides an overview of related work using both conventional and machine 

learning methods for financial forecasting. Traditional methods include Naïve 

Forecasting, which uses the actual cash flow data from a previous time period as the 

forecast for the upcoming period (REF).  Simple Moving Average Forecasting (SMAF) 

adds the recent closing prices, then divides the total by the number of time periods to 

calculate the average. Exponential Smoothing uses exponential functions to assign 

exponentially decreasing weights over time periods and is useful when the more recent 

past is likely to have more impact on predicting a forecast than more historical past. For 

large historical cash balance datasets, autoregressive moving average (ARMA) and 

autoregressive integrated moving averages models (ARIMA) can be used to identify 

autocorrelations and are more suitable for long term forecasting. However, due to the 

challenges identified in section 4, there is no one size fits all solution. 

 



5.1 Conventional Approaches to Financial Forecasting 

It is important to recognize that finance presents idiosyncratic forecasting challenges 

that are significant in their own right. The inherently stochastic nature of the subject is 

further exacerbated by additional sources of short-term randomness that are typically 

modelled using an unobserved stochastic volatility component. Conventional 

forecasting approaches such as ARIMA are also typically at odds with notions of 

market efficiency [5], theoretical options-pricing models constructed via foundational 

arguments such as absence of arbitrage [6] and the stylized empirical facts of financial 

time series [7].  Financial time series modelling is also an inherently specialist area. 

Commonly used ARCH/GARCH models for (financial) time series are equivalent to 

ARMA models for an unobserved volatility component. However, a range of different 

model variations are possible [8]. This sheer range of available models underscores the 

specialist nature of the subject. Further extensions of these classical models have been 

used in applications that variously account for further autocorrelations in the observed 

series [9] and for additional regime-switching effects [10]. However, within this, the 

need to account for unobserved volatility fluctuations remains paramount. 

Other non-time-series approaches to forecasting, e.g. those based around the 

technical analysis methods popularized by practitioners (see e.g. [9]), are possible. The 

academic literature on technical analysis is voluminous, see e.g. [12] or [13] for a 

review. However, such approaches have yet to permeate mainstream finance. An 

exception is [14] who use localized regression approaches to gauge the plausibility of 

technical analysis strategies. Thus, this serves to motivate the study of machine-

learning techniques within financial forecasting. As an illustration, [15] reviewed 

corporate cash flow forecasting using account receivable data collected through a 

specialized accounting software, which provides a richer view of the individual 

transactions. 

5.2 Machine Learning Approaches to Financial Forecasting 

The use of deep learning for time series prediction, in specific domains is not new, but 

remains challenging due to the need for extremely large datasets of high quality data 

and the lack of transparency in how decisions were made. One of the most targeted 

areas is stock market forecasting predicting stock prices in different time slice windows. 

[16] created a deep learning framework which combined wavelet transforms, stacked 

auto-encoders and long-short term memory (LSTM) networks to predict six stock 

indices, one-step-ahead of the closing price. [17] utilized LSTM networks for 

predicting out-of-sample directional movements for a number of financial stocks and 

outperform other methods such as random forests. [18] proposed day-ahead multi-step 

load forecasting using both recurrent neural networks (RNN) and convolutional neural 

networks (CNN). In their work the use of the CNN model improved the forecasting 

accuracy by 22.6% compared to the application of seasonal ARIMAX. However, the 

dataset used was concerned with predicting accurate building-level energy load 

forecasts which looked at how similarities within data space can be identified in 

financial forecasting. 

   Whilst Deep Learning has been successfully applied in many domains, it is not always 

successful. Small datasets do not tend to perform well, with research indicating that to 

be successful, millions of data points are required. Data quality is always an issue when 

applying machine learning, the generalization error of artificial neural networks can be 



improved by the addition of noise in the training phase.  Consequently, this provides a 

barrier to be overcome with respect to forecasting financial time series. This may help 

to explain some of the data challenges described in section 3. Despite some recent 

progress, explaining and interpreting models remains challenging. Ensuring the 

financial interpretability of the deep learning models constructed is thus far from being 

a foregone conclusion. 

   Ensemble machine learning models have also been used for financial forecasting in 

e.g. [19] and [20]. [19] combined two traditional ensemble machine learning 

algorithms: random subspace and MultiBoosting to create a method known as 

RSMultiBoosting to try and improve the accuracy of forecasting the credit risk of small-

to-medium companies. RSMultiBoosting outperformed traditional machine learning 

algorithms on small datasets and the ability to rank features according to the decision 

tree relative importance score improved accuracy. [21] conducted a study investigating 

several models including deep and recurrent neural networks and the CART regression 

forest to examine non-linear relationships between input and output features on 

abnormal stock returns generated from earnings announcements based on financial 

statement data. The results indicated that non-linear methods could predict the direction 

of the “absolute magnitude of the market reaction to earnings announcements correctly 

in 53% to 59% of the cases on average.” [21] with random forest approaches providing 

the best results. Whilst this is a reasonable result, it highlights the issues of data quality 

(as discussed in section 2) and its impact on whether an account is forecastable. 

6 Experimental Comparison 

This section provides a comparative analysis of the performance of different time series 

forecasting techniques on a subset of anonymized time series that replicate real bank 

account cash balances. The sampling and pre-processing procedures are explained in 

subsection A. We report a novel approach of enriching the univariate time series 

pertaining to cash balance data by aggregating the transactions pertaining to bank 

statements by various statistical metrics (e.g. standard deviation). Subsection B 

describes the forecasting methodologies, beginning with the univariate approaches 

(SARIMA and TES), then enriching SARIMA with multivariate exogeneous 

constraints, and ultimately leveraging the multivariate input via a neural network 

architecture. 

6.1 Dataset Description 

To share the learnings gained from forecasting cash balance in various bank accounts, 

a sample time series dataset representative of cash balance data was created. The dataset 

consists of collections of time series corresponding to daily cash balances and some 

additional exogenous and endogenous variables. As described throughout the section 

on the data challenges, there are multiple granularities in which the account balance 

statements are recorded. The examples selected for this work are those for which the 

reconstructed time series contains at least one data point per business day. An additional 

level of complexity is given by the possibility of some accounts to consist of a group 

of individual bank accounts. 



A sparse time series is created by collating the closing balance amounts with 

corresponding value dates. To provide a consistent view over the balances of multiple 

accounts of a client, the closing balances are converted to a currency of choice. The 

missing values in the sparse time series are then forward filled to the granularity set for 

the account (per business day or daily). The reason for filling the values with previous 

valid entries (forward filling) is that it is presumed that in the valid dates when the 

balance is not reporting, there were no cash movements. In the case of groups of 

accounts, the date range is initially established as the minimum and maximum dates 

reported by any of the bank accounts in the group. The missing values in each individual 

bank account are then filled, initially forward and then backward as well, to cover the 

period between the earliest statements of the group and the individual earlies statement. 

Subsequently, the individual continuous time series are summed up to the grouped time 

series. The exogeneous variables obtained from the time component of each time series 

are then computed. Endogenous variables obtained through applying various statistical 

aggregations to the transactional statement data are also used to predict the cash 

balance. However, due to potential clashes with the IP of AccessPay, the aggregation 

methods will not be discussed explicitly. The sample dataset used throughout the paper 

represents a selection of 6 bank account aggregates with end of day cash balances 

reported in each business day during the period 18 June 2019 – 27 January 2020. Figure 

4 below shows each time series collected. A train-test split was applied, where the size 

of the test set is equal to the forecasting horizon of one month. 

 

Fig. 4. Cash Balance Series of the Selected Accounts. The train set is shown in blue and the test 

set is shown in black. The y axis represents the scaled true cash balance of each account. 

6.2 Experimental Results 

The results of the forecasting experiments are separated in three sections. The first 

section discusses the problem of univariate time series forecasting via conventional 

methods, ARIMA and TES. In the second section we propose an extension of the 

ARIMA to account for multivariate input. The third section discusses the results of a 

machine learning approach based upon ANNs. 

 



Conventional Univariate Time Series Forecasting. The conventional time series 

forecasting algorithms referred throughout this paper are the Seasonal Autoregressive 

Integrated Moving Average (SARIMA) and the Triple Exponential Smoothing (TES). 

The SARIMA model has seven hyper-parameters, one for the seasonal differentiation 

term, three for modelling the seasonal component of the series and three for modelling 

the remainder of the series. In the experiments undertaken for this paper, these 

parameters were determined through experimentation against the AIC score, leading to 

the SARIMA(1,0,1)(1,1,1)22. The value of 22 for the seasonal differentiation was 

chosen as the main number of business days in a month. 

The Triple Exponential Smoothing features four hyper-parameters. These are the 

trend type, the damping of the trend, the seasonal type and the seasonal differentiation 

term. Based upon heuristics, it was found that the best set of values for these parameters 

are: trend: additive, damped: False, seasonal: additive and seasonal differentiation: 22. 

The first three rows in Table 1 detail the performance of the two methods over the 

account samples, as compared to the Naive Average benchmark. While there are some 

accounts for which the TES prevails both the benchmark and the SARIMA model, 

overall, only SARIMA overcomes the benchmark in a consistent manner. 

Table 1. Aggregate accuracy metrics on the account samples 

Account  A1 A2 A3 A4 A5 A6 Mean 

Root Mean Squared Error 

Naïve Mean 1.27 4.47 1.12 0.47 0.66 0.85 1.47 

SARIMA 0.67 0.73 0.93 4.25 0.70 0.42 1.28 

TES 5.51 0.3 8.66 2.22 0.17 1.05 2.99 

MULTI SARIMA 0.67 0.56 0.62 4.67 1.55 0.53 1.43 

ANN 1.42 3.12 0.44 1.38 1.33 0.43 1.35 

Symmetric mean absolute percentage error 

Naïve Mean 53.17 60.38 26.86 33.98 22.84 50.87 41.35 

SARIMA 64.44 26.68 24.37 61.79 29.59 51.91 43.13 

TES 129.2 24.37 132.0 73.78 10.82 81.01 75.24 

MULTI SARIMA 63.64 27.73 22.68 60.51 47.26 55.19 46.17 

ANN 59.02 52.71 16.65 74.60 31.22 40.93 45.87 

 

To understand the gains and failures of the conventional univariate time series 

forecasting methods, we looked at the extreme cases for which the methods either 

outperformed or underperformed the benchmark by a considerable margin. From Table 

1, these are account 2 (Figure 5) and account 3 (Figure 6). On the second account 

sample, both ARIMA and TES yielded accuracies exceeding the benchmark as 

measured by both the NRMSE and the SMAPE metrics. Noticeably, the NRMSE score 

of TES was the global minimum across all methods and accounts tested. 

A different outcome was observed for Account 3. In this example, the vague monthly 

seasonality is only captured by the ARIMA method while TES seems to be tricked by 

the outlier around December into predicting a decreasing trend across January. To 

conclude, the univariate models are unstable and fail to generalize on the multitude of 



cash balance series. While some level of progress is achieved for a subset of accounts 

through these methods, they would ultimately be overwhelmed by the unresolved 

challenges discussed in Section 2, in particular the Operational Outliers. As these 

outliers appear into the cash balances as a result of the institutional decisions that are 

made based upon transactional data, it is hoped that through making use of the 

information contained within the transactional data more insights could be drawn to 

support the unidimensional forecasting. 

 
Fig. 5. Account 2 – Conventional forecasting outperformed the benchmark. The y axis represents 

the scaled true cash balance of the account. 

 
Fig. 6. Account 3 – Only SARIMA outperformed the benchmark. The y axis represents the scaled 

true cash balance of the account. 

Conventional Multivariate Time Series Forecasting. As detailed in the dataset 

description (Section 6.1), a multivariate dataset was obtained through extracting 

information from transactional data contained within the bank statements. A series of 

aggregation techniques were applied on the transactional data, each based upon the 

different types of transactions and correlations between them. The aggregates obtained 

in a form of sparse time series are forward-filled to ensure there is no effect of future 

values on the past entries. As the sum of the transactions within a day reconcile the end 

of day cash balance, the aggregate transactional time series represent a set of 

endogenous variables to the target variable. Therefore, these series cannot be directly 

used as exogenous constraints to the SARIMA model. The solution implemented in this 

paper was to shift the time component of the transactional aggregates forward by the 

size of the test set. In other words, for example, the aggregates computed for the July 



cash balances were used as exogenous constraints for predicting the cash balance during 

August. 

 
Fig. 7. Performance of SARIMA with transactional exogenous variables on accounts 2 and 3. 
The y axis represents the scaled true cash balance of each account. 

 

Machine Learning Approaches. The improvement in accuracy through the use of 

exogenous constraints based upon past transactional data indicates that the transactional 

data could be leveraged to train endogenous regressors on top of the univariate signal 

from the cash balance. A family of models that were shown to be able to map 

multivariate inputs to time ordered outputs are the neural networks (e.g. [22]). The 

assumption that the transactional aggregates retain information about future cash 

balances, a stacked ensemble of a dimensionality reduction algorithm and an artificial 

network architecture was built. Due to the commercial nature of the experiment 

reported in this paper, the exact architecture of the neural network (ANN) cannot be 

revealed. 

We report that the ANN architecture outperforms SARIMA with transactional 

exogenous constraints judged by both metrics used in this experiment. Compared 

against the univariate SARIMA, the machine learning method still underperforms, 

albeit by a small margin of 0.07 in the normalized root mean squared error metric. By 

comparing the individual performance over each account sample we can get a clearer 

picture of the difference between conventional and machine learning models. 

 

 
Fig. 8. Performance comparison of the univariate ARIMA and the multivariate NN methods on 

account 2 (0.73 vs 3.11) and account 3 (0.93 vs 0.44). The y axis represents the scaled true cash 
balance of each account. 



 

Fig. 9. Performance comparison of univariate ARIMA and multivariate NN over Account 1 (0.67 

vs 1.42). The y axis represents the scaled true cash balance of the account. 

Figure 8 presents a comparison of the accuracy of the two best performing models, 

univariate ARIMA and multivariate ANN, over the same two account samples 

discussed in previous sections. The 3 month historical actuals of the cash balances are 

included to give a view of the most recent trend in the series. Noticeably, while the 

ANN method outperforms by a large margin ARIMA on the Account 3, the 

performance over the second account is poor. We attributed the underperformance to 

the changing trend of the second account, which the ANN could not capture. In Figure 

9 we compare the two models over a different bank account which contains a salient 

operational outlier. Similar to the case of the second account, the neural networks could 

not learn the rapidly changing pattern of Account 1. However, when eliminating the 

very first datapoint in the series, the root mean squared error drops from 1.42 to 0.45, 

whereas the SARIMA model yields the same error of 0.66 (Table 1). These 

observations suggest that, given the rapidly changing trends within the series, the ANN 

architecture can learn the smoothly varying features better than the conventional 

methods. 

7 Conclusions and Further Work 

In this paper we presented an overview of the challenges of understanding, collating 

and exploring account balance data pertaining to private enterprises with a view of 

forecasting their future cash balances. We showed several techniques for addressing 

these challenges, which allowed us exemplify the use of both conventional and machine 

learning techniques for cash balance forecasting. Additionaly, we performed a 

comparative analysis of conventional and machine learning based time series 

forecasting models on a representative subset of bank accounts. The intermediate 

results portrayed a fair competition between Seasonal Auto Regressive Moving 

Average and Neural Network Architectures, indicative of the stochastic nature of 

enterprise account cash balances. Permanent collaboration with field experts, either 

internal or external (banks and customers), and with the architects of the legacy code 

used for parsing the SWIFT statements is the ultimate solution to alleviating a number 

of challenges discussed in this paper. In the future, we plan on exploring the 

transactional features in more depth to get an understanding of the way they infer the 



future values of the end of day cash balance. Additionally, through an improved 

collaboration with the domain specialists, we aim at limiting the influence of the 

challenges emphasized in this paper. 

Acknowledgements 

The authors would like to express their gratitude to the two anonymous referees for the 

helpful and supportive comments received. 

References 

1. Giles, C.L., Lawrence, S. & Tsoi, A.C. Noisy Time Series Prediction using Recurrent Neural 

Networks and Grammatical Inference. Machine Learning 44, 161–183 (2001) 

2. Katselas, D., Sidhu, B., Yu, C. Merging time‐series Australian data across databases: 

challenges and solution. Accounting & Finance 56, 1071-1095 

3. Shang, Y. (2019). Subgraph robustness of complex networks under attacks. IEEE 

Transactions on Systems, Man and Cybernetics: Systems 49 821-832 

4. Fry, J., Griguta, V-M., Gerber, L., Slater-Petty, H. and Crockett, K. (2021) Stochastic 

modelling of corporate accounts. Preprint. 

5. Fama, E.: Efficient capital markets: A review of theory and empirical work. Journal of 

Finance 25, 383-417 (1970). 

6. Merton, R. C.: The theory of rational options pricing. Bell Journal of Economics and 

Management Science 4, 141-183 (1973). 

7. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. 

Quantitative Finance 1, 223-236 (2001). 

8. Hentschel, L.: All in the family: Nesting symmetric and asymmetric GARCH models. 

Journal of Financial Economics 39, 71-104 (1995). 

9. Katsiampa, P.: Volatility estimation for Bitcoin: A comparison of GARCH models. 

Economics Letters 158, 3-6 (2017). 

10. Walid, C., Chaker, A., Masood, O. and Fry, J.: Stock market volatility and exchange rates 

in emerging countries: A Markov-state switching approach. Emerging Markets Review 12, 

272-292 (2011). 

11. Meyers, T. A. The technical analysis course, 4th edn. McHraw-Hill (2011). 

12. Park, C-H. and Irwin, S. H.: What do we know about profitability of technical analysis? 

Journal of Economic Surveys 21 786-826 (2007). 

13. Nazário, R. T. F., e Silva, J. L., Sobreiro, V. A. and Kimura, H.: A literature review of 

technical analysis on stock markets. Quarterly Review of Economics and Finance 66, 115-

126 (2017). 

14. Lo, A. W., Mamaysky, H., Wang, J.: Foundations of technical analysis: Computational 

algorithms, statistical inference and empirical investigation. Journal of Finance 55, 1705-

1765 (2000). 

15. Weytjens, H., Lohmann, E. & Kleinsteuber, M. Cash flow prediction: MLP and LSTM 

compared to ARIMA and Prophet. Electron Commer Res (2019). 

16. Bao, W., J. Yue, and Y. Rao, A deep learning framework for financial time series using 

stacked autoencoders and long-short term memory. PloS one Vol. 12(7), (2017) 



17. Fischer, T. C. Krauss. Deep learning with long short-term memory networks for financial 

market predictions. European Journal of Operational Research, Vol: 270(2), 654-669 (2018). 

18. Cai, M., Pipattanasomporn, M. and Rahman, S., 2019. Day-ahead building-level load 

forecasts using deep learning vs. traditional time-series techniques. Applied energy, 236, 

pp.1078-1088.  

19. Zhu, Y., Zhou, L., Xie, C., Wang, G.J. and Nguyen, T.V., 2019. Forecasting SMEs' credit 

risk in supply chain finance with an enhanced hybrid ensemble machine learning approach. 

International Journal of Production Economics, 211, pp.22-33. 

20. Salas-Molina, F., 2019. Fitting random cash management models to data. Computers & 

Operations Research, 106, pp.298-306. 

21. Amel-Zadeh, Amir and Calliess, Jan-Peter and Kaiser, Daniel and Roberts, Stephen, 

Machine Learning-Based Financial Statement Analysis (January 15, 2020). 

22. Akram, M., & El, C. (2016). Sequence to Sequence Weather Forecasting with Long Short-

Term Memory Recurrent Neural Networks. International Journal Of Computer 

Applications, 143(11), 7-11. 


