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Abstract. Kendall shape spaces are a widely used framework for the
statistical analysis of shape data arising from many domains, often re-
quiring the parallel transport as a tool to normalise time series data or
transport gradient in optimisation procedures. We present an implemen-
tation of the pole ladder, an algorithm to compute parallel transport
based on geodesic parallelograms and compare it to methods by integra-
tion of the parallel transport ordinary differential equation.
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1 Introduction

Kendall shape spaces are a ubiquitous framework for the statistical analysis of
data arising from medical imaging, computer vision, biology, chemistry and many
more domains. The underlying idea is that a shape is what is left after removing
the effects of rotation, translation and re-scaling, and to define a metric account-
ing for those invariances. This involves defining a Riemannian submersion and
the associated quotient structure, resulting in non trivial differential geometries
with singularities and curvature, requiring specific statistical tools to deal with
such data.

In this context parallel transport is a fundamental tool to define statistical
models and optimisation procedures, such as the geodesic or spline regression
[6,12] and for the normalisation of time series of shapes [8,1]. However paral-
lel transport is defined by an ordinary differential equation (ODE) and there
is usually no closed-form solution. Approximation methods have therefore been
derived, either by direct integration [6], or by integration of the geodesic equa-
tion to approximate Jacobi fields (the fanning scheme [9]). Another class of
approximations refereed to as ladder methods, relies on iterative constructions
of geodesic parallelograms that only require approximate geodesics [3].

In this work, we present an implementation of the pole ladder that leverages
the quotient structure of Kendall shape spaces and strongly relies on the open-
source Python package geomstats. We compare it to the method of Kim et al.
[6] by approximate integration.

We first recall the quotient structure of Kendall shape spaces and its use by
Kim et al. to compute parallel transport in sec. 2, then in sec. 3 we recall the
pole ladder scheme and the main result from [3] on its convergence properties.
Numerical simulations to compare the two methods are reported in sec. 4.
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2 The quotient structure of Kendall shape spaces

We first describe the shape space, as quotient of the space of configurations of
k points in Rm (called landmarks) by the groups of translations, re-scaling and
rotations of Rm. For a thorough treatment this topic, we refer the reader to [4,2].

2.1 The pre-shape space

We define the space of k landmarks of Rm as the space of m × k matrices
M(m, k). For x ∈M(m, k), let xi denote the columns of x, i.e. points of Rm and
let x̄ be their barycentre. We remove the effects of translation by considering
the matrix with columns xi − x̄ instead of x. We further remove the effects of
scaling by dividing x by its Frobenius norm (written ‖ · ‖). This defines the

pre-shape space Skm = {x ∈ M(m, k) |
∑k
i=1 xi = 0, ‖x‖ = 1}, which is

identified with the hypersphere of dimension m(k− 1)− 1. The pre-shape space
is therefore a differential manifold whose tangent space at any x ∈ Skm is given

by TxSkm = {w ∈M(m, k) |
∑k
i=1 wi = 0, Tr(wTx) = 0}.

The ambient Frobenius metric 〈·, ·〉 thus defines a Riemannian metric on
the pre-shape space, with constant sectional curvature and known geodesics: let
x, y ∈ Skm with x 6= y, and w ∈ TxSkm

xw = expx(w) = cos(‖w‖)x+ sin(‖w‖) w

‖w‖
, (1)

logx(y) = arccos(〈y, x〉) y − 〈y, x〉x
‖y − 〈y, x〉x‖

. (2)

Moreover, this metric is invariant to the action of the rotation group SO(m).
This allows to define the shape space as the quotient Σk

m = Skm/SO(m).

2.2 The shape space

To remove the effect of rotations, we define the equivalence relation ∼ on Skm
by x ∼ y ⇐⇒ ∃R ∈ SO(m) such that y = Rx. For x ∈ Skm, let [x] denote its
equivalence class for ∼. This equivalence relation results from the group action
of SO(m) on Rm. This action is smooth, proper but not free everywhere when
m ≥ 3. This makes the orbit space Σk

m = {[x] | x ∈ Skm} a differential manifold
with singularities where the action is not free.

One can describe these singularities explicitly : they correspond to the ma-
trices of Skm of rank m − 2 or less [7]. For k ≥ 3, the spaces Σk

1 and Σk
2 are

always smooth. Moreover, as soon as m ≥ k, the manifold acquires boundaries.
As an example, while the space Σ3

2 of 2D triangles is identified with the sphere
S2(1/2), the space Σ3

3 of 3D triangles is isometric to a 2-ball [7].
Away from the singularities, the canonical projection map π : x 7→ [x] is a

Riemannian submersion, and plays a major role in defining the metric on the
shape space. Let dxπ be its differential map at x ∈ Skm, whose kernel defines the
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vertical tangent space, which corresponds to the tangent space of the submanifold
π−1([x]), called fiber above [x]:

Verx = {Ax | A ∈ Skew(m)} = Skew(m) · x

where Skew(m) is the space of skew-symmetric matrices of size m.

2.3 The quotient metric

The Frobenius metric on the pre-shape space allows to define the horizontal
spaces as the orthogonal complements to the vertical spaces:

Horx = {w ∈ TxSkm | Tr(AxwT ) = 0 ∀A ∈ Skew(m)}
= {w ∈ TxSkm | xwT ∈ Sym(m)}

where Sym(m) is the space of symmetric matrices of size m. Lemma 1 from [12]
allows to compute the vertical component of any tangent vector:

Lemma 1. For any x ∈ Skm and w ∈ TxSkm, the vertical component of w can be
computed as Verx(w) = Ax where A solves the Sylvester equation:

AxxT + xxTA = wxT − xwT (3)

If rank(x) ≥ m− 1, A is the unique skew-symmetric solution of (3).

In practice, the Sylvester equation can be solved by an eigenvalue decomposition
of xxT . This defines verx, the orthogonal projection on Verx. As TxSkm = Verx⊕
Horx, any tangent vector w at x ∈ Skm may be decomposed into a horizontal and
a vertical component, by solving (3) to compute verx(w), and then horx(w) =
w − verx(w).

Furthermore, as Verx = ker(dxπ), dxπ is a linear isomorphism from Horx to
T[x]Σ

k
m. The metric on Σk

m is defined such that this isomorphism is an isometry.
Note that the metric does not depend on the choice of the y in the fiber π−1([x])
since all y in π−1([x]) may be obtained by a rotation of x, and the Frobenius
metric is invariant to the action of rotations. This makes π a Riemannian sub-
mersion. Additionally, π is surjective so for every vector field on Σk

m there is a
unique horizontal lift, i.e. a vector field on Skm whose vertical component is null
everywhere. The tangent vectors of Σk

m can therefore be identified with horizon-
tal vectors of Skm. One of the main characteristics of Riemannian submersions
was proved by O’Neill [13]:

Theorem 1 (O’Neill). Let π : M → B be a Riemannian submersion. If γ
is a geodesic in M such that γ̇(0) is a horizontal vector, then γ̇ is horizontal
everywhere and π ◦ γ is a geodesic of B of the same length as γ.

Remark 1. We emphasise that an equivalent proposition cannot be derived for
the parallel transport of a tangent vector. Indeed the parallel transport of a hor-
izontal vector field along a horizontal geodesic may not be horizontal. This will
be detailed in the next subsection and constitutes a good example of metric for
which computing geodesics is easier than computing parallel transport, although
the former is a variational problem and the latter is a linear ODE.
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Furthermore, the Riemannian distances d on Skm and dΣ on Σk
m are related

by
dΣ(π(x), π(y)) = inf

R∈SO(m)
d(x,Ry). (4)

The optimal rotation R between any x, y is unique in a subset U of Skm × Skm,
which allows to define the align map ω : U → Skm that maps (x, y) to Ry. In
this case, dΣ(π(x), π(y)) = d(x, ω(x, y)) and xω(x, y)T ∈ Sym(m). It is useful to
notice that w(x, y) can be directly computed by a pseudo-singular value decom-
position of xyT [5]. Finally, x and ω(x, y) are joined by a horizontal geodesic.

2.4 Implementation in geomstats

The geomstats library [10], available at https://geomstats.ai, implements
classes of manifolds equipped with Riemannian metrics. It contains an abstract
class for quotient metrics, that allows to compute the Riemannian distance,
exponential and logarithm maps in the quotient space from the ones in the top
space.

In the case of the Kendall shape spaces, the quotient space cannot be seen as
a submanifold of some RN . Moreover, the projection π and its total derivative dπ
can’t be computed explicitly. However, the align map amounts to identifying the
shape space with a local horizontal section of the pre-shape space, and thanks
to the characteristics of Riemannian submersions mentioned in the previous
subsections, all the computations can be done in the pre-shape space.

Recall that exp, log, and d denote the operations of the pre-shape space Skm
and are given in (1). We obtain from theorem 1 for any x, y ∈ Skm and v ∈ TxSkm

expΣ,[x](dxπv) = π(expx(horx(v))),

logΣ,[x]([y]) = dxπ logx(ω(x, y)),

dΣ([x], [y]) = d(x, ω(x, y)).

2.5 Parallel transport in the shape space

As noticed in Remark 1, one cannot use the projection of the parallel transport
in the pre-shape space Skm to compute the parallel transport in the shape space
Σk
m. Indeed [6] proved the following

Proposition 1 (Kim et al. [6]). Let γ be a horizontal C1-curve in Skm and v
be a horizontal tangent vector at γ(0). Assume that rank(γ(s) ≥ m − 1 except
for finitely many s. Then the vector field s 7→ v(s) along γ is horizontal and the
projection of v(s) to T[γ(s)]Σ

k
m is the parallel transport of dxπv along [γ(s)] if

and only if s 7→ v(s) is the solution of

v̇(s) = −Tr(γ̇(s)v(s)T )γ(s) +A(s)γ(s), v(0) = v (5)

where for every s, A(s) ∈ Skew(m) is the unique solution to

A(s)γ(s)γ(s)T + γ(s)γ(s)TA(s) = γ̇(s)v(s)T − v(s)γ̇(s)T . (6)

geomstats
geomstats
https://geomstats.ai
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Fig. 1. Schematic representation of the pole ladder

Eq. (5) means that the covariant derivative of s 7→ v(s) along γ must be a vertical
vector at all times, defined by the matrix A(s) ∈ Skew(m). These equations can
be used to compute parallel transport in the shape space. To compute the parallel
transport of dxπw along [γ], [6] propose the following method: one first chooses
a discretization time-step δ = 1

n , then repeat for every s = i
n , i = 0 . . . n

1. Compute γ(s) and γ̇(s),
2. Solve the Sylvester equation (6) to compute A(s) and the r.h.s. of (5),
3. Take a discrete Euler step to obtain ṽ(s+ δ)
4. Project ṽ(s+ δ) to Tγ(s)Skm to obtain v̂(s+ δ),
5. Project to the horizontal subspace: v(s+ δ)← hor(v̂(s+ δ))
6. s← s+ δ

We notice that this method can be accelerated by a higher-order integration
scheme, such as Runge-Kutta (RK) by directly integrating the system v̇ = f(v, s)
where f is a smooth map given by (5) and (6). In this case, steps 4. and 5. are
not necessary. The precision and complexity of this method is then bound to
that of the integration scheme used. As ladder methods rely only on geodesics,
which can be computed in closed-form and their convergence properties are well
understood [3], we compare this method by integration to the pole ladder. We
focus on the case where γ is a horizontal geodesic.

3 The Pole ladder algorithm

3.1 Description

The pole ladder is a modification of the Schild’s ladder [11] proposed by [8]. The
pole ladder is more precise and cheaper to compute as shown by [3]. It is also
exact in symmetric spaces [14]. We thus focus on this method. We describe it
here in a Riemannian manifold (M, 〈, 〉).

Consider a geodesic curve γ : t 7→ γ(t) ∈ M , with initial conditions x =
γ(0) ∈ M and w = γ̇(0) ∈ TxM . In order to compute the parallel transport of
v ∈ TxM along γ, between times x and y = γ(1), the pole ladder consists in
first dividing the main geodesic γ in n segments of equal length and computing
the geodesic from x with initial velocity v

nα , obtaining xv = Expx( v
nα ). Then for

each segment to repeat the following construction (see figure 1):

1. Compute the midpoint of the segment m = Expx( w2n ) and the initial speed
of the geodesic from m to xv: a = Logm(xv).

2. Extend this diagonal geodesic by the same length to obtain z = Expm(−a).
3. Repeat steps 2 and 3 with xv ← z and m← Expm(wn ).



6 N. Guigui et al.

After n steps, compute ṽ = nα(−1)nLogy(z). According to [3], α ≥ 1 can be
chosen, and α = 2 is optimal. This vector is an approximation of the parallel
transport of v along γ, Πxw

x v. This is illustrated on the 2-sphere and in the case
k = m = 3 on Figure 2.

3.2 Properties

The pole ladder is studied in depth in [3]. We give here the two main properties.
Beside its quadratic convergence speed, the main advantage is that this method
is available as soon as geodesics are known (even approximately). It is thus
applicable very easily in the case of quotient metrics.

Theorem 2. – The pole ladder converges to the exact parallel transport when
the number of steps n goes to infinity, and the error decreases in O( 1

n2 ), with
rate related to the covariant derivative of the curvature tensor.

– If M is a symmetric space, then the pole ladder is exact in just one step.

For instance, Σ3
2 is symmetric, making pole ladder exact in this case.

3.3 Complexity

The main drawback of ladder schemes is that logarithms are required. Indeed the
Riemannian logarithm is only locally defined, and often solved by an optimisation
problem when geodesics are not known in closed form.

In the case of Kendall shape spaces, it only requires to compute an alignment
step, through a singular value decomposition, with usual complexity O(m3), then
the log of the hypersphere, with linear complexity. Moreover, the result of log ◦ ω
is horizontal, so the vertical component needs not be computed for the exponen-
tial of step 2, and only the exp of the hypersphere, also with linear complexity,
needs to be computed. The vertical projection needs to be computed for the first
step. Solving the Sylvester equation through an eigenvalue decomposition also
has complexity m3. For n rungs of the pole ladder, the overall complexity is thus
O((n+ 1)(m3 + 2mk)) +mk +m3) = O(nm3).

Fig. 2. Visualisation of the pole ladder on S2 (left) and Σ3
3 (middle and right)
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Fig. 3. Error of the parallel transport of v along the geodesic with initial velocity w
where v and w are orthonormal.

On the other hand, the method by integration doesn’t require logarithms
but requires solving a Sylvester equation and a vertical decomposition at every
step. The overall complexity is thus O(2nm3 + mk). Both algorithms are thus
comparable in terms of computational cost for a single step.

4 Numerical Simulations and Results

We draw a point x at random in the pre-shape space, along with two orthogonal
horizontal unit tangent vectors v, w, and compute the parallel transport of dxπv
along the geodesic with initial velocity dxπw. We use a number of steps n between
10 and 1000 and the result with n = 1100 as the reference value to compute the
error made by lower numbers of steps. The results are displayed on Figure 3 for
the cases k = 4, 6 and m = 3 in log-log plots. As expected, the method proposed
by [6] converges linearly, while RK schemes of order two and four show significant
acceleration. The pole ladder converges with quadratic speed and thus compares
with the RK method of order two, although the complexity of the RK method
is multiplied by its order.

5 Conclusion and future work

We presented the Kendall shape space and metric, highlighting the properties
stemming from its quotient structure. This allows to compute parallel trans-
port with the pole ladder using closed-form solution for the geodesics. This
off-the-shelf algorithm can now be used in learning algorithms such as geodesic
regression or local non-linear embedding. This will be developed in future works.
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