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Abstract. We introduce diffusion means as location statistics on man-
ifold data spaces. A diffusion mean is defined as the starting point of an
isotropic diffusion with a given diffusivity. They can therefore be defined
on all spaces on which a Brownian motion can be defined and numerical
calculation of sample diffusion means is possible on a variety of spaces
using the heat kernel expansion. We present several classes of spaces, for
which the heat kernel is known and sample diffusion means can there-
fore be calculated. As an example, we investigate a classic data set from
directional statistics, for which the sample Fréchet mean exhibits finite
sample smeariness.

1 Introduction

In order to analyze data which are represented not on a vector space but a more
general spaceM, where we focus on manifolds here, it is necessary to generalize
concepts from Euclidean space to more general spaces. Important examples of
data on non-Euclidean spaces include directional data, cf. Mardia and Jupp
(2000), and landmark shape spaces, see Small (1996).

In the field of general relativity where similar generalizations are required,
one usually relies on the correspondence principle as a minimal requirement for
quantities on curved spaces. It states that an observable in curved space should
reduce to the corresponding observable in the flat case. In terms of statistics
this means that any generalization SM of a statistic S on Euclidean space to a
manifold M should reduce to S on Euclidean space.

The mean is the most widely used location statistic and was generalized to
metric spaces by Fréchet (1948), who defined it as the minimizer of expected
squared distance. This definition of the Fréchet mean satisfies the correspon-
dence principle. However, as is often the case in physics, it is by far not the
only parameter that has this property. In order to judge which potential other
generalizations of the mean are meaningful, we recall that one of the reasons the
mean is so widely used and useful is that it is an estimator of (one of) the model
parameter(s) in many parametric families of probability distributions including
Normal, Poisson, Exponential, Bernoulli and Binomial distribution. It is there-
fore useful to link potential generalizations of the mean to parametric families
on general data spaces.
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Few parametric families of probability distributions have been widely gen-
eralized to non-Euclidean data spaces or even to Rm with m > 1. One class of
distributions which can be widely generalized are isotropic normal distributions,
as these can be defined as the distribution of a Brownian motion after unit time.
Since Brownian motion can be defined on any manifold, this definition is very
general. The thus defined probability distribution have one location parame-
ter µt ∈ M and a spread parameter t ∈ R+. Its clear interpretation in terms
of the generalized normal distribution family makes the diffusion mean µt an
interesting contender for a generalization of the Euclidean mean.

The location parameter of Brownian motion can be defined using the heat
kernels p(x, y, t), which are the transition densities of Brownian motions. For a
fixed t > 0, we define the diffusion t-mean set as the minima

Et(X) = argmin
µt∈P

E[− ln p(X, y, t)]. (1)

The logarithmic heat kernel is naturally connected to geodesic distance due to
the limit lim

t→0
−2t ln p(x, y, t) = dist(x, y)2, cf. Hsu (2002), which means that

the Fréchet mean can be interpreted as the µ0 diffusion mean, i.e. the limit
for t → 0. In Euclidean space, Equation (1) reduces to the MLE of the normal
distribution, which means that µt does not depend on t. On other data spaces, the
two parameters do not decouple in general and µt can be different depending on
t. Since all diffusion means satisfy the correspondence principle for the Euclidean
mean, it is not immediately clear why the Fréchet mean should be preferred over
diffusion means for finite t > 0.

Explicit expressions for the heat kernel are known for several classes of man-
ifolds and for a more general class a recursively defined asymptotic series ex-
pansion exists. This means that diffusion means can be numerically determined
on many data spaces and their dependence on t can be studied. In this article,
we focus on smeariness of means as described by Hotz and Huckemann (2015);
Eltzner and Huckemann (2019); Eltzner (2020), more precisely finite sample
smeariness as described by Hundrieser et al. (2020). A smeary mean satisfies a
modified central limit theorem with a slower asymptotic rate than n−1/2. This
affects samples drawn from such a population, whose sample means can exhibit
finite sample smeariness.

After a brief overview of the relevant concepts, we will give a number of
examples of data spaces in which diffusion means can be readily computed.
Lastly, we investigate the diffusion means for a directional data set on S1 whose
Fréchet mean exhibits finite sample smeariness. We find that the diffusion means
exhibit less finite sample smeariness with increasing t.

2 Basic Concepts and Definitions

A Riemannian manifold (M, g) is a smooth manifold equipped with inner prod-
ucts 〈., .〉x on the tangent spaces TxM for each x ∈M such that x 7→ 〈vx, ux〉x is
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smooth for all vector fields u, v ∈ TM. Curves which are locally length minimiz-
ing are called geodesics. The Riemannian distance between two points is defined
by the infimum over the lengths of geodesics connecting the points. If there exist
more than one length minimizing geodesic joining x and y, we say that y is in
the cut of x and define the cut locus C(x) as the collection of all such points.

For every starting point x ∈ M and velocity vector v ∈ TxM there is a
unique geodesic γx,v and the exponential map expx : TxM→M maps v to the
point reached in unit time γx,v(1). The exponential map is a diffeomorphism
on a subset D(x) ⊂ TxM such that its image coincides with M\C(x), and the
logarithm logx :M\C(x)→ TxM is defined as the inverse map.

The heat kernel is the fundamental solution to the heat equation

d

dt
p(x, y, t) = 1

2∆xp(x, y, t)

where ∆ is the Laplace Beltrami operator on M and it is also the transition
density of Brownian motions on M. A Riemannian manifold is stochastically
complete if there exists a minimal solution p satisfying

∫
M p(x, y, t)dy = 1 for

all x ∈ M and t > 0. The minimal solution is strictly positive, smooth and
symmetric in its first two arguments.

Let (Ω,F ,P) be the underlying probability space of the random variable
X on the stochastically complete manifold M with minimal heat kernel p. We
define the log-likelihood function Lt :M→ R to be

Lt(y) = E[− ln p(X, y, t)] (2)

for t > 0. This gives rise to the diffusion means as the global minima of the log-
likelihood function, i.e. the points maximizing the log-likelihood of a Brownian
motion.

Definition 1 With the underlying probability space (Ω,F ,P), let X be a random
variable on M and fix t > 0. The diffusion t-mean set Et(X) of X is the set of
global minima of the log-likelihood function Lt, i.e.

Et(X) = argmin
y∈M

E[− ln(p(X, y, t))].

If Et(X) contains a single point µt, we say that µt is the diffusion t-mean of X.

We consider the asymptotic behavior and smeariness of the following estimator.

Definition 2 For samples X1, ..., Xn
i.i.d.∼ X on M we define the sample log-

likelihood function Ltn :M→ R,

Ltn(y) = − 1
n

ln
( n∏
i=1

p(Xi, y, t)
)

= − 1
n

n∑
i=1

ln p(Xi, y, t)

for every n ∈ N and the sample diffusion t-mean sets Et,n = argmin
y∈M

Ltn(y).
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Definition 3 (Smeariness of Diffusion Means) Consider a random variable
X on M, an assume that there is ζ > 0 such that for every x ∈ Bζ(0) \ {0}
one has Lt(expµ(x)) > Lt(µt). Suppose that for fixed constants CX > 0 and
2 < κ ∈ R we have for every sufficiently small δ > 0

sup
x∈TµtM, ‖x‖<δ

∣∣Lt(expµ(x))− Lt(µt)
∣∣ ≥ CXδκ .

Then we say that the diffusion mean µt of X is smeary.

Definition 4 (Finite Sample Smeary Mean) For the population mean µt ∈
M and its corresponding sample estimator µ̂tn let

mtn := nE[d2(µ̂tn, µt)]
E[d2(X,µt)]

be the variance ratio of µt. Then µt is called finite sample smeary, if

StFSS := sup
n∈N

mtn > 1 and StFSS <∞ .

The latter requirement distinguishes finite sample smeariness from smeariness,
where lim

n→∞
mtn =∞.

A consistent estimator for mtn can be given using the n-out-of-n bootstrap

m̂tn :=
n 1
B

∑B
b=1 d

2(µt,∗bn,n , µ̂
t
n)

1
n

∑n
j=1 d

2(µ̂tn, Xj)
.

This estimator is used in the application below.

3 Examples of known Heat Kernels

Example 5 The heat kernel p on the Euclidean space Rm is given by the func-
tion

p(x, y, t) =
(

1
(4πt)m/2

)
e
−|x−y|2

4t .

for x, y ∈ Rm and t > 0. The diffusion t-means of a random variable X does not
depend on t and coincide with the expected value E[X] since

argmin
y∈Rm

Lt(y) = argmin
y∈Rm

E[(X − y)2]

Thus, µt = E[X] for all t > 0.

Example 6 The heat kernel on the circle S1 is given by the wrapped Gaussian

p(x, y, t) = 1√
4πt

(∑
k∈Z

exp
(−(x− y + 2πk)2

4t

))
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for x, y ∈ R/Z ∼= S1 and t > 0, and the log-likelihood function for the random
variable X : Ω → S1 becomes

Lt(y) = − ln
(√

4πt
)

+
∫
S1

ln
(∑
k∈Z

exp
(−(x− y + 2πk)2

4t

))
dPX(x)

Notably, even on this simple space, the t-dependence in the exponentials is not
a simple prefactor and µt is therefore explicitly dependent on t.

Example 7 The heat kernel on the spheres Sm for m ≥ 2 can be expressed
as the uniformly and absolutely convergent series, see (Zhao and Song, 2018,
Theorem 1),

p(x, y, t) =
∞∑
l=0

e−l(l+m−1)t 2l +m− 1
m− 1

1
AmS

C
(m−1)/2
l (〈x, y〉Rm+1)

for x, y ∈ Sm and t > 0, where Cαl are the Gegenbauer polynomials and AmS =
2π(m+1)/2

Γ ((m+1)/2) the surface area of Sm. For m = 2, the Gegenbauer polynomials C1/2
l

coincide with the Legendre polynomials P 0
l and the heat kernel on S2 is

p(x, y, t) =
∞∑
l=0

e−l(l+1)t 2l + 1
4π P 0

l (〈x, y〉R3).

Again, µt is explicitly dependent on t on these spaces.

Example 8 The heat kernel on the hyperbolic space Hm can be expressed by
the following formulas, see Grigor’yan and Noguchi (1998), for n ≥ 1. For odd
m = 2k + 1, the heat kernel is given by

p(x, y, t) = (−1)k

2kπk
1√
4πt

ρ

sinh ρ

(
1

sinh ρ
∂

∂ρ

)k
e−k

2t− ρ
2

4t

where ρ = distHm(x, y) and for even m = 2k + 2, it is given by

p(x, y, t) = (−1)k

2k+ 5
2πk+ 3

2
t−

3
2

ρ

sinh ρ

(
1

sinh ρ
∂

∂ρ

)k ∫ ∞
ρ

s exp
(
− s

2

4t

)
(cosh s− cosh ρ) 1

2
ds.

Again, µt is explicitly dependent on t on these spaces.

Example 9 The fundamental solution to the heat equation on a Lie group G of
dimension m is

p(x, e, t) = (2πt)−m/2
∏
α∈Σ+

iα(H)
2 sin(iα(H)/2) exp

(
‖H‖2

2t + ‖ρ‖
2t

2

)
· Ex(Xτ > t)

where e is the neutral element, x = exp(Ad(g)H) ∈ G\C(e) for some g ∈ G, Σ+

is the set of positive roots, ρ =
∑
α∈Σ+ α, and τ is the hitting time of C(e) by

(xs)0≤s≤t. Lie groups are relevant data spaces for many application, e.g. in the
modeling of joint movement for robotics, prosthetic development and medicine.
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The symmetry in the example above is quite noticeable and in fact when t > 0
and x ∈ M where M = Rm,Sm or Hm, the heat kernel only depends on the
geodesic distance, see Alonso-Orán et al. (2019).

Remark 10 For spaces where a closed form has not been obtained, we can turn
to various estimates. We include some of the most well known below.

1. For complete Riemannian manifolds of dimension m, we have the asymptotic
expansion, see Hsu (2002),

p(x, y, t) ∼
(

1
2πt

)m
2

e
−d(x,y)2

2t

∞∑
n=0

Hn(x, y)tn

on compact subset with x /∈ C(y). Here Hn are smooth functions satisfying a
recursion formula, see Chavel (1984), with H0(x, y) =

√
J(expx)(exp−1

x (y))
and J denoting the Jacobian.

2. Assuming also non-negative Ricci curvature, the heat kernel is bounded from
both sides, see Grigor’yan (1994); Saloff-Coste (1992),

c1

vol(x,
√
t)

exp
(

dist(x, y)2

c2t

)
≤ p(x, y, t) ≤ c3

vol(x,
√
t)

exp
(

dist(x, y)2

c4t

)
where vol(x,

√
t) denotes the volume of the ball around x of radius

√
t and

positive constants ci for i = 1, ..., 4.
3. Using bridge sampling, the heat kernel can be estimated by the expecta-

tion over guided processes, see Delyon and Hu (2006); Jensen and Sommer
(2021). An example of this is the estimated heat kernel on landmark mani-
folds by Sommer et al. (2017).

4 Application to Smeariness in Directional Data

In this Section we apply diffusion means to the classic data set denoting the
compass directions of sea turtles leaving their nest after egg laying, cf. Stephens
(1969) and Mardia and Jupp (2000, p. 9). The data set is clearly bimodal with
two antipodal modes. The main mode is in north-northwestern direction, while
the smaller mode is exactly in the opposite direction. It was shown in Eltzner and
Huckemann (2019) that the Fréchet mean for this data set exhibits pronounced
finite sample smeariness.

In Figure 1a, we show that increasing the diffusivity t, the likelihood function
at the minimum, starting out unusually flat, approaches a parabolic shape. In
Figure 1b, we show the corresponding curves of estimated variance ratio m̂tn,
whose maxima can be used as estimators for the magnitude StFSS of finite sam-
ple smeariness. As expected from the visual inspection of the likelihoods, the
magnitude of finite sample smeariness decreases with increasing t.

This behavior of reducing the effects of smeariness has been found analo-
gously in other applications and simulations. These results suggest that diffusion
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(a) Data histogram and Fréchet functions

(b) Variances of sample means

Fig. 1: Diffusion means for nesting sea turtles. Panel (a) shows the main mode
of turtle directions in the east-northeastern direction of the sea shore and a sec-
ond mode in exactly opposite direction. The sample likelihood functions Ltn are
rescaled to a common scale but their relative minimum values were preserved.
With increasing t the minimum of Ltn approaches the center of the main mode
and Ltn approaches an x2 behavior at the minimum. Panel (b) shows that, cor-
respondingly, finite sample smeariness decreases in magnitude with increasing t.

means can provide a more robust location statistic than the Fréchet mean for
spread out data on positively curved spaces. This point is reinforced by esti-
mating t and µt jointly, which yields t̂ = 0.963. As one can see from the case
t = 1 in Figure 1, this leads to a very low magnitude of finite sample smeariness
compared to the Fréchet mean.
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