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In this paper we study vakonomic dynamics on contact systems with non-
linear constraints. In order to obtain the dynamics, we consider a space of
admisible paths, which are the ones tangent to a given submanifold. Then,
we find the critical points of the Herglotz action on this space of paths. This
dynamics can be also obtained through an extended Lagrangian, including
Lagrange multiplier terms.

This theory has important applications in optimal control theory for Her-
glotz control problems, in which the cost function is given implicitly, through
an ODE, instead of by a definite integral. Indeed, these control problems can
be considered as particular cases of vakonomic contact systems, and we can
use the Lagrangian theory of contact systems in order to understand their
symmetries and dynamics.

Keywords: Contact Hamiltonian systems, Constrained systems,

Vakonomic dynamics, Optimal Control.

1 Introduction

Given a Lagrangian L : TQ → R and a submanifold N ⊆ TQ, one can look for the
critical points of the Euler-Lagrange action restricted to the paths which are tangent to
N . This critical points are the solutions of the Euler-Lagrange equations for the extended
Lagrangian [3] L(qi, q̇i, λa) = L(qi, q̇i) − λaφ

a, where {φa} are a set of independent
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constraints defining N . We remark that the dynamics obtained from this principle is, in
general, different to nonholonomic dynamics [6, 13], in which the critical points of the
action are computed on the unconstrained space of paths, but the admisible variations
are constrained.

While nonholonomic dynamics has applications in engineering problems, vakonomic
mechanics can be used to study optimal control problems. This opens up the possibility
to apply results and techniques from Lagrangian mechanics to the study of optimal
control problems, such as the Noether theorem and its generalizations [15], or variational
integrators constructed from the theory of discrete mechanics [4].

On the other hand, in the Herglotz variational principle one considers a Lagrangian
L : TQ×R → R, L(qi, q̇i, z) that depends not only on the positions and velocities of the
system, but also on the action z itself. The action is then defined implicitly, through the
ODE ż = L(qi, q̇i, z). The critical points of this action are the solutions of the Herglotz
equations [12, 14]:

∂L

∂qi
−

d

dt

∂L

∂q̇i
=
∂L

∂q̇i
∂L

∂z
. (1)

It has recently been acknowledged that the Herglotz principle provides the dynamics for
the Lagrangian counterpart of contact Hamiltonian systems [9]. This has allowed the
developement of a theory of symmetries [10, 11] which in this setting are not related
to conserved quantities, but to dissipated ones, which decay at the same rate as the
energy. Furthermore variational integrators based on the Herglotz principle have been
developed [19, 2].

Contact dynamics and the Herglotz principle have applications on the description of
many physical systems, such as mechanical systems with friction, thermodynamic systems
and some cosmological models [5, 16, 17, 18].

While the dynamics of contact systems with (linear) nonholonomic constraints [7] has
been studied, a theory of contact vakonomic dynamics has not still been developed. This
theory could be useful for the study of the Herglotz Optimal Control Problem, introduced
in [8], in which the cost function is defined by an ODE, instead of an integral. This will
allow a new way to obtain the dynamical equations (on [8] they were obtained rather
indirectly, throught Pontryaguin maximum principle) and to apply some of the results
of contact Lagrangian systems to this situation.

The paper is structured as follows. In Section 2 we review the Herglotz principle. Its
traditional formulation, in which the action is defined implicitly, makes the implementa-
tion of the constraints difficult. We present and alternative in which the action is defined
explicitly, but vakonomic constraints are present. This will make the addition of new
constraints almost trivial. In Section 3 we obtain the vakonomic dynamical equations for
a constrained contact system, and see that this dynamics can also be obtained through
an extended contact Lagrangian. Finally, in Section 4, we sketch the relationship be-
tween the vakonomic dynamics of contact Lagrangian systems and the Herglotz optimal
control problem.
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1.1 The Herglotz variational principle, revisited

Let Q be the configuration manifold and let L : TQ×R → R be the contact Lagrangian.
Consider the (infinite dimensional) manifold Ω(q0, q1) of curves c : [0, 1] → Q with

endpoints q0, q1 ∈ Q. That is, c(0) = q0, c(1) = q1. The tangent space of Ω(q0, q1) at the
curve c, is the space of vector fields along c vanishing at the endpoints. That is,

TcΩ(q0, q1) = {δc : [0, 1] → TQ |δc(t) ∈ Tc(t)Q for all t ∈ [0, 1],

δc(0) = 0, δc(1) = 0}.
(2)

We fix a real number z0 ∈ R and consider the following operator:

Z : Ω(q0, q1) → C∞([0, 1] → R), (3)

which assigns to each curve c the function Z(c) that solves the following ODE:






dZ(c)

dt
= L(c, ċ,Z(c)),

Z(c)(0) = z0,

(4)

that is, it assigns to each curve on the base space, its action as a function of time.
Now, the contact action functional maps each curve c ∈ Ω(q0, q1) to the increment of

the solution of the ODE:

A : Ω(q0, q1) → R,

c 7→ Z(c)(1) −Z(c)(0).
(5)

Note that, by the fundamental theorem of calculus,

A(c) =

∫ 1

0
L(c(t), ċ(t),Z(c)(t))dt. (6)

Thus, in the case that L does not depend on z, this coincides with the classical Euler-
Lagrange action.

Remark 1. The Herglotz action is usually defined as A0(c) = Z(c)(1). However, this
definition and our definition only differ by a constant. Indeed,

A(c) = A0(c)− z0. (7)

In particular they have the same critical points. However the computations in the vako-
nomic principle are simpler for A.

As it is proved in [9], the critical points of this action functional are precisely the
solutions to Herglotz equation:

Theorem 1 (Herglotz variational principle). Let L : TQ×R → R be a Lagrangian func-

tion and let c ∈ Ω(q0, q1) and z0 ∈ R. Then, (c, ċ,Z(c)) satisfies the Herglotz equations:

d

dt

∂L

∂q̇i
−
∂L

∂qi
=
∂L

∂q̇i
∂L

∂z
,

if and only if c is a critical point of A.
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1.2 An alternative formulation of Herglotz variational principle

Another way to approach this problem is to consider a constrained variational principle
for curves on Q× R constrained to a hypersurface N . We see that this is equivalent to
the dynamics produced by a Lagrangian L when considering unconstrained curves on Q.

We will work on the manifold Ω̄(q0, q1, z0) of curves c̄ = (c, cz) : [0, 1] → Q × R such
that c(0) = q0, c(1) = q1, cz(0) = z0. We do not constraint cz(1). The tangent space at
the curve c is given by

TcΩ̄(q0, q1, z0) = {δc̄ = (δc, δcz) : [0, 1] → T (Q× R) |

δc̄(t) ∈ Tc(t)(Q× R) for all t ∈ [0, 1], δc(0) = 0, δc(1) = 0, δcz(0) = 0}.
(8)

In this space, the action functional Ā can be defined as an integral

Ā : Ω̄(q0, q1, z0) → R,

c̄ 7→ z1 − z0 =

∫ 1

0
ċz(t)dt.

(9)

We will restrict this action to the set of paths that satisfy ċz = L. For this, consider
the hypersurface N ⊆ T (Q× R), which is the zero set of the constraint function φ:

φ(q, q̇, z, ż) = ż − L(q, q̇, z). (10)

Conversely, given any hypersurface N transverse to the ż-parametric curves, by the
implicit function theorem there exists locally a function L such that N is given by the
equation ż = L. In this sense, we see that an hypersurface N ⊆ T (Q × R) is roughly
equivalent to a Lagrangian L : TQ× R → R.

We consider the submanifold of curves tangent to N

Ω̄N (q0, q1, z0) = {c̄ ∈ Ω̄(q0, q1, z0) | ˙̄c(t) ∈ N for all t} (11)

Notice that the map Id×Z : Ω(q0, q1) → Ω̄N(q0, q1, z0) given by (Id×Z)(c) = (c,Z(c))
is a bijection, with inverse prQ(c, cz) = c. Here, Z, is defined on (3). Moreover, the
following diagram commutes

R

Ω(q0, q1) Ω̄N (q0, q1, z0)
Id×Z

A Ā
(12)

Hence c̄ ∈ Ω̄N (q0, q1, z0) is a critical point of Ā if and only if c is a critical point of A.
So the critical points of A restricted to Ω̄(q0, q1, z0) are precisely the curves that satisfy
the Herglotz equations.

We will also provide an alternate proof. We find directly the critical points of Ā
restricted to Ω̄N (q0, q1, z0) ⊆ Ω̄(q0, q1, z0) using the following infinite-dimensional version
of the Lagrange multiplier theorem [1, 3.5.29].

4



Theorem 2 (Lagrange multiplier Theorem). Let M be a smooth manifold and let E be

a Banach space such that g : M → E is a smooth submersion, so that A = g−1({0}) is

a smooth submanifold. Let f : M → R be a smooth function. Then p ∈ A is a critical

point of f |A if and only if there exists λ̂ ∈ E∗ such that p is a critical point of f + λ̂ ◦ g.

We will apply this result to our situation. In the notation of this last theorem, M =
Ω̄(q0, q1, z0) is the smooth manifold. We pick the Banach space E = L2([0, 1] → R) of
square integrable functions. This space is, indeed, a Hilbert space with inner product

〈α, β〉 =

∫ 1

0
α(t)β(t)dt. (13)

We remind that, by the Riesz representation theorem, there is a bijection between
L2([0, 1] → R) and its dual such that for each α̂ ∈ L2([0, 1] → R)∗ there exists α ∈
L2([0, 1] → R) with α̂(β) = 〈α, β〉 for all β ∈ L2([0, 1] → R).

Our constraint function is

g : Ω̄(q0, q1, z0) → L2([0, 1] → R),

c̄ 7→ (φ) ◦ (c̄, ˙̄c),
(14)

where φ is a constraint locally defining N . Note that A = g−1(0) = Ω̄N (q0, q1, z0).
By Theorem 2, c is a critical point of f = Ā restricted to Ω̄N (q0, q1, z0) if and only if

there exists λ̂ ∈ L2([0, 1] → R)∗ (which is represented by λ ∈ L2([0, 1] → R)) such that
c is a critical point of Āλ = Ā+ λ̂ ◦ g.

Indeed,

Āλ =

∫ 1

0
Lλ(c̄(t), ˙̄c(t))dt, (15)

where
Lλ(q, z, q̇, ż) = ż − λφ(q, z, q̇, ż). (16)

Since the endpoint of cz is not fixed, the critical points of this functional Āλ are
the solutions of the Euler-Lagrange equations for Lλ that satisfy the natural boundary
condition:

∂Lλ

∂ż
(c̄(1), ˙̄c(1)) = 1− λ(1)

∂φ

∂ż
(c̄(1), ˙̄c(1)) = 0. (17)

For φ = ż − L, this condition reduces to λ(1) = 1.
The Euler-Lagrange equations of Lλ are given by

d

dt

(

λ(t)
∂φ(c̄(t), ˙̄c(t))

∂q̇i

)

− λ(t)
∂φ(c̄(t), ˙̄c(t))

∂qi
= 0 (18a)

d

dt

(

λ(t)
∂φ(c̄(t), ˙̄c(t))

∂ż

)

− λ(t)
∂φ(c̄(t), ˙̄c(t))

∂z
= 0, (18b)

since φ = ż − L, the equation (18b) for z is just

dλ(t)

dt
= −λ(t)

∂L

∂z
, (19)

substituting on (18a) and dividing by λ, we obtain Herglotz equations.
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1.3 Vakonomic constraints

If we have more constraints, we can obtain vakonomic dynamics, just by changing φ by
φa and λ by λa on (18), where a ranges from 0 to the number of constraints k. Indeed,
we restrict our path space to the ones tangent to submanifold Ñ ⊆ N ⊆ T (Q×R), where
N is the zero set of φ0, given by φ0 = ż − L. Repeating the similar computations, we
would find that the critical points of A|Ω(q0,q1,Ñ) are the solutions of

d

dt

(

λa(t)
∂φa(c̄(t), ˙̄c(t))

∂q̇i

)

− λa(t)
∂φa(c̄(t), ˙̄c(t))

∂qi
= 0 (20a)

d

dt

(

λa(t)
∂φa(c̄(t), ˙̄c(t))

∂ż

)

− λa(t)
∂φa(c̄(t), ˙̄c(t))

∂z
= 0, (20b)

φa(c̄(t), ˙̄c(t)) = 0, (20c)

where (φa)ka=0 are constraints defining Ñ as a submanifold of TQ × R. Since ∂φ0

∂ż
= 0,

the rest of the constraints can be chosen to be independent of ż. We denote

ψα(q, q̇, z) = φα(q, q̇, z, L(q, q̇, z)), (21)

µα =
λα

λ0
(22)

Lµ(q, q̇, z, t) = L(q, q̇, z) − µα(t)ψ
α(q, q̇, z) (23)

for α ∈ {1, . . . k}, provided that λ0 6= 0.
From this, we can write the equations (20) as

−
d

dt

(

λ0(t)
∂Lµ

∂q̇i

)

+ λ0(t)
∂Lµ

∂qi
= 0 (24a)

dλ0(t)

dt
= λ0(t)

∂Lµ

∂z
= 0, (24b)

ψα(c̄(t), ċ(t)) = 0, (24c)

ċz(t) = Lµ(c̄(t), ċ(t), t). (24d)

Substituting (24b) onto (24a), dividing by λ0 and reordering terms, we obtain

d

dt

(

∂Lµ

∂q̇i

)

−
∂Lµ

∂qi
=
∂Lµ

∂q̇i
∂Lµ

∂z
(25a)

ψα(c̄(t), ċ(t)) = 0, (25b)

ċz(t) = Lµ(c̄(t), ċ(t), t). (25c)

We remark that these equations are just the Herglotz equations for the extended La-

grangian L:
L : T (Q× R

k)× R → R

(q, µ, q̇, µ̇, z) 7→ L(q, q̇, z)− µαψ
α(q, q̇, z)

(26)
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1.4 Applications to control

The Herglotz optimal control problem [8] can be formulated by working on the control
bundle W ×R → Q×R, with local coordinates (xi, ua, z): the variables xi, the controls

ua and the action z.
The problem consists on finding the curves γ : I = [a, b] → W , γ = (γQ, γU , γz), such

that

1) end points conditions: γQ(a) = xa, γQ(b) = xb, γz(a) = z0,

2) γQ is an integral curve of X: γ̇Q = X ◦ (γQ, γU ) ,

3) γz satifies the differential equation ż = F (x, u, z), and

4) maximal condition: γz(b) is maximum over all curves satisfying 1)–3).

We remark that this can be interpreted as a vakonomic Herglotz principle on TW ,
with constraints given by the control equations φi = Xi(x, u, z)− q̇i and the Lagrangian
being the cost function L(xi, ua, q̇i, u̇a, z) = F (x, u, z). The equations of motion obtained
through the contact vakonomic principle coincides with the ones obtained indirectly
through Pontryaguin maximum principle in [8, Eq. 28]

q̇i = Xi, (27a)

µ̇i =
∂F

∂xi
− µj

∂Xj

∂xi
− µj

(

∂F

∂z
− µi

∂Xj

∂z

)

(27b)

= µi
∂F

∂z
− µj

∂Xj

∂xi
+
∂F

∂xi
−
∂Xj

∂z
µiµj,

ż = F (27c)

subjected to the constraints
∂F

∂ua
− µj

∂Xj

∂ua
= 0. (27d)
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