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On Gaussian Group Convex Models⋆

Hideyuki Ishi

Osaka City University, OCAMI, 3-3-138 Sugimoto, Sumiyoshi-ku, 558-8585 Osaka,
Japan

hideyuki@sci.osaka-cu.ac.jp

Abstract. The Gaussian group model is a statistical model consisting
of central normal distributions whose precision matrices are of the form
gg⊤, where g is an element of a matrix group G. When the set of gg⊤ is
convex in the vector space of real symmetric matrices, the set forms an
affine homogeneous convex domain studied by Vinberg. In this case, we
give the smallest number of samples such that the maximum likelihood
estimator (MLE) of the parameter exists with probability one. Moreover,
if the MLE exists, it is explicitly expressed as a rational function of the
sample data.

Keywords: Gaussian group model · affine homogeneous convex domain
· maximum likelihood estimator · Riesz distribution

1 Introduction

Let G be a subgroup of GL(N,R), and MG the set
{
gg⊤ ; g ∈ G

}
⊂ Sym(N,R).

The Gaussian group model associated to G is a statistical model consisting of
central multivariate normal laws whose precision (concentration) matrices be-
long to MG ([1]). It is an example of a transformation family, that is, an ex-
ponential family whose parameter space forms a group (see [2]). A fundamental
problem is to estimate an unknown precision matrix θ = gg⊤ ∈ MG from sam-
ples X1, X2, . . . , Xn ∈ RN . In [1], the existence and uniqueness of the maximum

likelihood estimator (MLE) θ̂ of θ are discussed in connection with Geometric
Invariant Theory. In the present paper, under the assumption that MG 6= {IN}
is a convex set, we compute the number n0 for which MLE exists uniquely with
probability one if and only if n ≥ n0 (Theorem 4). In this case, an expression of
the MLE as a rational function of the samples X1, . . . , Xn is given (Theorem 3).

Since MG is convex, it is regarded as a convex domain in an affine space IN+
V , where V is a linear subspace of the vector space Sym(N,R) of real symmetric
matrices of size N . Moreover MG is contained in the cone Sym+(N,R) of posi-
tive definite symmetric matrices, so that MG does not contain any straight line
(actually, we shall see that MG is exactly the intersection (IN+V )∩Sym+(N,R),
see Proposition 2 and Theorem 2). Thus MG is an affine homogeneous convex

⋆ Partially supported by KAKENHI 20K03657 and Osaka City University Advanced
Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and
Theoretical Physics JPMXP0619217849)



2 H. Ishi

domain on which G acts transitively as affine transforms. Then we can apply
Vinberg’s theory [9] to MG. In particular, using the left-symmetric algebra struc-
ture on V explored in [6], we give a specific description of MG as in Theorem
2, where the so-called real Siegel domain appears naturally. On the other hand,
every homogeneous cone is obtained as MG by [6]. In particular, all the sym-
metric cones discussed in [3] as well as the homogeneous graphical models in [8,
Section 3.3] appear in our setting.

The rational expression of MLE is obtained by using the algebraic structure
on V , whereas the existence condition is deduced from the previous works [4]
and [5] about the Wishart and Riesz distributions on homogeneous cones. It
seems feasible to generalize the results of this paper to a wider class of Gaussian
models containing decomposable graphical models based on [7] in future.

The author should like to express his gratitude to Professor Fumihiro Sato for
the information of the paper [1] as well as the interest to the present work. He is
also grateful to Professors Piotr Graczyk, Bartosz Ko lodziejek, Yoshihiko Konno,
and Satoshi Kuriki for the collaboration about applications of homogeneous
cones to mathematical statistics. The discussions with them yield most of the
featured ideas and techniques in this paper. Finally, the author sincerely thanks
the referees for their valuable comments and suggestions.

2 Structure of the convex parameter set

In what follows, we assume that MG is a convex set in the vector space Sym(N,R)
and that MG 6= {IN}. The affine subspace spanned by elements of MG is of
the form IN + V , where V is a linear subspace of Sym(N,R), and MG is an
open connected set in IN + V . Let G be the closure of G in GL(N,R). Then we
have MG = MG. Indeed, for g̃ ∈ G, the set g̃MGg̃

⊤ =
{
g̃θg̃⊤ ; θ ∈ MG

}
is contained in the closure MG of MG. On the other hand, since g̃ is in-
vertible, the set g̃MGg̃

⊤ is open in the affine space IN + V . Thus the point
g̃g̃⊤ ∈ g̃MGg̃

⊤ ⊂ MG is an relatively interior point of the convex set MG,
so that g̃g̃⊤ ∈ MG, which means that MG ⊂ MG. Therefore we can assume
that G is a closed linear Lie group without loss of generality. Furthermore, we
can assume that G is connected. Following Vinberg’s argument [9, Chapter 1,
Section 6], we shall show that MG0

alg
= MG, where G0

alg is the identity com-

ponent (in the classical topology) of the real algebraic hull of G in GL(N,R).
Let g be the Lie algebra of G. For h ∈ G0

alg, we have hh⊤ ∈ IN + V and

h gh−1 = g because these are algebraic conditions that are satisfied by all
the elements of G. The second condition together with the connectedness of
G tells us that hGh−1 = G. Let U be a neighborhood of IN in G0

alg such that

hh⊤ ∈ MG for all h ∈ U . Then for any θ = gg⊤ ∈ MG (g ∈ G), we have
hθh⊤ = (hgh−1)hh⊤(hgh−1)⊤ ∈ g0MGg

⊤
0 = MG, where g0 := hgh−1 ∈ G.

Thus, if h is the product h1h2 · · ·hm ∈ G0
alg with h1, . . . , hm ∈ U , we see that

hh⊤ ∈ MG inductively. Therefore we conclude that MG0
alg

= MG.
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By Vinberg [9], we have the generalized Iwasawa decomposition

G0
alg = T · (G0

alg ∩O(N)),

where T is a maximal connected split solvable Lie subgroup of G0
alg. Moreover,

T is triangularized simultaneously by an orthogonal matrix U ∈ O(N), which
means that a group T U =

{
U−1hU ; h ∈ T

}
is contained in the group TN

of lower triangular matrices of size N with positive diagonal entries. Let MU
G

be the set
{
U⊤θU ; θ ∈ MG

}
, which is equal to MT U . By the uniqueness of

the Cholesky decomposition, we have a bijection T U 3 h 7→ hh⊤ ∈ MU
G. The

tangent space of MU
G at IN is naturally identified with V U :=

{
U⊤yU ; y ∈ V

}
.

In general, for x ∈ Sym(N,R), we denote by x
∨

the lower triangular matrix

for which x = x
∨

+ (x
∨
)⊤. Actually, we have (x

∨
)ij =


xij (i > j)

xii/2 (i = j)

0 (i < j).

Then we

define a bilinear product 4 on Sym(N,R) by

x4y := x
∨
y + y(x

∨
)⊤ (x, y ∈ Sym(N,R)).

The algebra (Sym(N,R),4) forms a compact normal left-symmetric algebra
(CLAN), see [9, Chapter 2] and [6].

Lemma 1. The space V U is a subalgebral of (Sym(N,R),4). Namely, for any
x, y ∈ V U , one has x4y ∈ V U .

Proof. Let tU be the Lie algebra of T U . In view of the Cholesky decomposition
mentioned above, we have a linear isomorphism tU 3 T 7→ T + T⊤ ∈ V U . Thus
we obtain

tU =
{
x
∨

; x ∈ V U
}
. (1)

Let us consider the action of h ∈ T U on the set MU
G given by MU

G 3 θ 7→
hθh⊤ ∈ MU

G. This action is naturally extended to the affine space IN + V U

as affine transformations. The infinitesimal action of T = x
∨
∈ tU on IN + y ∈

IN + V U (y ∈ V U ) is equal to T (IN + y) + (IN + y)T⊤ = x+ x4y which must
be an element of V U . Therefore x4y ∈ V U . ut

Proposition 1 ([6, Theorem 2 and Proposition 2] ). If V U contains the
identity matrix IN , after an appropriate permutation of the rows and columns,
V U becomes the set of symmetric matrices of the form

y =


Y11 Y

⊤
21 . . . Y

⊤
r1

Y21 Y22 Y ⊤
r2

...
. . .

...
Yr1 Yr2 . . . Yrr


(
Ykk = ykkIνk , ykk ∈ R, (k = 1, . . . , r)

Ylk ∈ Vlk (1 ≤ k < l ≤ r)

)
,

where N = ν1 + · · · + νr, and Vlk are subspaces of Mat(νl, νk;R) satisfying
(V1) A ∈ Vlk ⇒ AA⊤ ∈ RIνl for 1 ≤ k < l ≤ r,
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(V2) A ∈ Vlj , B ∈ Vkj ⇒ AB⊤ ∈ Vlk for 1 ≤ j < k < l ≤ r,
(V3) A ∈ Vlk, B ∈ Vkj ⇒ AB ∈ Vlj for 1 ≤ j < k < l ≤ r.

Clearly IN ∈ V U if and only if IN ∈ V . In this case, Proposition 1 together
with [6, Theorem 3] tells us that T U = tU ∩ TN and MU

G = MT U = V U ∩
Sym+(N,R). It follows that we obtain:

Proposition 2. If IN ∈ V , one has MG = V ∩ Sym+(N,R).

Here we remark that every homogeneous cone is realized as MG this way by

[6]. For example, if U = IN , ν1 = · · · = νr = 2 and Vlk =

{(
a −b
b a

)
; a, b ∈ R

}
(1 ≤ k < l ≤ r), then MG = V ∩ Sym+(N,R) is linearly isomorphic to the cone
Herm+(r,C) of positive definite r× r Hermitian matrices, which is a realization
of the symmetric space GL(r,C)/U(r). See [4] and [6] for other examples.

If V U does not contain IN , we consider the direct sum Ṽ U := RIN ⊕ V U ,
which is also a subalgebra of (Sym(N,R),4). Then we apply Proposition 1
to Ṽ U . Since V U is a two-sided ideal of Ṽ U of codimension one, after some
renumbering of indices k and l, we see that V U equals the subspace of Ṽ U

costing of elements y with y11 = 0. Namely, we have the following.

Theorem 1. If V U does not contain the identity matrix IN , after an appro-
priate permutation of the rows and columns, V U becomes the set of symmetric
matrices of the form

y =


0 Y ⊤

21 . . . Y
⊤
r1

Y21 Y22 Y ⊤
r2

...
. . .

...
Yr1 Yr2 . . . Yrr


(
Ykk = ykkIνk , ykk ∈ R, k = 2, . . . , r

Ylk ∈ Vlk, 1 ≤ k < l ≤ r

)
,

where Vlk are the same as in Proposition 1.

In what follows, we shall consider the case where IN 6∈ MU
G because our

results below for the case IN ∈ MU
G will be obtained formally by putting ν1 = 0

and Vk1 = {0}, as is understood by comparing Proposition 1 and Theorem 1.
Put N ′ := ν2 + · · ·+νr = N −ν1. Let W and V ′ be the vector spaces of matrices
w and y′ respectively of the forms

w =

Y21...
Yr1

 ∈ Mat(N ′, ν1;R), y′ =

Y22 Y ⊤
r2

...
. . .

Yr2 . . . Yrr

 ∈ Sym(N ′,R).

Let P ′ be the set V ′ ∩Sym+(N ′,R). Then P ′ forms a pointed open convex cone
in the vector space V ′.

Theorem 2. Under the assumptions above, one has

MG =

{
U

(
Iν1 w

⊤

w y′

)
U⊤ ; w ∈W, y′ ∈ V ′, y′ − ww⊤ ∈ P ′

}
.

Moreover MG equals the intersection of Sym+(N,R) and the affine space IN+V .
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Proof. Let t′ be the set of the lower triangular matrices y′
∨

with y′ ∈ V ′. Then

we see from [6] that t′ is a Lie algebra, and that the corresponding Lie group
T ′ := exp t′ ⊂ GL(N ′,R) equals t′ ∩ TN ′ . Namely, T ′ is the set of h′ of the form

h′ =

T22... . . .

Tr2 . . . Trr

 ∈ TN ′

(
Tkk = tkkIνk , tkk > 0, k = 2, . . . , r

Tlk ∈ Vlk, 2 ≤ k < l ≤ r

)
.

Since we have tU =

{(
0
L T ′

)
; L ∈W, T ′ ∈ t′

}
by (1), the corresponding Lie

group T U is the set of

(
Iν1 0
L h′

)
with L ∈ W and h′ ∈ T ′. Therefore, MU

G =

MT U is the set of matrices

(
Iν1 0
L h′

)(
Iν1 L⊤

0 (h′)⊤

)
=

(
Iν1 L⊤

L LL⊤ + a′

)
with a′ =

h′(h′)⊤ ∈ P ′. On the other hand, as is discussed in [6, Theorem 3], the map
T ′ 3 h′ 7→ h′(h′)⊤ ∈ P ′ is bijective, which completes the proof. ut

3 Existence condition and an explicit expression of MLE

Let X1, . . . , Xn be independent random vectors obeying the central multivari-
ate normal law N(0, Σ) with θ := Σ−1 ∈ MG. The density function f of
(X1, . . . , Xn) is given by

f(x1, . . . , xn; θ) := (2π)−nN/2(det θ)n/2
N∏
j=1

e−x
⊤
j θxj/2 (xj ∈ RN , j = 1, . . . , n).

Let π : Sym(N,R) → V be the orthogonal projection with respect to the trace

inner product. Putting y := π(
∑N
j=1 xjx

⊤
j /2) ∈ V , we have f(x1, . . . , xn; θ) =

c(x)(det θ)n/2e−tr θy, where c(x) := (2π)−nN/2 exp(tr {(IN−π(IN ))
∑N
j=1 xjx

⊤
j /2}),

which is independent of θ. Thus, given Y := π(
∑n
k=1XjX

⊤
j /2) ∈ V , the max-

imum likelihood estimator θ̂ is an element of MG at which the log likelihood
function F (θ;Y ) := (n/2) log det θ − tr(Y θ) attains the maximum value.

In what follows, we shall assume that U = IN . Indeed, a general case is easily
reduced to this case. For k = 2, . . . , r, let V[k] and Wk−1 be the vector spaces of
matrices y[k] and Zk−1 respectively of the forms

y[k] =

Ykk Y ⊤
rk

...
. . .

Yrk . . . Yrr

 ∈ Sym(Nk,R), Zk−1 =

Yk,k−1

...
Yr,k−1

 ∈ Mat(Nk, νk−1;R),

where Nk := νk + · · · + νr. Note that V ′ = V[2] and W = W1 in the previous
notation. We have an inductive expression of y ∈ V as

y =

(
0 Z⊤

1

Z1 y[2]

)
, y[k] =

(
ykkIνk Z⊤

k

Zk y[k+1]

)
(k = 2, . . . r−1), y[r] = yrrIνr . (2)
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Let T[k] ⊂ TNk
be the group of lower triangular matrices y[k]

∨
(y[k] ∈ V[k]) with

positive diagonal entries. Then T ′ = T[2]. Any element h ∈ T is expressed as

h =

(
Iν1 0
L1 h[2]

)
, h[k] =

(
tkkIνk 0
Lk h[k+1]

)
∈ T[k] (k = 2, . . . , r − 1)

with Lk ∈Wk and h[r] = trrIνr ∈ T[r]. We observe that

h[k]h
⊤
[k] =

(
t2kkIνk tkkL

⊤
k

tkkLk LkL
⊤
k + h[k+1]h

⊤
[k+1]

)
∈ V[k].

We shall regard V[k] as a subspace of V ′ = V[2] by zero-extension. Define a map

qk : R>0 ×Wk → V ′ for k = 2, . . . , r − 1 by qk(tkk, Lk) :=

(
t2kk tkkL

⊤
k

tkkLk LkL
⊤
k

)
∈

V[k] ⊂ V ′, and define also qr(trr) := t2rrInr ∈ V[r] ⊂ V ′. If θ = hh⊤, we have

θ =

(
Iν1 L1

L1 L1L
⊤
1 + θ′

)
, θ′ =

r−1∑
k=2

qk(tkk, Lk) + qr(trr). (3)

For y′ ∈ V ′ = V[2] and k = 2, . . . , r − 1, we have

tr (y′qk(tkk, Lk)) = νkykkt
2
kk + 2tkk tr (Z⊤

k Lk) + tr (y[k+1]LkL
⊤
k ). (4)

Let mk (k = 1, . . . , r − 1) be the dimension of the vector space Wk, and take
an orthonormal basis {ekα}mk

α=1 of Wk with respect to the trace inner product.
For Lk ∈ Wk, let λk := (λk1, . . . , λkmk

)⊤ ∈ Rmk be the column vector for
which Lk =

∑mk

α=1 λkαekα. Defining ζk ∈ Rmk for Zk ∈ Wk similarly, we have
ζ⊤k λk = tr (Z⊤

k LK). Let ψk : V ′ → Sym(mk,R) be a linear map defined in such
a way that tr (y′LkL

⊤
k ) = λ⊤k ψk(y′)λk, and define ϕk : V ′ → Sym(1 +mk,R) by

ϕk(y′) :=

(
νkykk ζ⊤k
ζk ψk(y)

)
. In view of (4), we have

tr(y′qk(tkk, Lk)) = tr

(
ϕk(y′)

(
t2kk tkkλ

⊤
k

tkkλk λkλ
⊤
k

))
. (5)

Let ϕ∗k : Sym(1 + mk,R) → V ′ be the adjoint map of ϕk, which means that
trϕ∗k(S)y′ = trSϕ(y′) for S ∈ Sym(1 + mk,R). Define also ϕr(y

′) := νryrr ∈
R ≡ Sym(1,R) and ϕ∗r(c) = cIνr ∈ V[r] ⊂ V ′ for c ∈ R.

Let Q′ ⊂ V ′ be the dual cone of P ′ ⊂ V ′, that is, the set of y′ ∈ V ′ such
that tr (y′a) > 0 for all a ∈ P′ \ {0}. If y′ ∈ Q′, then ϕk(y′) and ψk−1(y′) are
positive definite for k = 2, . . . , r. Moreover, it is known (see [4, Proposition 3.4
(iii)]) that

Q′ = { y′ ∈ V ′ ; detϕk(y′) > 0 for all k = 2, . . . , r } . (6)

If Y := π(
∑n
j=1XjX

⊤
j /2) is expressed as in (2), then we can show that Y ′ :=

Y[2] belongs to the closure of Q′, so that ϕk(Y ′) and ψk−1(Y ′) are positive
semidefinite for k = 2, . . . r.
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Theorem 3. (i) If Y ′ ∈ Q′, then θ̂ = arg max
θ∈MG

F (θ;Y ) exists uniquely, and it

is expressed as θ̂ =

(
Iν1 L̂⊤

1

L̂1 L̂1L̂
⊤
1 + θ̂′

)
with λ̂1 = −ψ1(Y ′)−1ζ1 ∈ Rm1 , which is

the column vector corresponding to L̂1, and

θ̂′ =
nνr
2
ϕ∗r(ϕr(Y

′)−1) +

r−1∑
k=2

nνk
2
ϕ∗k

(
ϕk(Y ′)−1 −

(
0 0
0 ψk(Y ′)−1

))
. (7)

(ii) If Y ′ 6∈ Q′, then F (θ;Y ) is unbounded, so that θ̂ does not exist.

Proof. (i) Keeping (2), (3) and (det θ)n/2 =
∏r
k=2(tkk)nνk in mind, we define

F1(L1;Y ) := −2tr(Z⊤
1 L1) − tr(Y ′L1L

⊤
1 ),

Fk(tkk, Lk;Y ) := nνk log tkk − tr (qk(tkk, Lk)Y ′) (k = 2, . . . , r − 1),

Fr(trr;Y ) := nνr log trr − νryrrt
2
rr,

so that F (θ;Y ) = F1(L1;Y ) +Fr(trr;Y ) +
∑r−1
k=2 Fk(tkk, Lk;Y ). It is easy to see

that Fr(trr;Y ) takes a maximum value at t̂rr =
√

n
2yrr

. Then qr(t̂rr) = n
2yrr

Iνr =

nνr
2 ϕ∗r(ϕr(Y

′)−1). On the other hand, F1(L1;Y ) = −2ζ⊤1 λ1−λ⊤1 ψ1(Y ′)λ1 equals

ζ⊤1 ψ1(Y ′)−1ζ1 − (λ1 + ψ1(Y ′)−1ζ1)⊤ψ1(Y ′)(λ1 + ψ1(Y ′)−1ζ1),

which attains a maximum value when λ1 = −ψ1(Y ′)−1ζ1 because ψ1(Y ′) is
positive definite. Similarly, we see from (5) that

Fk(tkk, Lk) =nνk log tkk − (νkykk − ζ⊤k ψk(Y ′)−1ζk)t2kk

− (λk + tkkψk(Y ′)−1ζk)⊤ψk(Y ′)(λk + tkkψk(Y ′)−1ζk).
(8)

Since νkykk−ζ⊤k ψk(Y ′)−1ζk = detϕk(Y ′)/ detψk(Y ′) > 0, we see that Fk(tkk, Lk;Y ′)

attains at (t̂kk, L̂k) with t̂kk =
√

nνk
2(νkykk−ζ⊤k ψk(Y ′)−1ζk)

and λ̂k = −t̂kkψk(Y ′)−1ζk ∈

Rmk , which is the column vector corresponding to L̂k. By a straightforward cal-
culation, we have(

t̂2kk t̂kkλ̂
⊤
k

t̂kkλ̂k λ̂kλ̂
⊤
k

)
=
nνk
2

(
ϕk(Y ′)−1 −

(
0 0
0 ψk(Y ′)−1

))
∈ Sym(1 +mk,R),

which maps to qk(t̂kk, L̂k) by ϕ∗k : Sym(1+mk,R) → V ′ thanks to (5). Therefore
the assertion (i) is verified.
(ii) By (6), there exists k for which detϕk(Y ′) = 0. If detϕr(Y

′) = yνrrr = 0, then
Fr(trr;Y

′) = nνr log trr → +∞ in trr → +∞. Let us consider the case where
detϕl(Y

′) > 0 for l = k + 1, . . . , r and detϕk(Y ′) = 0. Then one can show that
ψk(Y ′) is positive definite because in this case Y[k+1] ∈ V[k+1] belongs to the
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dual cone of P[k+1] := V[k+1] ∩ Sym+(Nk,R) by the same reason as (6). Since

νkykk − ζ⊤k ψk(Y ′)−1ζk = detϕk(Y ′)/detψk(Y ′) = 0, we see from (8) that

max
Lk∈Wk

Fk(tkk, Lk;Y ′) = nνk log tkk → +∞ (tkk → +∞),

which completes the proof. ut
We remark that a generalization of the formula (7) is found in [5, Theorem

5.1]. By Theorem 3, the existence of the MLE θ̂ is equivalent to that the random
matrix Y ′ belongs to the cone Q′ with probability one. On the other hand, the
distribution of Y ′ is nothing else but the Wishart distribution on Q′ studied in
[4] and [5]. The Wishart distribution is obtained as a natural exponential family
generated by the Riesz distribution µn on V ′ characterized by its Laplace trans-
form:

∫
V ′ e

−tr(y′a)µn(dy′) = (det a)−n/2 for all a ∈ P ′. Note that, if a ∈ P ′ is a

diagonal matrix, we have (det a)−n/2 =
∏r
k=2 a

−nνk/2
kk . As is seen in [5, Theorem

4.1 (ii)], the support of the Riesz distribution µn is determined from the parame-
ter (nν2/2, . . . , nνr/2) ∈ Rr−1. In fact, suppµn = Q′ if and only if nνk/2 > mk/2
for k = 2, . . . , r, and Y ′ ∈ Q′ almost surely in this case. Otherwise, suppµn is
contained in the boundary of Q′, so that Y ′ never belongs to Q′. Therefore, if

n0 is the smallest integer that is greater than max
{
mk

νk
; k = 2, . . . , r

}
, we have

the following final result.

Theorem 4. The maximum likelihood estimator θ̂ = arg max
θ∈MG

F (θ;Y ) exists

with probability one if and only if n ≥ n0. If n < n0, then the log likelihood
function F (θ;Y ) of θ ∈ MG is unbounded.
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