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Abstract

In this paper we discuss the construction of probability distributions on the group
SL(2,C) and the Möbius group using the exponential map. In particular, we describe
the injectivity and surjectivity domains of the exponential map and provide its Jaco-
bian determinant. We also show that on SL(2,C) and the Möbius group, there are no
isotropic densities in the group sense.
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1 Introduction

Modelling and estimating probability densities on manifolds raises several difficulties and is
still an active research topic, see for instance [1, 2]. In most cases the manifolds studied
are endowed with a Riemannian metric. It is for instance the case for the manifold of
positive definite matrices, or the rotations group of an Euclidean space. In these contexts
all the structures used in the statistical analysis are related to the distance. The other
important structure addressed in the literature is the Lie group structure. Despite being a
large class of manifolds, a reason why it is less often studied than the Riemannian setting, is
because compact Lie groups admit a bi-invariant metric. In that case, the statistical analysis
based on the Riemannian distance satisfies all the group requirements. Most examples of
statistics problems on non-compact groups studied in the literature arise from rigid and
affine deformations of the physical space R3. Due to their role in polarization optics, see
[7, 8], we study here the group SL(2,C) and its quotient, the Möbius group.

In section 2, we review the main important facts about SL(2,C) and the Möbius group.
In section 3, we describe the construction of exponential-wrapped distributions. In partic-
ular, we show that the non-surjectivity of the exponential map on SL(2,C) is not a major
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obstacle and give an expression of its Jacobian. In section 4, we make a parallel between
the notion of isotropy on a Riemannian manifold and a notion of isotropy on a group. We
show that unfortunately, except the Dirac on the identity, there are no isotropic probability
distributions on SL(2,C) and the Möbius group in that sense.

2 The group SL(2,C) and the Möbius group

SL(2,C) is the group of 2 by 2 complex matrices of determinant 1. Since it is defined be the
polynomial equation

det(M) = 1, M ∈M2(C), (1)

it is a complex Lie group. Recall that a complex Lie group is a complex manifold such that
the group operations are holomorphic. Recall also that a complex manifold is a manifold
whose charts are open sets of Cd and whose transition are holomorphic.

In this paper, we define the Möbius group, noted Möb, as the quotient of SL(2,C) by
the group +I,−I , where I is the identity matrix. Since

Möb = SL(2,C)/ {+I,−I} ∼ PGL(2,C),

the Möbius group can also be seen as a projective linear group. Recall that PGL(2,C) is
defined as a quotient of GL(2,C) by the multiples of the identity matrix.

Since Möb is a quotient of SL(2,C) by a discrete subgroup, they have the same Lie
algebra, noted sl(2,C). The complex structure of SL(2,C) makes sl(2,C) a complex vector
space. By differentiating Eq.1 around the identity matrix, we can check that sl(2,C) is
the vector space of complex matrices with zero trace. It is easy to see that sl(2,C) is the
complexification of real traceless matrices, hence

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
generates sl(2,C) and it is of complex dimension 3. The Lie brackets are given by

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

hence their adjoints in the basis (e, h, f) are

ade =

0 −2 0
0 0 1
0 0 0

 adh =

2 0 0
0 0 0
0 0 −2

 , adf =

 0 0 0
−1 0 0
0 2 0

 .

The Killing form on a Lie algebra is given by

κ(X,Y ) = Tr(adXadY ).
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It can be checked that on sl(2,C),

κ(X,Y ) = 4 Tr(XY ),

and that for a matrix X = a.e+ b.h+ c.f ,

κ(X,X) = 8(b2 + ac) = −8 det(X) = 8λ2,

where λ is an eigenvalue of X. Recall that the eigenvalues of X ∈ SL(2,C) are either distinct
and opposite or null.

3 Exponential-wrapped distributions

In this section, we determine domains on the Lie groups and Lie algebra involved in the
construction of exponential-wrapped distributions on SL(2,C) and the Möbius group, and
provide the expression of their densities.

Let us recall how the definition of the exponential map is defined on the Lie algebra,
and how it is extended to every tangent spaces. The exponential map exp on a Lie group G
maps a vector in the Lie algebra X ∈ TeG to γ(1), where γ is the one parameter subgroup
with γ′(0) = X. This map is defined on TeG but can be extended to every tangent spaces
TgG using pushforwards of the group multiplications. The following identity

g expe(X)g−1 = expe(dLgdR
−1
g (X)) = expe(dR

−1
g dLg(X)),

ensures that the definition of the exponential at g is independent of the choice of left or right
multiplication:

expg : TgG→ G

u 7→ expg(X) = g. exp
(
dLg−1X

)
= exp

(
dRg−1X

)
g.

In the rest of the paper, exponentials without subscript refer to exponentials at identity.
The definition of exponential maps on arbitrary tangent space has a deep geometric inter-
pretation, as exponentials maps of an affine connection. See [5] for a detailed description of
this point of view.

Exponential-wrapped distributions refers to distributions pushed forward from a tangent
space to the group, by an exponential map. Given a probability distribution µ̃ on TgG,

µ = expg∗(µ̃)

is a probability distribution on G. Consider a left or right invariant field of basis on G and
the associated Haar measure. Recall that since SL(2,C) is unimodular, left invariant and
right invariant measure are bi-invariant. When µ̃ has a density f̃ , the density f of µ with
respect to the Haar measure is the density f̃ divided by the absolute value of the Jacobian
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determinant of the differential of the exponential map. If f̃ is vanishing outside an injectivity
domain,

f(expg(X)) =
f̃(X)

J(X)
, with J(X) = | det(d expg,X)|. (2)

The interest of this construction is dependent on the injectivity and surjectivity prop-
erties of the exponential map. The situation is ideal when the exponential map is bijec-
tive: exponential-wrapped distributions can model every distribution on the group. Non-
surjectivity is a potentially bigger issue that non-injectivity. As we will see, the injectivity
can be forced by restricting the tangent space to an injectivity domain. However when the
ranges of the exponential maps are too small, arbitrary distributions on the group might
only be modeled by a mixture of exponential-wrapped distributions involving a large number
of tangent spaces. On SL(2,C), the exponential map is unfortunately neither injective nor
surjective. However, we have the following.

Fact 1. The range of the exponential map of the group SL(2,C) is

U = {M ∈ SL(2,C)|Tr(M) 6= −2} ∪ {−I} ,

where I is the identity matrix. As a result, SL(2,C) \ exp (sl(2,C)) has zero measure.

Fact.1. can be checked using the Jordan decomposition of SL(2,C) matrices. A detailed
study of the surjectivity of the exponential for SL(2,R) and SL(2,C) can be found in [6].
This fact shows that the non surjectivity does not significantly affect the modeling capacities
of exponential-wrapped distributions. As a direct consequence of Fact.1, we have

Corollary 1.

• SL(2,C) is covered by expI and exp−I

• The exponential map of the Möbius group is surjective.

Proof. For M ∈ SL(2,C), M or −IM has a positive trace and is in the range of the SL(2,C)
exponential. Since the Möbius group is SL(2,C) quotiented by the multiplication by −I, at
least one element of the equivalent classes is reached by the exponential.

We now provide injectivity domains of the exponentials, which enable the definition of
the inverses.

Fact 2. The exponential of SL(2,C) is a bijection between U and U with,

U = {X ∈ sl(2,C)| Im(λ) ∈ ]−π, π] for any eigenvalue λ of X} .

Recall that eigenvalues of X are always opposite. The exponential of the Möbius group is
bijective on

UMöb =
{
X ∈ sl(2,C)| Im(λ) ∈

]
−π

2
,
π

2

]
for any eigenvalue λ of X

}
.
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This is a direct consequence of theorem 1.31 of [4], which defines the principal matrix
logarithm for matrices with no eigenvalues in R−, by setting the eigenvalues of the logarithm
to the interval ]−π, π[. In order to have a bijective maps, the intervals should contains
exactly one of their extremities. UMöb is obtained by noting that the quotient by {I,−I} in
SL(2,C) translates to an quotient by iπZ on eigenvalues in the Lie algebra. Note that since√

κ(X,X)
2 = ±λ, the injectivity domains can be expressed as the inverse image of subset of

C by the quadratic form X 7→ κ(X,X).

Hence, when the support of f̃ is included in U or UMöb, Eq.2 holds. We address now the
computation of the volume change term. Note that in Eq.2, the determinant is seen as a
volume change between real vector spaces. Recall also that for a complex linear map A on
Cn, the real determinant over R2n is given by detR(A) = | detC(A)|2.

The differential in a left invariant field of basis of the exponential map at identity e
evaluated on the vector X ∈ TeG is given by the following formula, see [3],

d expX = dLexp(X) ◦

∑
k≥0

(−1)k

(k + 1)!
adkX

 ,

where subscript e is dropped. Using the Jordan decomposition of adX , authors of [2] pointed
out the fact that this Jacobian can be computed for every Lie group, even when the adjoint
endmorphisms are not diagonalizable. We have,

detC (d expX) =
∏
λ∈ΛX

(
1− eλ

λ

)dλ
,

where ΛX is the set of nonzero eigenvalues of adX and dλ the algebraic multiplicity of the
eigenvalue λ. For the group SL(2,C), a calculation shows at the matrix X of coordinates
(a, b, c) in the basis (e, h, f), the eigenvalues of

adX = a.

0 −2 0
0 0 1
0 0 0

+ b.

2 0 0
0 0 0
0 0 −2

+ c.

 0 0 0
−1 0 0
0 2 0

 ,

are

λ1 = 0, λ2 = 2
√
ac+ b2 =

√
κ(X,X)

2
, λ3 = −λ2.

It is interesting to note that eigenvalues of X are also eigenvalues of adX . The absolute
value of the Jacobian becomes

J(a, b, c) = |detC (d expX)|2 =

∣∣∣∣(1− e−λ2)(1− eλ2)

λ2
2

∣∣∣∣2 =

∣∣∣∣21− cosh(λ2)

λ2
2

∣∣∣∣2 .
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J is extended by continuity by J(0, 0, 0) = 1: it is not surprising since the differential of
the exponential at zero is the identity. Eq.2 can be rewritten as,

f(exp(X)) =

∣∣∣∣∣∣∣
κ(X,X)

4
(

1− cosh
(√

1
2κ(X,X)

))
∣∣∣∣∣∣∣ f̃(X). (3)

Recall that λ2,3 are complex numbers, and that cosh(ix) = cos(x). It is interesting to note
that on the one parameter subgroup generated by (0, 1, 0) the Jacobian is increasing, which
is a sign of geodesic spreading. On the other hand on the one parameter subgroup generated
by (0, i, 0) the Jacobian is decreasing over [0, π], which is a sign of geodesic focusing.

4 There are no group-isotropic probability distributions

When the underlying manifold is equipped with a Riemannian metric, it is possible to
define the notion of isotropy of a measure. A measure µ is isotropic if there is a point on
the manifold such that µ is invariant by all the isometries which preserve the point. They
form an important class of probability, due to their physical interpretation, and to the fact
that their high degree of symmetries enable to parametrize them with a small number of
parameters.

On compact Lie groups, there exists Riemannian metrics such that left and right transla-
tions are isometries, and the notion of isotropy can hence be defined in term of the distance.
Unfortunately there are no Riemannian metric on SL(2,C) compatible with the group mul-
tiplications. This comes from the fact that the scalar product at identity of such a metric
should be invariant by the adjoint action of the group. Since the adjoint representation of
SL(2,C) is faithful, this scalar product should be invariant by a non compact group, which
is not possible. Hence, isotropy cannot be defined by Riemannian distance.

However the role of the distance in the definition of isotropy is not crucial: isotropy is
defined by the invariance with respect to a set of transformations. When the manifold is
Riemannian, this set is the set of isometries that fix a given point, when the manifold is a
Lie group, the relevant set becomes a set of group operations.

[group-isotropy] Let G be a Lie group and T be the set of all maps T : G→ G obtained
by arbitrary compositions of left multiplications and right multiplication. A measure µ on
a Lie group G is group-isotropic with respect to an element g if

T∗µ = µ, ∀T ∈ T , T (g) = g,

where T∗µ is the pushforward of µ by T .
It is easy to checked that the elements of T which preserve the identity are the con-

jugations. Recall that the Killing form is invariant under the differential of conjugations,
and that the Jacobian of the exponantial is a function of the Killing form, see Eq.3. It
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can be checked that if a density f̃ on the Lie algebra is a function of the Killing form, the
push forward on the group is group-isotropic. Hence wrapping measures to the group with
the exponential map is a natural way to construct group-isotropic measures on SL(2,C).
However, the following results shows that unfortunately, the group-isotropy notion is not
relevant on SL(2,C) for probability distributions: it contains only Dirac distributions.

If µ is a finite positive measure on SL(2,C) isotropic with respect to the identity, then
µ is a Dirac at the identity.

Proof. Assume that µ is a measure on SL(2,C) whose support contains a matrix M =(
a b
c d

)
different from the identity matrix. Since

(
1 t
0 1

)
.

(
a b
c d

)
.

(
1 t
0 1

)−1

=

(
a+ tc b+ t(d− a)− ct2

c −ct+ d

)
,

M is always conjugated to a matrix whose upper right coefficient is not zero. By the isotropic
assumption, this matrix is still in the support of µ. Hence we can suppose that b 6= 0. Let
B(M) be the open ball centered on M :

B(M) =

{(
a+ ε1 b+ ε2
c+ ε3 d+ ε4

)
, |εi| <

|b|
2

}
.

Since M is in the support of µ, µ(B(M)) > 0. Let g =

(
2 0
0 1

2

)
∈ SL(2,C). If we can show

that gnB(M)g−n and gn+kB(M)g−(n+k) for all n ∈ N and k ∈ N∗ are disjoint, µ has to be
infinite since there are countable disjoint sets of identical nonzero mass. We have

gnMg−n =

(
2 0
0 1

2

)n(
a b
c d

)
.

(
1
2 0
0 2

)−n
=

(
a 22nb
c

22n
d

)
.

Hence,

gnB(M)g−n ∩ gn+kB(M)g−(n+k) 6= ∅
⇒ ∃ε, ε′, with |ε| and |ε′| < |b|

2 , such that, 22n(b+ ε) = 22n22k(b+ ε′)

Using the triangular inequalities |b+ε| < |b|+|ε| and |b|−|ε′| < |b+ε′|, we see that such ε and
ε′ do not exist when k is a positive integer. Hence the images of B(M) by the conjugations
by gn∈N are disjoints and the measure is infinite.
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5 Conclusion

In this paper, we laid the foundations for density modeling using exponential-wrapped dis-
tributions on SL(2,C) and the Möbius group. The Möbius group plays an important role in
polarization optics due to its action on wave polarization states. Future works will focus on
applications of density modeling on the Möbius group to the propagation of light through
random media.
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