Skip to main content

Koszul Information Geometry, Liouville-Mineur Integrable Systems and Moser Isospectral Deformation Method for Hermitian Positive-Definite Matrices

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Abstract

As soon as 1993, A. Fujiwara and Y. Nakamura have developed close links between Information Geometry and integrable system by studying dynamical systems on statistical models and completely integrable gradient systems on the manifolds of Gaussian and multinomial distributions, Recently, Jean-Pierre Françoise has revisited this model and extended it to the Peakon systems. In parallel, in the framework of integrable dynamical systems and Moser isospectral deformation method, originated in the work of P. Lax, A.M. Perelomov has applied models for space of Positive Definite Hermitian matrices of order 2, considering this space as an homogeneous space. We conclude with links of Lax pairs with Souriau equation to compute coefficients of characteristic polynomial of a matrix. Main objective of this paper is to compose a synthesis of these researches on integrability and Lax pairs and their links with Information Geometry, to stimulate new developments at the interface of these disciplines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liouville, J.: Note de l’Editeur. J. Math. Pures Appl. 5, 351–355 (1840)

    Google Scholar 

  2. Liouville, J.: Sur quelques cas particuliers où les equations du mouvement d’un point matériel peuvent s’intégrer. J. Math. Pure Appl. 11, 345–378 (1846)

    Google Scholar 

  3. Liouville, J.: L’intégration des équations différentielles du mouvement d’un nombre quelconque de points matérielles. J. Math. Pures Appl. 14, 257–299 (1849)

    Google Scholar 

  4. Liouville, J. : Note sur l’intégration des équations différentielles de la Dynamique. J. Math. Pures Appl. 20, 137–138(1855). Présentée en 1853

    Google Scholar 

  5. Liouville, J.: Note sur les équations de la dynamique. J. Math. Pures Appl. 20, 137–138 (1855)

    Google Scholar 

  6. Tannery, J.: Sur une surface de révolution du quatrième degré dont les lignes géodesiques sont algébriques. Bull. Sci. Math. 16, 190–192 (1892)

    MATH  Google Scholar 

  7. Mineur, H. : Sur les systèmes mécaniques admettant n intégrales premières uniformes et l’extension à ces systèmes de la méthode de quantification de Sommerfeld. C. R. Acad. Sci., Paris 200, 1571–1573(1935)

    Google Scholar 

  8. Mineur, H. : Réduction des systèmes mécaniques à n degrés de liberté admettant n intégrales premières uniformes en involution aux systèmes à variables séparées. J. Math Pure Appl. IX(15), 385–389 (1936)

    Google Scholar 

  9. Mineur, H. : Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Etude des systèmes admettant n intégrales premières uniformes en involution. Extension à ces systèmes des conditions de quantification de Bohr-Sommerfeld. J. de l’Ecole Polytech. III(143), 173–191 and 237–270 (1937)

    Google Scholar 

  10. Obata, T., Hara, H.: Differential geometry of nonequilibrium processes. Phys. Rev. A 45(10), 6997–7001 (1992)

    Article  MathSciNet  Google Scholar 

  11. Fujiwara, A.: Dynamical Systems on Statistical Models. Recent Developments and Perspectives in Nonlinear Dynamical Systems, RIMS Kokyuroku No. 822, pp. 32–42. Kyoto Univ., Kyoto (1993)

    Google Scholar 

  12. Nakamura, Y.: Completely integrable gradient systems on the manifolds of Gaussian and multinomial distributions. Jpn. J. Ind. Appl. Math. 10, 79–189 (1993)

    Article  MathSciNet  Google Scholar 

  13. Nakamura, Y.: Lax pair and fixed point analysis of Karmarkar’s projective scaling trajectory for linear programming. Jpn. J. Ind. Appl. Math. 11, 1–9 (1994)

    Article  MathSciNet  Google Scholar 

  14. Nakamura, Y.: Neurodynamics and nonlinear integrable systems of Lax type. Jpn. J. Ind. Appl. Math. 11, 11–20 (1994)

    Article  MathSciNet  Google Scholar 

  15. Nakamura, Y.: Gradient systems associated with probability distributions. Jpn. J. Ind. Appl. Math. 11, 21–30 (1994)

    Article  MathSciNet  Google Scholar 

  16. Nakamura, Y., Faybusovich, L.: On explicitly solable gradient systems of Moser-Karmarkar type. J. Math. Anal. Appl. 205, 88–108 (1997)

    Article  MathSciNet  Google Scholar 

  17. Fujiwara, A., Shigeru, S.: Hereditary structure in Hamiltonians: information geometry of Ising spin chains. Phys. Lett. A 374, 911–916 (2010)

    Article  MathSciNet  Google Scholar 

  18. Françoise, J.P.: Information Geometry and Integrable Systems, Les Houches Summer Week, SPIGL 2020, Les Houches, July 2020

    Google Scholar 

  19. Siegel, C.L.: On the integrals of canonical systems. Ann. Math. 2(2), 806–822, MR 3–214 (1942), Matematika 5, 2 (1961), 103–117, Matematika 5, 2, 103–117 (1961)

    Google Scholar 

  20. Siegel, C.L., Moser, J.: Lectures on Celestial Mechanics. Springer, Berlin (1971). https://doi.org/10.1007/978-3-642-87284-6

    Book  MATH  Google Scholar 

  21. Moser, J.: Stable and random motions in dynamical systems. Ann. Math. Stud. 77 (1973). https://press.princeton.edu/books/paperback/9780691089102/stable-and-random-motions-in-dynamical-systems

  22. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential - an integrable system. In: Moser, J. (eds.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07171-7_12

  23. Moser, J.: Various aspects of integrable Hamiltonian systems. In: Dynamical Systems. CIME Summer school, Bressanone 1978, pp. 233–289. Birkhauser, Boston, MA (1980)

    Google Scholar 

  24. Moser, J.: Geometry of quadrics and spectral theory. In: Proceedings, Chern Symposium, Berkeley 1979, pp. 147–188. Springer, Heidelberg (1980). https://doi.org/10.1007/978-1-4613-8109-9_7

  25. Symes, W.W.: Hamiltonian group actions and integrable systems. Phys. Dl 1, 339–374 (1980)

    Article  MathSciNet  Google Scholar 

  26. Kozlov, V.V.: Integrability and non-integrability in Hamiltonian mechanics. Uspekhi Mat. Nauk 38(1), 3–67 (1983). [Russian]; English translation: Russian Math. Surveys 38, No.1, 1–76, 1983

    Google Scholar 

  27. Mishchenko, A.S., Fomenko, A.T.: A generalized Liouville method for the integration of Hamiltonian systems. Funktsional Anal. i Prilozhen. 12(2), 46–56 (1978). MR 58 # 24357. Funct. Anal. Appl. 12, 113–121 (1978 )

    Google Scholar 

  28. Fomenko, A.T.: Topological classification of integrable systems, In: Fomenko, A.T. (ed.) Advances in Soviet Mathematics, vol. 6. AMS, Providence (1991)

    Google Scholar 

  29. Perelomov, A.M.: Integrable Systems of Classical Mechanics and Lie Algebras, vol. I. Birkhäuser, Boston (1990)

    Book  Google Scholar 

  30. Thimm, A.: Integrable geodesic flows on homogeneous spaces. Ergodic Theor. Dyn. Syst. 1(4), 495–517 (1981)

    Article  MathSciNet  Google Scholar 

  31. Thimm, A.: Integrabilitat beim geodatischen FlujJ. Bonner Math. Schriften 103, 32 (1978)

    MATH  Google Scholar 

  32. Thimm, A.: Uber die Integrabilitat geodatischer Fliisse auf homogenen Raumen. Dissertation. Bonn (1980)

    Google Scholar 

  33. Guillemin, V., Sternberg, S.: On collective complete integrability according to the method of Thimm. Ergodic Theor. Dyn. Syst. 3(2), 219–230 (1983)

    Article  MathSciNet  Google Scholar 

  34. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975)

    Article  MathSciNet  Google Scholar 

  35. Calogero, F.: Exactly solvable one-dimensional many-body problems. Lettere al Nuovo Cimento (1971-1985) 13(11), 411–416 (1975). https://doi.org/10.1007/BF02790495

    Article  MathSciNet  Google Scholar 

  36. Grava, T.: Notes on Integrable Systems and Toda Lattice. Lecture ISRM (2018)

    Google Scholar 

  37. Correa, E.M., Grama, L.: Lax formalism for Gelfand-Tsetlin integrable systems. arXiv:1810.08848v2 [math.SG] ( 2020)

  38. Souriau, J.-M.: Une méthode pour la décomposition spectrale et l’inversion des matrices. CRAS 227(2), 1010–1011. Gauthier-Villars, Paris (1948)

    Google Scholar 

  39. Souriau, J.-M.: Calcul Linéaire, vol. 1, EUCLIDE, Introduction aux études Scientifiques, Presses Universitaires de France, Paris (1959)

    Google Scholar 

  40. Souriau, J.-M., Vallée, C., Réaud, K., Fortuné, D. : Méthode de Le Verrier–Souriau et équations différentielles linéaires. CRASs IIB Mechan. 328(10), 773–778 (2000)

    Google Scholar 

  41. Barbaresco, F.: Souriau exponential map algorithm for machine learning on matrix lie groups. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019. LNCS, vol. 11712, pp. 85–95. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26980-7_10

    Chapter  Google Scholar 

  42. Kosmann-Schwarzbach, Y., Magri, F.: Lax-Nijenhuis operators for integrable systems. J. Math. Phys. 37, 6173 (1996)

    Article  MathSciNet  Google Scholar 

  43. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978)

    Article  MathSciNet  Google Scholar 

  44. Olshanetsky, M.A., Perelomov, A.M.: Completely integrable Hamiltonian systems connected with semisimple Lie algebras. Invent. Math. 37, 93–108 (1976)

    Article  MathSciNet  Google Scholar 

  45. Olshanetsky, M., Perelomov, A.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rep. C 71, 313–400 (1981)

    Article  MathSciNet  Google Scholar 

  46. Zotov, A.V.: Classical integrable systems and their field-theoretical generalizations. Phys. Part. Nucl. 37, 400–443 (2006)

    Article  Google Scholar 

  47. Zotov, A.V.: Introduction to Integrable Systems, Steklov Mathematical Institute of Russian Academy of Sciences, Moscow (2021)

    Google Scholar 

  48. Bloch, A., Brockett, R.W., Ratiu, T.: Completely integrable gradient flows. Comm. Math. Phys. 147(1), 57–74 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Barbaresco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbaresco, F. (2021). Koszul Information Geometry, Liouville-Mineur Integrable Systems and Moser Isospectral Deformation Method for Hermitian Positive-Definite Matrices. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics