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SCHRÖDINGER ENCOUNTERS FISHER AND RAO: A SURVEY

LÉONARD MONSAINGEON AND DMITRY VOROTNIKOV

Abstract. In this short note we review the dynamical Schrödinger problem
on the non-commutative Fisher-Rao space of positive semi-definite matrix-
valued measures. The presentation is meant to be self-contained, and we dis-
cuss in particular connections with Gaussian optimal transport, entropy, and
quantum Fisher information.

The abstract Schrödinger problem on a generic Riemannian manifold (M, g) can
be formulated as the dynamical minimization problem

min
q

{

∫ 1

0

|q̇t|
2dt+ ε2

∫ 1

0

|∇V (qt)|
2dt s.t. q|t=0,1 = q0, q1

}

. (1)

The unknown curves q = (qt)t∈[0,1] take values in M and interpolate between the
prescribed endpoints q0, q1 ∈ M , the potential V : M → R is given, and ε > 0
is a regularization parameter. Clearly when ε → 0 this ε-problem is expected to
converge in some sense to the geodesic problem on M .

The original Schrödinger problem [17], or rather, its dynamical equivalent (some-
times referred to as the Yasue problem [9, 5]), can be rewritten as a particular in-
stanciation of (1) when (M, g) is the Wasserstein space of probability measures, the
potential V is given by the Boltzmann entropy H(ρ) =

∫

ρ log ρ, and its Wasserstein
gradient I(ρ) = ‖∇WH(ρ)‖2 =

∫

|∇ log ρ|2ρ is the Fisher information functional.
This was only recently recognized as an entropic regularization of the Monge-
Kantorovich problem [10] and led to spectacular developments in computational
optimal transport [16]. Recently, attempts have been made to develop an optimal
transport theory for quantum objects, namely (symmetric positive-definite) matrix-
valued measures, see [6] and references therein. In [13] we studied (1) precisely in
the corresponding noncommutative Fisher-Rao space of matrix-measures. In this
note we aim at providing a comprehensive introduction to this specific setting,
in particular we wish to emphasize the construction based on Gaussian optimal
transport that will lead to some specific entropy and quantum Fisher information
functionals later on.

Section 1 briefly reviews classical optimal transport and the original Schrödinger
problem. In Section 2 we discuss Gaussian optimal transport and the corresponding
Bures-Wasserstein geometry. This then suggests the natural construction of the
Fisher-Rao space detailed in Section 3. We introduce in Section 4 the resulting
entropy and Fisher information functionals dictated by the previous construction.
We also compute explicitly the induced heat flow, and finally discuss the Fisher-
Rao-Schrödinger problem.

Key words and phrases. Schrödinger problem; Fisher-Rao space; optimal transport; Fisher
information; entropy.
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1. Optimal transport and the Schrödinger problem

In its fluid-mechanical Benamou-Brenier formulation [3], the quadratic Wasser-

stein distance between probability measures ρ0, ρ1 ∈ P(Ω) over a smooth domain
Ω ⊂ R

d reads

W2(ρ0, ρ1) = min
ρ,v

{

∫ 1

0

∫

Ω

|vt(x)|
2ρt(x)dxdt

s.t. ∂tρt + div(ρtvt) = 0 in (0, 1)× Ω and ρ|t=0,1 = ρ0,1

}

(2)

(supplemented with homogeneous no-flux boundary conditions on ∂Ω if needed
in order to ensure mass conservation). This can be seen as an optimal control
problem, where the control v = vt(x) is used to drive the system from ρ0 to ρ1 while
minimizing the overall kinetic energy. We refer to [19] for a gentle yet comprehensive
introduction to optimal transport.

As originally formulated by E. Schrödinger himself in [17], the Schrödinger
problem roughly consists in determining the most likely evolution of a system for
t ∈ [0, 1] in an ambient noisy environment at temperature ε > 0, given the obser-
vation of its statistical distribution at times t = 0 and t = 1. Here we shall rather
focus on the equivalent dynamical problem

min
ρ,v

{

∫ 1

0

∫

Ω

|vt(x)|
2ρt(x)dxdt + ε2

∫ 1

0

∫

Ω

|∇ log ρt(x)|
2ρt(x)dxdt

s.t. ∂tρt + div(ρtvt) = 0 in (0, 1)× Ω and ρ|t=0,1 = ρ0,1

}

(3)

(again supplemented with Neumann boundary conditions on ∂Ω if needed). This is
sometimes called the Yasue problem, cf. [9, 5]. It is known [11, 10, 2] that the noisy
problem Gamma-converges towards deterministic optimal transport in the small-
temperature limit ε → 0, and this actually holds in a much more general metric
setting than just optimal transport [14]. We also refer to [20, 1] for connections
with Euclidean quantum mechanics, and to the survey [5] for an optimal-control
perspective.

Following F.Otto [15], an important feature of optimal transport is that one
can view P(Ω) as a (formal) Riemannian manifold, whose Riemannian distance
coincides with the Wasserstein distance (2). This relies upon the identification of
infinitesimal variations ξ with (gradients of) Kantorovich potentials φ : Ω → R by
uniquely selecting the velocity field v = ∇φ with minimal kinetic energy

∫

Ω ρ|v|2,
given − div(ρv) = ξ. Practically speaking, this means that tangent vectors ξ ∈ TρP
at a point ρ are identified with scalar potentials φξ via the Onsager operator ∆ρ =
div(ρ∇·) and the elliptic equation

− div(ρ∇φξ) = ξ, (4)

see [19] for details. Accordingly, the linear heat flow ∂tρ = ∆ρ can be identified [8]

as the Wasserstein gradient flow dρ
dt

= − gradW H(ρ) of the Boltzmann entropy

H(ρ) =

∫

Ω

ρ(x) log(ρ(x))dx.
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Here gradW denotes the gradient computed with respect to Otto’s Riemannian
structure. Moreover, the Fisher information functional

F (ρ) =

∫

Ω

|∇ log ρ(x)|2ρ(x) dx = ‖ gradW H(ρ)‖2 (5)

appearing in (3) coincides with the squared gradient of the entropy, or equivalently
with the dissipation rate − dH

dt
= F of H along its own gradient flow. This identi-

fication (5) shows that (3) can indeed be written as a particular case of (1) with
respect to the Wasserstein geometry.

2. The Bures-Wasserstein distance and Gaussian optimal transport

When ρ0 = N (m0, A0), ρ1 = N (m1, A1) are Gaussian measures with means
mi ∈ R

d and covariance matrices Ai ∈ S++
d (R) (the space of symmetric positive

definite matrices), the optimal transport problem (2) is explicitly solvable [18] and
the Wasserstein distance can be computed as

W2(ρ0, ρ1) = |m1 −m0|
2 +B

2(A0, A1). (6)

Here B is the Bures distance

B
2(A0, A1) = min

RRt=Id
|A

1

2

1 −RA
1

2

0 |
2 = trA0 + trA1 − 2 tr

(

(

A
1

2

0 A1A
1

2

0

)
1

2

)

, (7)

and |M |2 = tr(MM t) is the Euclidean norm of a matrix M ∈ R
d×d corresponding to

the Frobenius scalar product 〈M,N〉 = tr(MN t). The Bures distance, sometimes
also called the Helstrom metric, can be considered as a quantum generalization
of the usual Fisher information metric [4]. Since the Euclidean geometry of the
translational part |m1 − m0|

2 in (6) is trivially flat, we restrict for simplicity to
centered Gaussians mi = 0. We denote accordingly

S0 =

{

ρ ∈ P(Rd) : ρ = N (0, A) for some A ∈ S++
d (R)

}

the statistical manifold of centered Gaussians and simply write ρ = N (0, A) =
N (A). Note that, for positive-definite matrices A ∈ S++

d (R), the space of infinites-

imal perturbations (the tangent plane TAS
++
d (R)) is the whole space of symmetric

matrices U ∈ Sd(R). Semi-definite matrices are somehow degenerate (extremal)
points of S++

d (R), but it is worth stressing that that (7) makes sense even for

semi-definite A0, A1 ∈ S+
d (R).

Going back to optimal transport, it is well-known [18, 12] that the statistical
manifold S0 is a totally geodesic submanifold in the Wasserstein space. In other
words, if ρ0 = N (A0) and ρ1 = N (A1) are Gaussians, then minimizers of the
dynamical problem (2) remain Gaussian, i-e ρt = N (0, At) for some suitable At ∈
S++
d . Thus one expects that S0, or rather S++

d (R), can be equipped with a well-
chosen, finite-dimensional Riemannian metric such that the induced Riemannian
distance coincides with the Wasserstein distance between corresponding Gaussians.
This is indeed the case [18], and the Riemannian metric is explicitly given at a
point ρ = N (A) by

gA(U, V ) = tr(UAV ) = 〈AU, V 〉 = 〈AV,U〉, U, V ∈ TAS
++
d (R) ∼= Sd(R).

Note that, if gEucl(ξ, ζ) = 〈ξ, ζ〉 = tr(ξζt) is the Euclidean scalar product, the
corresponding Riesz isomorphism U 7→ ξU (at a point A ∈ S++

d ) identifying
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gEucl(ξU , ξV ) = gA(U, V ) is given by ξU = (AU)sym = AU+UA
2 . (This is the

exact equivalent of the elliptic correspondence (4) for optimal transport.) As a
consequence the Bures-Wasserstein distance can be computed [18, 13] as

4B2(A0, A1) = min
A,U

{

∫ 1

0

〈AtUt, Ut〉dt s.t.
dAt

dt
= (AtUt)

sym

}

, A0, A1 ∈ S++
d

(8)
Up to the scaling factor 4 this an exact counterpart of (2), where dAt

dt
= (AtUt)

sym

plays the role of the continuity equation ∂tρt + div(ρtvt) = 0 and 〈AtUt, Ut〉 sub-
stitutes for the kinetic energy density

∫

Ω
ρt|vt|2.

3. The non-commutative Fisher-Rao space

Given two probability densities ρ0, ρ1 ∈ P(D) on a domain D ⊂ R
N (not to

be confused with the previous Ω = R
d for Gaussian optimal transport, codomain

over which our matrices A ∈ S++
d were built), the scalar Fisher-Rao distance is

classically defined as the Riemannian distance induced by the Fisher information
metric

FR
2(ρ0, ρ1) = min

ρ

{

∫ 1

0

∫

D

∣

∣

∣

∣

∂ log ρt(x)

∂t

∣

∣

∣

∣

2

ρt(x) dxdt, s.t. ρt ∈ P(D)

}

= min
ρ,u

{

∫ 1

0

∫

D

|ut(x)|
2
ρt(x) dxdt s.t. ∂tρt = ρtut and ρt ∈ P(D)

}

. (9)

Note that the unit-mass condition ρt ∈ P(D) is enforced here as a hard constraint.
(Without this constraint, (9) actually defines the Hellinger distance H between
arbitrary nonnegative measures [13].)

The strong structural similarity between (8) (9) suggest a natural extension of
the latter scalar setting to matrix-valued measures. More precisely, the Fisher-Rao

space is the space of (d-dimensional) positive semi-definite valued measures over D
with unit mass

P(D) =

{

A ∈ M(D;S+
d (R)) s.t.

∫

D

trA(x) dx = 1

}

.

This can be thought of as the space of noncommutative probability measures (see
[13] for a short discussion on the connections with free probability theory and C∗-
algebras). The matricial Fisher-Rao distance is then defined as

FR
2(A0, A1) = min

A,U

{

∫ 1

0

∫

D

〈At(x)Ut(x), Ut(x)〉dxdt

s.t. ∂tAt = (AtUt)
sym in (0, 1)×D and At ∈ P(D)

}

, (10)

which is indeed a higher-dimensional extension of (9) and should be compared again
with (2). This clearly suggests viewing P(D) as a (formal, infinite-dimensional)
Riemannian manifold with tangent space and norm

TAP =

{

ξU = (AU)sym : U ∈ L2
(

A(x)dx; S+
d

)

and

∫

D

〈A(x), U(x)〉dx = 0

}
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‖ξU‖
2
A = ‖U‖2L2

A

=

∫

D

〈A(x)U(x), U(x)〉dx. (11)

Note once again that we imposed the unit-mass condition At ∈ P as a hard con-
straint in (10), which results in the zero-average condition

∫

〈A,U〉 = 0 for tangent
vectors U . Removing the mass constraint leads to (an extension of) the Hellinger
distance H between arbitrary PSD matrix-valued measures. (The Hellinger space
(H+,H) is a metric cone over the “unit-sphere” (P,FR) but we shall not discuss this
rich geometry any further, see again [13].)

The corresponding Riemannian gradients of internal-energy functionals F(A) =
∫

D
F (A(x)) dx can be explicited [13] as

gradFR F(A) = (A(x)F ′(A(x)))
sym

− tr

(
∫

D

A(y)F ′(A(y))dy

)

A(x). (12)

Here F ′(A) stands for the usual first variation of the matricial function F (A),
computed with respect to the standard Euclidean (Frobenius) scalar product.

4. Extended entropy, the heat flow, and the Schrödinger problem

From now on we always endow P with the Riemannian metric given by (11). Once
this metric is fixed, the geometric Schrödinger problem (1) will be fully determined
as soon as we choose a driving potential V on P. One should ask now:

What is a good choice of “the” canonical entropy on the Fisher-Rao space?

A first natural guess would be based on the classical (negative) von Neumann en-

tropy S(A) = tr(A logA) from quantum statistical mechanics. However, the func-
tional S(A) =

∫

D
S(A(x)) dx lacks geodesic convexity with respect to our ambient

Fisher-Rao metric [13], and this makes it unfit for studying a suitable Schrödinger
problem (see [14] for the connection between the validity of the Gamma-convergence
in the limit ε → 0 in (1) and the necessity of geodesic convexity of V in a fairly
general metric context).

It turns out that there is a second natural choice, dictated by our previous
construction based on Gaussian optimal transport and the canonical Boltzmann
entropy H(ρ) =

∫

ρ log ρ on P(Rd). Indeed, consider A ∈ S++
d and write ρA =

N (A) for the corresponding Gaussian. Assuming for simplicity that D has measure
|D| = 1

d
so that tr

∫

D
Id dx = 1, we choose as a reference measure the generalized

uniform Lebesgue measure Id ∈ P (more general reference measures can also be
covered, see [13]). An explicit computation then gives the Boltzmann entropy of
ρA relatively to ρI = N (Id) as

E(A) = H(ρA|ρI) =

∫

Rd

ρA(y)

ρI(y)
log

(

ρA(y)

ρI(y)

)

ρI(y) dy =
1

2
tr[A− logA− Id]. (13)

Note carefully that E(A) = +∞ as soon as A is only positive semi-definite (due
to − tr logA = −

∑

logλi = +∞ if any of the eigenvalues λi = 0), and that by
convexity E(A) ≥ E(Id) = 0 is minimal only when A = Id. Our canonical definition
of the entropy on the Fisher-Rao space is then simply

E(A) =

∫

D

E(A(x)) dx = −
1

2
tr

∫

D

logA(x) dx, for A = A(x) ∈ P. (14)

(The terms
∫

trA = 1 =
∫

tr Id cancel out in (13) due to our mass normalization.)

Since the (Euclidean) first variation of (13) is E′(A) = 1
2 (Id−A−1), (12) shows
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that the Fisher-Rao gradient flow dAt

dt
= − gradFR E(At) reads

∂tAt = −

(

At

1

2
[Id−A−1

t ]

)sym

+ tr

(
∫

D

At

1

2
[Id−A−1

t ]dy

)

At

=
1

2
(Id−At)

sym +
1

2
tr

(
∫

D

(At − Id)dy

)

At =
1

2
(Id−At). (15)

This generalized “heat flow” is consistent with the observation that, whenever ρ0 =
N (A0) is Gaussian, the solution ρt = N (At) of the Fokker-Planck equation (the
Wasserstein gradient flow of the relative entropy ρ 7→ H(ρ|ρI))

∂tρ = ∆ρ− div(ρ∇ log ρI) (16)

remains Gaussian with precisely dAt

dt
= 1

2 (Id−At). Our extended Fisher informa-
tion functional can then be defined as the dissipation rate of the entropy E along
the “heat flow” dAt

dt
= − gradFR E(At) given by (15), namely

F(At) = −
d

dt
E(At) =

1

2

d

dt
tr

∫

D

logAt(x) dx =
1

2
tr

∫

D

A−1
t (x)∂tAt(x) dx

=
1

2
tr

∫

D

A−1
t (x)

1

2
[Id−At(x)] dx =

1

4

(

tr

∫

D

A−1
t (x) dx − 1

)

. (17)

Equivalently and consistently, F(A) = ‖ gradFR E(A)‖
2. Note that F(At) > F (Id) =

0 and E(At) > E(Id) = 0 unless At(x) ≡ Id, which is of course consistent with
the expected long-time behavior At → Id for (15) as t → ∞ (or equivalently
ρt → ρI = N (Id) for Gaussian solutions of the Fokker-Planck equation (16)).

With these explicit representations (11)(17) of the quantum (i-e matricial) Fisher-
Rao metric and Fisher information, we can now make sense of the geometric
Schrödinger problem (1) in the noncommutative Fisher-Rao space as

min
A

{

∫ 1

0

∫

D

〈At(x)Ut(x), Ut(x)〉dxdt +
ε2

4

∫ 1

0

(

tr

∫

D

A−1
t (x) dx − 1

)

s.t. ∂tAt = (AtUt)
sym and At ∈ P for all t ∈ [0, 1]

}

, (18)

with fixed endpoints A0, At ∈ P(D). Let us mention at this stage that a different
entropic regularization of Gaussian optimal transport was investigated in [7] in a
static framework and for a much simpler setting, namely when D = {x} is a single
point

As could be expected from the above geometric machinery, we have now

Theorem ([13]). In the limit ε → 0 and for fixed endpoints A0, A1 ∈ P, the ε-

functional in (18) Gamma-converges towards the kinetic functional in (10) for the

uniform convergence on C([0, 1];P).

We omit the details for the sake of brevity, but let us point out that our proof
leverages fully explicit properties of the geometric heat flow (15). A particular
byproduct of our analysis is the 1

2 -geodesic convexity of the entropy (14) in the
Fisher-Rao geometry, which was already established in [12] by formal Riemannian
computations. The key argument builds up on a Lagrangian construction originally
due to A. Baradat in [2]. Finally, we recently extended the result to arbitrary
metric spaces and general entropy functionals [14] (provided a suitable heat flow is
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available), and we showed moreover that geodesic convexity is actually necessary
(and almost sufficient) for the Γ-convergence.
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