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Abstract. In this paper we introduce two algorithms for neural architecture search (NASGD
and NASAGD) following the theoretical work by two of the authors [5] which used the geometric
structure of optimal transport to introduce the conceptual basis for new notions of traditional
and accelerated gradient descent algorithms for the optimization of a function on a semi-discrete
space. Our algorithms, which use the network morphism framework introduced in [2] as a
baseline, can analyze forty times as many architectures as the hill climbing methods [2, 14]
while using the same computational resources and time and achieving comparable levels of
accuracy. For example, using NASGD on CIFAR-10, our method designs and trains networks
with an error rate of 4.06 in only 12 hours on a single GPU.
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1. Introduction

Motivated by the success of neural networks in applications such as image recognition and
language processing, in recent years practitioners and researchers have devoted great efforts in
developing computational methodologies for the automatic design of neural architectures, in
order to use deep learning methods in further applications. Roughly speaking, most approaches
for neural architecture search (NAS) found in the literature build on ideas from reinforcement
learning, evolutionary algorithms, and hill-climbing strategies– see section 1.1 for a brief review
of the literature. All of these approaches attempt to address a central difficulty: the high
computational burden of training multiple architecture models. Several developments in the
design of algorithms, implementation and computational power, have resulted in methodologies
that are able to produce neural networks that outperform the best networks designed by humans.
Despite all the recent exciting computational developments in NAS, we believe that it is largely
of interest to propose sound mathematical frameworks for the design of new computational
strategies that can better explore the architecture space and ultimately achieve higher accuracy
rates in learning while reducing computational costs.

In this paper we propose two new algorithms for NAS: neural architecture search gradient
descent (NASGD) and neural architecture search accelerated gradient descent (NASAGD).
These algorithms are based on 1) the mathematical framework for semi-discrete optimization
(deeply rooted in the geometric structure of optimal transport) that two of the authors have
introduced and motivated in their theoretical work [5], and 2) the neural architecture search
methods originally proposed in [2, 14]. We have chosen the network morphism framework
from[2] because it allows us to illustrate the impact that our mathematical ideas can have on
existing NAS algorithms without having to introduce the amount of background that other
frameworks like those based on reinforcement learning would require.

The paper [2] considers an iterative process where in a first step the parameters/weights
of a collection of architectures are optimized for a fixed time, and in a second step the set
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of architectures are updated by applying network morphisms to the best performing networks
in the previous stage; these two steps are repeated until some stopping criterion is reached.
These network morphisms are used to introduce local graphs of architectures. While in our
approaches we also use the concept of network morphism, the time spent in training a given
set of networks is dynamically chosen as determined by an evolving particle system. In our
numerical experiments we observe that our algorithms change architectures much earlier than
the fixed amount of time proposed in [2], while achieving error rates of 4.06% for the CIFAR-
10 data set trained over 12 hours with a single GPU for NASGD, and of 3.96% on the same
training data set trained over 1 day with one GPU for NASAGD. Given the shorter time spent
exploring architectures, both of our methodologies can be set to consider positive and negative
architecture morphisms/mutations, i.e. add/remove components to/from neural networks, as
opposed to restricting to positive mutations as most approaches in the literature do. We be-
lieve that the improved exploration of the architecture space inherent to our algorithms can
potentially be exploited further by combining it with reinforcement learning techniques, but
as we mentioned earlier this is out of the scope of this work. We emphasize again that while
here we have restricted the use of the semi-discrete gradient dynamics introduced in [5] to the
morphism framework from [2], we believe that our ideas have the potential to increase the speed
at which architectures are explored in other NAS paradigms such as parameter sharing [11] and
differential architecture search [8]. We will explore this direction in future work.

1.1. Review of neural architecture search frameworks and related works. There is an
enormous literature on neural architecture search methodologies and some of its applications
(see [16] for an overview on the subject). Roughly speaking, most methodologies found in the
literature fall into the following families:

- Reinforcement learning approaches. The first group builds on ideas from reinforce-
ment learning [18] and uses the concept of a controller/agent, who designs architectures
(takes actions), trains them, and then receives rewards based on the performance of the
trained networks. As in a typical reinforcement learning problem, the controller aims at
maximizing a discounted future reward function. In this setting, the search for optimal
policies corresponds to the design of architectures through gradient-based optimization
of the future reward function using model-free methodologies such as REINFORCE-
MENT [15]. This reinforcement learning setting relies on two key components. Firstly,
a neural network encoding/representation. This representation corresponds to deciding
on a parameterization for the space of actions that the controller can take. Secondly,
since the full training of a network is computationally expensive, different strategies
need to be introduced to make the repeated evaluation of the reward function feasible.
In the reinforcement learning setting from [18] these strategies are fundamental given
that the computation of a single policy gradient step may involve the training of several
neural architectures.

- Evolutionary algorithmns. The second major group of neural search methodologies
is based on evolutionary algorithms [12, 13]. As in the reinforcement learning setting,
evolutionary algorithms rely on suitable architecture encodings that facilitate the spec-
ification of rules for merging and mutation of different neural architectures. In the
evolutionary setting, issues with competing conventions for the merging of two parent
networks may arise. In order to address these issues, papers like [13] propose genetic
encodings that depend on historical markings of mutations as they occur in an evolving
population of architectures. The NEAT methodology from [13] offers a solution to the
problem of competing conventions in diverse topologies. In evolutionary algorithms, the
issue of evaluating an expensive objective is also present. Indeed, the evaluation of the
fitness function used to determine what “individuals” should persist in time requires the
full training of architecture models. Several strategies have been designed to address
this issue. For example, a common technique is to evaluate the fitness function only at
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architecture candidates that are expected to return high fitness values. In turn, these
candidates can be determined following strategies such as the covariance matrix evolu-
tion method from [6]. Originally this idea was applied in the context of neural networks
for continuous hyperparameter optimization.

Some strategies used in the literature to lighten the computational burden of training multiple
neural networks in NAS include: parameter sharing approaches [11]; methods used on specific
application domains where architecture spaces are more concrete and thus specific strategies can
be implemented as in [7]; techniques focused on transferring knowledge from simpler learning
problems to more difficult ones as in [19]; strategies that use Bayesian model optimization,
i.e. hyperparameter optimization techniques such as SMBO as in [7]; minimization of surrogate
objectives as in [1, 17].

1.2. Outline. We organize the rest of the paper as follows. In section 2, we introduce our
algorithms NASGD and NASAGD. To motivate them, we first discuss two particle dynamics
used for the optimization of a function defined on a semi-discrete space Rd × G for G = (G,K)
a finite weighted graph. In section 3 we compare the performance of NASGD and NASAGD
against other NAS algorithms when working with the CIFAR-10 data set. In section 4 we
provide more details on the implementation of our algorithms. In section 5 we provide some
closing remarks and discuss future directions for research.

2. Our algorithms

In this section we introduce our algorithms NASGD and NASAGD. In order to motivate
them, for pedagogical purposes we first consider an idealized setting where we imagine that
NAS can be seen as a tensorized semi-discrete optimization problem of the form:

(2.1) min
(x,g)∈Rd×G

V (x, g).

In the above, it will be useful to think of the g coordinate as an architecture and the x coordinate
as the parameters of that architecture. It will also be useful to think of G = (G,K) as a
finite similarity graph of architectures with K a matrix of positive weights characterizing a
neighborhood of a given architecture (later on G is defined in terms of network morphisms
around a given architecture –see section 2.3), and V as a loss function (for concreteness cross-
entropy loss ) which quantifies how well an architecture with given parameters performs in
classifying a given training data set. Working in this ideal setting, in the next two subsections
we introduce particle systems that aim at solving (2.1). These particle systems are inspired by
the gradient flow equations derived in [5] that we now discuss.

2.1. First order algorithm. The starting point of our discussion is a modification of equation
(2.13) in [5] now reading:

∂tft(x, g) = divx(ft(x, g)∇xV (x, g))

+
∑
g′∈G

[
log ft(g) + V (x, g)− (log ft(g

′) + V (x, g′))
]
K(g, g′)θx,g,g′(ft(x, g), ft(x, g

′)), t > 0.

(2.2)

In the above, ft(x, g) must be interpreted as a probability distribution on Rd × G and ft(g)
as the corresponding marginal distribution on g. ∇x denotes the gradient in Rd and divx the
divergence operator acting on vector fields on Rd. The second term on the right hand side of
(2.2) is a divergence term on the graph acting on graph vector fields which are nothing but real
valued functions defined on the set of edges of the graph. The term θx,g,g′(ft(x, g), ft(x, g

′))
plays the role of interpolation between the masses located at the points (x, g) and (x, g′), and it
provides a simple way to define induced masses on the edges of the graph. With induced masses
on the set of edges one can in turn define fluxes along the graph that are in close correspondence
with the ones found in the dynamic formulation of optimal transport in the Euclidean space
setting (see [10]).
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The relevance of the evolution of distributions (2.2) is that it can be interpreted as a contin-
uous time steepest descent equation for the minimization of the energy:

(2.3) Ẽ(f) :=
∑
g∈G

log f(g)f(g) +
∑
g

ˆ
Rd

V (x, g)f(x, g)

with respect to the geometric structure on the space of probability measures on Rd × G that
was discussed in section 2.3 in [5]. Naturally, the choice of different interpolators θ endow the
space of measures with a different geometry. In [5] the emphasis was given to choices of θ that
give rise to a Riemannian structure on the space of measures, but alternative choices of θ, like
the one made in [3], induce a general Finslerian structure instead. In this paper we work with
an interpolator inducing a Finslerian structure and in particular define

(2.4) θx,g,g′(s, s
′) := s1U(x,g,g′)>0 + s′1U(x,g,g′)<0, s, s′ > 0,

where U(x, g, g′) := log ft(g) + V (x, g)− (log ft(g
′) + V (x, g′)).

Remark 2.1. With the entropic term used in (2.3) we only allow “wandering” in the g coor-
dinate. This term encourages exploration of the architecture space.

We now consider a collection of moving particles on Rd × G whose evolving empirical distri-
bution aims at mimicking the evolution described in (2.2). Initially the particles have locations
(xi, gi) i = 1, . . . , N where we assume that if gi = gj then xi = xj (see Remark 2.2 below). For
fixed time step τ > 0, particle locations are updated by repeatedly applying the following steps:

- Step 1: Updating parameters (Training): For each particle i with position (xi, gi)
we update its parameters by setting:

xτi = xi − τ∇xV (xi, gi).

- Step 2: Moving in the architecture space (Mutation): First, for each of the
particles i with position (xi, gi) we decide to change its g coordinate with probability:

τ
∑
j

(log f(gj) + V (xj , gj))− (log f(gi) + V (xi, gi))
−K(gi, gj),

or 1 if the above number is greater than 1. If we decide to move particle i, we move it
to the position of particle j, i.e. (xj , gj), with probability pj :

pj ∝
[

log f(gj) + V (xj , gj)− (log f(gi) + V (xi, gi))
]−
K(gi, gj).

In the above, f(g) denotes the ratio of particles that are located at g. Additionally,
a− = max{0,−a} denotes the negative part of the quantity a.

Remark 2.2. Given the assumptions on the initial locations of the particles, throughout all
the iterations of Step 1 and Step 2 it is true that if gi = gj then xi = xj. This is convenient
from a computational perspective because in this way the number of architectures that need to
get trained is equal to the number of nodes in the graph (which is small) and not to the number
of particles in our scheme.

Remark 2.3. By modifying the energy Ẽ(f) replacing the entropic term with an energy of the
form 1

β+1

∑
g(f(g))β+1 for some parameter β > 0, one can motivate a new particle system

where in Step 2 every appearance of log f is replaced with fβ. The effect of this change is that
the resulting particle system moves at a slower rate than the version of the particle system as
described in Step 2.
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2.2. Second order algorithm. Our second order algorithm is inspired by the system of equa-
tions (2.17) in [5] which now reads:


∂tft(x, g) + divx(ft(x, g)∇xϕt) +

∑
g′(ϕt(x, g

′)− ϕt(x, g))K(g, g′)θx,g,g′(ft(x, g), ft(x, g)) = 0

∂tϕt + 1
2 |∇xϕt|

2 +
∑

g′
(
ϕt(x, g)− ϕt(x, g′)

)2
K(g, g′)∂sθx,g,g′(ft(x, g), ft(x, g

′))

= −[γϕt(x, g) + log ft(g) + V (x, g)], t > 0.

(2.5)

We use θ as in (2.4) except that now we set U(x, g, g′) := ϕt(x, g
′) − ϕt(x, g). System (2.5)

describes a second order algorithm for the optimization of Ẽ – see sections 2.4 and 3.3. in [5]
for a detailed discussion. Here, the function ϕt is a real valued function over Rd × G that can
be interpreted as momentum variable. γ ≥ 0 is a friction parameter.

System (2.5) motivates the following particle system, where now we think that the position
of a particle is characterized by the tuple (xi, gi, vi) where xi, vi ∈ Rd, gi ∈ G, and in addition
we have a potential function ϕ : G → R that also gets updated. Initially, we assume that if
gi = gj then xi = xj and vi = vj . We also assume that initially ϕ is identically equal to zero.

We summarize the second order gradient flow dynamics as the iterative application of three
steps:

- Step 1: Updating parameters (Training): For each particle i located at (xi, gi, vi)
we update its parameters xi, vi by setting

xτi = xi + τvi,

vτi = vi − τ(γvi +∇xV (xi, gi)).

- Step 2: Moving in the architecture space (Mutation): First, for each of the
particles i with position (xi, gi, vi) we decide to move it with probability

τ
∑
j

(ϕ(gi)− ϕ(gj))
−K(gi, gj),

or 1 if the above quantity is greater than 1. Then, if we decided to move the particle i
we move it to location of particle j, (xj , gj , vj) with probability pj

pj ∝ (ϕ(gi)− ϕ(gj))
−K(gi, gj).

- Step 3: Updating momentum on the g coordinate: We update ϕ according to:

ϕτ (gi) = ϕ(gi)−
τ

2
|vi|2 − τ

(∑
j

([
ϕ(gi)− ϕ(gj)

]−)2
K(gi, gj)

)
− τ(γϕ(gi) + log f(gi) + V (xi, gi)),

for every particle i. Here, f(g) represents the ratio of particles located at g.

Remark 2.4. Notice that given the assumption on the initial locations of the particles, through-
out all the iterations of Step 1 and Step 2 and Step 3 we make sure that if gi = gj then xi = xj
and vi = vj.

2.3. NASGD and NASAGD. We are now ready to describe our algorithms NASGD and
NASAGD:
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Algorithm 1 NASGD

1. Load an initial architecture g0 with initial parameters x0 and set r = 0.
2. Construct a graph Gr around gr using the notion of network morphism introduced in

[2]. More precisely, we produce nneigh new architectures with associated parameters,
each new architecture is constructed by modifying gr using a single network morphism
from [2]. Then define Gr as the set consisting of the loaded nneigh architectures and the
architecture gr. Set the graph weights K(g, g′) (for example, setting all weights to one).

3. Put N particles on (xr, gr) and put 1 “ghost” particle on each of the remaining architec-
tures in Gr. The architectures for these ghost particles are never updated (to make sure
we always have at least one particle in each of the architectures in Gr), but certainly
their parameters will.

Then, run the dynamics discussed in section 2.1 on the graph Gr (or the modified
dynamics see, Remark 2.3 and Appendix D of the ArXiv version of this paper [4]) until
the node in Gr \ {gr} with the most particles gmax has twice as many particles as gr.

Set r = r + 1. Set gr = gmax and xr = xmax, where xmax are the parameters of
architecture gmax at the moment of stopping the particle dynamics.

4. If size of gr exceeds a prespecified threshold (in terms of number of convolutional layers
for example) go to 5. If not go back to 2.

5. Train gr until convergence.

Algorithm 2 NASAGD

1. Load an initial architecture g0 with initial parameters x0 and v0. Set ϕ0 ≡ 0. Set r = 0.
2. Construct a graph Gr around gr using the notion of network morphism introduced in

[2]. More precisely, we produce nneigh new architectures with associated parameters,
each new architecture is constructed by modifying gr using a single network morphism
from [2]. Then define Gr as the set consisting of the loaded nneigh architectures and the
architecture gr. Set the graph weights K(g, g′) (for example, setting all weights to one).

3. For NASGD: Locate N particles on (xr, gr, vr), and put 1 “ghost” particle on each of
the remaining architectures in Gr. The architectures for these ghost particles are never
updated (to make sure we always have at least one particle in each of the architectures
in Gr), but certainly their parameters will.

Initialize the potential ϕr to 0. Then run the dynamics discussed in section 2.5 (or
the modified dynamics see, Remark 2.3 and Appendix D of the ArXiv version of this
paper [4]) until the node in Gr \ {gr} with the most particles gmax has twice as many
particles as gr.

Set r = r + 1. Set gr = gmax, xr = xmax, vr = vmax where xmax, vmax are the
parameters of architecture gmax at the moment of stopping the particle dynamics.

4. If size of gr exceeds a prespecified threshold (in terms of number of convolutional layers
for example) go to 5. If not go back to 2.

5. Train gr until convergence.

3. Experiments

In this section, we present our numerical results. Before displaying them, we compare in more
detail our algorithms with the ones originally proposed in [2] and [14]. We begin by summarizing
their framework and explaining how we apply our gradient flow dynamics to it.

- Hill climbing and graph search framework: The algorithm proposed in [2] starts
with a small pre-trained network. The authors then suggest an application of a fixed
number nNM of random network morphisms to this base network to produce nneigh
children networks. They train the children networks during epochsneigh epochs using
SGD and the cosine annealing strategy introduced in [9]. The learning rate is inter-
polated from λstart to λfinal during the epochsneigh epochs. Their algorithm iterates
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this process, restarting it nsteps times. At the beginning of each cycle, it applies the
same number of morphisms to the best performing architecture in the previous cycle to
produce new nneigh children architectures. After the nsteps cycles, the best network is
trained until convergence using the same range for the cosine aliasing. The work [14]
builds upon the framework introduced in [2] by including linear morphisms and gradient
weighting techniques that prevent old layers from overfitting .

Next, we describe how we use our fist and second-order architecture search algorithms NASGD
and NASAGD to perform our numerical experiments.

- Our framework for NASGD and NASAGD: In a similar way to [2] and [14], we
pre-train an initial network g0 with the structure Conv-MaxPool-Conv-MaxPool-Conv-
Softmax for 20 epochs using cosine aliasing that interpolates between 0.5 and 10−7. We
use g0 with parameters x0 as the initial data for our gradient flow dynamics introduced in
section 2.1 for the first-order algorithm NASGD and section 2.5 for the second-order al-
gorithm NASAGD. During the NASGD and NASAGD algorithms, we use cosine aliasing
interpolating the learning rate from λstart to λfinal with a restart period of epochsneigh.
In contrast to the NASH approach from [2], since we initialize new architectures, we do
not reset the time step along with the interpolation for the epochsneighs epochs. Our
particle system dynamically determines the number of initialization. We continue this
overall dynamics, resetting the learning rate from λstart to λfinal every epochsneigh at
most nsteps times. We perform several experiments letting the first and second-order
gradient flow dynamics run for different lengths of time. Finally, we train the found
architectures until convergence.

Remark 3.1. Here, by Conv, and throughout the rest of the paper we mean:

Conv=Conv+batchnorm+Relu.

3.1. Models found by our NASGD and NASAGD algorithms. In our numerical ex-
periments, we find two models NASGD1 and NASAGD1 (see Appendix 5 and B in the ArXiv
version of this paper [4]). We found the model NASGD1 running the first-order gradient flow
dynamics with nsteps = 0.89. On the other hand, we obtain the model NASAGD1, by running
the second-order gradient flow dynamics with nsteps = 2.54. In the table below, we display the
rest of the parameters used to find these models. We also present the corresponding parameters
used to find the NASH2 model obtained from [2] and the NASGraph model from [14]:

Variable NASH2 NASGraph NASGD1 NASAGD1
nsteps 8 10 0.89 2.54
nNM 5 5 dynamic dynamic
nneigh 8 8 8 8

epochneigh 17 16 18 18
λstart 0.05 0.1 0.05 0.05
λfinal 0 0 10−7 10−7

Gradient Stopping No Yes No No

Here, nsteps denotes the number of restart cycles for the cosine aliasing; nNM is the number
of morphism operations applied on a given restart cycle; nneigh is the number of children ar-
chitectures generated every time the current best model changes; epochneigh is the number of
epochs that go by before the cosine aliasing is restarted; λfinal and λstart are the parameters
required for SGDR.

3.2. Numerical Results. We performed two experiments to produce NASGD1 and NASAGD1,
which respectively used the first and second order algorithms to learn from the CIFAR-10 data
set. We compare the performance of our methodologies against NASH2 and NasGraph in the
next table:
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Numerical Experiments
CIFAR 10 model resources # params

×106
error

NASH2 1GPU, 1day 19.7 5.2
NASGraph 1GPU, 20 h ? 4.96
NASGD1 1GPU, 12h 25.4 4.06
NASAGD1 1GPU, 1 day 22.9 3.96

Besides producing better accuracy rates, it is worth highlighting that our algorithms can
explore many more architectures (about a 40 times more) than in [2] with the same computa-
tional resources. We took advantage of this faster exploration and considered positive as well
as negative architecture mutations, i.e., mutations that can increase or decrease the number of
filters, layers, skip, and dimension of convolutional kernels.

4. Fine-tuning of the first and second-order gradient flow dynamics

In this section we explain the main points that need to be modified from the gradient flow
dynamics discussed in sections 2.1 and 2.2 in order to make them better suited for the NAS
problem. In particular, these adaptations are implemented in order to make our algorithms
viable for learning from the CIFAR-10 data set. For the reader’s convenience, we have stated
the equations for the final version of our dynamics in Appendix D of the ArXiv version of this
paper [4]. We fine-tune these dynamics by addressing the following points:

4.1. Stochastic gradient descent and decoupling of the loss function: The first adap-
tation we make is to consider a stochastic gradient descent version of the dynamics proposed
in sections 2.1 and 2.2. To perform stochastic gradient descent we first need a sequence of
mini-batches {Xk}k (of the same size) that are randomly chosen from our labeled training data
set. We denote the batch size with SX . In our experiments, we set SX = 64. In each iteration
of our dynamics, for the training step we use one of these mini-batches Xk (we technically use
different mini-batches for each architecture, but for notational simplicity, let us pretend it is the
same for all architectures in each iteration) in order to define the loss function to be optimized
(more details below). We use a different sequence of mini-batches {Yk}k, which we build from
a set that is disjoint from the one used to build the {Xk}k. These mini-batches are used in
the validation of the network performance. In our implementation, we set the size of these
validation mini-batches to be SY = 32. The data in the Yk are never used to update network
parameters.

More precisely, we do the following:

(a) Adaptation of the training step: During the training step of our algorithm, when we are
updating the parameters of an architecture g with parameters x, we denote the value of
the forward feed of g evaluated at the mini-batch Xk with Vk(x, g). Then, at the k-th
step we update the parameters of the network (x, g) with the gradient ∇xVk(x, g).

(b) Adaptation of the mutation step: For this step we use the validation mini-batches
{Yk}k. That is, given an architecture g with parameters x that is loaded on the k-th
iteration, we denote the value of the forward feed of g evaluated at the mini-batch Yk by
Ṽk(x, g). In Appendix D of the ArXiv version of this paper [4] we rewrite our mutation

steps in terms of Ṽ valuations. We notice that in the hill-climbing framework [2], the
authors use the accuracy on the validation set to determine the best model. Similarly,
we define Ṽ using mini-batches sampled from a validation set (we reiterate that we
do not use these mini-batches in the training step). In this way, the mutation step
assigns particles to those architectures that are better at generalizing their training to
sets that are disjoint from the training set. As expected, we found that this increases
test accuracy and prevents overfitting.

4.2. Warm restarts and final adaptation of the dynamics: As discussed in [2], the train-
ing step discussed in section 2.1 is generally not fast enough to produce significant variations
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between architectures in a reasonable time. Hence, for the experiment NASGD1, we have used
the technique in [9] and perform the training with momentum and cosine aliasing. In Appendix
D from [4] we denote the size of the time step determined by the cosine aliasing in the k-th
iteration by τk.

For the mutation steps in both the first and second order models we followed Remark 2.3
in order to slow down the propagation of particles. We found that this choice produced better
results than the original particle system described in sections 2.1 and 2.2 – see Appendix D in
[4] for a more detailed formulation of our implemented particle system. Also, for the mutation
step of the second-order model, we do not use the term 1

2 |vi|
2 since it is quite expensive to

compute and empirically was not observed to affect our results significantly.

4.3. Constraining the graph of architectures: We adopt a similar strategy to [14] to dy-
namically modify the size of the last layer of our network before the fully connected part.
Additionally, we impose global constraints on loaded architectures such as a maximum number
of pool layers and filters. We also constrain the number of incoming connections that a given
layer may receive.

Remark 4.1. In contrast to [2], we apply a single morphism at the same time. We can afford
this because our particle dynamics sample more architectures overall. On the other hand, this
choice was somewhat arbitrary, and it could be productive to randomize the number of morphisms
applied in order to produce new competing architectures at the beginning of each cycle. Addi-
tionally, we have considered morphisms that may reduce the size of our network. Architectures
produced by negative morphisms are occasionally preferred by the particle dynamics.

5. Conclusions and discussion

In this work we have proposed novel first and second order gradient descent algorithms for
neural architecture search (NASGD and NASAGD). The theoretical gradient flow structures
in the space of probability measures over a semi-discrete space introduced in [5] serve as the
primary motivation for our algorithms. Our numerical experiments show the practical viability
of our methodologies: we achieve competitive results while analyzing a considerably larger
amount of architectures using the same computational resources as other methodologies.

The methodologies introduced in this paper are part of a first step in a broader program
where we envision the use of well defined mathematical structures to motivate new learning
algorithms that use neural networks. Although here we have achieved competitive results, we
believe that there are still several possible directions for improvement that are worth exploring
in the future.

First, we believe that a more careful analysis of hyperparameters in our methods is needed.
The number of morphisms, the structure of local graphs (i.e. the choice of K), and the mutation
coefficients, were all fixed in a reasonable way and were not calibrated neither theoretically nor
using a data driven method.

Secondly, given that our methods have the added advantage that they can analyze a much
larger number of architectures with the same resources used by the approaches in [2] and [14],
we believe that our methods have the potential to develop a strong synergy with reinforcement
learning approaches. In reinforcement learning methods, a controller learns from data collected
as architectures are explored. As data gets collected faster, a trained controller may in princi-
ple better predict morphism chains, improving in this way the construction of local graphs. In
general, we believe that the analytical and geometric ideas that motivated the concrete method-
ologies presented in this work have the potential to increase the speed at which architectures
are explored in other NAS paradigms. Some examples of such paradigms include parameter
sharing [11] and differential architecture search [8].

A final research direction that stems from our work is motivated by the task of neural network
distillation. Indeed, by considering negative morphisms only, we may actually use the same
particle dynamics used to explore local graphs in order to prune complex neural networks in
search of simpler ones with good accuracy rates. This direction will be explored in future work.
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[1] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 24, pages 2546–2554. Curran Associates, Inc., 2011.

[2] T. Elsken, J.-H. Metzen, and F. Hutter. Simple and efficient architecture search for convolutional neural
networks. arXiv:1711.04528, 2017.

[3] A. Esposito, F. S. Patacchini, A. Schlichting, and D. Slepčev. Nonlocal-interaction equation on graphs:
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Appendix A. Architechture found by the NASGD algorithm
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Appendix B. Architechture found by the NASAGD algorithm
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Appendix C. Learning curve for the NASGD1 and NASAGD1 experiments
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Figure 1. On this plot, we display the accuracy of the current best-performing
epochs during nsteps = 0.89 cycles of the architecture search part of the algo-
rithm. NASGD finds our model during this time and then trains it until it
reaches the error rate of 4.06.

Appendix D. Implemented particle methods

In this section, for the convenience of the reader, we write the final equations for the adapted
dynamics from sections 2.1 and 2.2 after all the points discussed in section 4 are considered.

D.1. First order algorithm (NASGD). We summarize the first order gradient flow dynam-
ics as the iterative application of the following two steps:

- Step 1: Updating the parameters (Training): For each of the previously initialized
networks (xi, gi, vi) we compute Vk(xi, gi), and ∇xVk(·, gi), and update its parameters
by setting

xτki = xi + τkvi,

vτki = vi − τk(vi +∇xVk(xi, gi)).

Here, and henceforth, we use τk to denote the length of the time step determined by the
global cosine aliasing interpolation. Similarly, Vk(gi, x)) denotes the valuation function
of the current mini-batch for the stochastic gradient descent. Note that as described in
section 4 we use second order dynamics for the training even though technically speaking
we are stating our first order approach.
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- Step 2: Moving the particles (Mutation): First, for each particle at each initialized
network (x, g), we select to move it, with probability

κτk
∑
g′

[(fβ(g′) + Ṽk(x
′, g′))− (fβ(g) + Ṽk(x, g))]+K(g, g′),

or 1 if the above quantity is greater than 1. Here, κ > 0 denotes the mutation coefficient.
As discussed in section 4, Ṽk is used to denote the running average of the valuation of
the lost function in the respective mini-batches of a given architecture.

Then, if we decide to move a particle in (x, g) we move it to (x′, g′) with probability,([
fβ(g′) + Ṽk(x

′, g′)− (fβ(g) + Ṽk(x, g))
]+
K(g, g′)

)
/

(∑
g′′

[
fβ(g′′) + Ṽk(x

′′, g′′)− [fβ(g) + Ṽk(x, g)]
]+
K(g, g′′)

)
.

D.2. Second order algorithm (NASAGD):. We summarize the second order gradient flow
dynamics as the iterative application of the following three steps:

- Step 1: Updating the parameters (Training): For each of the previously initialized
networks (xi, gi, vi) we compute Vk(xi, gi), compute its gradient ∇xVk(·, gi), and update
its parameters by setting

xτki = xi + τkvi,

vτki = vi − τk(vi +∇xVk(xi, gi)).

- Step 2: Moving the particles (Mutation): First, for each particle at (x, g, v), we
move it with probability

κ τk
∑
g′

(ϕ(g)− ϕ(g′))−K(g, g′),

or 1 if the above quantity is greater than 1. Then, if we decided to move the particle,
we move it to (x′, g′, v′) with probability :

(ϕ(g)− ϕ(g′))−K(g, g′)×
(∑

g′′

(
ϕ(g)− ϕ(g′′)

)−
K(g, g′′)

)−1
.

- Step 3: Updating the velocity field (applying external force): To do this, we
set

ϕτk(g) = ϕ(g)− τk
( ∑
K(g′,g)

([
ϕ(g)− ϕ(g′)

]−
K(g, g′)

)2)
− τk(fβ(g) + Ṽk(x, g)),

for each previously initialized architecture g.

During our implementation, we found it useful to restart ϕ and set it equal to 0 every
time that the quantity∑

g,g′

(ϕ(g)− ϕ(g′))− · (Ṽk(x, g)− Ṽk(x′, g′))−K(g, g′)f(g),

becomes positive. Heuristically, this quantity measures the rate of change of the average
loss function for all the particles as they evolve in time.
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