Skip to main content

Recent Developments on the MTW Tensor

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Included in the following conference series:

Abstract

We survey some recent research related to the regularity theory of optimal transport and its associated geometry. We discuss recent progress and pose some open questions and a conjecture related to the MTW tensor, which provides a local obstruction to the smoothness of the Monge transport maps.

In this paper we survey some recent progress on the Monge problem of optimal transport and its associated geometry. The main goal is to discuss some connections between the MTW tensor and the curvature of pseudo-Riemannian and complex manifolds .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A function \(u:X \rightarrow \mathbb {R}\) is c-convex if there is some function \(v:Y \rightarrow \mathbb {R} \cup \{\pm \infty \}\) so that \(u(x) = \sup _{y \in Y}(v(y)-c(x, y))\).

  2. 2.

    For non-degenerate cost functions, the c-subdifferential of a smooth potential consists of a single point, and thus is connected. As such, Loeper’s result shows that, for cost functions which do not satisfy the MTW condition, the space of smooth optimal transports is not dense within the space of all optimal transports.

  3. 3.

    For a point x, the injectivity domain \(I(x) \subset T_x M\) is defined as the subset of the tangent bundle whose exponentials are distance-minimizing.

  4. 4.

    The proportionality constant depends on how the convex potential is used to induce the cost function.

References

  1. Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C.R. Acad. Sci. Paris Sér. I Math. 305, 805–808 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L.A.: The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5(1), 99–104 (1992)

    Article  MathSciNet  Google Scholar 

  3. Cao, H.D.: Deformation of Kahler metrics to Kahler-Einstein metrics on compact Kahler manifolds. Invent. Math. 81, 359–372 (1986)

    Article  Google Scholar 

  4. Delanoë, P.: Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampere operator. Ann I H Poincarè-AN, vol. 8, No. 5, pp. 443–457. Elsevier Masson (1991)

    Google Scholar 

  5. De Philippis, G., Figalli, A.: Partial regularity for optimal transport maps. Publications mathématiques de l’IHÈS 121(1), 81–112 (2015)

    Article  MathSciNet  Google Scholar 

  6. De Philippis, G., Figalli, A.: The Monge-Ampère equation and its link to optimal transportation. Bull. Am. Math. Soc. 51(4), 527–580 (2014)

    Article  Google Scholar 

  7. Figalli, A., Rifford, L., Villani, C.: Nearly round spheres look convex. Am. J. Math. 134(1), 109–139 (2012)

    Article  MathSciNet  Google Scholar 

  8. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Mathematica 177(2), 113–161 (1996)

    Article  MathSciNet  Google Scholar 

  9. Guillen, N., Kitagawa, J.: On the local geometry of maps with c-convex potentials. Calc. Var. Partial Differ. Equ. 52(1–2), 345–387 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    Article  MathSciNet  Google Scholar 

  11. Jeong, S.: Synthetic MTW conditions and their equivalence under mild regularity assumption on the cost function (2020). arXiv preprint arXiv:2010.14471

  12. Khan, G., Zhang, J.: The Kähler geometry of certain optimal transport problems. Pure Appl. Anal. 2(2), 397–426 (2020)

    Article  MathSciNet  Google Scholar 

  13. Khan, G., Zhang, J., Zheng, F.: The geometry of positively curved Kähler metrics on tube domains (2020). arXiv preprint arXiv:2001.06155

  14. Khan, G., Zheng, F.: Kähler-Ricci Flow preserves negative anti-bisectional curvature (2020). arXiv preprint arXiv:2011.07181

  15. Kim, Y.H., Kitagawa, J.: Prohibiting isolated singularities in optimal transport. Ann. Scoula Norm-Sci. 16(1), 277–290 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Kim, Y.H., McCann, R.: Continuity, curvature, and the general covariance of optimal transportation. J. Eur. Math. Soc. 12(4), 1009–1040 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kim, Y.H., McCann, R.J., Warren, M.: Pseudo-Riemannian geometry calibrates optimal transportation. Math. Res. Lett. 17(6), 1183–1197 (2010)

    Article  MathSciNet  Google Scholar 

  18. Kitagawa, J.: A parabolic flow toward solutions of the optimal transportation problem on domains with boundary. J. Reine Angew. Math. 2012(672), 127–160 (2012)

    Article  MathSciNet  Google Scholar 

  19. Knott, M., Smith, C.S.: On the optimal mapping of distributions. J. Optim. Theory App. 43(1), 39–49 (1984)

    Article  MathSciNet  Google Scholar 

  20. Loeper, G.: On the regularity of solutions of optimal transportation problems. Acta Mathematica 202(2), 241–283 (2009)

    Article  MathSciNet  Google Scholar 

  21. Loeper, G., Trudinger, N.S.: Weak formulation of the MTW condition and convexity properties of potentials (2020). arXiv preprint arXiv:2007.02665

  22. Ma, X.N., Trudinger, N.S., Wang, X.J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177(2), 151–183 (2005)

    Article  MathSciNet  Google Scholar 

  23. McCann, R.J., Topping, P.M.: Ricci flow, entropy and optimal transportation. Am. J. Math. 132(3), 711–730 (2010)

    Article  MathSciNet  Google Scholar 

  24. Mirghafouri, M., Malek, F.: Long-time existence of a geometric flow on closed Hessian manifolds. J. Geom. Phys. 119, 54–65 (2017)

    Article  MathSciNet  Google Scholar 

  25. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris (1781)

    Google Scholar 

  26. Puechmorel, S., Tô, T.D.: Convergence of the Hesse-Koszul flow on compact Hessian manifolds (2020). arXiv preprint arXiv:2001.02940

  27. Shi, W.X.: Ricci flow and the uniformization on complete noncompact Kähler manifolds. J. Differ. Geom. 45(1), 94–220 (1997)

    Article  Google Scholar 

  28. Tong, F.: The Kähler-Ricci flow on manifolds with negative holomorphic curvature (2018). arXiv preprint arXiv:1805.03562

  29. Topping, P.: \(\cal{L}\)-optimal transportation for Ricci flow. J. Reine Angew. Math. 2009(636), 93–122 (2009)

    Article  MathSciNet  Google Scholar 

  30. Trudinger, N.S., Wang, X.J.: On the second boundary value problem for Monge-Ampere type equations and optimal transportation. Ann. Scoula Norm-Sci.-Serie IV 8(1), 143 (2009)

    Google Scholar 

  31. Urbas, J.: On the second boundary value problem for equations of Monge-Ampere type. J. Reine Angew. Math. 487, 115–124 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71050-9

  33. Villani, C.: Stability of a 4th-order curvature condition arising in optimal transport theory. J. Funct. Anal. 255(9), 2683–2708 (2008)

    Article  MathSciNet  Google Scholar 

  34. Wong, T.K.L., Yang, J.: Optimal transport and information geometry (2019). arXiv preprint arXiv:1906.00030

  35. Yang, J.H.: Invariant metrics and Laplacians on Siegel-Jacobi space. J. Number Theory 127(1), 83–102 (2007)

    Article  MathSciNet  Google Scholar 

  36. Zhang, J.: Divergence function, duality, and convex analysis. Neural Comput. 16(1), 159–195 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriel Khan or Jun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, G., Zhang, J. (2021). Recent Developments on the MTW Tensor. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics