Skip to main content

\({{\,\mathrm{SU}\,}}(1,1)\) Equivariant Neural Networks and Application to Robust Toeplitz Hermitian Positive Definite Matrix Classification

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Abstract

In this paper, we propose a practical approach for building \({{\,\mathrm{SU}\,}}(1,1)\) equivariant neural networks to process data with support within the Poincaré disk \(\mathbb {D}\). By leveraging on the transitive action of \({{\,\mathrm{SU}\,}}(1,1)\) on \(\mathbb {D}\), we define an equivariant convolution operator on \(\mathbb {D}\) and introduce a Helgason-Fourier analysis approach for its computation, that we compare with a conditional Monte-Carlo method. Finally, we illustrate the performance of such neural networks from both accuracy and robustness standpoints through the example of Toeplitz Hermitian Positive Definite (THPD) matrix classification in the context of radar clutter identification from the corresponding Doppler signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbaresco, F.: Radar micro-doppler signal encoding in Siegel unit poly-disk for machine learning in Fisher metric space. In: 2018 19th International Radar Symposium (IRS), pp. 1–10 (2018). https://doi.org/10.23919/IRS.2018.8448021

  2. Bekkers, E.J.: B-spline CNNs on lie groups. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=H1gBhkBFDH

  3. Bekkers, E.J., Lafarge, M.W., Veta, M., Eppenhof, K.A., Pluim, J.P., Duits, R.: Roto-translation covariant convolutional networks for medical image analysis (2018)

    Google Scholar 

  4. Borowka, S., Heinrich, G., Jahn, S., Jones, S., Kerner, M., Schlenk, J.: A GPU compatible Quasi-Monte Carlo integrator interfaced to pySecDec. Comput. Phys. Commun. 240, 120–137 (2019). https://doi.org/10.1016/j.cpc.2019.02.015

    Article  Google Scholar 

  5. Brooks, D., Schwander, O., Barbaresco, F., Schneider, J., Cord, M.: A Hermitian positive definite neural network for micro-doppler complex covariance processing. In: 2019 International Radar Conference (RADAR), pp. 1–6 (2019). https://doi.org/10.1109/RADAR41533.2019.171277

  6. Cabanes, Y., Barbaresco, F., Arnaudon, M., Bigot, J.: Toeplitz Hermitian positive definite matrix machine learning based on Fisher metric. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019. LNCS, vol. 11712, pp. 261–270. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26980-7_27

    Chapter  Google Scholar 

  7. Chakraborty, R., Banerjee, M., Vemuri, B.C.: H-CNNs: convolutional neural networks for Riemannian homogeneous spaces. arXiv preprint arXiv:1805.05487 1 (2018)

  8. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 2990–2999. PMLR, New York, 20–22 June 2016. http://proceedings.mlr.press/v48/cohenc16.html

  9. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical CNNs. CoRR abs/1801.10130 (2018)

    Google Scholar 

  10. Cohen, T.S., Geiger, M., Weiler, M.: A general theory of equivariant CNNs on homogeneous spaces. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 9145–9156. Curran Associates, Inc. (2019)

    Google Scholar 

  11. del Olmo, M.A., Gazeau, J.P.: Covariant integral quantization of the unit disk. J. Math. Phys. 61(2) (2020). https://doi.org/10.1063/1.5128066

  12. Finzi, M., Stanton, S., Izmailov, P., Wilson, A.G.: Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data (2020)

    Google Scholar 

  13. Helgason, S.: Groups and geometric analysis (1984)

    Google Scholar 

  14. Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution in neural networks to the action of compact groups. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 2747–2755. PMLR, Stockholmsmässan, 10–15 July 2018. http://proceedings.mlr.press/v80/kondor18a.html

  15. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  16. Rieffel, M.A.: Lie group convolution algebras as deformation quantizations of linear poisson structures. Am. J. Math. 112(4), 657–685 (1990)

    Article  MathSciNet  Google Scholar 

  17. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3d point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Yves Lagrave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lagrave, PY., Cabanes, Y., Barbaresco, F. (2021). \({{\,\mathrm{SU}\,}}(1,1)\) Equivariant Neural Networks and Application to Robust Toeplitz Hermitian Positive Definite Matrix Classification. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics