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Abstract

We prove that the f -divergences between univariate Cauchy distributions are all symmet-
ric, and can be expressed as strictly increasing scalar functions of the symmetric chi-squared
divergence. We report the corresponding scalar functions for the total variation distance, the
Kullback-Leibler divergence, the squared Hellinger divergence, and the Jensen-Shannon diver-
gence among others. Next, we give conditions to expand the f -divergences as converging in-
finite series of higher-order power chi divergences, and illustrate the criterion for converging
Taylor series expressing the f -divergences between Cauchy distributions. We then show that
the symmetric property of f -divergences holds for multivariate location-scale families with pre-
scribed matrix scales provided that the standard density is even which includes the cases of
the multivariate normal and Cauchy families. However, the f -divergences between multivariate
Cauchy densities with different scale matrices are shown asymmetric. Finally, we present sev-
eral metrizations of f -divergences between univariate Cauchy distributions and further report
geometric embedding properties of the Kullback-Leibler divergence.
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1 Introduction

Let R, R+ and R++ be the sets of real numbers, non-negative real numbers, and positive real
numbers, respectively. The probability density function of a Cauchy distribution (also called a
Lorentzian distribution [24] in physics) is

pl,s(x) :=
1

πs
(

1 +
(
x−l
s

)2) =
s

π(s2 + (x− l)2)
,

where l ∈ R denotes the location parameter and s ∈ R++ the scale parameter of the Cauchy
distribution, and x ∈ R. The space of Cauchy distributions form a location-scale family

C =

{
pl,s(x) :=

1

s
p

(
x− l
s

)
: (l, s) ∈ R× R++

}
,

with standard density

p(x) :=
1

π(1 + x2)
. (1)

To measure the dissimilarity between two continuous probability distributions P and Q, we con-
sider the class of statistical f -divergences [14, 58] between their corresponding probability densities
functions p(x) and q(x) assumed to be strictly positive on R:

If (p : q) :=

∫
R
p(x)f

(
q(x)

p(x)

)
dx,

where f(u) is a convex function on (0,∞), strictly convex at u = 1 (to ensure reflexivity If (p : q) = 0
iff p = q), and satisfying f(1) = 0 (to ensure positive-definiteness If (p, q) ≥ 0 since by Jensen’s
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inequality we have If (p : q) ≥ f(1) = 0). The Kullback-Leibler divergence (KLD also called
relative entropy) is an f -divergence obtained for fKL(u) = − log u. In general, the f -divergences
are oriented dissimilarities: If (p : q) 6= If (q : p) (eg., the KLD). The reverse f -divergence If (q : p)
can be obtained as a forward f -divergence for the conjugate function f∗(u) := uf

(
1
u

)
(convex

with f∗(1) = 0): If (q : p) = If∗(p : q). We have If = Ig when there exists λ ∈ R such that
f(u) = g(u) + λ(u − 1). Thus an f -divergence is symmetric when there exists a real λ such that
f(u) = uf

(
1
u

)
+ λ(u − 1), and f -divergences can always be symmetrized by taking the generator

sf (u) = 1
2(f(u)+uf

(
1
u

)
). In general, calculating the definite integrals of f -divergences is non trivial:

For example, the formula for the KLD between Cauchy densities was only recently obtained [11]:

DKL(pl1,s1 : pl2,s2) := IfKL
(p : q) =

∫
pl1,s1(x) log

pl1,s1(x)

pl2,s2(x)
dx

= log

(
(s1 + s2)2 + (l1 − l2)2

4s1s2

)
.

Let λ = (λ1 = l, λ2 = s). Then we can rewrite the KLD formula as

DKL(pλ1 : pλ2) = log

(
1 +

1

2
χ(λ1, λ2)

)
, (2)

where

χ(λ, λ′) :=
(λ1 − λ′1)2 + (λ2 − λ′2)2

2λ2λ′2
=
‖λ− λ′‖2

2λ2λ′2
.

See (3) for complex representations.
We observe that the KLD between Cauchy distributions is symmetric: DKL(pl1,s1 : pl2,s2) =

DKL(pl2,s2 : pl1,s1). Let

DN
χ (p : q) :=

∫
(p(x)− q(x))2

q(x)
dx and DP

χ (p : q) :=

∫
(p(x)− q(x))2

p(x)
dx

denote the Neyman and Pearson chi-squared divergences between densities p(x) and q(x). These
divergences are f -divergences [58] for the generators fPχ (u) = (u − 1)2 and fNχ (u) = 1

u(u − 1)2,
respectively. The χ2-divergences between Cauchy densities are symmetric [54]:

Dχ(pλ1 : pλ2) := DN
χ (pλ1 : pλ2) = DP

χ (pλ1 : pλ2) = χ(λ1, λ2),

hence the naming of the function χ(·, ·). Notice that we have

χ(pλ1 : pλ2) = ρ(λ1)ρ(λ2)
1

2
D2
E(λ1, λ2),

where DE(λ1, λ2) :=
√

(λ2 − λ1)>(λ2 − λ1) and (λ2 − λ1)> denotes the transpose of the vector
(λ2 − λ1). That is, the function χ is a conformal half squared Euclidean divergence [62, 59] with
conformal factor ρ(λ) := 1

λ2
. When the Neyman and Pearson chi-squared divergences are not

symmetric, we define the chi-squared symmetric divergence as

Dχ(p : q) = DN
χ (p : q) +DP

χ (p : q) =

∫
(p(x) + q(x))(p(x)− q(x))2

p(x)q(x)
dx.
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In this work, we first prove in §2 that all f -divergences between univariate Cauchy distribu-
tions are symmetric (Theorem 1) and can be expressed as a strictly increasing scalar function of
the chi-squared divergence (Theorem 2). We illustrate this result by reporting the corresponding
functions for the total variation distance, the Kullback-Leibler divergence, the LeCam-Vincze di-
vergence, the squared Hellinger divergence, and the Jensen-Shannon divergence. Further results
for the f -divergences between the circular Cauchy, wrapped Cauchy and log-Cauchy distributions
based on the invariance properties of the f -divergences are presented in §3. We report conditions
to expand the f -divergences as infinite series of higher-order chi divergences and instantiate the
results for the Cauchy distributions in §5. In §4, we then show that the symmetric property of
f -divergence holds for multivariate location-scale families including the normal and Cauchy fami-
lies with prescribed matrix scales provided that the standard density is even, but does not hold for
general case of different matrix scales. We consider metrizations of the square roots of the KLD
and the Bhattacharyya divergences in §6. Finally in §7 we investigate geometric properties of these
metrics.

In the appendix, we first recall the information geometry of the Cauchy family in §A, explain
the relationship of Cauchy distributions with the Möbius and Boole transformations in §B, give
alternative simpler proofs of the Kullback-Leibler divergence (§C) and chi-squared divergence (§D)
between Cauchy distributions, report a closed-form formula for the total variation distance between
densities of a location-scale family in §E. In §F, we also recall the complete elliptic integrals, which
are used in the proof of the metrization of the square root of the Bhattacharyya divergence. We
discuss isometric embedding into a Hilbert space of the square root of the KLD in §G. We finally
give a code snippet for calculating some converging truncated Taylor series of f -divergences between
Cauchy distributions in §H.

2 Symmetric property of the f-divergences between univariate
Cauchy distributions

Consider the location-scale non-abelian group LS(2) which can be represented as a matrix

group [55]. A group element gl,s is represented by a matrix element Ml,s =

[
s l
0 1

]
for

(l, s) ∈ R × R++. The group operation gl12,s12 = gl1,s1 × gl2,s2 corresponds to a matrix multi-
plication Ml12,s12 = Ml1,s1 ×Ml2,s2 (with the group identity element g0,1 being the matrix iden-
tity). A location-scale family is defined by the action of the location-group on a standard density
p(x) = p0,1(x). That is, density pl,s(x) = gl,s.p(x) where ‘.’ denotes the action. We have the
following invariance for the f -divergences between any two densities of a location-scale family [55]
(including the Cauchy family):

If (g.pl1,s1 : g.pl2,s2) = If (pl1,s1 : pl2,s2), ∀g ∈ LS(2).

Thus we have

If (pl1,s1 : pl2,s2) = If

(
p : p l2−l1

s1
,
s2
s1

)
= If

(
p l1−l2

s2
,
s1
s2

: p

)
.

Therefore, we may always consider the calculation of the f -divergence between the standard density
and another density of the location-scale family. For example, we check that

χ((l1, s1), (l2, s2)) = χ

(
(0, 1),

(
l2 − l1
s1

,
s2

s1

))
4



since χ((0, 1), (l, s)) = (s−1)2+l2

2s . If we assume that the standard density p is such that Ep[X] =∫
xp(x)dx = 0 and Ep[X

2] =
∫
x2p(x)dx = 1 (hence unit variance), then the random variable

Y = µ + σX has mean E[Y ] = µ and standard deviation σ(Y ) =
√
E[(Y − µ)2] = σ. However,

the expectation and variance of Cauchy distributions are not defined, hence we preferred (l, s)
parameterization over the (µ, σ2) parameterization, where l denotes the median and s the probable
error for the Cauchy location-scale family [46].

2.1 f-divergences between densities of a location family

Let us first prove that f -divergences between densities of a location family with even standard
density are symmetric:

Proposition 1 Let Lp = {p(x − l) : l ∈ R} denote a location family with even standard density
(i.e., p(−x) = p(x)) on the support X = R. Then all f -divergences between two densities pl1 and
pl2 of L are symmetric: If (pl1 : pl2) = If (pl2 : pl1).

Proof. Consider the change of variable l1−x = y− l2 (so that x− l2 = l1− y) with dx = −dy
and let us use the property that p(z− l1) = p(l1− z) since p is an even standard density. We have:

If (pl1 : pl2) :=

∫ +∞

−∞
p(x− l1)f

(
p(x− l2)

p(x− l1)

)
dx,

=

∫ −∞
+∞

p(l1 − x)f

(
p(x− l2)

p(l1 − x)

)
(−dy),

=

∫ +∞

−∞
p(y − l2)f

(
p(x− l2)

p(y − l2)

)
dy,

=

∫ +∞

−∞
p(y − l2)f

(
p(l1 − y)

p(y − l2)

)
dy,

=

∫ +∞

−∞
p(y − l2)f

(
p(y − l1)

p(y − l2)

)
dy,

=: If (pl2 : pl1).

QED.
Thus f -divergences between location Cauchy densities are symmetric since p(x) = p(−x) for

the standard Cauchy density of Eq. 1.

2.2 f-divergences between Cauchy distributions are symmetric

Let ‖λ‖ =
√
λ2

1 + λ2
2 denote the Euclidean norm of a 2D vector λ = (λ1, λ2) ∈ R2. We state the

main theorem:

Theorem 1 All f -divergences between univariate Cauchy distributions pλ and pλ′ with λ = (l, s)
and λ′ = (l′, s′) are symmetric and can be expressed as

If (pλ : pλ′) = hf
(
χ(λ, λ′)

)

5



where

χ(λ, λ′) :=
‖λ− λ′‖2

2λ2λ′2

and hf : R+ → R+ is a function (with hf (0) = 0).

The proof does not yield explicit closed-form formula for the f -divergences as it can be in general
difficult to calculate in closed forms, and relies on McCullagh’s complex parametrization [46] pθ of
the parameter of the Cauchy density pl,s with θ = l + is:

pθ(x) =
|Im(θ)|
π|x− θ|2

,

since |x − (l + is)|2 = ((x − l) + is)((x − l) − is) = (x − l)2 + s2. The parameter space θ is the
complex plane C where we identify θ̄ with θ, and the Cauchy distributions are degenerated to Dirac
distributions δl(x) whenever s = 0.

We make use of the special linear group SL(2,R) for θ the complex parameter:

SL(2,R) :=

{[
a b
c d

]
: a, b, c, d ∈ R, ad− bc = 1

}
.

Let A.θ := aθ+b
cθ+d (real linear fractional transformations) be the action of A =

[
a b
c d

]
∈

SL(2,R). McCullagh proved that if X ∼ Cauchy(θ) then A.X ∼ Cauchy (A.θ), where θ ∈ C is
identified with θ̄ (hence λ(θ) = (Re(θ), |Im(θ)|)). For example, if X ∼ Cauchy(is) then 1

X ∼
Cauchy( 1

is) = Cauchy(− i
s) ≡ Cauchy(1

s ). Using the λ = (l, s) parameterization, we have

lA =
(al + b) (cl + d) + acs2

(cl + d)2 + c2s2
,

sA =

∣∣∣∣ (ad− bc)s
(cl + d)2 + c2s2

∣∣∣∣ .
We can also define an action of SL(2,R) to the real line R by x 7→ ax+b

cx+d , x ∈ R, where we

interpret −d
c 7→

a
c if c 6= 0. We remark that d 6= 0 if c = 0. This map is bijective between R. We

have the following invariance:

Lemma 1 (Invariance of Cauchy f-divergence under SL(2,R)) For any A ∈ SL(2,R) and
θ1, θ2 ∈ H, we have

If (pA.θ1 : pA.θ2) = If (pθ1 : pθ2).

Proof. We prove the invariance by the change of variable in the integral. Let D(θ1 : θ2) :=
If (pθ1 : pθ2). We have

D(A.θ1 : A.θ2) =

∫
R

Im(A.θ1)

π|x−A.θ1|2
f

(
Im(A.θ2)|x−A.θ1|2

Im(A.θ1)|x−A.θ2|2

)
dx.

Since A ∈ SL(2,R), we have

Im(A.θi) =
Im(θi)

|cθi + d|2
, i ∈ {1, 2}.
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If x = A.y then dx = dy
|cy+d|2 , and

|A.y −A.θi|2 =
|y − θi|2

|cy + d|2 |cθi + d|2
, i ∈ {1, 2}.

Hence we get:∫
R
f

(
Im(A.θ2)|x−A.θ1|2

Im(A.θ1)|x−A.θ2|2

)
Im(A.θ2)

π|x−A.θ1|2
dx =

∫
R
f

(
Im(θ2)|y − θ1|2

Im(θ1)|y − θ2|2

)
Im(θ2)

π|y − θ2|2
dy,

= If (pθ1 : pθ2) .

QED.
Let us notice that the Cauchy family is the only univariate location-scale family that is also

closed by inversion [34]: That is, if X ∼ Cauchy(l, s) then 1
X ∼ Cauchy(l′, s′). Therefore our

results are specific to the Cauchy family and not to any other location-scale family. However the
characterization by [34] yields some applications. See Appendix B for details.

We now prove Theorem 1 using the notion of maximal invariants of Eaton [18] (Chapter 2) that
will be discussed in §2.5.

Let us rewrite the function χ with complex arguments as:

χ(z, w) :=
|z − w|2

2 Im(z)Im(w)
, z, w ∈ C. (3)

Proposition 2 (McCullagh [46]) The function χ defined in Eq. 3 is a maximal invariant for
the action of the special linear group SL(2,R) to H×H defined by

A.(z, w) :=

(
az + b

cz + d
,
aw + b

cw + d

)
, A =

[
a b
c d

]
∈ SL(2,R), z, w ∈ H.

That is, we have
χ(A.z,A.w) = χ(z, w), A ∈ SL(2,R), z, w ∈ H,

and it holds that for every z, w, z′, w′ ∈ H satisfying that χ(z′, w′) = χ(z, w), there exists A ∈
SL(2,R) such that (A.z,A.w) = (z′, w′).

By Lemma 1 and Theorem 2.3 of [18], there exists a unique function hf : [0,∞)→ [0,∞) such
that hf (χ(z, w)) = D(z, w) for all z, w ∈ H.

Theorem 2 The f -divergence between two univariate Cauchy densities is symmetric and expressed
as a function of the chi-squared divergence:

If (pθ1 : pθ2) = If (pθ2 : pθ1) = hf (χ(θ1, θ2)), θ1, θ2 ∈ H. (4)

Therefore we have proven that the f -divergences between univariate Cauchy densities are all sym-
metric. Note that we have hf = hf∗ . In general, the f -divergences between two Cauchy mixtures

m(x) =
∑k

i=1wipli,si(x) and m′(x) =
∑k′

i=1w
′
ipl′i,s′i(x) are asymmetric (i.e., If (m : m′) 6= If (m′ :

m)) except when k = k′ = 1.

7



Similarly, we proved in Proposition 1 that all f -divergences between two densities of a location
family with even standard density are symmetric. These f -divergences If [pl1 : pl2 ] can be expressed
as a function kf of the the absolute value |l1 − l2|:

If (pl1 : pl2) = If (pl1−l2 : p) = If (p : pl2−l1) = kf (|l1 − l2|).

Since the Cauchy standard density is even, we have for a prescribed scale subfamily If (pl1,s :
pl2,s) = hf (χ((l1, s), (l2, s))) = kf,s(|l1 − l2|). By the definition of χ, it follows that we have
kf,s(u) = hf

(
u

2s2

)
.

Remark 1 It has been shown that Amari’s dual ±α-connections [3] αΓ all coincide with the Levi-
Civita metric connection [48]. That is, the α-geometry coincides with the Fisher-Rao geometry
for the Cauchy family [54], for all α ∈ R (see Appendix A). Moreover, Eguchi [19, 20] showed
how to build an information-geometric dualistic structure (M,Dg,D∇,D∇∗) from any arbitrary
smooth divergence D, consisting of a pair of torsion-free affine connections (D∇,D∇∗) coupled
to the metric tensor Dg so that we have D∇∗ = D∗∇ where D∗(p : q) := D(q, p) denotes the
reverse divergence. When the divergence D is a f -divergence, it can be shown that the induced

connections are α-connections, D∇ = α∇ and D∇∗ = −α∇ with α = 3 + 2f
′′′(1)
f ′′(1) , and the metric

tensor Dg = 1
f ′′(1)

F g is proportional to the Fisher information metric tensor F g [53]. (Notice that

Amari defined standard f -divergences in [3] by fixing their their scalings so that f ′′(1) = 1.) Since
f -divergences are symmetric for Cauchy distributions, we have If∇ = If∗∇ = If∇∗.

Remark 2 Of course, not all statistical divergences between Cauchy densities are symmetric. For
example, consider the statistical q-divergence [3] for a scalar q ∈ [1, 3):

Dq(p : r) :=
1

(1− q)Zq(p)

(
1−

∫
pq(x)r1−q(x)dµ(x)

)
,

where Zq(p) :=
∫
pq(x)dµ(x). Then the 2-divergence between two Cauchy densities pλ1 and pλ2

(with λi = (li, si)) is available in closed-form (as a corresponding Bregman divergence [3]):

D2(pλ1 : pλ2) =
π

s2
‖λ1 − λ2‖2.

Thus D2(pλ1 : pλ2) 6= D2(pλ2 : pλ1) when s1 6= s2.

Note that since If (pθ2 : pθ1) = hf (χ(θ1, θ1)), Lemma 1 can a posteriori be checked for the
chi-squared divergence: For any A ∈ SL(2,R) and θ ∈ H, we have

χ(pA.θ1 : pA.θ2) = χ(pθ1 : pθ2),

and therefore for any f -divergence, since we have If (pA.θ1 : pA.θ2) = If (pθ1 : pθ2) since

If (pA.θ2 : pA.θ1) = hf (χ(A.θ1, A.θ1)) = hf (χ(θ1, θ1)) = If (pθ2 : pθ1).

8



To prove that χ(pA.θ1 : pA.θ2) = χ(pθ1 : pθ2), let us first recall that Im(A.θ) = Im(θ)
|cθ+d|2 and |A.θ1 −

A.θ2|2 = |θ1−θ2|2
|cθ1+d|2 |cθ2+d|2 . Thus we have

χ(A.θ1, A.θ2) =
|A.θ1 −A.θ2|2

2 Im(A.θ1)Im(A.θ2)
,

=
|θ1 − θ2|2|cθ1 + d|2 |cθ2 + d|2

|cθ1 + d|2 |cθ2 + d|2 2 Im(θ1)Im(θ2)
,

=
|θ1 − θ2|2

2 Im(θ1)Im(θ2)
= χ(θ1, θ2).

Alternatively, we may also define a bivariate function gf (l, s) so that using the action of the
location-scale group, we have:

hf (χ(θ1, θ2)) = gf

(
l1 − l2
s2

,
s1

s2

)
,

where θ1 = l1 + is1 and θ2 = l2 + is2. When the function hf is not explicitly known, we may
estimate the f -divergences using Monte Carlo importance samplings [55].

2.3 Strictly increasing function hf

We have proven that If (pθ1 : pθ2) = If (pθ2 : pθ1) = hf (χ(θ1, θ2)). Let us prove now that the
function hf is is a strictly increasing function.

Theorem 3 Let f : (0,∞) → R be a convex function such that f(1) = 0 and f ∈ C1((0, 1)) ∩
C1((1,∞)) and f ′(x) < f ′(y) for every x < 1 < y. Let Df (λ : λ′) be the f -divergence between pλ
and pλ′, specifically,

Df (λ : λ′) =

∫
R
pλ(x)f

(
pλ′(x)

pλ(x)

)
dx.

Let χ be McCullagh’s maximal invariant. Let hf : (0,∞)→ [0,∞) be the function such that

hf (χ(λ, λ′)) = Df (λ : λ′), λ, λ′ ∈ H.

Then, hf is a strictly increasing function.

The assumption of f is complicated as we would like to cover the important case of the TV
distance.

Proof. Let u ≥ 0. Let λ = i and λ′ = u+ i. Then, χ(i, u+ i) = u2

2 and hence,

hf

(
u2

2

)
= Df (pi : pu+i).

Hence it suffices to show that F1(u) := Df (pi : pu+i) is a strictly increasing function. We see that

F1(u) =

∫
R

1

π(x2 + 1)
f

(
x2 + 1

(x− u)2 + 1

)
dx.

Then,

9



Lemma 2

F ′1(u) =

∫
R

2(x− u)

π((x− u)2 + 1)
f ′
(

x2 + 1

(x− u)2 + 1

)
dx, u > 0,

where we let f ′(1) = 0.

By the change-of-variable formula,

F ′1(u) =
2

π

∫
R

x

x2 + 1
f ′
(

(x+ u)2 + 1

x2 + 1

)
dx, u > 0,

We also see that ∫
R

x

x2 + 1
f ′
(

(x+ u)2 + 1

x2 + 1

)
dx

=

∫ ∞
0

x

x2 + 1
f ′
(

(x+ u)2 + 1

x2 + 1

)
dx+

∫ 0

−∞

x

x2 + 1
f ′
(

(x+ u)2 + 1

x2 + 1

)
dx

=

∫ ∞
0

x

x2 + 1

(
f ′
(

(x+ u)2 + 1

x2 + 1

)
− f ′

(
(x− u)2 + 1

x2 + 1

))
dx.

Since f is convex and x, u > 0, it holds that

f ′
(

(x+ u)2 + 1

x2 + 1

)
≥ f ′

(
(x− u)2 + 1

x2 + 1

)
,

for every x > 0 except x = u/2. By the assumption,

f ′
(

(x+ u)2 + 1

x2 + 1

)
> f ′

(
(x− u)2 + 1

x2 + 1

)
, x ∈

(
99

100
u,

101

100
u

)
.

Hence, ∫ ∞
0

x

x2 + 1

(
f ′
(

(x+ u)2 + 1

x2 + 1

)
− f ′

(
(x− u)2 + 1

x2 + 1

))
dx > 0.

QED.
Proof. [Proof of Lemma 2] We show this assertion for u = u0 > 0.

Lemma 3 For every c > 1,

Rf,c := sup
1/c<a<b<c

∣∣∣∣f(b)− f(a)

b− a

∣∣∣∣ < +∞.

Proof. We first remark that

max
x∈[1/c,c]

|f ′(x)| ≤ max
{
|f ′(1/c)|, |f ′(c)|

}
,

since f is convex.
Assume that a < b ≤ 1 or 1 ≤ a < b. Then, by the mean-value theorem,∣∣∣∣f(b)− f(a)

b− a

∣∣∣∣ = |f ′(ξ)| ≤ max
{
|f ′(1/c)|, |f ′(c)|

}
.
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Finally we assume that a < 1 < b. Then,∣∣∣∣f(b)− f(a)

b− a

∣∣∣∣ ≤ ∣∣∣∣f(1)− f(a)

1− a

∣∣∣∣+

∣∣∣∣f(b)− f(1)

b− 1

∣∣∣∣ ≤ 2 max
{
|f ′(1/c)|, |f ′(c)|

}
.

QED.
For each fixed u > 0,

1

1 + u+ u2
≤ x2 + 1

(x− u)2 + 1
≤ 1 + u+ u2.

Hence, for some c0 > 1,

1

c0
< inf

x∈R,u∈( 99
100

u0,
101
100

u0)

x2 + 1

(x− u)2 + 1
≤ sup

x∈R,u∈( 99
100

u0,
101
100

u0)

x2 + 1

(x− u)2 + 1
< c0.

Assume that 0 < |h| < u0/100. Then, by Lemma 3,

1

x2 + 1

∣∣∣∣1h
(
f

(
x2 + 1

(x− u0 − h)2 + 1

)
− f

(
x2 + 1

(x− u0)2 + 1

))∣∣∣∣
≤

Rf,c0
x2 + 1

∣∣∣∣1h
(

x2 + 1

(x− u0 − h)2 + 1
− x2 + 1

(x− u0)2 + 1

)∣∣∣∣
= Rf,c0

2|x− u0 − h|+ u0/100

((x− u0 − h)2 + 1)((x− u0)2 + 1)
≤ Rf,c0

1 + u0/100

(x− u0)2 + 1
.

We see that for x 6= u0/2,

1

x2 + 1
lim
h→0

1

h

(
f

(
x2 + 1

(x− u0 − h)2 + 1

)
− f

(
x2 + 1

(x− u0)2 + 1

))

=
2(x− u0)

(x− u0)2 + 1
f ′
(

x2 + 1

(x− u0)2 + 1

)
.

Now the lemma follows from the dominated convergence theorem. QED.

Remark 3 It follows that the Chebyshev center [8] pλ∗ of a set of n Cauchy distributions
pλ1 , . . . , pλn with respect to any f -divergence does not depend on the generator f with λ∗ =
arg minλ maxi If (pλi : pλ) since

arg min
λ

max
i
If (pλi : pλ) = arg min

λ
max
i
hf (χ(λi, λ)),

= arg min
λ

max
i
χ(λi, λ),

= arg min
λ

max
i

‖λi − λ‖2

λi
.

Similarly, the Cauchy Voronoi diagrams with respect to f -divergences all coincide [54].

Remark 4 It is interesting to consider whether if the symmetry of f -divergence between a location-
scale family on R holds for every f , then, the family is limited to Cauchy or not. If this is true,
then, it implies the characterization of the Cauchy distribution by [34] and [17]. See Proposition
14 in Appendix.
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2.4 Some illustrating examples

2.4.1 The Kullback-Leibler divergence

It was proven in [11] that

DKL(pl1,s1 : pl2,s2) = log

(
(s1 + s2)2 + (l1 − l2)2

4s1s2

)
.

Thus we have

hKL(u) = log

(
1 +

1

2
u

)
.

This plays an important role in establishing an equivalence criterion for two infinite products
of Cauchy measures. See [64].

2.4.2 LeCam-Vincze triangular divergence

Let us consider another illustrating example: The LeCam-Vincze triangular divergence [38, 81]
defined by

DLCV(p : q) :=

∫
(p(x)− q(x))2

p(x) + q(x)
dx.

This divergence is a symmetric f -divergence obtained for the generator fLCV(u) = (u−1)2

1+u . The
triangular divergence is a bounded divergence since f(0) = f∗(0) = 1 < ∞, and its square root√
DLCV(p : q) yields a metric distance. The LeCam triangular divergence between a Cauchy stan-

dard density p0,1 and a Cauchy density pl,s is

DLCV(p0,1 : pl,s) = 2− 4

√
s

l2 + s2 + 2s+ 1
≤ 2.

Since χ(p0,1 : pl,s) = l2+(s−1)2

2s , we can express the triangular divergence using the χ-squared
divergence as

DLCV(pl1,s1 : pl2,s2) = 2− 4

√
1

2(χ(pl1,s1 , pl2,s2) + 2)
.

Thus we have the function:

hfLCV
(u) = 2− 4

√
1

2(u+ 2)
.

2.4.3 Total variation distance

The total variation distance (TVD) is a metric f -divergence obtained for the generator fTV(u) =
1
2 |u− 1|:

DTV(p : q) = IfTV
(p : q) =

1

2

∫
R
|p(x)− q(x)|dx.

Consider the TVD between two Cauchy densities pl1,s1 and pl2,s2 : DTV(pl1,s1 , pl2,s2).

12



• When s2 = s1 = s, we have one root r for pl1,s(x) = pl2,s(x) since the Cauchy standard
density p(x) is even: r = l1+l2

2 . Assume without loss of generality that l1 < l2. Then we have

DTV(pl1,s : pl2,s) =
1

2

(∫ l1+l2
2

−∞
(pl1,s(x)− pl2,s(x))dx+

∫ ∞
l1+l2

2

(pl2,s(x)− pl1,s(x))dx

)
,

=
2

π
arctan

(
|l2 − l1|

2s

)
≤ 1.

Notice that we have limx→∞ arctan(x) = π
2 . We can express DTV(pl1,s : pl2,s) using

χ(pl1,s, pl2,s) = (l2−l1)2

2s2
:

DTV(pl1,s : pl2,s) =
2

π
arctan

(√
χ(pl1,s, pl2,s)

2

)
.

See also Appendix E for the total variation between two densities of a location family.

• We calculate the two roots r1 and r2 of pl1,s1(x) = pl2,s2(x) when s2 6= s1:

r1 =

√
s1 s2

3 − 2s1
2 s2

2 +
(
s1

3 +
(
l2

2 − 2l1 l2 + l1
2
)
s1

)
s2 + l1s2 − l2s1

s2 − s1
,

r2 =

√
s1 s2

3 − 2s1
2 s2

2 +
(
s1

3 +
(
l2

2 − 2l1 l2 + l1
2
)
s1

)
s2 − l1s2 + l2s1

s2 − s1
.

Then we use the formula for the definite integral:

I(l, s, a, b) :=

∫ b

a
pl,s(x)dx =

1

π

(
arctan

(
l − a
s

)
− arctan

(
l − b
s

))
,

where arctan(−x) = − arctan(x).

It follows that we have

DTV(pl1,s1 : pl2,s2) =

1

π

(
arctan

(
l2 − r1

s2

)
− arctan

(
l2 − r2

s2

)
+ arctan

(
l1 − r1

s1

)
− arctan

(
l1 − r2

s2

))
.

Rearranging and simplifying the terms, we get:

DTV(pl1,s1 : pl2,s1) =
2

π
arctan

(√
χ(pl1,s1 : pl2,s1)

2

)
,

= hfTV
(χ[pl1,s1 , pl2,s1 ]) ,

with

hfTV
(u) =

2

π
arctan

(√
u

2

)
.
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2.4.4 f-divergences for polynomial generators

First, let us consider the f -divergence between two Cauchy densities for f a (convex) monomial.

Proposition 3 Let a ≥ 2 be an integer. Let Ja be a function such that

Ja(χ(z, w)) =

∫
R
pz(x)apw(x)1−adx, z, w ∈ H.

Then, Ja is a polynomial with degree a− 1.

Proof. Let λ ∈ (0, 1). Then,

Ja

(
(1− λ)2

2λ

)
=

1

π

1

λa−1

∫
R

(x2 + λ2)a−1

(x2 + 1)a
dx.

Hence it suffices to show that the right hand side is a polynomial of λ+ λ−1.
Let

R(a, i) :=

∫
R

x2i

(x2 + 1)a
dx, 0 ≤ i ≤ a− 1.

Then, by the change-of-variable that x = 1/y,

R(a, i) = R(a, a− 1− i), 0 ≤ i ≤ a− 1.

By this and the binomial expansion,

1

λa−1

∫
R

(x2 + λ2)a−1

(x2 + 1)a
dx =

a−1∑
i=0

(
a− 1

i

)
R(a, i)λa−1−2i

=
a−1∑
i=0

(
a− 1

i

)
R(a, i)

λa−1−2i + λ2i−a+1

2
.

By induction in n, it is easy to see that λn + λ−n is a polynomial of λ + λ−1 with degree n.
QED.

It holds that

J2(t) = t+ 1,

J3(t) = (3(t+ 1)2 − 1)/2 =
3

2
t2 + 3t+ 1,

J4(t) = (5(t+ 1)3 − 3(t+ 1))/2 =
5

2
t3 +

15

2
t2 + 6t+ 1,

J5(t) = (35(t+ 1)4 − 30(t+ 1)2 + 3)/8 =
35

8
t4 +

35

2
t3 +

45

2
t2 + 10t+ 1.

Notice that the smallest degree coefficient a0 of polynomial Jd(t) =
∑d−1

i=0 ait
i is always

one since when χ(z, w) = 0, we have z = w and therefore Jd(0) =
∫
R pz(x)apw(x)1−adx =∫

R pz(x)apz(x)1−adx =
∫
R pz(x)dx = 1 = a0.

The result extends for f -divergences between two Cauchy densities for f(u) = Pd(u) =∑d
i=1 aiu

i −
∑d

i=1 ai a convex polynomial in degree d with Pd(1) = 0. Notice that the set of
convex polynomials of degree d can be characterized by the set of positive polynomials [44] of de-
gree d− 2 since Pd(u) is convex iff P ′′d (u) ≥ 0. A positive polynomial can always be decomposed as
a sum of two squared polynomials [69, 7].
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Proposition 4 The f -divergence between two Cauchy densities for a convex polynomial generator
Pd(u) of degree d can be expressed as a d − 1 dimensional polynomial Qd−1 of the chi-squared
divergence: IPd(pλ1 , pλ2) = Qd−1(χ(pλ1 , pλ2)).

The proof follows from the fact that IPd(pλ1 , pλ2) =
∑d

i=0 Ifai (pλ1 , pλ2) where fai(u) = aui − ai
and Proposition 3. Notice that

∫
R pz(x)apw(x)1−adx =

∫
R pz(x)1−apw(x)adx since Ja(χ(z, w)) =

Ja(χ(w, z)).

Remark 5 In practice, we can estimate the coefficients of Jd(t) =
∑d−1

i=0 ait
i using polynomial

regression [21] as follows: Let a = [a0, . . . , ad−1]> denote the vector of polynomial coefficients of Jd.
Let us draw n ≥ d random variates λ1, . . . , λn and λ′1, . . . , λ

′
n. Define the n× d matrix M = [mij ]

with mij = χ(λi, λ
′
i)
j−1. Let b = [b1, . . . , bn] denote the vector with bi '

∫
R pλi(x)dpλ′i(x)1−ddx is

numerically approximated (e.g., using a quadrature integration rule or by stochastic Monte Carlo
integration). Then we estimate a by â = M+b where M+ := (M>M)−1M> is the pseudo-inverse
matrix (with M+ = M−1 when n = d). Notice that knowing that â0 should be close to one, allows
to check the quality of the polynomial regression. In fact, we know that all coefficients ai’s should
be rational.

For example, we find that

Ĵ6(t) = 7.958522957345747t5 + 39.020985312326296t4 + 70.4495468953682t3 + 52.37619399770375t2

+14.951303338589055t+ 1.002873073997123

Running a second time, we find another estimate

Ĵ6(t) = 7.8720651949082665t5 + 39.38158109425294t4 + 70.00024065301261t3 + 52.49185790967846t2

+15.004692984586242t+ 0.9992248562053161

We can also estimate similarly the order-k chi divergence [58]

Dχ,k(p : q) =

∫
(p(x)− q(x))k

q(x)k−1
dx,

for even integers k ≥ 2. The order-k chi divergence Dχ,k(p : q) is an f -divergence obtained for the
convex generator fχ,k(u) = (u− 1)k. Using the binomial expansion, we have [58]:

Dχ,k(p : q) =
k∑
i=0

(
k

i

)
(−1)i

∫
q(x)i−k+1p(x)k−idx.

For example, we find using the polynomial regression for k = 6:

ĥfχ,6(u) = 7.875095431165917u5 + 13.124758716080692u4 + 2.4996228229861686u3

+0.0013068731474561446u2 − 7.94214016995198310−4u+ 4.227071186713171610−5.

Another run yields a close estimate:

ĥfχ,6(u) = 7.884522702454348u5 + 13.081028848015308u4 + 2.5649432632612843u3

+− 0.03537083264961893u2 + 0.005359945026839341u− 1.90124993816098710−4.

Since the first polynomial coefficient a0 of hfχ,k(u) should be zero, we can assess the quality of
the polynomial regression.

A different set of techniques consist in estimating symbolically the univariate functions hf and
kf using symbolic regression [6, 15].
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2.4.5 The Jensen-Shannon divergence

Consider the Jensen-Shannon divergence [41, 25] (JSD) (a special case of Sibson’s information
radius [75] of order 1 between a 2-point set):

DJS(p : q) =
1

2

(
DKL

(
p :

p+ q

2

)
+DKL

(
q :

p+ q

2

))
,

= h

(
p+ q

2

)
− h(p) + h(q)

2
,

where h(p) = −
∫
p(x) log p(x)dx denotes Shannon entropy. The JSD can be rewritten as

DJS(p : q) =
1

2
(DK(p : q) +DK(q : p)) ,

where the divergence DK [41] is defined by

DK(p : q) :=

∫
p(x) log

2p(x)

p(x) + q(x)
dx.

The divergence DK is an f -divergence for the generator fK(u) = u log 2u
1+u such that the reverse

K-divergence is DK
∗(p : q) := DK(q : p) = If∗K (p : q) with conjugate generator f∗K(u) = − log 1+u

2 .

Thus the JSD is an f -divergence for fJS(u) = u
2u log 2u

1+u −
1
2 log 1+u

2 . Since fJS(0) < ∞, the JSD
is upper bounded. It is bounded by log 2 since DK(p : q) ≤ log 2.

Using the fact that f -divergences between Cauchy distributions are symmetric, we have

DJS(pl1,s1 : pl2,s2) = DK(pl1,s1 : pl2,s2) = DK

(
p : p l2−l1

s1
,
s2
s1

)
.

To get the JSD between two Cauchy distributions, we need to find a closed-form formula for
DJS(p : pl,s) = DK(p : pl,s). Let us skew the divergence DK [50] with a parameter α ∈ (0, 1):

DKα(p : q) := DKL(p : (1− α)p+ αq) =

∫
p(x) log

p(x)

(1− α)p(x) + αq(x)
dx. (5)

The divergence DKα is an f -divergence for the generator fKα(u) := −u log
(
(1− α) + α

u

)
[50].

Let p1(x) := p0,1(x) = 1
π(x2+1)

, p2(x) := pl,s(x) and mw(x) = (1 − w)p1(x) + wp2(x) :=(
1−w

π(x2+1)
+ ws

π((x−l)2+s2)

)
.

In Proposition 1 of [11] (proven in Appendix A), a closed-form is reported for the following
definite integral:

A(a, b, c; d, e, f) =

∫ ∞
−∞

log
(
dx2 + ex+ f

)
ax2 + bx+ c

dx,

=
2π
(

log
(

2af − be+ 2cd+
√

4ac− b2
√

4df − e2
)
− log(2a)

)
√

4ac− b2
.
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Relying on this closed-form formula, we find after calculations that we have:

DKL(p1 : mw) = log

(
l2 + (s+ 1)2

(1− w)(l2 + s2 + 1) + 2ws+ 2
√
s2 + s((1− s)2 + l2)w(1− w)

)
.

We remark that (1−w)(l2 + s2 + 1) + 2ws ≥ 2s > 0 and s2 + s((1− s)2 + l2)w(1−w) ≥ s2 > 0.
This is analytic with respect to w on (0, 1), because there exists a holomorphic extension of this to
an open neighborhood of the closed interval [0, 1] in C.

We consider now the general case: Let pl1,s1(x) := s1
π((x−l1)2+s21)

, pl2,s2(x) := s2
π((x−l2)2+s22)

and

consider the mixture:

m(x) := (1− w)pl1,s1(x) + wpl2,s2(x),

=

(
(1− w)s1

π((x− l1)2 + s2
1)

+
ws2

π((x− l2)2 + s2
2)

)
.

Then we have:

DKL(pl1,s1 : m) =

log

(
(l1 − l2)2 + (s1 + s2)2

(1− w)(s2
1 + s2

2 + (l1 − l2)2) + 2ws1s2 + 2
√
s2

1s
2
2 + s1s2((s1 − s2)2 + (l1 − l2)2)w(1− w)

)
.(6)

Let us report one example:

DKw(p : p1,1) = DKL(p1 : (1− w)p1(x) + wp2(x)) = log 5− log
(

3− w + 2
√

1 + w − w2
)
.

When w = 1
2 , we get DK(pl1,s1 : pl2,s2) = DKL(pl1,s1 : m), and we get the JSD between Cauchy

densities pl1,s1 and pl2,s2 :

DJS(pl1,s1 : pl2,s2) = log

(
2
√

(l1 − l2)2 + (s1 + s2)2√
(l1 − l2)2 + (s1 + s2)2 + 2

√
s1s2

)
, (7)

=: hJS(χ(pl1,s1 , pl2,s2)),

with

hJS(u) = log

(
2
√

2 + u
√

2 + u+
√

2

)
,

since (l1−l2)2+(s1+s2)2

2s1s2
− 2 = (l1−l2)2+(s1−s2)2

2s1s2
.

Since DJS(pl1,s1 : pl2,s2) = h
(
pl1,s1+pl2,s2

2

)
− h(pl1,s1 )+h(pl2,s2 )

2 and h(pls) = log(4πs) [11], we get

a formula for the Shannon entropy of the mixture of two Cauchy densities:

h

(
pl1,s1 + pl2,s2

2

)
= DJS(pl1,s1 : pl2,s2) + log(4π

√
s1s2). (8)

Notice that the JSD between two Gaussian distributions is not analytic [61].
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Remark 6 Consider a mixture family [3, 60]

M :=

{
mθ(x) =

D∑
i=1

θipi(x) +

(
1−

D∑
i=1

θi

)
p0(x) : θi > 0,

D∑
i=1

θi < 1

}

where the pi(x)’s are linearly independent component distributions. The KLD between two densities
mθ1 and mθ2 of M amount to a Bregman divergence [3, 60] for the Shannon negentropy F (θ) :=
−h(mθ):

DKL(mθ1 : mθ2) = BF (θ1 : θ2),

where

BF (θ1 : θ2) := F (θ1)− F (θ2)− (θ1 − θ2)>∇F (θ2).

Since 1
2(mθ1 +mθ2) = m θ1+θ2

2

, we have

DJS(mθ1 : mθ2) =
1

2

(
DKL

(
mθ1 :

1

2
(mθ1 +mθ2)

)
+DKL

(
mθ2 :

1

2
(mθ1 +mθ2)

))
,

=
1

2

(
BF

(
θ1 :

θ1 + θ2

2

)
+BF

(
θ2 :

θ1 + θ2

2

))
,

=
F (θ1) + F (θ2)

2
− F

(
θ1 + θ2

2

)
:= JF (θ1 : θ2).

This last expression is called a Jensen divergence [56] JF (θ1 : θ2). In general, the Shannon entropy
of a mixture is not available in closed-form. However, we have shown that the Shannon entropy of
a mixture of two Cauchy distributions is available in closed form in Eq. 8.

For example, consider the family of mixtures of two Cauchy distributions with prescribed pa-
rameters (l0, s0) = (0, 1) and (l1, s1) = (1, 1). Then we have the following generator:

F0,1,1,1(θ) = −h[(1− θ)p0,1 + θp1,1] = θ log
2
√

1 + θ − θ2 + θ + 2

2
√

1 + θ − θ2 − θ + 3
+ log

2
√

1 + θ − θ2 − θ + 3

20π
,

and the derivative of F0,1,1,1(θ) is

η(θ) = F ′0,1,1,1(θ) = log
2
√

1 + θ − θ2 + θ + 2

2
√

1 + θ − θ2 − θ + 3
.

It follows that the Bregman divergence BF0,1,1,1(θ1 : θ2) is

BF0,1,1,1(θ1 : θ2) = DKL[mθ1 : mθ2 ] = θ1 log
(2
√

1+θ1−θ21+θ1+2)(2
√

1+θ2−θ22−θ2+3)

(2
√

1+θ1−θ21−θ1+3)(2
√

1+θ2−θ22+θ2+2)
+ log

2
√

1+θ1−θ21−θ1+3

2
√

1+θ2−θ22−θ2+2
.

Let us define the skewed α-Jensen-Shannon divergence:

DJS,α(p : q) = (1− α)DKL(p : (1− α)p+ αq) + αDKL(q : (1− α)p+ αq). (9)

It is an f -divergence (i.e., DJS,α(p : q) = IfJS,α(p : q)) for the convex generator:

fJS,α = −(1− α) log(αu+ (1− α))− αu log

(
1− α
u

+ α

)
. (10)
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When α = 1
2 , we have fJS(u) = fJS, 1

2
(u) = −1

2 log 1+u
2 −

1
2u log

(
1

2u + 1
2

)
= 1

2u log 2u
1+u −

1
2 log 1+u

2 .

The skewed α-Jensen-Shannon divergence can be rewritten as

DJS,α(p : q) = h((1− α)p+ αq)− ((1− α)h(p) + αh(q)). (11)

Thus we have
h((1− α)p+ αq) = DJS,α(p : q) + ((1− α)h(p) + αh(q)). (12)

When p = pl1,s1 and q = pl2,s2, using Eq. 6, we get a closed-form for DJS,α(pl1,s1 : pl2,s2), and hence
we have a closed-form for the differential entropy of a mixture of two components h((1−α)pl1,s1 +
αpl2,s2). Let mθ := (1− θ)pl1,s1 + θpl2,s2).

The skewed α-Jensen-Shannon divergence between two mixtures mθ1 and mθ2 amounts to

DJS,α(mθ1 : mθ2) = h((1− α)mθ1 + αmθ2)− ((1− α)h(mθ1) + αh(mθ2)). (13)

Since (1 − α)mθ1 + αmθ2 = m(1−α)θ1+αθ2, we get a closed-form formula for the skewed α-Jensen-
Shannon divergence between two Cauchy mixtures with two prescribed component distributions.

Similarly, the KLD between two Cauchy mixtures mθ1 and mθ2 is available in closed-form using
Eq. 6.

2.4.6 The Taneja divergence

The Taneja T -divergence [78] (Eq. 14) is a symmetric divergence defined by:

DT (p, q) :=

∫
p(x) + q(x)

2
log

p(x) + q(x)

2
√
p(x)q(x)

dx.

The T -divergence can be rewritten as DT (p : q) =
∫
A(p(x), q(x)) log A(p(x),q(x))

G(p(x),q(x))dx where

A(a, b) := a+b
2 and G(a, b) :=

√
ab are the arithmetic mean and the geometric mean of a > 0

and b > 0, respectively. (Thus the T -divergence is also called the arithmetic-geometric mean diver-

gence in [78, 72].) In [1], Banerjee et al. proved that
√

∆(a, b) with ∆(a, b) = log A(a,b)
G(a,b) is a metric

distance.
The T -divergence is an f -divergence for the generator:

fT (u) =
u+ 1

2
log

u+ 1

2
√
u
.

We have DT (p : q) = IfT (p : q) since fT (u) is convex (f ′′T (u) = u2+1
4u2(u+1)

).

The T -divergence satisfies DJS(p : q) +DT (p : q) = 1
4DJ(p : q), where DJ(p : q) is the Jeffreys

divergence:
DJ(p : q) = DKL(p : q) +DKL(q : p).

Thus we have

DT (p : q) =
1

4
DJ(p : q)−DJS(p : q).

Since the Jeffreys divergence is an f -divergence for the generator fJ(u) = (u− 1) log u, we get
fT (u) = 1

4fJ(u) − fJS(u) since IfT (p, q) = I 1
4
fJ

(p, q) − IfJS(p, q) = I 1
4
fJ−fJS(p, q). (More generally,

If1−f2 = If1(p : q)− If2(p : q) is an f -divergence when f1 − f2 is convex and strictly convex at 1.)
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It follows the following closed-form formula for the Taneja divergence between Cauchy densities:

DT [pl1,s1 , pl2,s2 ] = log

1

2

1 +

√
(s1 + s2)2 + (l1 − l2)2

4s1s2

 .

We can express the T -divergence between Cauchy densities as a function of the chi-squared
divergence as follows:

hT (u) =
1

2
hKL(u)− hJS(u) = log

(
1 +

√
1 + u

2

2

)
.

A related divergence to the T -divergence is the Kumar-Chhina divergence [37]:

DKC(p, q) =

∫
(p(x) + q(x))(p(x)− q(x))2

p(x)q(x)
log

p(x) + q(x)

2
√
p(x)q(x)

dx.

It is an f -divergence for the generator:

fKC(u) =
(u+ 1)(u− 1)2

u
log

u+ 1

2
√
u
,

since we DKC(p, q) = IfKC
(p, q) for the convex generator fKC.

2.5 Maximal invariants (proof of Proposition 2)

This subsection gives details of arguments in the final part of [46, Section 1].
Proof. First, let us show that

Lemma 4 For every (z, w) ∈ H2, there exist λ ≥ 1 and A ∈ SL(2,R) such that (A.z,A.w) = (λi, i).

Proof. Since the special orthogonal group SO(2,R) is the isotropy subgroup of SL(2,R)
for i and the action is transitive, it suffices to show that for every z ∈ H there exist λ ≥ 1 and
A ∈ SO(2,R) such that λi = A.z.

Since we have that for every λ > 0, [
0 −1
1 0

]
.λi =

i

λ
,

it suffices to show that for every z ∈ H there exist λ > 0 and A ∈ SO(2,R) such that λi = A.z.
We have that [

cos θ − sin θ
sin θ cos θ

]
.z =

|z|2−1
2 sin 2θ + Re(z) cos 2θ + iIm(z)

|z sin θ + cos θ|2
,

Therefore for some θ, we have

|z|2 − 1

2
sin 2θ + Re(z) cos 2θ = 0.
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QED.
By this lemma, we have that for some λ, λ′ ≥ 1 and A,A′ ∈ SL(2,R),

(λi, i) = (A.z,A.w), (λ′i, i) = (A′.z′, A′.w′),

We see that

χ(z, w) = χ(λi, i) =
(λ− 1)2

4λ
=

1

4

(
λ+

1

λ
− 2

)
,

and

χ(z′, w′) = χ(λ′i, i) =
(λ′ − 1)2

4λ′
=

1

4
(λ′ +

1

λ′
− 2).

If χ(z′, w′) = χ(z, w), then, λ = λ′ and hence (A.z,A.w) = (A′.z′, A′.w′). QED.

3 Invariance of f-divergences and f-divergences between distribu-
tions related to the Cauchy distributions

There are several distributions which are strongly related with the Cauchy distributions. In this
section, we shall make use of the invariance properties of f -divergences to derive results for the
circular Cauchy [31, 68], wrapped Cauchy [32] and log-Cauchy [43] families which are all related
to the Cauchy distributions via various transformations either on the parameter space or on the
observation space.

First, consider the family of circular Cauchy distributions parameterized by complex parameters
w belonging to the unit disk D = {w ∈ C : |w| < 1}. A Circular Cauchy distribution (CC) is an
angular distribution [68] playing an important role in circular and directional statistics [42] with
the following probability density function:

pcc
w (φ) :=

1

2π

1− |w|2

|eiφ − w|2
dz, φ ∈ [−π, π),

where z := eiφ ∈ C. Let w = ρeiφ0 be the polar form of w. The circular Cauchy density can be
rewritten [31] as:

pcc
ρ,φ0(φ) =

1

2π

1− ρ2

1 + ρ2 − 2ρ cos(φ− φ0)
dφ, φ ∈ [−π, π).

Consider the subgroup of Möbius transformations SL2(C) that maps D onto itself via trans-
formations of the holomorphic automorphism group of the complex unit disk [79, 49] (informally
speaking, hyperbolic motions):

w 7→ tφ,a(w) := eiφ
w + a

āw + 1
, φ ∈ [−π, π), a ∈ C.

The following invariance of f -divergences with respect to non-degenerate holomorphic mappings
tφ,a of parameters holds:

Proposition 5 We have If (pcc
w1

: pcc
w2

) = If (pcc
tφ,a(w1) : pcc

tφ,a(w2)) for all φ ∈ [−π, π) and a ∈ C.
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This proposition relies on the fact that If (pθ1 : pθ2) = If (pη1 : pη2) for any smooth invertible
transformations η(θ) (with smooth inverse θ(η)). Here, however the distribution parameters are
complex numbers.

Next, McCullagh [45] noticed that if X ∼ Cauchy(θ) then Y = 1+iX
1−iX follows CCauchy

(
1+iθ
1−iθ

)
with parameter complex w = 1+iθ

1−iθ . Denote the complex parameter reciprocal conversion functions

θ ↔ w by w(θ) = 1+iθ
1−iθ and θ(w) = i 1−w

(1+w) . Let us write w = a+ ib for a, b ∈ R.

Theorem 4 (f-divergences between circular Cauchy distributions) The f -divergence be-
tween two circular Cauchy distributions amounts to the f -divergence between two corresponding
Cauchy distributions: If (pcc

w1
: pcc

w2
) = If (pθ(w1) : pθ(w2)). It follows that all f -divergences between

circular Cauchy distributions are symmetric and can be expressed as scalar functions of the chi
square divergence.

This theorem follows from the invariance of f -divergences [3, 53] and Theorem 1. That is, let
Y = m(X) for m a diffeomorphism between continuous random variables X and Y . Denote by pX
and qY the probability densities functions with support X . It is a key property of f -divergences
that f -divergences are invariant under diffeomorphic transformations [71, 55]:

If (pX1 : pX2) = If (qY1 : qY2).

This invariance of f -divergences further holds for non-deterministic mappings called sufficiency of
stochastic kernels [40]. This result is related to the the result obtained for the Kullback-Leibler
divergence in [2] (Lemma 5.1). It is worth noting that the circular Cauchy distribution can be
interpreted as the exit distribution of a Brownian motion starting at w ∈ D when reaching the unit
boundary circle, see [45].

Next, consider the wrapped Cauchy distributions (WC) [32] with probability density functions:

pwc
µ,γ(φ) =

∞∑
n=−∞

γ

π (γ2 + (φ− µ+ 2πn)2)
, −π ≤ φ < π,

where µ ∈ R denotes the peak position of the unwrapped distribution and γ > 0 the scale parameter.
Let η = µ+ iγ.

The density can be rewritten equivalently as

pwc
µ,γ(φ) =

1

2π

sinh(γ)

cosh(γ)− cos(φ− µ)
.

Since we have the following identity:

pcc
w (φ) = pwc (φ, η(w)) , η(w) =

w − i
w + i

it follows the following theorem:

Theorem 5 (f-divergences between wrapped Cauchy distributions) The f -divergence be-
tween two wrapped Cauchy distributions amounts to the f -divergence between two corresponding
Cauchy distributions: If (pwc

η1 : pwc
η2 ) = If (pθ(η1) : pθ(η2)). It follows that the f -divergence between

wrapped Cauchy distributions is symmetric and can be expressed as a scalar function of the chi
square divergence.
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Finally, consider the family LC of Log-Cauchy (LC) distributions (see [43], p. 443) and [65], p.
329):

LC :=

{
plc
µ,σ(y) =

1

yπ

[
σ

(log y − µ)2 + σ2

]
, µ > 0, σ > 0

}
,

defined on the positive real support Y = R++.
If X ∼ Cauchy(l, s) is a random variable following a Cauchy distribution then Y = exp(X) is

a random variable following a log-Cauchy distribution with µ = l and σ = s. Reciprocally, if Y
follows a log-Cauchy distribution LogCauchy(µ, σ), then X = log(Y ) follows a Cauchy distribution
with l = µ and s = σ. In particular, if Y ∼ LogCauchy(0, 1) then X = log(Y ) ∼ Cauchy(0, 1).

We state the symmetric property of f -divergences between log-Cauchy distributions:

Theorem 6 The f -divergences between two Log-Cauchy distributions LogCauchy(µ1, σ1) and
LogCauchy(µ2, σ2) amount to the f -divergences between the two corresponding Cauchy distribu-
tions: If (plc

µ1,σ1 : plc
µ2,σ2) = If (pµ1,σ1 : pµ2,σ2). It follows that the f -divergences between two Log-

Cauchy distributions are symmetric and can be expressed as a scalar function of the chi square
divergence.

Proof. First, let us recall that the generic relationships between the probability density
functions pX and qY with corresponding real-valued random variables satisfying Y = m(X) for a
differentiable and invertible function m with m′(x) 6= 0 is

pX(x) = m′(x)× qY (m(x)) = m′(x)× qY (y),

qY (y) = (m−1)′(y)× pX(m−1(y)) = (m−1)′(y)× pX(x).

Now consider the case y = m(x) = exp(x) with m−1(y) = log(y), and m′(x) = exp(x) and
(m−1)′(y) = 1/y. Let us make a change of variable in the f -divergence integral with y = exp(x)
and dy = exp(x)dx. We have pl,s(x)dx = plc

µ,σ(y)dy, with dx
dy = 1

y and dy
dx = ey. Let qYi ∼

LogCauchy(µi, σi) and pXi ∼ Cauchy(µi, σi) for i ∈ {1, 2}. By a change of variable, we have:

If (qY1 : qY2) :=

∫
R++

qY1(y)f

(
qY2(y)

qY1(y)

)
dy

=

∫
R++

(m−1)′(y)× pX1(m−1(y))f

(
(m−1)′(y)× pX2(m−1(y))

(m−1)′(y)× pX1(m−1(y))

)
dy,

=

∫
R
pX1(x)f

(
pX2(x)

pX1(x)

)
dx,

=: If (pX1 : pX2).

Then we use the symmetric property of the f -divergences of the Cauchy distributions to de-
duce the symmetry of the f -divergences between log-Cauchy distributions: If (plc

µ1,σ1 : plc
µ2,σ2) =

If (plc
µ2,σ2 : plc

µ1,σ1). It follows that we have If (plc
µ1,σ1 : plc

µ2,σ2) = hf (χ((µ1, σ1), (µ2, σ2))). QED.
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4 Asymmetric Kullback-Leibler divergence between multivariate
Cauchy distributions

For a symmetric positive-definite d × d matrix P � 0 and a d-dimensional location vector µ, the
density of a random variable [55] Xµ,P := PX + µ with X ∼ p(x) (standard density) is

pµ,P (x) := |P |−1 p(P−1(x− µ)). (14)

A d-dimensional location scale family is formed by the set of densities {pµ,P (x) : P � 0, µ ∈
Rd}. For example, the set of multivariate normal distributions (MVNs) form a multidimensional
location-scale family [55].

The probability density function of a d-dimensional Cauchy distribution [70] (MVCs) with
parameters µ ∈ Rd and Σ � 0 be a d× d positive-definite symmetric matrix is defined by:

pµ,Σ(x) :=
Cd

(det Σ)1/2

(
1 + (x− µ)>Σ−1 (x− µ)

)−(d+1)/2
, x ∈ Rd,

where Cd =
Γ( d+1

2 )

π
d+1
2

is a normalizing constant, and Γ(·) denotes the gamma function. The MVCs

form a multivariate location-scale family with standard density:

p(x) :=
Γ
(
d+1

2

)
π
d+1
2

(
1 + x>x

)−(d+1)/2
,

where matrix parameter P = Σ
1
2 denotes the symmetric positive-definite square root matrix of

Σ � 0.
In this section, we shall prove that the f -divergences between any two densities of a multidi-

mensional location-scale family with prescribed scale root matrix P and even standard density (i.e.,
p(x) = p(−x)) is symmetric, and then show that the KLD between bivariate Cauchy distributions
is asymmetric in general.

First, let us consider the case Σ = I: The corresponding set of multivariate Cauchy distributions
yields a multivariate location subfamily {pµ(x) = pµ,I(x) : µ ∈ Rd} with standard distribution

p(x) = p0,I(x) = Cd
(det Σ)1/2

(
1 + x>x

)−(d+1)/2
. Since the standard density is even (i.e., p(x) =

p(−x)), we can extend straightforwardly the result of Proposition 1 using a multidimensional change
of variable in the integrals of f -divergences:

Proposition 6 The f -divergences between any two densities of the multivariate location Cauchy
family is symmetric: If (pµ1 , pµ2) = If (pµ2 , pµ1).

Next, we consider the case of MVC location subfamilies with prescribed matrix Σ (or equiva-
lently P ).

Proposition 7 The f -divergences between any two densities of the multivariate location Cauchy
family {pµ,Σ : µ ∈ Rd} with prescribed matrix Σ is symmetric: If (pµ1,Σ, pµ2,Σ) = If (pµ2,Σ, pµ1,Σ).

Proof. We shall use the following identities of f -divergences arising from the location-scale
family group structure [55]:

If (pl1,P1 : pl2,P2) = If

(
p : pP−1

1 (l2−l1),P−1
1 P2

)
= If

(
pP−1

2 (l1−l2),P−1
2 P1

: p
)
.
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Thus for the MVCs, we have:

If (pµ1,Σ1 : pµ2,Σ2) = If

(
p : p

Σ
− 1

2
1 (µ2−µ1),Σ

− 1
2

1 Σ
1
2
2

)
= If

(
p

Σ
− 1

2
2 (µ1−µ2),Σ

− 1
2

2 Σ
1
2
1

: p

)
.

It follows that when Σ1 = Σ2 = Σ, we get:

If (pµ1,Σ : pµ2,Σ) = If

(
p : p

Σ−
1
2 (µ2−µ1),I

)
= If

(
p

Σ−
1
2 (µ1−µ2),I

: p
)
.

Recasting the equalities using the multivariate location Cauchy family, we obtain:

If (pµ1,Σ : pµ2,Σ) = If

(
p : p

Σ−
1
2 (µ2−µ1)

)
= If

(
p

Σ−
1
2 (µ1−µ2)

: p
)
.

Since we proved in Proposition 6 for the multivariate Cauchy location family that If (pµ1 , pµ2) =
If (pµ2 , pµ1) (with pµ(x) := pµ,I(x)), it follows that we have:

If (pµ1,Σ : pµ2,Σ) = If

(
p : p

Σ−
1
2 (µ2−µ1)

)
= If

(
p

Σ−
1
2 (µ2−µ1)

: p
)

= If (pµ2,Σ : pµ1,Σ) .

QED.
However, contrary to the family of univariate Cauchy distributions, we have the following result:

Proposition 8 There exist two bivariate Cauchy densities pµ1,Σ1 and pµ2,Σ2 such that
DKL (pµ1,Σ1 : pµ2,Σ2) 6= DKL (pµ2,Σ2 : pµ1,Σ1).

Proof. We let d = 2. By the change of variable in the integral [55], we have

DKL (pµ1,Σ1 : pµ2,Σ2) = DKL

(
p0,I2 : p

Σ
−1/2
1 (µ2−µ1),Σ

−1/2
1 Σ2Σ

−1/2
1

)
,

where I2 denotes the unit 2× 2 matrix.
Let

µ1 = 0,Σ1 = I2, µ2 = (0, 1)>,Σ2 =

[
n 0
0 1

n

]
,

where n is a natural number. We will show that DKL (pµ1,Σ1 : pµ2,Σ2) 6= DKL (pµ2,Σ2 : pµ1,Σ1) for
sufficiently large n. Then,

DKL (pµ1,Σ1 : pµ2,Σ2) =
3C2

2

∫
R2

log(1 + x2
1/n+ nx2

2)− log(1 + x2
1 + x2

2)

(1 + x2
1 + x2

2)3/2
dx1dx2

and

DKL (pµ2,Σ2 : pµ1,Σ1) = DKL

(
p0,I2 : p−Σ

−1/2
1 µ1,Σ

−1
1

)
,

=
3C2

2

∫
R2

log(1 + x2
1/n+ n(x2 +

√
n)2)− log(1 + x2

1 + x2
2)

(1 + x2
1 + x2

2)3/2
dx1dx2.

Hence it suffices to show that∫
R2

log(1 + x2
1/n+ n(x2 +

√
n)2)− log(1 + x2

1/n+ nx2
2)

(1 + x2
1 + x2

2)3/2
dx1dx2 6= 0
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for some n.
We see that log(1 + x2

1/n + n(x2 +
√
n)2) > log(1 + x2

1/n + nx2
2) if and only if x2 > −

√
n/2.

Since {(x1, x2) : x2 > −
√
n/2} → R2, n→∞, we see that by Fatou’s lemma [33] (p. 93),

lim
n→∞

∫
x2>−

√
n/2

log(1 + x2
1/n+ n(x2 +

√
n)2)− log(1 + x2

1/n+ nx2
2)

(1 + x2
1 + x2

2)3/2
dx1dx2 = +∞.

Hence it suffices to show that

lim inf
n→∞

∫
x2≤−

√
n/2

log(1 + x2
1/n+ n(x2 +

√
n)2)− log(1 + x2

1/n+ nx2
2)

(1 + x2
1 + x2

2)3/2
dx1dx2 > −∞. (15)

If x2 ≤ −
√
n/2, then,

log(1 + x2
1/n+ n(x2 +

√
n)2)− log(1 + x2

1/n+ nx2
2) = log

(
1 +

n3/2(n1/2 + 2x2)

1 + x2
1/n+ nx2

2

)

≥ log

(
1 +

n3/2(n1/2 + 2x2)

1 + nx2
2

)
.

Let f(x) := n1/2+2x
1+nx2

, x < −
√
n/2. Then, f is decreasing on

(
−∞,−

√
n

2 −
√

n2+4
4n

]
and increasing

on

[
−
√
n

2 −
√

n2+4
4n ,−

√
n

2

]
. Since −

√
n

2 −
√

n2+4
4n > −3

2

√
n for n ≥ 2, it holds that for n ≥ 2,

∫
x2≤−3

√
n/2

log(1 + x2
1/n+ n(x2 +

√
n)2)− log(1 + x2

1/n+ nx2
2)

(1 + x2
1 + x2

2)3/2
dx1dx2

≥ log

(
4 + n2

4 + 9n2

)∫
R2

dx1dx2

(1 + x2
1 + x2

2)3/2
≥ −2π log 5. (16)

If x2 = −
√
n

2 −
√

n2+4
4n , then,

log

(
1 +

n3/2(n1/2 + 2x2)

1 + nx2
2

)
= 2 log 2− 2 log

(
n+

√
n2 + 4

)
≥ − log(n2 + 4).

Hence, ∫
−3
√
n/2≤x2≤−

√
n/2

log(1 + x2
1/n+ n(x2 +

√
n)2)− log(1 + x2

1/n+ nx2
2)

(1 + x2
1 + x2

2)3/2
dx1dx2

≥ − log(n2 + 4)

∫
−3
√
n/2≤x2≤−

√
n/2

dx1dx2

(1 + x2
1 + x2

2)3/2

≥ −
√
n log(n2 + 4)

∫
R

dx1

(1 + x2
1 + n2/2)3/2

= −4
√
n log(n2 + 4)

n2 + 2
→ 0, n→∞. (17)

By Eq. (16) and (17), we have Eq. (15).
QED.
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Remark 7 By numerical computations, we have that∫ ∞
−∞

∫ ∞
−∞

log(1 + x2/100 + 100(y + 10)2)

(1 + x2 + y2)3/2
dxdy = 57.953

and ∫ ∞
−∞

∫ ∞
−∞

log(1 + x2/100 + 100y2)

(1 + x2 + y2)3/2
dxdy = 30.1523.

5 Taylor series of f-divergences

In this section, we aim at rewriting the f -divergences as converging infinite series of power chi
divergences [58, 57]. The Pearson power chi divergenceDP

χ,k of order k (for any integer k ∈ {2, . . . , })
is a dissimilarity obtained for the generator fPχ,k(u) = (u − 1)k which generalizes the Pearson χ2-
divergence (k = 2):

DP
χ,k(p : q) =

∫
p(x)fPχ,k

(
q(x)

p(x)

)
dµ(x),

=

∫
p(x)

(
q(x)

p(x)
− 1

)k
dµ(x),

=

∫
(q(x)− p(x))k

p(x)k−1
dµ(x).

We have DP
χ,2(p : q) = DP

χ (p : q) :=
∫ (p(x)−q(x))2

p(x) dµ(x). For even integers k ≥ 4, the Pearson power

chi divergence are non-negative dissimilarities since fPχ,k(u) is strictly convex (we have fPχ,k
′′
(u) =

k(k−1)(u−1)k−2 ≥ 0). For odd integers k ≥ 3, the Pearson power chi divergence may be negative.
Similarly, we can define the Neyman power chi divergence DN

χ,k of order k:

DN
χ,k(p : q) = Dχ,k(q : p) =

∫
(p(x)− q(x))k

q(x)k−1
dµ(x).

We have DN
χ,2(p : q) = DN

χ (p : q) :=
∫ (p(x)−q(x))2

q(x) dµ(x). When k is even it is a f -divergence,

otherwise DN
χ,k may fail the positive-definiteness property of f -divergences. We note Dχ,k(p : q) =

DP
χ,k(p : q) below.

We first state a general framework to obtain power chi divergence expansions of f -divergences.

Theorem 7 Let X be a topological space and µ be a Borel measure on X with full support. Let
{pθ(x)}θ be a family of probability density functions on (X,µ). Assume that for each θ, pθ(x) is
positive and continuous with respect to x. We also assume that for each θ1 and θ2 there exists
C = C(θ1, θ2) such that pθ1(x) ≤ Cpθ2(x) for every x ∈ X. Let f(z) =

∑∞
n=1 an(z − 1)n be an

analytic function (f ∈ Cω), and denote by rf be the convergence radius of f . Assume that rf ≥ 1.
Let If be the induced f -divergence. Then,

(i) If
pθ2 (x)

pθ1 (x) < 1 + rf for every x, then,

If (pθ1 : pθ2) =

∞∑
n=2

an

∫
X

(
pθ2(x)

pθ1(x)
− 1

)n
pθ1(x)dµ(x) =

∞∑
n=2

anDχ,n(pθ1 : pθ2).
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(ii) If
pθ2 (x)

pθ1 (x) > 1 + rf for some x, then, the infinite sum∑∞
n=2 an

∫
X

(
pθ2 (x)

pθ1 (x) − 1
)n
pθ1(x)µ(dx) diverges.

Proof. (i) By the assumption and rf ≥ 1, infx∈X
pθ2 (x)

pθ1 (x) > 1− rf . Hence, supx∈X

∣∣∣pθ2 (x)

pθ1 (x) − 1
∣∣∣ <

rf . Thus we have the Taylor series:

f

(
pθ2(x)

pθ1(x)

)
=

∞∑
n=2

an

(
pθ2(x)

pθ1(x)
− 1

)n
,

and the convergence is uniform with respect to x. By noting that pθ(x) is a probability density
function, we have the assertion.

(ii) Since
pθ2 (x)

pθ1 (x) is continuous with respect to x, there exist δ0 > 0 and an open set U0 such that

inf
x∈U0

pθ2(x)

pθ1(x)
≥ δ0 + 1 + rf ≥ δ0 + 2.

Then,

an

∫
pθ2

(x)

pθ1
(x)
≥1

(
pθ2(x)

pθ1(x)
− 1

)n
pθ1(x)µ(dx) ≥ an(δ0 + rf )n

∫
U0

pθ1(x)µ(dx).

Since rf ≥ 1,

an

∫
pθ2

(x)

pθ1
(x)

<1

∣∣∣∣pθ2(x)

pθ1(x)
− 1

∣∣∣∣n pθ1(x)µ(dx) ≤ an
(

1− inf
x∈R

pθ2(x)

pθ1(x)

)n
→ 0, n→∞.

By the assumptions,
∫
U0
pθ1(x)µ(dx) > 0. Thus we see that

lim
n→∞

an

∫
X

(
pθ2(x)

pθ1(x)
− 1

)n
pθ1(x)µ(dx) = +∞.

QED.
Now we deal with the particular case of Cauchy distributions. We first remark that for every

(l1, s1) and (l2, s2),

max
x∈R∪{±∞}

pl2,s2(x)

pl1,s1(x)
= max

x∈R∪{±∞}

pl1,s1(x)

pl2,s2(x)
,

because there exists A ∈ SL(2,R) such that θ1 = A.θ2 and θ2 = A.θ1 where θj = `j + isj , j = 1, 2.
We first deal with the case that the convergence radius is 1. We denote the Kullback-Leibler,

α-divergence, Jensen-Shannon and squared Hellinger divergences by DKL, Iα, DJS and D2
H , respec-

tively.
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Lemma 5 (i) If l2 + (s− 4/5)2 < 9/16, then, supx∈R
p0,1(x)
pl,s(x) < 2, and hence,

DKL(pl,s : p0,1) =

∞∑
n=2

(−1)n

n
Dχ,n(pl,s : p0,1),

Iα(pl,s : p0,1) =
∞∑
n=2

−4

1− α2

(
(1 + α)/2

n

)
Dχ,n(pl,s : p0,1)

DJS(pl,s : p0,1) =
∞∑
n=2

(−1)n(2n−1 − 1)

n(n− 1)2n−1
Dχ,n(pl,s : p0,1),

D2
H(pl,s : p0,1) =

∞∑
n=2

(−1)n(2n− 3)!!

2n−1n!
Dχ,n(pl,s : p0,1),

where we used the generalized binomial coefficient for the α-divergences.

(ii) If l2 + (s − 4/5)2 > 9/16, then, supx∈R
p0,1(x)
pl,s(x) > 2, and hence, all of the infinite sums in (i)

diverge.

We now deal with the case that the convergence radius is 2. Let DHM(p : q) =
∫ 2p(x)q(x)
p(x)+q(x)dx be

the harmonic (mean) divergence [29, 16].

Lemma 6 (i) If l2 + (s− 5/3)2 < 16/9, then, supx∈R
p0,1(x)
pl,s(x) < 3 and hence,

DHM(pl,s : p0,1) =

∞∑
n=2

(−1)n+1

2n

∫
R

(
p0,1(x)

pl,s(x)
− 1

)n
pl,s(x)dx =

∞∑
n=2

(−1)n+1

2n
Dχ,n(pl,s : p0,1).

(ii) If l2 + (s− 5/3)2 > 16/9, then, supx∈R
p0,1(x)
pl,s(x) > 3 and hence, the infinite sum in (i) diverges.

Other expansions are available in Table 3 of [57] (e.g., Jeffreys’ divergence). We refer to the
Appendix H for an implementation of the calculation of f -divergences using these series.

We finally consider the total variation distance between the Cauchy distributions. Then, we
cannot expect power chi expansions.

Proposition 9 Let f(u) := |u−1|
2 . Then, for every a1, · · · , an,

lim
(l,s)→(l0,s0)

If (pl,s, pl0,s0)−
∑n

j=2 aj
∫
R

(
pl,s(x)
pl0,s0 (x) − 1

)j
pl0,s0(x)dx∣∣∣∫R ( pl,s(x)

pl0,s0 (x) − 1
)n
pl0,s0(x)dx

∣∣∣ = +∞.

Proof.

Lemma 7

sup
x∈R

∣∣∣∣ pl,s(x)

pl0,s0(x)
− 1

∣∣∣∣ = O
(√

(l − l0)2 + (s− s0)2
)
, (l, s)→ (l0, s0).
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Proof. We see that

pl,s(x)

pl0,s0(x)
− 1 =

s

s0
− 1 +

(
s

s0
− 1

)(
(x− l0)2 + s2

0

(x− l)2 + s2
− 1

)
+

(x− l0)2 + s2
0

(x− l) + s2
− 1.

Since

(x− l0)2 + s2
0

(x− l)2 + s2
− 1 =

2(l − l0)(x− l) + (l − l0)2 + s2
0 − s2

(x− l)2 + s2
= O

(√
(l − l0)2 + (s− s0)2

)
,

we have the assertion. QED.
By this lemma, we see that

n∑
j=2

aj

∫
R

(
pl,s(x)

pl0,s0(x)
− 1

)j
pl0,s0(x)dx = O

(
(l − l0)2 + (s− s0)2

)
.

On the other hand,

If (pl,s, pl0,s0) =
2

π
arctan

1

2

√
(l − l0)2 + (s− s0)2

ss0

 .

Hence,

lim
(l,s)→(l0,s0)

If (pl,s, pl0,s0)

(l − l0)2 + (s− s0)2
= +∞.

Thus we see that

lim
(l,s)→(l0,s0)

If (pl,s, pl0,s0)−
∑n

j=2 aj
∫
R

(
pl,s(x)
pl0,s0 (x) − 1

)j
pl0,s0(x)dx

(l − l0)2 + (s− s0)2
= +∞.

By Lemma 7, we see that for n ≥ 2,∫
R

(
pl,s(x)

pl0,s0(x)
− 1

)n
pl0,s0(x)dx = O

((
(l − l0)2 + (s− s0)2

)n/2)
, (l, s)→ (l0, s0).

Thus we have the assertion. QED.

Remark 8 Consider the exponential family of exponential distributions {pλ(x) = λ exp(−λx), λ ∈
R++} defined on the positive half-line support X = R+. The criterion

pθ2
pθ1

< 1 + rf is satisfied for

λ1 < λ2 < (1 + rf )λ1. Moreover the Pearson order-k power chi divergences are available in closed
form for integers k > 1 since λ1 < λ2 by adapting Lemma 3 of [58] (i.e., when λ1 < λ2, it is
enough to have conic natural parameter spaces instead of affine spaces). Thus we can calculate the
KLD between pλ1 and pλ2 as converging Taylor chi series. In this case, the KLD is also known to
be in closed-form as a Bregman divergence for exponential distributions:

DKL(pλ1 : pλ2) =
λ2

λ1
− log

λ2

λ1
− 1.

However, if we choose the exponential family of normal distributions, we cannot bound their density
ratio, and therefore the Taylor chi series diverge.

Notice that even if the series diverge, the f -divergences may be finite (e.g., when the ratio of
densities fails to be bounded by 1 + rf ). In that case, we cannot represent If by a Taylor series.
By truncating the distributions, we may potentially find a validity range where to apply the Taylor
expansion.
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6 Metrization of f-divergences between Cauchy densities

Recall that f -divergences can always be symmetrized by taking the generator s(u) = f(u)+uf(1/u).
Metrizing f divergences consists in finding the largest exponent α such that Iαs is a metric distance
satisfying the triangle inequality [30, 66, 80]. For example, the square root of the Jensen-Shannon
divergence [25] yields a metric distance which is moreover Hilbertian [1], i.e., meaning that there is
an embedding φ(·) into a Hilbert space H such that DJS(p : q) = ‖φ(p) − φ(q)‖H. That is,

√
JSD

admits of Hilbert embedding.
We will show that the square roots of the Kullback-Leibler divergence and the Bhattacharyya

divergence are distances on the upper-half plane in Theorems 8 and 9 below respectively. We also
show that the square root of the KLD is isometrically embeddable into a Hilbert space in Theorem
11.

6.1 Metrization of the Kullback-Leibler diveregnce

The following is a generalization of Theorem 3 in [54].

Theorem 8 Let 0 < α ≤ 1. Then DKL(pθ1 : pθ2)α is a metric on H if and only if 0 < α ≤ 1/2.

In the following we also give full details of the proof of Theorem 3 in [54].
Proof. We proceed as in [54] by letting

t(u) := log

(
1 + cosh(

√
2u)

2

)
, u ≥ 0.

Let us consider the properties of F2(u) := t(u)α/u.

F ′2(u) = −2
t(u)α−1

u2
G(u/

√
2),

where

G2(w) := (2 + e2w + e−2w) log

(
ew + e−w

2

)
− αw(e2w − e−2w).

If we let x := ew, then,

G2(w) = (x+ x−1)

(
(x+ x−1) log(

x2 + 1

2x
)− α(x− x−1) log x

)
.

Let

H2(x) := x

(
(x+ x−1) log(

x2 + 1

2x
)− α(x− x−1) log x

)
.

Then, H2(1) = 0 and

H ′2(x) = 4

(
x log(

x2 + 1

2
)− (1 + α)x log x+

x3

x2 + 1
− αx

)
.

Let

I2(x) := x log(
x2 + 1

2
)− (1 + α)x log x+

x3

x2 + 1
− αx.
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Then, I2(1) = 1/2− α and

I ′2(x) = log(
x2 + 1

2
)− (1 + α) log x+

x2(3x2 + 5)

(x2 + 1)2
− (1 + 2α).

Consider the case that α > 1/2. Then, I2(x) < 0 for every x > 1 which is sufficiently close to
1. Hence, G2(w) < 0 for every w > 0 which is sufficiently close to 0. Hence, F ′2(u) > 0 for every
u > 0 which is sufficiently close to 0. This means that F2 is strictly increasing near the origin.

Hence there exists u0 > 0 such that

2t(u0)α < t(2u0)α.

Take x0, z0 ∈ H such that ρFR(x0, z0) = 2u0, where ρFR is the Fisher metric distance on H.
By considering the geodesic between x0 and z0, we can take y0 ∈ H such that ρFR(x0, y0) =
ρFR(y0, z0) = u0.

Finally we consider the case that α = 1/2. Let

J2(x) := (x2 + 1)2 log(
x2 + 1

2
)− 3

2
(x2 + 1)2 log x+ x2(3x2 + 5)− 2(x2 + 1)2.

Then, J2(1) = 0. If we let y := x2, then,

J2(x) = (y + 1)2 log

(
y + 1

2

)
− 3

4
(y + 1)2 log y + (y2 + y − 2).

Let K2(y) := J(
√
y). Then,

K ′2(y) = 2(y + 1)(log(
y + 1

2
) + 1)− 3

2
(y + 1) log y − 3(y + 1)2

4y
+ (2y + 1),

= y + (y + 1)

(
2 log (y + 1)− 3

2
log y +

9

4
− 3

4y
− 2 log 2

)
.

If y > 1, then,

2 log (y + 1) >
3

2
log y

and
9

4
− 3

4y
− 2 log 2 >

3

2
− 2 log 2 > 0.

Then, J2(x) > J(1) = 0 for every x > 1. Hence, I2(x) > I(1) = 0 for every x > 1. Hence,
G2(w) > 0 for every w > 0. Hence, F ′2(u) < 0 for every u > 0. This means that F2 is strictly
decreasing on [0,∞). Thus we proved that DKL(pθ1 : pθ2)1/2 gives a distance, hence DKL(pθ1 : pθ2)α

is also a distance for every α ∈ (0, 1/2). QED.

6.2 Metrization of the Bhattacharyya divergence

The Bhattacharyya divergence [5] is defined by

DBhat(p : q) := − log

(∫ √
p(x)q(x)dx

)
.

The term
∫ √

p(x)q(x)dx is called the Bhattacharyya coefficient. It is easy to see that DBhat(p :
q) = 0 iff p = q, and DBhat(p : q) = DBhat(q : p).
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Theorem 9
√
DBhat(pθ1 : pθ2) is a distance on H.

For exponential families, see [54, Proposition 2] and [56]. We cannot apply the method of [54,
Proposition 2] in a direct manner. We state the reason in the end of this section. We can also show
that DBhat(pθ1 : pθ2)α is not a metric if α > 1/2 in the same manner as in the proof of Theorem 8.

Proof. We show the triangle inequality. We follow the idea in the proof of Theorem 3
in [54]. We construct the metric transform tFR→Bhat and show that tFR→Bhat(s) is increasing and√
tFR→Bhat(s)/s is decreasing.
Let ρFR be the Fisher-Rao distance. Then, by following the argument in the proof of [54,

Theorem 3],
χ(z, w) = F3(ρFR(z, w)),

where we let
F3(s) := cosh(

√
2s)− 1.

Let

I3(z, w) :=

∫ √
pz(x)pw(x)dx.

Then, by the invariance of the f -divergences,

I3(A.z,A.w) = I3(z, w).

Hence we have that for some function J3, J3(χ(z, w)) = I3(z, w). Hence,√
DBhat(pθ1 : pθ2) =

√
− log J3 (F3(ρFR(θ1, θ2))).

We have that
tFR→Bhat(s) = − log J3(F3(s)).

It holds that for every a ∈ (0, 1),

J (χ(ai, i))) = I(ai, i).

By the change-of-variable x = tan θ in the integral of I(ai, i), it is easy to see that

I3(ai, i) =
2
√
aK(1− a2)

π
,

where K is the elliptic integral of the first kind. It is defined by1

K(t) :=

∫ π/2

0

1√
1− t sin2 θ

dθ, 0 ≤ t < 1.

Hence,

J3

(
(1− a)2

2a

)
=

2
√
aK(1− a2)

π
.

1This is a little different from the usual definition. The usual one is K(t) =
∫ π/2
0

1√
1−t2 sin2 θ

dθ.
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Since

F3(s) = cosh(
√

2s)− 1 =
(1− e−

√
2s)2

2e−
√

2s
,

we have that

J3(F3(s)) =
2e−s/

√
2K(1− e−2

√
2s)

π
.

Since the above function is decreasing with respect to s, tFR→Bhat(s) is increasing.
Furthermore, we have that√

tFR→Bhat(s)

s
=

√√√√− 1

s2
log

(
2e−s/

√
2K(1− e−2

√
2s)

π

)
. (18)

This function is decreasing with respect to s. See Figure 1. We can show this fact by using the
results for the complete elliptic integrals. The full proof is somewhat complicated. See Section F.
QED.

Remark 9 It holds that

lim
s→+0

√
tFR→Bhat(s)

s
=

1

8
, and lim

s→+∞

√
tFR→Bhat(s)

s
= 0.

Remark 10 The squared Hellinger distance H2(p : q) := 1
2

∫ (√
p(x)−

√
q(x)

)2
dx (an f -

divergence for fHellinger(u) = 1
2(
√
u− 1)2) satisfies that

H2(pθ1 : pθ2) = 1− exp (−DBhat(pθ1 : pθ2)) = 1− J3(F3(ρFR(θ1, θ2)))

= 1− 2e−ρFR(θ1,θ2)/
√

2K(1− e−2
√

2ρFR(θ1,θ2))

π

= 1−
2K

(
1−

(
1 + χ(θ1, θ2) +

√
χ(θ1, θ2)(2 + χ(θ1, θ2))

)−2
)

π
√

1 + χ(θ1, θ2) +
√
χ(θ1, θ2)(2 + χ(θ1, θ2))

.

The Hellinger distance H(pθ1 : pθ2) is known to be a metric distance. Notice that

hfHellinger
(u) = 1−

2K

(
1−

(
1 + u+

√
u(2 + u)

)−2
)

π
√

1 + u+
√
u(2 + u)

and we check that hfHellinger
(0) = 0 since K(0) = π

2 .

Remark 11 More generally, let BCα[p : q] :=
∫
R p(x)αq(x)1−αdx denote the α-skewed Bhat-

tacharyya coefficient for α ∈ R\{0, 1} (also called the α-Chernoff coefficient [51, 52]). The α-skewed
Bhattacharyya divergence is defined by

DBhat,α(p : q) := − log BCα[p : q] = − log

∫
R
p(x)αq(x)1−αdx.
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Figure 1: Graph of

√
tFR→Bhat(s)

s

Using a computer algebra system2, we can compute the α-skewed Bhattacharyya coefficients for
integers α in closed form. For example, we find the following closed-form for the definite integrals:

BC2[p : pl,s] =
s2 + l2 + 1

2s
,

BC3[p : pl,s] =
3s4 +

(
6l2 + 2

)
s2 + 3l4 + 6l2 + 3

8s2
,

BC4[p : pl,s] =
5s6 +

(
15l2 + 3

)
s4 +

(
15l4 + 18l2 + 3

)
s2 + 5l6 + 15l4 + 15l2 + 5

16s3
, and,

BC5[p : pl,s] =
35s8 +

(
140l2 + 20

)
s6 +

(
210l4 + 180l2 + 18

)
s4 +

(
140l6 + 300l4 + 180l2 + 20

)
s2 + 35l8 + 140l6 + 210l4 + 140l2 + 35

128s4
.

Furthermore, we give some remarks about the complete elliptic integrals of the first and second
kinds.

Remark 12 (i) In practice, we can calculate efficiently K(t) using the arithmetic-geometric mean
(AGM):

K(t) =
π

2AGM(1,
√

1− t2)

where AGM(a, b) = limn→∞ an = limn→∞ gn with a0 = a, g0 = b, an+1 = an+gn
2 and gn+1 =

√
angn.

The mean is called the arithmetic-geometric mean because it falls in-between the geometric mean
and the arithmetic mean: gn ≤ AGM(a, b) ≤ an, where gn is an increasing sequence and an is a
decreasing sequence. We see that

AGM(a, b) =
π

4

a+ b

K
(
a−b
a+b

) .
One way to show this relation is using the invariance of the Cauchy distribution with respect to the
Boole transform which is mentioned in Section A.

2https://maxima.sourceforge.io/
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(ii) Let K and E be the complete elliptic integrals of the first and second kinds respectively. We let3

E(t) :=

∫ π/2

0

√
1− t sin2 θdθ.

The following expansion by C. F. Gauss in 1818 is well-known:

1− E(x)

K(x)
=
x

2
+
∑
n≥1

2n−1(an − bn)2, x ∈ (0, 1),

where (a0, b0) = (1,
√

1− x) and (an+1, bn+1) =
(
an+bn

2 ,
√
anbn

)
, n ≥ 0. See [73] for more details.

By investigating of the behaviors of

√
tFR→Bhat(s)

s in Eq. 18, we get some approximation formulae

of 1− E(x)
K(x) . See Lemma 16 below for example. By numerical computations, it holds that

1− E(x)

K(x)
=
x

2
+
x2

16
+
x3

32
+

41

2048
x4 +

59

4096
x5 +

727

65536
x6 +O(x7),

x

(
3

2
+ 4

log(2K(x)/π)

log(1− x)

)
=
x

2
+
x2

16
+
x3

32
+

251

12288
x4 +

123

8192
x5 +

34781

2949120
x6 +O(x7)

and
x
(

4− x−
√

(4− 3x)2 + 4(2− x)(1− x) log(1− x)
)

4x+ 2(x− 1) log(1− x)

=
x

2
+
x2

16
+
x3

32
+

49

3072
x4 +

41

6144
x5 +

259

491520
x6 +O(x7).

See also [36, Lemma 6.2]. They are very close to each other if x > 0 is close to 0. For just a few of
recent results about complete elliptic integrals and its applications, see [36], [82] and the references
therein.

Table 1 summarizes the symmetric closed-form f -divergences If (pλ : pλ′) = hf (χ[pλ : pλ′ ])
between two univariate Cauchy densities pλ and pλ′ that we obtained as a function hf of the chi-

squared divergence χ[pλ : pλ′ ] = ‖λ−λ′‖2
2λ2λ′2

(with hf (0) = 0).

Remark 13 The proof of [54, Proposition 2] is not applicable to the proof of Theorem 9 above,
because it cannot be a Bregman divergence. See [1].

6.3 The Chernoff information

The Chernoff information [52] between two densities p1 and p2 is defined by:

C(p1 : p2) := − log min
a∈(0,1)

∫
p1(x)ap2(x)1−adx.

The Chernoff information provides an upper bound for the error probabilities of Bayes hypoth-
esis testing [13] (Chapter 11).

3This is also a little different from the usual definition. The usual one is E(t) :=
∫ π/2
0

√
1− t2 sin2 θdθ.
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f -divergence name f(u) hf (u) for If [pλ1 : pλ2 ] = hf (χ[pλ1 : pλ2 ])

Chi squared divergence (u− 1)2 u

Total variation distance 1
2 |u− 1| 2

π arctan
(√

u
2

)
Kullback-Leibler divergence − log u log(1 + 1

2u)

Jensen-Shannon divergence u
2 log 2u

1+u −
1
2 log 1+u

2 log
(

2
√

2+u√
2+u+

√
2

)
Taneja T -divergence u+1

2 log u+1
2
√
u

log

(
1+
√

1+u
2

2

)
,

LeCam-Vincze divergence (u−1)2

1+u 2− 4
√

1
2(u+2)

squared Hellinger divergence 1
2(
√
u− 1)2 1−

2K

(
1−
(

1+u+
√
u(2+u)

)−2
)

π
√

1+u+
√
u(2+u)

Table 1: Closed-form f -divergences between two univariate Cauchy densities expressed as a function

hf of the chi-squared divergence χ[pλ : pλ′ ] = ‖λ−λ′‖2
2λ2λ′2

. The square root of the KLD, LeCam and

squared Hellinger divergences between Cauchy densities yields metric distances.

Theorem 10 For the univariate Cauchy location-scale families, the Chernoff information is equal
to the Bhattacharyya divergence.

Proof. Let

Λ(a) := log

∫
R
pθ1(x)apθ2(x)1−adx.

This is finite for every R, and is in C∞ class on R.
We see that for every a ∈ R,

Λ′(a) =

∫
R pθ1(x)apθ2(x)1−a log

pθ1 (x)

pθ2 (x)dx∫
R pθ1(x)apθ2(x)1−adx

.

By the symmetry of f -divergences,∫
R
pθ1(x)apθ2(x)1−a log

pθ1(x)

pθ2(x)
dx =

∫
R
pθ2(x)apθ1(x)1−a log

pθ2(x)

pθ1(x)
dx.

Hence, for a = 1/2, ∫
R
pθ1(x)1/2pθ2(x)1/2 log

pθ1(x)

pθ2(x)
dx = 0. (19)

Hence, Λ′(1/2) = 0. By the Cauchy-Schwarz inequality, Λ′′(a) ≥ 0. Hence Λ(a) takes its minimum
at a = 1/2. QED.

Thus the Chernoff information between two Cauchy distributions pλ1 and pλ2 can be computed
from the Bhattacharyya coefficient BCα[pλ1 : pλ2 ] :=

∫ √
pλ1(x)pλ2(x)dx:

C(pλ1 : pλ2) = − log BCα[pλ1 : pλ2 ].
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Since the Bhattacharyya coefficient can be recovered from the squared Hellinger divergence:

BCα[pλ1 : pλ2 ] = 1−H2(pλ1 : pλ2),

we use the closed-form of the squared Hellinger divergence (Eq. 10) to recover the closed-form
formula of the Bhattacharyya coefficient. The Bhattacharyya and Chernoff divergences are not
f -divergences because they are not separable divergences. Nevertheless, by abuse of notation, let
us write hChernoff(u) = − log (1− hHellinger(u)).

Remark 14 We can compute Eq. 19 by using the two formulas 4.386.3 and 4.386.4 in p. 588
of [27]. However such approach is much more tedious than the above proof.

Additional material is available at https://franknielsen.github.io/CauchyFdivergences/

7 Geometric properties of the metrizations of f-divergences

If a divergence D is given, then we can define an associated Riemannian metric gD on the parameter
space by following Eguchi [19, 20]. (See also Remark 1.) Specifically, by regarding D is a smooth
function on M ×M where M is the space of parameters, we let

(gD)r(Xr, Yr) := −XpYqD(p, q)|p=q=r, r ∈M,

where X,Y are vector fields on M .
It is known that if D is the Kullback-Leibler divergence, then, gD is the Fisher metric. If D

is not the Kullback-Leibler divergence, then, we are not sure whether gD is the Fisher metric.
However, gD is the Fisher metric for every smooth f -divergence between the Cauchy distribution.

Proposition 10 Let Df be the f -divergence between the univariate Cauchy densities. Let F be a
function such that

Df (pθ1 : pθ2) = F (χ(θ1, θ2)), θ1, θ2 ∈ H.

Assume that F is in C2([0,∞)). Then, the Riemannian metric gD is F ′(0)ρ, where ρ is the Poincaré
metric on H.

For the (dual) connections induced by the f -divergence, see Remark 1. We remark that
√

2ρFR

is identical with the Poincaré distance on H.

Proposition 11 Let
√
DBhat and

√
DKL be the distances between Cauchy densities. Then, neither

(H,
√
DBhat) nor (H,

√
DKL) is a geodesic metric space.

Proof. Recall that pz(x) = Im(z)
π|x−z|2 , z ∈ H.

Assume that (H,
√
DKL) is a geodesic metric space. Then, for every A > 0, there exists a

continuous map γ : [0, 1]→ H such that γ(0) = i, γ(1) = Ai, and√
DKL (pi : pAi) =

√
DKL(pi : pγ(t)) +

√
DKL(pγ(t) : pAi)

for every t ∈ (0, 1).
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Let γ̃(t) := Im(γ(t))i. Then,

χ(γ̃(t1), γ̃(t2)) ≤ χ(γ(t1), γ(t2)), t1, t2 ∈ [0, 1].

Since
√
DKL (pz : pw) is increasing as a function of χ(z, w),

DKL

(
pγ̃(t1) : pγ̃(t2)

)
≤ DKL(pγ(t1) : pγ(t2)), t1, t2 ∈ [0, 1].

Since
√
DBhat is a distance,√

DKL (pi : pAi) =
√
DKL(pi : pγ̃(t)) +

√
DKL(pγ̃(t) : pAi)

for every t ∈ (0, 1). Since γ̃ is continuous, we see that√
DKL (pi : pAi) =

√
DKL(pi : pBi) +

√
DKL(pBi : pAi), B ∈ (1, A),

by the intermediate value theorem.
Let a > 0. Then,

ρFR(i, a2i) = ρFR(i, ai) + ρFR(ai, a2i) = 2ρFR(i, ai).

Hence,
7

5

√
ρFR(i, a2i) <

√
ρFR(i, ai) +

√
ρFR(ai, a2i).

Since

lim
χ(z,w)→∞

DKL(pz, pw)

ρFR(z, w)
=

1√
2
, (20)

we see that √
DKL(pi : pa2i) <

√
DKL(pi : pai) +

√
DKL(pai : pa2i)

for sufficiently large a > 0. Thus we see that (H,
√
DKL) is not a geodesic metric space.

The proof for
√
DBhat goes in the same manner, because

lim
χ(z,w)→∞

DBhat(pz : pw)

ρFR(z, w)
=

1√
2
. (21)

QED.

Proposition 12 The metric spaces (H,
√
DKL) and (H,

√
DBhat) are both complete.

Proof. Assume that (zn)n is a Cauchy sequence with respect to
√
DKL. Since

√
DKL (pz : pw)

is increasing as a function of χ(z, w), we see that χ(zn, zm)→ 0, n,m→∞. We see that χ(z, w) ≤ δ
if and only if

|w − (Re(z) + i(1 + δ)Im(z))| ≤
√
δ(δ + 2)Im(z).

Hence (zn)n is bounded. Let z be an accumulation point of (zn)n. Then, zkn → z, n → ∞ with

respect to the Euclid distance. Hence, χ(zkn , z) → 0, n → ∞. Hence,
√
DKL

(
pzkn : pz

)
→ 0, n →

∞. Since (zn)n is a Cauchy sequence with respect to
√
DKL, we see that

√
DKL (pzn : pz)→ 0, n→

∞. QED.
Now by Hopf-Rinow’s theorem (see [67, Theorem 16]) and Propositions 11 and 12,
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Proposition 13 Let
√
DBhat and

√
DKL be the distances between Cauchy densities. Then, neither√

DBhat or
√
DKL between Cauchy densities is a Riemannian distance.

Remark 15 (alternative proof of Proposition 13) For A ∈ SL(2,R), let ϕA(θ) := A.θ, θ ∈
H. We first remark that every Riemannian distance d on H which is preserved by every ϕA has a
form of cρ for some non-negative constant c. This is shown by two classical results in Riemannian
geometry. We remark that every SL(2,R) action to H is smooth and bijective. By the Myers-
Steenrod theorem (see [67, Theorem 18]), every ϕA is a Riemannian isometry with respect to the
Riemannian metric associated with d. It is well-known that if a Riemannian metric on H is a
Riemannian isometry for every ϕA, then, it has a form of cρFR for some constant c. This is
usually stated in the much more general framework for homogeneous spaces. See [35, Proposition
X.3.1 and Theorem XI.8.6] for example. By (20) and (21), neither

√
DKL or

√
DBhat has a form

of cρFR for some constant c.

We finally consider isometric embedding into a Hilbert space.

Theorem 11 The square root of the Kullback-Leibler divergence between Cauchy densities is iso-
metrically embeddable into a Hilbert space.

Proof. By [74], it suffices to show that

n∑
i,j=1

cicjDKL(pzi : pzj ) ≤ 0

for every (c1, · · · , cn) such that
∑n

i=1 ci = 0 and every z1, · · · , zn ∈ Θ.
Let the hyperboloid model be

L := {(x, y, z) ∈ R3 : z > 0, x2 + y2 − z2 = −1}.

Let

dL ((x1, y1, z1), (x2, y2, z2)) := cosh−1 (z1z2 − x1x2 − y1y2) , (x1, y1, z1), (x2, y2, z2) ∈ L.

Let φ1 : L→ D be the map defined by

φ1(x, y, z) =

(
x

1 + z
,

y

1 + z

)
.

Let φ2 : D→ H be the map defined by

φ2(x, y) =

(
− 2y

(1− x)2 + y2
,

1− x2 − y2

(1− x)2 + y2

)
.

Then, φ1 and φ2 are both bijective. Hence φ2 ◦ φ1 is a bijection between H and L.
Hence it suffices to show that for (x1, y1, z1), · · · , (xn, yn, zn) ∈ L,

n∑
i,j=1

cicj log

(
1 +

χ (φ2(φ1(xi, yi, zi)), φ2(φ1(xj , yj , zj)))

2

)
≤ 0.

40



Since

χ(φ2(w1), φ2(w2)) =
2|w1 − w2|2

(1− |w1|2)(1− |w2|2)
, w1, w2 ∈ D,

we see that
χ (φ2(φ1(x1, y1, z1)), φ2(φ1(x2, y2, z2))) = z1z2 − x1x2 − y1y2 − 1

= cosh (dL ((x1, y1, z1), (x2, y2, z2)))− 1, (x1, y1, z1), (x2, y2, z2) ∈ L.

Hence, it suffices to show that for (x1, y1, z1), · · · , (xn, yn, zn) ∈ L,

n∑
i,j=1

cicj log

(
1 + cosh (dL ((xi, yi, zi), (xj , yj , zj)))

2

)
≤ 0.

Since 2(cosh(x/2))2 = 1+cosh(x), x ∈ R, it suffices to show that for (x1, y1, z1), · · · , (xn, yn, zn) ∈ L,

n∑
i,j=1

cicj2 log

(
cosh

(
dL ((xi, yi, zi), (xj , yj , zj))

2

))
≤ 0.

Now we can apply Theorem 7.5 in Faraut-Harzallah [23] in order to show the last inequality.
QED.

Remark 16 (i)The proof of Theorem 7.5 in Faraut-Harzallah [23] heavily depends on Takahashi’s
long paper [77] in representation theory. Faraut-Harzallah [22] gave another derivation of Theorem
7.5 in Faraut-Harzallah [23]. However it heavily depends on Helgason’s long paper [28] in represen-
tation theory. By following the outline of [22], we give an elementary proof of Theorem 11 without
using the terminologies of representation theory. See Appendix G.
(ii) It is natural to consider whether the square root of the Bhattacharyya divergence

√
DBhat is

isometrically embeddable into a Hilbert space. The squared Hellinger distance H2 satisfies that

DBhat(pz : pw) = − log
(
1−H2(pz : pw)

)
= − log

(∫
R

√
pz(x)

√
pw(x)dx

)
.

√
DBhat is isometrically embeddable into a Hilbert space if and only if for every s > 0, As a function

of (z, w),
(∫

R pz(x)pw(x)dx
)s

is a positive definite kernel on H. By the definition of the squared
Hellinger distance,

∫
R pz(x)pw(x)dx is positive definite. However, to our knowledge, it is not known

whether
(∫

R pz(x)pw(x)dx
)s

is positive definite or not for s 6= 1. For Cauchy densities, we can show
that ∫

R
pz(x)pw(x)dx =

1

π

∫ π

0
(cosh(d(z, w)) + cos θ sinh(d(z, w)))−1/2 dθ, z, w ∈ H,

where d is the Poincaré distance. See Appendix G for more details.

It is also natural to consider whether (H,
√
DKL) or (H,

√
DBhat) is Gromov-hyperbolic.

Definition 1 Let (M,d) be a metric space.
(i) Let the Gromov product be

(x|y)z :=
d(x, z) + d(y, z)− d(x, y)

2
, x, y, z ∈M.
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(ii) Let δ > 0. We say that (M,d) is δ-hyperbolic if

(x|z)w ≥ min{(x|y)w, (y|z)w} − δ, x, y, z, w ∈M.

We say that (M,d) is Gromov-hyperbolic if it is δ-hyperbolic for some δ > 0.

It is known that H equipped with the Poincaré metric is Gromov-hyperbolic. (see Proposition
1.4.3 in [12])

Theorem 12 Neither (H,
√
DKL) or (H,

√
DBhat) is Gromov-hyperbolic.

Proof. By Proposition 1.6 in [12], (M,d) is not Gromov-hyperbolic if and only if

sup
x,y,z,w∈M

(d(x, y) + d(z, w)−max{d(x, z) + d(y, w), d(x,w) + d(y, z)}) = +∞.

We first consider (H,
√
DKL). For 0 < a < b,

√
DKL(pai : pbi) =

√
log

(
b

4a
+

a

4b
+

1

2

)
.

Hence, for k ≥ 1,

lim
n→∞

sup
a>0

∣∣∣√DKL(pai : panki)−
√
k log n

∣∣∣ = lim
n→∞

∣∣∣√DKL(pi : pnki)−
√
k log n

∣∣∣ = 0.

Hence,

lim
n→∞

(√
DKL(pi : pn2i) +

√
DKL(pni : pn3i)

−max{
√
DKL(pi : pni) +

√
DKL(pn2i : pn3i),

√
DKL(pi : pn3i) +

√
DKL(pni : pn2i)}

)
= lim

n→∞

√
DKL(pi : pn2i) +

√
DKL(pni : pn3i)−

√
DKL(pi : pn3i)−

√
DKL(pni : pn2i) = +∞.

We second consider (H,
√
DBhat). For 0 < a < b,

√
DBhat(pai : pbi) =

√
1

2
log

b

a
− log

(
2

π
K

(
1− a2

b2

))
.

By Lemma 18 in Appendix,

log(4m) ≤ K

(
1− 1

m2

)
≤ 2 log(4m), m ≥ 2.

Hence, for k ≥ 1,

lim
n→∞

sup
a>0

∣∣∣∣∣√DBhat(pai : panki)−
√
k

2
log n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣√DBhat(pi : pnki)−
√
k

2
log n

∣∣∣∣∣ = 0.
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Hence,

lim
n→∞

(√
DBhat(pi : pn2i) +

√
DBhat(pni : pn3i)−

max{
√
DBhat(pi : pni) +

√
DBhat(pn2i : pn3i),

√
DBhat(pi : pn3i) +

√
DBhat(pni : pn2i)}

)
= +∞.

QED.
Now we see that both of the metrics

√
DKL and

√
DBhat are locally related with the Poincaré

metric, however, in global, they are completely different from the Poincaré metric.
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A Information geometry of location-scale families

The Fisher information matrix [48, 54] (FIM) of a location-scale family with continuously differen-
tiable standard density p(x) with full support R is

I(λ) =
1

s2

[
a2 c
c b2

]
,

where

a2 = Ep

[(
p′(x)

p(x)

)2
]
,

b2 = Ep

[(
1 + x

p′(x)

p(x)

)2
]
,

c = Ep

[
p′(x)

p(x)

(
1 + x

p′(x)

p(x)

)]
.

When the standard density is even (i.e., p(x) = p(−x)), we get a diagonal Fisher matrix that can
reparameterize with

θ(λ) =
(a
b
λ1, λ2

)
so that the Fisher matrix with respect to θ becomes

Iθ(θ) =
b2

θ2
2

[
1 0
0 1

]
.

It follows that the Fisher-Rao geometry is hyperbolic with curvature κ = − 1
b2
< 0, and that the

Fisher-Rao distance is
ρp(λ1, λ2) = b ρU

((a
b
l1, s1

)
,
(a
b
l2, s2

))
where

ρU (θ1, θ2) = arccosh (1 + χ(θ1, θ2)) ,
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where arccosh(u) = log(u+
√
u2 − 1) for u > 1.

For the Cauchy family, we have a2 = b2 = 1
2 (curvature κ = − 1

b2
= −2) and the Fisher-Rao

distance is

ρFR(pλ1 : pλ2) =
1√
2

arccosh(1 + χ(λ1, λ2)).

Notice that if we let θ = l + is then the metric in the complex upper plane H is |dθ|2
Im(θ)2

where

|x+ iy| =
√
x2 + y2 denotes the complex modulus, and θ ∈ H := {x+ iy : x ∈ R, y ∈ R++}.

It has been shown that Amari’s dual ±α-connections [3] αΓ all coincide with the Levi-Civita
metric connection [48] Γ = gΓ for the Cauchy family since the Amari-Chentsov’s totally symmetric
cubic tensor T vanishes (i.e., Tijk = 0). That is, the α-geometry coincides with the Fisher-Rao
geometry for the Cauchy family [54], for all α ∈ R. The 23 = 8 Christoffel functions defining the
Levi-Civita metric connection [48] for the Cauchy family are:

Γ1
11 = Γ1

22 = Γ2
12 = Γ2

21 = 0,

Γ1
12 = Γ1

21 = Γ2
22 = −1

s
,

Γ2
11 =

1

s
.

Next, we recall the symplectic manifold construction of Goto and Umeno [26] for the family
of Cauchy distributions (see also [63] for additional details): The Fisher information metric tensor
(FIm) is

gl,s =
dl2 + ds2

2s2
.

A vector field K is a Killing vector field when the Lie derivative L of the metric g with respect
to K is zero: LKg = 0, i.e. the vector field K preserves the metric (the flow induced by Killing
vector field K is a continuous isometry). The three Killing vector fields on TM are

K1 = (l2 − s2)∂l + 2ls∂v,

K2 = l∂l + s∂s,

K3 = ∂l.

Consider the almost complex structure J = ds⊗∂l−dl⊗∂s and the Levi-Civita connection ∇LC

induced by the Fisher information metric. Then (M, g, J,∇LC) is a symplectic statistical manifold
(Definition 4.14 of [26], see also [63]) equipped with the symplectic form ω = − 1

2s2
dl ∧ ds with the

set of canonical coordinates (l, 1
2s). We have LK1ω = LK2ω = LK3ω = 0.

The information geometry of the wrapped Cauchy family is investigated in [9]. Goto and
Umeno [26] regards the Cauchy distribution as an invariant measure of the generalized Boole
transforms and they model the Cauchy manifold is modeled as a symplectic statistical manifold.
The Boole transform 1

2

(
X − 1

X

)
of a standard Cauchy random variable X yields a standard Cauchy

random variable. See Subsection B.3 below. See [39] for a description of the functions preserving
Cauchy distributions.

B Relationship between the parametric family

We can interpret that the invariance of Cauchy f -divergence in Lemma 1 arises from a relationship
between the parametric family as in Assumption 1 below rather than the definition of the Cauchy
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density itself, although it is shown that they are equivalent to each other by [47, 26]. This measure-
theoretic viewpoint is clear and useful. As an application, we can give a simple, alternative proof
of [26, Proposition 3.1 and Theorem 3.1].

B.1 measure-theoretic framework

Let (X,µ) be a measure space. Let ϕ : Θ ∪ X → Θ ∪ X be a map such that ϕ(Θ) ⊂ Θ and
ϕ(X) ⊂ X. Assume that ϕ|X is measurable. For θ ∈ H, let Pθ(dx) := pθ(x)µ(dx), where pθ is
non-negative measurable function on X and Pθ(dx) is a probability measure on X.

Assumption 1 Pϕ(θ) = Pθ ◦ ϕ−1 for every θ and ϕ.

We consider one-dimensional location-scale families. We assume that X = R, Θ = H and
µ is the Lebesgue measure. Let (Ui)i be at most countable disjoint open sets of R such that
µ(R \ (∪iUi)) = 0 and ϕ|Ui is smooth and injective for each i.

Lemma 8

pϕ(θ)(x) =
∑
i

pθ(ϕ
−1
i (x))∣∣ϕ′(ϕ−1
i (x))

∣∣1ϕ(Ui)(x), a.e. x.

Proof. By Assumption 1 and the change of variable formula, it holds that for every nonnegative
measurable function f ,∫

R
f(x)pϕ(θ)(x)dx =

∫
R
f(ϕ(x))pθ(x)dx =

∑
i

∫
Ui

f(ϕ(x))pθ(x)dx

=
∑
i

∫
ϕ(Ui)

f(y)
pθ(ϕ

−1
i (y))∣∣ϕ′(ϕ−1
i (y))

∣∣dy. (22)

Thus we have the assertion. QED.

Proposition 14 Assume that f : (0,∞)→ R is smooth and f(1) = 0 and convex. Let Df (pθ1 : pθ2)
be the f -divergence between pθ1 and pθ2, that is,

Df (pθ1 : pθ2) :=

∫
R
f

(
pθ1(x)

pθ2(x)

)
pθ1(x)dx.

Assume that {ϕi(Ui)}i are disjoint. Then,

Df

(
pϕ(θ1) : pϕ(θ2)

)
= Df (pθ1 : pθ2).

The assumption that {ϕi(Ui)}i are disjoint is crucial. See Remark 18.
Proof. By using (22) and the fact that ϕ is bijective except a measure zero set, we see that

pθ(x) = pϕ(θ)(ϕ(x))|ϕ′(x)|, a.e. x.

Hence,

Df

(
pϕ(θ1) : pϕ(θ2)

)
=

∫
R
f

(
pϕ(θ1)(ϕ(x))

pϕ(θ2)(ϕ(x))

)
pθ1(x)dx =

∫
R
f

(
pθ1(x)

pθ2(x)

)
pθ1(x)dx.

QED.
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B.2 Möbius transformations

For A =

(
a b
c d

)
∈ SL(2,R), let ϕA(z) = A · z :=

az + b

cz + d
. This is well-defined on H if c = 0, and

on H \ {−d/c} if c 6= 0. If c 6= 0, then we let ϕA(−d/c) := a/c. Then, ϕA is a bijection on R. This
also holds if c = 0.

For θ ∈ H, let Pθ(dx) := pθ(x)dx. Assume that pθ(x) > 0 for every x ∈ R. This is a probability
measure on R.

Lemma 9 PϕA(θ) = Pθ ◦ ϕ−1
A for every A ∈ SL(2,R) and θ ∈ H.

By [34], such parametric location-scale family is restricted to the univariate Cauchy distribution.
Let χ be the maximal invariant. By Proposition 14, we have Theorem 1.

Proposition 15 Let

C(x; `, s) :=
s

π

1

(x− `)2 + s2
, x, ` ∈ R, s > 0.

Assume that x 6= −d/c if c 6= 0. Let x′ := ϕA(x),

`′ := Re(ϕA(`+ is)) =
(a`+ b)(c`+ d) + acs2

(c`+ d)2 + c2s2

and
s′ := Im(ϕA(`+ is)) =

s

(c`+ d)2 + c2s2
.

Then, ϕ−1
A (x′) = {x}, and

C(x′; `′, s′) =
C(x; `, s)∣∣ϕ′A(x)

∣∣ .
This assertion essentially corresponds to [26, Proposition 3.1 and Theorem 3.1].
Proof. We remark that ϕA is bijective. Hence ϕ−1

A (x′) = {x}. By Lemma 8,

C(x′; `′, s′) =
C(x; `, s)∣∣ϕ′A(x)

∣∣ , a.e. x.

Since the functions in the left and right hand sides in the above display are both continuous on
R \ {−d/c}, we have the assertion. QED.

Remark 17 (i) Since ϕA(H) ⊂ H, ϕA defines a flow on H.
(ii) If c 6= 0, then, {−d/c+ yi : y ∈ R} and R are invariant manifolds. The map restricted on
{−d/c+ yi : y ∈ R} is s 7→ 1/(c2s), and the map restricted on R is ` 7→ ϕA(`).

B.3 Boole transformations

We give an alternative simultaneous proof of [26, Proposition 3.1 and Theorem 3.1] themselves.
For a > 0, let

ϕa(z) :=

{
a(z − z−1) z ∈ H \ {0}
0 z = 0

.
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Proposition 16 Assume that x 6= 0. Let x′ := ϕa(x),

`′ := Re(ϕa(`+ is)) = a`
`2 + s2 − 1

`2 + s2

and

s′ := Im(ϕa(`+ is)) = as
`2 + s2 + 1

`2 + s2
.

Then, ϕ−1
a (x′) = {x,−1/x}, and

C(x′; `′, s′) =
C(x; `, s)

|ϕ′a(x)|
+
C(−1/x; `, s)

|ϕ′a(−1/x)|
.

Proof. For ease of notation we let θ := `+ si. We remark that

ϕa(y) = ϕa(−1/y), y 6= 0, (23)

and

|ϕa(x)− ϕa(θ)| = a|x− θ| |xθ + 1|
|xθ|

, x 6= 0, θ ∈ H. (24)

Let F be a non-negative Borel measurable function. By (24) and the change of variable formula
with y = ϕa(x), ∫

R
F (y)C(y;ϕa(θ))dy =

∫ ∞
0

F (ϕa(x))C(x; θ)
(x2 + 1)(|θ|2 + 1)

|xθ + 1|2
dx

=

∫ 0

−∞
F (ϕa(x))C(x; θ)

(x2 + 1)(|θ|2 + 1)

|xθ + 1|2
dx.

Hence, ∫
R
F (y)C(y;ϕa(θ))dy =

∫
R
F (ϕa(x))C(x; θ)

(x2 + 1)(|θ|2 + 1)

2|xθ + 1|2
dx

=

∫
R
F (ϕa(x))C(x; θ)dx+

∫
R
F (ϕa(x))C(x; θ)

(
(x2 + 1)(|θ|2 + 1)

2|xθ + 1|2
− 1

)
dx.

Since
(x2 + 1)(|θ|2 + 1)

|xθ + 1|2
= 1 +

|x− θ|2

|xθ + 1|2
,

it holds that ∫
R
F (ϕa(x))C(x; θ)

(
(x2 + 1)(|θ|2 + 1)

2|xθ + 1|2
− 1

)
dx

=
1

2

∫
R
F (ϕa(x))C(x; θ)

(
|x− θ|2

|xθ + 1|2
− 1

)
dx

=
s

2π

∫
R

F (ϕa(x))

|xθ + 1|2
dx− 1

2

∫
R
F (ϕa(x))C(x; θ)dx.

By the change of variable formula and (23),

s

π

∫
R

F (ϕa(x))

|xθ + 1|2
dx =

∫
R
F (ϕa(x))C(x; θ)dx,
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and hence, ∫
R
F (ϕa(x))C(x; θ)

(
(x2 + 1)(|θ|2 + 1)

2|xθ + 1|2
− 1

)
dx = 0.

Thus we obtain that ∫
R
F (y)C(y;ϕa(θ))dy =

∫
R
F (ϕa(x))C(x; θ)dx.

Let two functions ϕa,± be the restrictions of ϕa to (0,∞) and (−∞, 0) respectively. Then, by
Lemma 8,

C(y;ϕa(θ)) =
C(ϕ−1

a,+(y); θ)

ϕ′a(ϕ
−1
a,+(y))

+
C(ϕ−1

a,−(y); θ)

ϕ′a(ϕ
−1
a,−(y))

, a.e. y.

Since the functions in the left and right hand sides in the above display are both continuous on
R \ {0},

C(y;ϕa(θ)) =
C(ϕ−1

a,+(y); θ)

ϕ′a(ϕ
−1
a,+(y))

+
C(ϕ−1

a,−(y); θ)

ϕ′a(ϕ
−1
a,−(y))

, for every y 6= 0.

QED.

Remark 18
Df

(
pϕa(θ1) : pϕa(θ2)

)
6= Df (pθ1 : pθ2)

for a = 2, θ1 = i and θ2 = 2i.

C Revisiting the KLD between Cauchy densities

We shall prove the following result [11] using complex analysis:

DKL(pl1,s1 : pl2,s2) = log

(
(s1 + s2)2 + (l1 − l2)2

4s1s2

)
.

Proof.

DKL(pl1,s1 : pl2,s2) =
s1

π

∫
R

log((z − l2)2 + s2
2)

(z − l1)2 + s2
1

dz

− s1

π

∫
R

log((z − l1)2 + s2
1)

(z − l1)2 + s2
1

dz + log
s1

s2
. (25)

As a function of z,
log(z − l2 + is2)

z − l1 + is1

is holomorphic on the upper-half plane {x + yi : y > 0}. By the Cauchy integral formula [49], we
have that for sufficiently large R,

1

2πi

∫
C+
R

log(z − l2 + is2)

(z − l1)2 + s2
1

dz =
log(l1 − l2 + i(s2 + s1))

2s1i
,

where
C+
R := {z : |z| = R, Im(z) > 0} ∪ {z : Im(z) = 0, |Re(z)| ≤ R}.
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Hence, by R→ +∞, we get

s1

π

∫
R

log(z − l2 + is2)

(z − l1)2 + s2
1

dz = log(l1 − l2 + i(s2 + s1)). (26)

As a function of z,
log(z − l2 − is2)

z − l1 − is1

is holomorphic on the lower-half plane {x+ yi : y < 0}. By the Cauchy integral formula again, we
have that for sufficiently large R,

1

2πi

∫
C−R

log(z − l2 − is2)

(z − l1)2 + s2
1

dz =
log(l1 − l2 − i(s2 + s1))

−2s1i
,

where
C−R := {z : |z| = R, Im(z) < 0} ∪ {z : Im(z) = 0, |Re(z)| ≤ R}.

Hence, by R→ +∞, we get

s1

π

∫
R

log(z − l2 − is2)

(z − l1)2 + s2
1

dz = log(l1 − l2 − i(s2 + s1)). (27)

By Eq. 26 and Eq. 27, we have that

s1

π

∫
R

log((z − l2)2 + s2
2)

(z − l1)2 + s2
1

dz = log
(
(l1 − l2)2 + (s1 + s2)2

)
. (28)

In the same manner, we have that

s1

π

∫
R

log((z − l1)2 + s2
1)

(z − l1)2 + s2
1

dz = log(4s2
1). (29)

By substituting Eq. 28 and Eq. 29 into Eq. 25, we obtain the formula Eq. 2. QED.

Remark 19 Thomas Simon [76] also obtained an alternative proof of [11], which uses the Lévy-
Khintchine formula and the potential formula for the infinitely divisible distributions, and the Frul-
lani integral.

D Revisiting the chi-squared divergence between Cauchy densi-
ties

Proposition 17

DN
χ (pl1,s1 : pl2,s2) =

(l1 − l2)2 + (s1 − s2)2

2s1s2
. (30)

Proof. We first remark that

DN
χ (pl1,s1 : pl2,s2) =

∫
R

p2
l2,s2

(x)

pl1,s1(x)
dx− 1.
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Let F (z) :=
(z−l1)2+s21
(z−l2+is2)2

. Then, this is holomorphic on the upper-half plane H, and,

pl2,s2(x)2

pl1,s1(x)
=

s2
2

πs1

F (x)

(x− l2 − is2)2
.

By the Cauchy integral formula [49], we have that for sufficiently large R,

1

2πi

∫
C+
R

F (z)

(z − l2 − is2)2
dz = F ′(l2 + is2),

where C+
R := {z : |z| = R, Im(z) > 0} ∪ {z : Im(z) = 0, |Re(z)| ≤ R}.

Since

F ′(z) = 2
(z − s1)(z − l2 + is2)− (z − l1)2 − s2

1

(z − l2 + is2)3
,

we have that ∫
C+
R

F (z)

(z − l2 − is2)2
dz =

π

2

(l1 − l2)2 + s2
1 + s2

2

s3
2

.

Now, by R→∞, we obtain the formula Eq. 30. QED.

E Total variation between densities of a location family

Consider a location family with even standard density p(−x) = p(x). Then p(x − l1) = p(x −
l2) = p(l2 − x) when x = l1+l2

2 . Let Φ(a) =
∫ a
−∞ p(x)dx denote the standard cumulative density

function, Φl,s(a) =
∫ a
−∞ p(

x−l
s )dx = Φ(a−ls ) with Φl,s(−∞) = 0 and Φl,s(+∞) = 1. We have∫ b

a p(x)dx = Φ(b)− Φ(a) and
∫ +∞
a pl,s(x)dx = 1− Φ(a−ls ).

Then the total variation distance between pl1 and pl2 is

DTV(pl1 : pl2) =
1

2

(∫ l1+l2
2

−∞
|pl1(x)− pl2(x)|dx+

∫ +∞

l1+l2
2

|pl2(x)− pl1(x)|dx

)

= 2Φ

(
|l1 − l2|

2s

)
− 1 ≤ 1

Proposition 18 The total variation between two densities pl1 and pl2 of a location family with

even standard density is 2Φ
(
|l1−l2|

2s

)
− 1.

For the Cauchy distribution, since we have

Φl,s(x) =
1

π
arctan

(
x− l
s

)
+

1

2
,

we recover DTV(pl1 : pl2) = 2
π arctan

(
|l2−l1|

2s

)
.

The total variation formula extends to any fixed scale location families.
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F Complete elliptic integrals

This section is devoted to the details of the proof of (18) in the proof of Theorem 9.
Proof. Let

F4(u) :=
− log

(
2e−u/4K(1− e−u)/π

)
u2

.

We consider the derivative.

F ′4(u) =
−1

u2

(
1

4
+ e−u

K′(1− e−u)

K(1− e−u)
− 2

u
log
(
2K(1− e−u)/π

))
.

Now it suffices to show that for every u > 0,

1

4
+ e−u

K′(1− e−u)

K(1− e−u)
− 2

u
log
(
2K(1− e−u)/π

)
> 0.

Let x := 1− e−u. Then, it suffices to show that for every x ∈ (0, 1),

1

4
+ (1− x)

K′(x)

K(x)
+

2

log(1− x)
log (2K(x)/π) > 0.

Let

G4(x) := log (2K(x)/π) + (log(1− x))

(
1

8
+

1− x
2

K′(x)

K(x)

)
.

It suffices to show that G4(x) < 0 for every x ∈ (0, 1).
We see that G4(0) = 0. Hence it suffices to show that G′4(x) < 0 for every x ∈ (0, 1). By

Lemma 14 below,

G4(x) = log (2K(x)/π) + (log(1− x))

(
3

8
+

1

4x

(
.
E(x)

K(x)
− 1

))
.

By Lemmas 14 and 15 below,

G′4(x) = − H4(x)

8x2(1− x)
,

where we let

H4(x) := (x(2− x) + (x− 1) log(1− x))K(x)2 − 2xK(x)E(x) + log(1− x)E(x)2.

Then it suffices to show that H4(x) > 0 for every x ∈ (0, 1). Since −2x < 0 and log(1− x) < 0, by
noting Lemma 16 below, it holds that

H4(x)

K(x)2
≥ (x(2− x) + (x− 1) log(1− x))− 2xI4(x) + log(1− x)I4(x)2,

where we let

I4(x) :=
1

2
− x

4
+

√
1− x
2

.

Our main idea is to use different estimates for H(x)/K(x)2 on a neighborhood of 1 and on the
compliment of it.
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Lemma 10 For x ≤ 0.998,

(x(2− x) + (x− 1) log(1− x))− 2xI(x) + log(1− x)I(x)2 > 0.

Proof. Let y :=
√

1− x. Then,

(x(2− x) + (x− 1) log(1− x))− 2xI(x) + log(1− x)I(x)2 > 0

is equivalent with

log y > 4
y2 − 1

y2 + 6y + 1
.

Let

P4(y) := log y − 4
y2 − 1

y2 + 6y + 1
.

Then, P4(1) = 0. By considering the derivative of P , it is increasing y < 5 − 2
√

6 and decreasing
y > 5− 2

√
6.

We see that P4(y) > 0, y > 0.041. Now the assertion follows from the fact that

0.998 < 1− (0.041)2.

QED.
Now it suffices to show that H(x) > 0 for x > 0.998.

Lemma 11
x(2− x) + (x− 1) log(1− x) ≥ 1, x ∈ (0.998, 1).

Proof. Let g4(x) := x(2− x) + (x− 1) log(1− x). Then, g4(1) = 1 and

g′4(x) = 3− 2x+ log(1− x).

This is negative if x > 0.9. QED.

Lemma 12

2x.
E(x)

K(x)
<

1

2
, x ∈ (0.998, 1).

Proof. We see that
d

dx

(
x.

E(x)

K(x)

)
≤ 2.

E(x)

K(x)
− 1

2
.

By Lemma 15 below and the fact that

E(0.995)

K(0.995)
<

1

4
,

we see that

2.
E(x)

K(x)
≤ 1

2
, x > 0.995.

Hence,

2x.
E(x)

K(x)
< 2

E(0.995)

K(0.995)
<

1

2
.

QED.
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Lemma 13

− log(1− x)

(
.
E(x)

K(x)

)2

<
1

2
, x ∈ (0.998, 1).

Proof. We use Lemma 17 below. It suffices to show that

2x1/2

log(1 + x1/2)− log(1− x1/2)
≤

√
1

−2 log(1− x)
, x ∈ (0.998, 1).

This is equivalent with

h4(x) :=
(

log(1 + x1/2)− log(1− x1/2)
)2

+ 8x log(1− x) ≥ 0, x ∈ (0.998, 1).

We see that

h′4(x) = −2
log(1−

√
x)− log(1 +

√
x) + 2

√
x(x+ (x− 1) log(1− x))

(1− x)
√
x

.

It is easy to see that

log(1−
√
x)− log(1 +

√
x) + 2

√
x(x+ (x− 1) log(1− x)) < 0, x ∈ (0.998, 1).

Hence h4 is increasing at least on (0.998, 1). Now use the fact that h4(0.998) > 0. QED.
By Lemmas 11, 12 and 13, we see that H4(x) > 0 for x > 0.998. The proof of Eq. 18 is

completed. QED.

F.1 Some Lemmas concerning the complete elliptic integrals

In this subsection, we collect standard results about the complete elliptic integrals.

Lemma 14

K′(x) = −K(x)

2x
+

E(x)

2x(1− x)
.

Lemma 15
d

dx

(
.
E(x)

K(x)

)
= − 1

2x
+

1

x
.
E(x)

K(x)
− 1

2x(1− x)

(
.
E(x)

K(x)

)2

≤ 0.

In particular, E/K is strictly decreasing.

Lemma 16

.
E(x)

K(x)
≤ 1

2
− x

4
+

√
1− x
2

, x ∈ [0, 1).

The following is due to Anderson, Vamanamurthy, and Vuorinen [4].

Lemma 17 ([4, Theorem 3.6])

.
E(x)

K(x)
≤ 2x1/2

log(1 + x1/2)− log(1− x1/2)
, x ∈ [0, 1).

The following is due to Eq. (1.1) in [10]. See also Eq. (6.2) in [4].

Lemma 18

log

(
4√

1− x

)
≤ K(x) ≤ 4

3 + x
log

(
4√

1− x

)
, x ∈ [0, 1).
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G Negative definiteness of the KLD between Cauchy densities

In this section, we give an elementary proof of Theorem 11. We first give an outline of the proof.
Our proof follows the strategy of [22] and consists of three steps. We do not need to introduce the
hyperboloid space L.

Step 1. Let d be the Poincaré distance on H. We remark that d =
√

2ρFR. Then,
cosh(d(z, w)) = 1 + χ(z, w) and

2 log cosh

(
d(z, w)

2

)
= log

(
1 +

χ(z, w)

2

)
.

We see that for every r ≥ 0,

2 log cosh
(r

2

)
= lim

s→+0

1

s

(
1− 1

2π

∫ π

−π
(cosh(r) + cos θ sinh(r))−s dθ

)
.

Hence it suffices to show that

Hs(z, w) :=
1

2π

∫ π

−π
(cosh(d(z, w)) + cos θ sinh(d(z, w)))−s dθ, z, w ∈ H,

is positive definite for every s ∈ (0, 1).
Step 2. Let

P (z, x) :=
Im(z)

|x− z|2
(x2 + 1), z ∈ H, x ∈ R,

and µ(dx) :=
dx

π(x2 + 1)
.

Then we see that

Hs(z, w) =

∫
R
P (z, x)sP (w, x)1−sµ(dx)

= C(s)

∫∫
R2

P (w, x)1−sP (z, y)1−s
(

(x− y)2

(x2 + 1)(y2 + 1)

)−s
µ(dx)µ(dy),

where C(s) is a positive constant depending only on s.
Step 3. Let z1, · · · , zn ∈ H and c1, · · · , cn ∈ R with

∑n
i=1 ci = 0. Let

ϕs(x) :=

n∑
i=1

ciP (zi, x)1−s, x ∈ R,

which is continuous on R.

Let ks(x, y) :=
(

(x−y)2

(x2+1)(y2+1)

)−s
, which is a positive definite kernel on R.

Thus we see that

n∑
i.j=1

cicjHs(zi, zj) =
C(s)

π2

∫∫
R2

ϕs(x)ϕs(y)ks(x, y)

(x2 + 1)(y2 + 1)
dxdy ≥ 0.

Now we proceed to the full proof.
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Step 1. It is known that (see formula no.4.224.9 in [27])

2 log cosh
(r

2

)
=

1

2π

∫ π

−π
log (cosh(r) + cos θ sinh(r)) dθ, r ≥ 0.

We see that for r ≥ 0,
|log(cosh(r) + cos θ sinh(r))| ≤ r.

Since for t > 0, lims→+0
1−t−s
s = log t and |1−t−ss | ≤ | log t|,∫ π

−π
log (cosh(r) + cos θ sinh(r)) dθ = lim

s→+0

∫ π

−π

1− (cosh(r) + cos θ sinh(r))−s

s
dθ, r > 0,

by the Lebesgue convergence theorem. This convergence also holds for r = 0.
Step 2.

Lemma 19
1

2π

∫ π

−π
(cosh(r) + cos θ sinh(r))−s dθ =

∫
R
P (eri, x)sµ(dx).

Proof. Let x = tan θ
2 . Then, dθ =

2

1 + x2
dx and

cosh(r) + cos θ sinh(r) =
e2r + x2

er(1 + x2)
=

1

P (eri, x)
.

QED.

Lemma 20 For A ∈ SO(2) and z ∈ H,∫
R
P (A.z, x)sµ(dx) =

∫
R
P (z, x)sµ(dx).

Proof. Let A =

(
cos θ − sin θ
sin θ cos θ

)
. Let y ∈ R such that x = A.y. Then,

P (A.z,A.y) = P (z, y)

and

µ(dx) =
1

π

1

(A.y)2 + 1

dx

dy
dy =

1

π

1

y2 + 1
dy = µ(dy).

QED.
Now we introduce a group structure on H. For z = z1 + iz2 and w = w1 + iw2, let

zw := (z1 + z2w1) + iz2w2.

This gives a group structure on H. It holds that

w−1 =
−w1 + i

w2
, w = w1 + iw2

and the unit element is the imaginary unit i.
We see that χ(w−1z, i) = χ(z, w), z, w ∈ H and hence

d(w−1z, i) = d(z, w), z, w ∈ H. (31)
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Lemma 21 For z, w ∈ H,

Hs(z, w) =

∫
R
P (w−1z, x)sµ(dx).

Proof. By (31), we can assume that w = i. Then there exists A ∈ SO(2) such that
ed(z,i)i = A.z. Now the assertion follows from Lemmas 19 and 20. QED.

For w = w1 + iw2 ∈ H and x ∈ R, we let wx := w2x+ w1.

Lemma 22
P (w−1z, x)P (w,wx) = P (z, wx), z, w ∈ H, x ∈ R.

Proof. Since

w−1z =
z1 − w1 + iz2

w2
, z = z1 + iz2, w = w1 + iw2,

we see that
P (w−1z, x) =

z2w2

(z1 − w1 − w2x)2 + z2
2

(x2 + 1).

We also see that

P (z, wx) =
z2((w2x+ w1)2 + 1)

(z1 − w1 − w2x)2 + z2
2

and

P (w,wx) =
(w2x+ w1)2 + 1

w2(x2 + 1)
.

The assertion follows from these identities. QED.

Proposition 19

Hs(z, w) =

∫
R
P (z, x)sP (w, x)1−sµ(dx), z, w ∈ H.

Proof. By Lemmas 21 and 22,

Hs(z, w) =

∫
R
P (z, wx)sP (w,wx)−sµ(dx).

Let y = wx = w2x+ w1. Then, µ(dx) =
w2

π|y − w|2
dy. Hence,

∫
R
P (z, wx)sP (w,wx)−sµ(dx) =

∫
R
P (z, y)sP (w, y)1−sµ(dy).

QED.

Lemma 23 For every s ∈ (0, 1/2), there exists a positive constant C(s) such that for every a ∈ R

(1 + a2)−s =
C(s)

π

∫
R

|x+ a|−2s

(1 + x2)1−sdx.
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Proof. Let x = tan θ, |θ| < π/2. Then, dθ = cos2 θdx = 1
1+x2

dx and

(x+ a)2

1 + x2
= (sin θ + a cos θ)2.

Hence, ∫
R

|x|−2s

(1 + (x− a)2)1−sdx =

∫ π/2

−π/2
|sin θ + a cos θ|−2s dθ.

By symmetry,∫ π/2

−π/2
|sin θ + a cos θ|−2s dθ =

1

2

∫ π

−π
|sin θ + a cos θ|−2s dθ = π(1 + a2)−s

∫ π

−π
|cos θ|−2s dθ.

The assertion holds if we let C(s) :=
(∫ π
−π |cos θ|−2s dθ

)−1
. QED.

Lemma 24 (intertwining formula) For every s ∈ (0, 1/2), w ∈ H and y ∈ R,

P (w, y)s = C(s)

∫
R
P (w, x)1−s

(
(x− y)2

(x2 + 1)(y2 + 1)

)−s
µ(dx). (32)

Proof. Let ξ := w − y and t := x− y. Then, (32) holds if and only if(
Im(ξ)

|ξ|2

)s
=
C(s)

π

∫
R

(
Im(ξ)

|ξ − t|2

)1−s
|t|−2sdt. (33)

Let u := (t− Re(ξ))/Im(ξ). Then,∫
R

(
Im(ξ)

|ξ − t|2

)1−s
|t|−2sdt = (Im(ξ))−s

∫
R

(
1

1 + u2

)1−s ∣∣∣∣u+
Re(ξ)

Im(ξ)

∣∣∣∣−2s

du.

Hence (33) holds if and only if((
Re(ξ)

Im(ξ)

)2

+ 1

)−s
=
C(s)

π

∫
R

(
1

1 + u2

)1−s ∣∣∣∣u+
Re(ξ)

Im(ξ)

∣∣∣∣−2s

du,

which follows from Lemma 23. QED.
By Proposition 19 and Lemma 24,

Proposition 20 For every s ∈ (0, 1/2),

Hs(z, w) = C(s)

∫∫
R2

P (w, x)1−sP (z, y)1−s
(

(x− y)2

(x2 + 1)(y2 + 1)

)−s
µ(dx)µ(dy), z, w ∈ H.

Step 3.

Lemma 25 ks(x, y) is a positive definite kernel on R.
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Proof. For r ∈ (0, 1), let

k(r)
s (x, y) :=

(
1− r (xy + 1)2

(x2 + 1)(y2 + 1)

)−s
.

Since (x, y) 7→ 1
(x2+1)(y2+1)

and (x, y) 7→ (xy)2 + 2xy+ 1 are both positive definite kernels on R,

(x, y) 7→ (xy+1)2

(x2+1)(y2+1)
is also a positive definite kernel on R.

By the Taylor expansion,

(1− x)−s =

∞∑
n=0

anx
n, |x| < 1,

for an ≥ 0, n = 0, 1, · · · . Hence k
(r)
s (x, y) is a positive definite kernel on R. Since

limr→1−0 k
(r)
s (x, y) = ks(x, y), k

(r)
s (x, y) is a positive definite kernel on R. QED.

By this and the quadrature rule for the Riemannian integral for continuous functions, it holds
that for every a < b and r ∈ (0, 1),∫∫

[a,b]2

ϕs(x)ϕs(y)k
(r)
s (x, y)

(x2 + 1)(y2 + 1)
dxdy ≥ 0.

Since 0 ≤ k(r)
s (x, y) ≤ ks(x, y),∫∫

R2

|ϕs(x)ϕs(y)|k(r)
s (x, y)

(x2 + 1)(y2 + 1)
dxdy ≤

∫∫
R2

|ϕs(x)ϕs(y)|ks(x, y)

(x2 + 1)(y2 + 1)
dxdy ≤

n∑
i.j=1

|ci||cj |Hs(zi, zj) < +∞.

By the Lebesgue convergence theorem, we see that for every r ∈ (0, 1),∫∫
R2

ϕs(x)ϕs(y)k
(r)
s (x, y)

(x2 + 1)(y2 + 1)
dxdy = lim

n→∞

∫∫
[−n,n]2

ϕs(x)ϕs(y)k
(r)
s (x, y)

(x2 + 1)(y2 + 1)
dxdy ≥ 0.

and furthermore,∫∫
R2

ϕs(x)ϕs(y)ks(x, y)

(x2 + 1)(y2 + 1)
dxdy = lim

r→1−0

∫∫
R2

ϕs(x)ϕs(y)k
(r)
s (x, y)

(x2 + 1)(y2 + 1)
dxdy ≥ 0.

This completes the proof.

H Code snippet for Taylor expansions of f-divergences

We provide below a code using the Maxima4 software to calculate the truncated Taylor series of
f -divergences between two Cauchy distributions.

Cauchy(x,l,s) := (s/(%pi*((x-l)**2+s**2)));

KLCauchy(l1,s1,l2,s2) := log(((s1+s2)**2+(l1-l2)**2)/(4*s1*s2)) ;

l1:0;

s1:1;

4https://maxima.sourceforge.io/
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l2:0.6;

s2:6/5;

k:40;

testcond: (9/16)-(l2**2+(s2-(4/5))**2);

print("Is condition>0 for Taylor expansion?:",testcond);

Cauchy1:Cauchy(x,l1,s1);

Cauchy2:Cauchy(x,l2,s2);

print("Exact KL");

KLCauchy(l1,s1,l2,s2);

ExactKL:float(%);

print("KL numerical integration:");

kla: quad_qagi( Cauchy1*log(Cauchy1/Cauchy2), x, minf, inf,’epsrel=1d-10);

NumKL:float(kla[1]);

for i:2 while (i<=k)

do( r[i]: quad_qagi( (Cauchy1-Cauchy2)**i/Cauchy2**(i-1), x, minf, inf,’epsrel=1d-10),

print(i,r[i][1]));

print("KL Taylor truncated series:");

TaylorKL: sum( (((-1)**i)/i)*r[i][1], i, 2, k);

print("Exact:",ExactKL,"Numerical:",NumKL,"Trunc. Taylor", TaylorKL);

print("Error |Taylor-Exact|",abs(TaylorKL-ExactKL));
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