
Mind2Mind : Transfer Learning for GANs

Yael Fregier, Jean-Baptiste Gouray *

Univ. Artois, UR2462
Laboratoire de Mathématiques de Lens (LML)

F-62300 Lens, France
yael.fregier@univ-artois.fr, jeanbaptiste.gouray@gmail.com

Abstract

Training generative adversarial networks (GANs) on high
quality (HQ) images involves important computing resources.
This requirement represents a bottleneck for the development
of applications of GANs. We propose a transfer learning tech-
nique for GANs that significantly reduces training time. Our
approach consists of freezing the low-level layers of both the
critic and generator of the original GAN. We assume an auto-
encoder constraint in order to ensure the compatibility of the
internal representations of the critic and the generator. This
assumption explains the gain in training time as it enables us
to bypass the low-level layers during the forward and back-
ward passes. We compare our method to baselines and ob-
serve a significant acceleration of the training. It can reach
two orders of magnitude on HQ datasets when compared with
StyleGAN. We prove rigorously, within the framework of op-
timal transport, a theorem ensuring the convergence of the
learning of the transferred GAN. We moreover provide a pre-
cise bound for the convergence of the training in terms of the
distance between the source and target dataset.

1 Introduction
The recent rise of deep learning as a leading paradigm in AI
mostly relies on computing power (with generalized use of
GPUs) and massive datasets. These requirements represent
bottlenecks for most practitioners outside of big labs in in-
dustry or academia and are the main obstacles to the general-
ization of the use of deep learning. Therefore, methods that
can bypass such bottlenecks are in strong demand. Trans-
fer learning is one of them and various methods of transfer
learning (for classification tasks) specific to deep neural net-
works have been developed (Tan et al. 2018).

A generative problem is a situation in which one wants
to be able to produce elements that could belong to a given
data set D. Generative Adversarial Networks (GANs) were
introduced in 2014 (Goodfellow et al. 2014) (Salimans et al.
2016) to tackle generative tasks with deep learning architec-
tures and improved in (Arjovsky, Chintala, and Bottou 2017;
Gulrajani et al. 2017) (Wasserstein GANs). They immedi-
ately took a leading position in the world of generative mod-
els, comforted by progress with HQ images (ProGAN github

*both authors contributed equally
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

repository), (Karras, Laine, and Aila 2019). The goal of our
work (see section 4) is to develop in a generative setting,
i.e., for GAN architectures, the analog of the cut-and-paste
approach.

The main idea of our method is to reuse, for the training
of a GAN, the weights of an autoencoder already trained on
a source datasetD. The weights of the low level layers of the
generator (resp. critic) will be given by those of the decoder
(resp. encoder). We call MindGAN the high level layers of
the generator. It is a subnetwork that is trained as a GAN on
the encoded features of the target dataset D′.

We prove in section 5 a theorem that controls the con-
vergence of the transferred GAN in terms of the quality of
the autoencoder, the domain shift between D and D′ and
the quality of the MindGAN. As a consequence, our experi-
mental results in section 6 rely heavily on the choice of the
autoencoder. ALAE autoencoders (Pidhorskyi, Adjeroh, and
Doretto 2020) are extremely good autoencoders that turned
out to be crucial in our experiments with HQ images. Their
use, in conjunction with our transfer technique, enables an
acceleration of the training by a factor of 656, while keep-
ing a good quality.

2 Preliminaries
A GAN consists of two networks trained adversarially. The
generator g : Z → χ associates to a vector z sampled from
a latent vector space Z a vector g(z) in another vector space
χ while the discriminator c : χ → R learns to associate
a value close to 1 if the vector g(z) belongs to D and zero
otherwise. Their respective loss functions, Lg and Lc are
recalled in section 4.

One can assume that elements of D can be sampled from
an underlying probability distribution PD on a space χ and
try to approximate it by Pθ, another distribution on χ that
depends on some learnable parameters θ. Generating then
means sampling from the distribution Pθ. The main idea be-
hind a Wasserstein GAN is to use the Wasserstein distance
(see appendix A, and (Villani 2008) definition 6.1) to de-
fine by W (PD,Pθ) the loss function for this optimisation
problem. More precisely, the Wasserstein distance is a dis-
tance on Borel probability measures on χ (when compact
metric space). In particular, the quantity W (PD,Pθ) gives a
number which depends on the parameter θ since Pθ depends
itself on θ. The main result of (Arjovsky, Chintala, and Bot-

ar
X

iv
:1

90
6.

11
61

3v
2

 [
cs

.L
G

]
 2

0
O

ct
 2

02
0

tou 2017) asserts that if Pθ is of class Ck as a function of
θ almost everywhere, W (PD,Pθ) is also of class Ck with
respect to θ. As a consequence, one can solve this optimiza-
tion problem by doing gradient descent for the parameters
θ (using a concrete gradient formula provided by the same
theorem) until the two probability distributions coincide.

Among the distributions on χ, some can be obtained from
a prior distribution PZ on an auxiliary latent space Z and a
map g : Z → χ as follows. The push-forward of PZ un-
der g (Bogachev 2007) is defined so that a sample is given
by g(z) the image through g of a sample z from the distri-
bution PZ . We will denote this pushforward by g]PZ and
when g depends on parameters θ use instead the notation
Pθ := g]PZ . In practice, one can choose for PZ a uniform
or Gaussian distribution, and for g a (de)convolution deep
neural network. In our applications, we will consider for in-
stance Z := R128 equipped with a multivariate gaussian
distribution and χ = [−1, 1]28×28, the space of gray level
images of resolution 28× 28. Hence, sampling from Pθ will
produce images.

In order to minimise the function W (PD,Pθ), one needs
a good estimate of the Wasserstein distance. The Rubinstein-
Kantorovich duality (See (Villani 2008) theorem 5.9) states
thatW (P,P′) = max|c|L≤1 Ex∼P c(x)−Ex∼P′ c(x), where
Ex∼Pf(x) denotes the expected value of the function f for
the probability measure P, while the max is taken on the
unit ball for the Lipschitz semi-norm. Concretely, this max
is obtained by gradient ascent on a function cθ encoded by a
deep convolution neural network.

In our case, when P′ := Pθ, the term Ex∼P′ c(x) takes the
form Ez∼PZ cθ(gθ(z)). One recovers the diagram

Z
gθ−→ χ

cθ−→ R (1)

familiar in the adversarial interpretation of GANs. With this
observation, one understands that one of the drawbacks of
GANs is that there are two networks to train. They involve
many parameters during the training, and the error needs to
backpropagate through all the layers of the two networks
combined, i.e., through cθ ◦gθ. This process is computation-
ally expensive and can trigger the vanishing of the gradient.
Therefore, specific techniques need to be introduced to deal
with very deep GANs, such as in (Karras et al. 2018a). The
approach we present in section 4 can circumvent these two
problems.

Transfer learning is a general approach in machine learn-
ing to overcome the constraints of the volume of data and
computing power needed for training models. It leverages a
priori knowledge from a learned task T on a source data set
D in order to learn more efficiently a task T ′ on a target data
set D′. It applies in deep learning in at least two ways: Cut
and Paste and Fine tuning.

Cut and Paste takes advantage of the difference between
high and low-level layers of the network c. It assumes that
the network c is composed of two networks c0 and c1 stacked
one on each other, i.e., mathematically that c = c0 ◦ c1
(one understands the networks as maps). While the low-
level layers c1 process low-level features of the data, usually
common for similar datasets, the high-level layers c0 are in
charge of the high-level features which are very specific to

each dataset. Hence, instead of retraining all the weights of
an auxiliary network pre-trained on D, one can retrain only
the parameters of the last layers of the network while keep-
ing the other parameters untouched. This approach boils
down to the following steps :

1. identify a dataset D similar to the data set D′ we are in-
terested in, both in the same space χ,

2. import a network c = c0 ◦ c1 , already trained on the

dataset D, where c factors as
M

χ C

c0c1

c

with C

the space of classes.
3. pass the new datasetD′ through c1 and train c′0 on c1(D′),

and
4. use c′ := c′0 ◦ c1 as the new classifier on D′.

The main advantages of this approach are the following :
a. much fewer parameters to train (only the parameters of
c′0, which in practice correspond to a few dense layers),

b. need to pass the data D′ only once through c1, and
c. no need to backpropagate the error through c1.

Since the low-level features often represent the most time-
consuming part of the training, eliminating the need to train
their weights will accelerate the process. If the datasets are
similar, only training the last layers generally leads to good
results in a much shorter time and with fewer data.

Fine tuning is based on the same first two steps than Cut
and Paste, but instead of steps 3 and 4, uses the weights of
c to initialise the training of the new network c′ on D′. It is
assumed that c and c′ share the same architecture.

In both approaches, the network c must have been previ-
ously trained by a third party during a very long time on the
source dataset D, which is potentially much more massive
than D′. It turns out in practice that these approaches enable
to train a network on a new task with much less computing
power and data (see (Donahue et al. 2014)).

3 Related works
In the following section, we survey the works to which this
paper can be associated. We postpone the analysis of the
main differences with these works in section 7.

Wasserstein autoencoders A version of autoencoders in
conjunction with GANs has been considered in (Makhzani
et al. 2015) and later generalized with Wasserstein distance
in (Tolstikhin et al. 2017) and subsequent works. In short,
in this approach, one trains an adversarially an autoencoder.
Moreover, one adds a regularizer term to get a generative
model. More details in section A.

Adversarial learned inference A second stream of pa-
pers, (Dumoulin et al. 2017), (Donahue, Krähenbühl, and
Darrell 2017), (Belghazi et al. 2018), (Haidar and Reza-
gholizadeh 2019) and (Zhao et al. 2018) to cite a few, uses
another blend of autoencoders with GANs. Their key idea
is to learn adversarially an encoder gx : χ → M to-
gether with a decoder gm : M → χ against a discrimi-
nator c : χ ×M → R in a way that the distributions given

by the couples (gm(m),m) and (x, gx(x)) are indistinguish-
able from the discriminator point of view. Note that one does
not explicitly train gx and gm to be inverses to each other.
However theorem 2 of ((Donahue, Krähenbühl, and Darrell
2017)) shows that at optimality they are indeed.

Adversarial Latent Autoencoders These autoencoders
(Pidhorskyi, Adjeroh, and Doretto 2020) have the property
of learning the latent distribution to match the encoded dis-
tribution. This is very different from other traditional ap-
proaches that assume an a priori target latent distribution
and learn the encoder to match the encoded distribution with
this a priori target. From this perspective, this method is very
close to the architecture we use in our work, though the ob-
jectives are very different : their point is to disentangle repre-
sentations in order to be able to control the features, whereas
our objective is to do transfer. The similarity in architecture
probably explains why ALAE autoencoders are very suited
to our method.

Fine-Tuning On the side of papers addressing transfer for
GANs, we are aware of (Wang et al. 2018), (Shan et al.
2018). Both apply to GANs fine-tuning, one of the tech-
niques of transfer learning. It consists in initializing the
training of a network on a target dataset D′ with weights
from another network with the same architecture, but al-
ready trained on a similar source dataset D. The two papers
seem to have been written independently. While (Shan et al.
2018) is mainly targeting a specific application of de-noising
in medical imagery, (Wang et al. 2018) is rather interested in
understanding fine-tuning for GANs per se. Both report a
faster convergence and a better quality, though (Wang et al.
2018) also observes that fine-tuning enables training with
smaller datasets and that the distance between the source and
target datasets influences the quality of the training.

4 Mind to mind algorithm

We now adapt to GANs the cut-and-paste procedure de-
scribed in 2. The difference is that in addition to the classifier
c (or critic in the language of WGAN), one also has a gener-
ator g. Let us consider a factorisation of the form g = g1 ◦g0

M ′

Z χ.

g1g0

g

Algorithm 1 Mind2Mind transfer learning.

Require: (c1, g1), an autoencoder trained on a source dataset D,
α, the learning rate, b, the batch size, n, the number of iterations
of the critic per generator iteration, D′, a target dataset, ϕ′ and
θ′ the initial parameters of the critic c′0 and of the generator g′0.
Compute c1(D′).
while θ′ has not converged do

for t = 0, ..., n do
Sample {m(i)}bi=1 ∼ c1]PD′ a batch from c1(D′).
Sample {z(i)}bi=1 ∼ PZ a batch of prior samples.
Update c′0 by descending Lc.

end for
Sample {z(i)}bi=1 ∼ PZ a batch of prior samples.
Update g′0 by descending −Lg .

end while
return g1 ◦ g′0.

Our algorithm assumes that g1 comes from an autoen-
coder (c1, g1) that has been trained on a source dataset D.
The algorithm passes the second data set D′ through the en-
coder c1 and trains a MindGAN (g′0, c

′
0) on the encoded data

c1(D′). One obtains the final generator as the composition
g1 ◦ g′0 of g1, the decoder of the autoencoder, with g′0, the
generator of the MindGAN. We denote by Lc and Lg the
losses of the discriminator and the generator.

In the remainder of the paper, we use for
Lg and Lc the losses of a WGAN with gra-
dient penalty (Gulrajani et al. 2017) : Lg :=
Ez∼PZ c′0(g′0(z)), Lc := −Em∼c1]PD′ c′0(m) + Lg +
λEm∼c1]PD′ ,z∼PZ ,α∼(0,1){(‖∇c′0(αm+ (1−α)g′0(z))‖2−
1)2}.
Remark 1. This algorithm can be applied (with minor mod-
ifications) to conditional GANs. We refer to Appendix B for
more details.

Motivation for the approach The architectures of a gen-
erator and a critic of a GAN are symmetric to one another.
The high-level features appear in g0, the closest to the prior
vector (resp. c0, the closest to the prediction), while the low-
level features are in g1, the closest to the generated sample
(resp c1, the closest to the input image). Therefore, the anal-
ogy with cut and paste is to keep g1 (the low level features
of D) and only learn the high level features g′0 of the target
data set D′. However, the only way a generator can access
to information from D′ is through the critic c via the value
of c ◦ g = c′0 ◦ c1 ◦ g1 ◦ g′0 (Gulrajani et al. 2017). Hence,
the information needs to back-propagate through c1 ◦ g1 to
reach the weights of g′0. Our main idea is to bypass this com-
putational burden and train directly g′0 and c′0 on c1(D′). But
this requires that the source of c′0 coincides with the target
of g′0. Therefore, we assume that M = M ′, a first hint that
autoencoders are relevant for us.

A second hint comes from an analogy with humans learn-
ing a task, like playing tennis, for instance. One can model a
player as a function Z

g→ χ, where χ is the space of physical
actions of the player. His/her coach can be understood as a
function χ c→ R, giving c(g(z)) as a feedback for an action
g(z) of g. The objective of the player can be understood as
to be able to generate instances of the distribution D′ on χ

corresponding to the “tennis moves”. However, in practice,
a coach rarely gives his/her feedback as a score. He instead
describes what the player has done and should do instead.
We can model this description as a vector c1(g(z)) in M ,
the mind of c = c0 ◦ c1. In this analogy, c1 corresponds to
the coach analyzing the action, while c0 corresponds to the
coach giving a score based on this analysis. One can also
decompose the player itself as g = g1 ◦ g0. Here g0 corre-
sponds to the player conceiving the set of movements he/she
wants to perform and g1 to the execution of these actions.
Therefore, two conditions are needed for the coach to help
efficiently his/her student :

1. they must speak the same language in order to understand
one each other,

2. the player must already have a good command of his/her
motor system g1.

In particular, the first constraint implies that they must
share the same feature space, i.e., M = M ′. A way to en-
sure that both constraints are satisfied is to check whether
the player can reproduce a task described by the coach, i.e.,
that

g1(c1(x)) = x (2)

holds. One recognizes in (2) the expression of an autoen-
coder. It is important to remark that usually, based on pre-
vious learning, a player already has a good motor control
and he/she and his/her coach know how to communicate to-
gether. In other words g1 and c1 satisfy (2) before the train-
ing starts. Then the training consists only in learning g′0 and
c′0 on the high level feature interpretations of the possible
tennis movements, i.e., on c1(D′).

5 Theoretical guarantee for convergence
The following theorem (cf. Appendix A) enables a very pre-
cise control of the convergence of the generated distribution
towards the true target distribution. It gives an upper bound
on the convergence error erconv in terms of the domain shift
ershift, the autoencoder quality erAE and the quality of the
mindGAN ermind.

Theorem 1. There exist two positive constants a and b such
that

erconv ≤ a · ershift + erAE + b · ermind. (3)

To be more precise, with the notations erconv =
W (PD′ ,P′θ), ershift = W (PD,PD′), erAE =
W (AE(PD),PD) and ermind = W (c1]PD′ , g′0]PZ).

Very concretely, theorem 1 tells us that in order to control
the convergence of the transferred GAN towards the distri-
bution of the target dataset D′, we need the exact analogues
of steps 1-3 of 2 :

1. choose two datasets D′ and D very similar, i.e.,
W (PD,PD′) small,

2. choose a good autoencoder (c1, g1), i.e.,
W (PD, AE(PD)) small,

3. train well the MindGAN (g0, c0) on c1(D′), i.e.,
W (c1]PD′ ,P′0θ) small.

Remark 2. The main theorem of (Patrini et al. 2019), the-
orem 3.1, guarantees the convergence of a Wasserstein au-
toencoder (WAE). We show in Appendix A that it is a direct
consequence of our theorem.

6 Evaluation
Datasets. We have tested our algorithm at resolution 28×28
in grey levels (scaled in range [−1; 1]) on MNIST (LeCun
and Cortes 2010), KMNIST (Clanuwat et al. 2018), Fash-
ionMNIST (Xiao, Rasul, and Vollgraf 2017) (60 000 images
each) and at resolution 1024 × 1024 in color on CelabaHQ
(Karras et al. 2018a) (30 000 images) from models trained
on the 60 000 first images of FFHQ (Karras, Laine, and
Aila 2019) (which consists of 70 000 images), using the
library Pytorch. The hardware for our experiments with
28× 28 images consisted of a desktop with 16 Go of RAM
and a GPU Nvidia GTX 1080 TI. Most of our experiments
with HD color images used a node-gpu (Jean Zay website)
with two CPU Intel Cascade Lake 6248 and a GPU Nvidia
V100 SXM2 32 Go. We have also benchmarked the run-
ning time on entry level GPU GTX 1060. Despite its limi-
tations (Borji 2019), we have used FID (Frechet Inception
Distance) (Heusel et al. 2017) as metric. It is the current
standard for evaluations of GANs. Our code is available at
(Mind2mind github repository).

At resolution 28×28. The encoder c1 has three convo-
lutional layers with instance normalisation (in) and relu :
32+in+relu, 64+in+relu, 128+in+relu, followed by a sin-
gle dense layer 256+tanh. The decoder g1 has a sin-
gle dense layer 4*4*64 + relu and three deconvolu-
tional layers with batch normalisation (bn) : 64+bn+relu,
64+bn+relu, 32+bn+relu, 1+tanh. The MindGAN is a MLP
WGAN whose generator g0 consists in three dense layers :
512+bn+relu, 512+bn+relu, 256+tanh and the critic c0 con-
sists also in three dense layers : 256+relu, 256+relu,1. Our
hyper-parameters : learning rate of 10−3, batch size of 128
for all the networks, 80 epochs for (g1, c1) and 100 for the
other networks, gradient penalty with λ = 10, beta param-
eters in Adam optimizer (.9, .9) for (g1, c1), (.1, .5) for the
other networks.

We report the results with D′ = MNIST for c1 trained
on each dataset (see Appendix C for other D′). We compare
our results to a Vanilla WGAN with architecture (g1 ◦ g0,
c0 ◦ c1), so that the number of parameters agrees, for fair
comparison.

Baseline 1 Vanilla WGAN with gradient penalty trained
on MNIST. We have used for the Vanilla WGAN a model
similar to the one used in (Gulrajani et al. 2017). However,
this model would not converge properly, due to a problem of
”magnitude race.” We have therefore added an ε-term (Kar-
ras et al. 2018a), (Aigner and Körner 2018) to ensure its con-
vergence. Our results appear in the first graph on the l.h.s of
figure 1, with time in seconds in abscissa. One can observe
extremely fast convergence of the mindGAN to good scores,
in comparison with the Vanilla WGAN. Note that we have
not smoothed any of the curves. This observation suggests
that our approach, beyond the gain in training time, pro-
vides a regularising mechanism. The stability of the train-
ing confirms this hypothesis. Indeed, statistics over 10 runs

Figure 1: Mind2Mind training and samples in 28× 28.

demonstrate a very small standard deviation, as shown in fig-
ure 4 in the supplementary material. In particular, this reg-
ularization enabled us to use a much bigger learning rate
(10−3 instead of 10−4), adding to the speed of convergence.
In terms of epochs, the MindGAN and the Vanilla WGAN
learn similarly (cf Appendix C).

Baseline 2 Fine tuning studied in (Wang et al. 2018).
We have trained a Vanilla WGAN with gradient penalty on
D =KMNIST, the dataset the closest to D′ =MNIST. We
have then fine-tuned it on D′, i.e., trained a new network
on D′, initialized with the weights of this previously trained
Vanilla WGAN. We display it on the r.h.s of figure 1 un-
der the name Vanilla init Kmnist, together with our best re-
sult, namely a Mind2Mind transfer on D′ =MNIST from
D =KMNIST. One can observe that the Mind2Mind ap-
proach achieves significantly better performances in FID.

The bottom of figure 1 displays samples of images pro-
duced by a MindGAN trained on MNIST images encoded
using a KMNIST autoencoder.

At resolution 1024×1024. We have worked with the en-
coder and decoder of the ALAE model (Pidhorskyi, Ad-
jeroh, and Doretto 2020) pre-trained on FFHQ available at
(ALAE github repository). The generator of our MindGAN
has an input dimension of 128, three hidden dense layers
with relu activation (128, 256, 512) followed by a dense
output layer with 512 units (no activation). The critic has
an input dimension of 512, three hidden dense layers with
relu activation (512, 256, 128) followed by a dense output
layer with one unit (no activation). Its hyperparameters were
lr = 1e−3, betas = [0., 0.5], gradient penalty = 10, epsilon
penalty = 1e−2, batch size = 256, critic iteration = 5, epochs
= 300.

We have encoded the dataset CelebaHQ (Karras et al.
2018b) and then trained a mindGAN on a V100 for 300

Figure 2: Mind2Mind on CelebaHQ transfered from FFHQ.

epochs at 16.95 s/epoch during 1h24m. On a GTX 1060 the
same training takes 30.67 s/epoch. We have reached (over
5 runs) an average FID of 15.18 with an average standard
deviation of 0.8. This is a better result than the FID score
(19.21) of an ALAE directly trained from scratch (see ta-
ble 5 from (Pidhorskyi, Adjeroh, and Doretto 2020)). Sam-
ples are displayed on figure 2. Compared to the results re-
ported on the ProGAN and StyleGAN official repositories
(ProGAN github repository), (StyleGAN github repository),
our training (1.5 hour) on 1 GPU V100 is roughly 224 times
faster than the training of a proGAN (2 weeks) and 656
times faster than the training of a StyleGAN (41 days). The
training of a MindGAN on a GTX 1060 is about 112 times
faster than the training of a proGAN and 328 times faster
than the training of a StyleGAN, both on a V100. Note that
a GTX 1060 costs around 200 $ while a V100 is around
8000 $. One has to mention however that, on CelebaHQ, the
FID of a ProGAN is 8.03 (see table 5 from (Pidhorskyi, Ad-
jeroh, and Doretto 2020)), while the FID of a StyleGAN is
4.40 (see table 4 of (Karras, Laine, and Aila 2019)), so both
are significantly better than ours. We see two factors that
can explain the acceleration of the training. The first one
is that there are much less parameters to train. Indeed, our
mindGAN in HD has around 870K parameters, while the
ALAE model (based on a StyleGAN architecture) has 51M
parameters. So this already represents a difference of almost
two orders of magnitude. One can suspect that the rest of the

difference comes from the fact that we bypass 18 layers in
the computation of the backpropagation. We believe that the
validation of this hypothesis deserves a careful experimental
study.

7 Comparison to other works
Wasserstein autoencoders. WAEs do not provide a solution
to the question we address here. Indeed, (Tolstikhin et al.
2017) do not consider at all transfer learning and work only
with a single data set D at a time. Its goal is rather to give
a new approach to Variational Auto Encoders based on the
use of the Wasserstein distance.

Adversarial learned inference. The works on adversar-
ial leaned inference offer an alternative way to train autoen-
coders. They do not address transfer learning, however, it is
possible to choose these types of auto-encoders as building
block for our transfer method. We haven’t yet conducted ex-
periments with such auto-encoders. In particular, we do not
know if theoretical results similar to theorem 1 can be ob-
tained in this setting.

Adversarial Latent Autoencoders The architecture of
this method is very close to the architecture we use in our
work, though the objectives are very different : their point
is to disentangle representations in order to be able to con-
trol the features, whereas our objective is to do transfer. The
similarity in architecture probably explains why ALAE are
very suited to our method. We did not have enough time to
test wether the disentanglement properties of ALAE are pre-
served via transfer. We plan to investigate further this ques-
tion.

Fine-Tuning. Our approach is different but can be, in the-
ory, combined with fine-tuning. Indeed, one can initialise the
training of our MindGAN (g0, c0) of algorithm 1 on c1(D′)
with another MindGAN trained on c1(D). We have tried
this on the MNISTs datasets; see figure 1, but no signif-
icant improvement has been observed, We have compared
fine-tuning against Mind2Mind transfer for WGANs and re-
port better results in terms of FID. Note that our theorem 1
gives a theoretical justification, in our setting, of the obser-
vation of (Wang et al. 2018) of the influence of the domain
shift (distance betweenD andD′) on the convergence of the
learning.

8 Disadvantages
Our first limitation is that we do not learn the transferred
layers during the transfer. On the one hand, it is a feature as it
enables faster learning. On the other hand, it is possible that
at the asymptote, i.e., after the training has converged, the
transferred mindGAN offers a worse quality than a Vanilla
WGAN. We have not observed this phenomenon with the
ALAE architecture. To the contrary, we obtained a better
asymptote since we got a FID of 15.18 for the transferred
model compared to the FID of 19.21 of the ALAE model
trained from scratch on CelebaHQ. Maybe this is due to the
fact that we have focussed the training on a more significant
part of the network (the MindGAN).

The second limitation of our approach is that it does not
provide improvement of the training on limited data. How-

ever, such a training was not the objective of our work as we
believe that acceleration of the training is a useful goal on
itself.

Our results, compared to state of the art baselines, show a
worse performance in terms of quality (FID of 15.18 com-
pared to 8.03 for ProGAN and 4.40 for StyleGAN). How-
ever, this should not be an obstacle to the use of this algo-
rithm. Indeed, the targeted users are practitioners without
significant computing capacity. Their need is to reach a rea-
sonable quality in a short time. With this regard, in terms
of wall clock time, this algorithm learns roughly 224 times
faster than a ProGAN and 656 times faster than a StyelGAN
on CelebaHQ. So merits of our algorithm will depend on the
tradeoff between the needs of the users in terms of quality
and their constraints in terms of computing capacity.

The bottleneck in our approach is the lack of a zoo of
models of autoencoders trained on diverse datasets in high
resolution. We hope that our method, in conjunction with
the ALAE architecture, will lead the main players in the in-
dustry to train such models and make them accessible to the
community.

9 Conclusion

We introduced a method that enables transfer learning for
GANs. Given an autoencoder trained on a source dataset,
one passes the target dataset through the encoder and uses
the encoded features to train a GAN, called a MindGAN,
in the latent space of the autoencoder. Composing the
MindGAN with the decoder provides the transferred GAN,
a generator for the target dataset. We provided theoretical re-
sults that guaranty that the transferred GAN converges to the
target data. We have demonstrated that our method enables
to train GANs much faster (between 6 and 656 times faster,
depending on the size of the network) than state of the art
methods, in both 28 × 28 gray scale and 1024 × 1024 HQ
color datasets.

Broader impact

The main impact of our work will be a democratization of
the use of GANs. Indeed, without the barrier of computing
time/costs, GANs for high quality images will become ac-
cessible to a pool of practitioners much broader than the re-
searchers/engineers of big industry and academic labs. As a
corrollary, one can expect a development of research in this
field proportional to the increase of number of researchers
who will gain access to these tools.

Affordable computing time will offer the possibility to
customize models for specific needs and datasets. This can
lead to new applications in movie industry, virtual assis-
tants or even telecommunications (it may be more efficient
to learn a model of a person, send it and use it to reconstruct
a video signal than to transmit the signal itself) to name a
few. But this can also lead to malicious uses, in particular
for the generation fake profiles and deep fakes that can be
used for phishing or disinformation.

References
Aigner, S.; and Körner, M. 2018. FutureGAN: Anticipating the Fu-
ture Frames of Video Sequences using Spatio-Temporal 3d Con-
volutions in Progressively Growing Autoencoder GANs. CoRR
abs/1810.01325. URL http://arxiv.org/abs/1810.01325.

ALAE github repository. 2020. URL https://github.com/
podgorskiy/ALAE.

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein Gen-
erative Adversarial Networks. In Proceedings of the 34nd Inter-
national Conference on Machine Learning, ICML 2017, Sydney,
Australia, 7-9 August, 2017. URL http://leon.bottou.org/papers/
arjovsky-chintala-bottou-2017.

Belghazi, M. I.; Rajeswar, S.; Mastropietro, O.; Rostamzadeh, N.;
Mitrovic, J.; and Courville, A. C. 2018. Hierarchical Adversarially
Learned Inference. CoRR abs/1802.01071.

Bogachev, V. I. 2007. Measure Theory. Springer Verlag.

Borji, A. 2019. Pros and cons of GAN evaluation measures. Com-
puter Vision and Image Understanding 179: 41 – 65. ISSN 1077-
3142. doi:https://doi.org/10.1016/j.cviu.2018.10.009. URL http:
//www.sciencedirect.com/science/article/pii/S1077314218304272.

Clanuwat, T.; Bober-Irizar, M.; Kitamoto, A.; Lamb, A.; Ya-
mamoto, K.; and Ha, D. 2018. Deep Learning for Classical
Japanese Literature. CoRR abs/1812.01718.

Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng,
E.; and Darrell, T. 2014. Decaf: A deep convolutional activation
feature for generic visual recognition. In International conference
on machine learning, 647–655.

Donahue, J.; Krähenbühl, P.; and Darrell, T. 2017. Adversarial Fea-
ture Learning. CoRR abs/1605.09782.

Dumoulin, V.; Belghazi, I.; Poole, B.; Lamb, A.; Arjovsky, M.;
Mastropietro, O.; and Courville, A. C. 2017. Adversarially Learned
Inference. CoRR abs/1606.00704.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Gener-
ative Adversarial Nets. In Ghahramani, Z.; Welling, M.; Cortes,
C.; Lawrence, N. D.; and Weinberger, K. Q., eds., Advances in
Neural Information Processing Systems 27, 2672–2680. Curran
Associates, Inc. URL http://papers.nips.cc/paper/5423-generative-
adversarial-nets.pdf.

Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved Training of Wasserstein GANs.
In NIPS.

Haidar, M. A.; and Rezagholizadeh, M. 2019. TextKD-GAN: Text
Generation using KnowledgeDistillation and Generative Adversar-
ial Networks.

Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. GANs Trained by a Two Time-Scale Up-
date Rule Converge to a Local Nash Equilibrium. In Guyon, I.;
Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan,
S.; and Garnett, R., eds., Advances in Neural Information Process-
ing Systems 30, 6626–6637. Curran Associates, Inc.

Jean Zay website. 2020. URL http://www.idris.fr/jean-zay/jean-
zay-presentation.html.

Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2018a. Progres-
sive Growing of GANs for Improved Quality, Stability, and Varia-
tion. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. URL https://openreview.net/forum?id=
Hk99zCeAb.

Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2018b. Progressive
Growing of GANs for Improved Quality, Stability, and Variation.
ArXiv abs/1710.10196.

Karras, T.; Laine, S.; and Aila, T. 2019. A Style-Based Gener-
ator Architecture for Generative Adversarial Networks. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 4396–4405.

LeCun, Y.; and Cortes, C. 2010. MNIST handwritten digit
database. http://yann.lecun.com/exdb/mnist/. URL http://yann.
lecun.com/exdb/mnist/.

Makhzani, A.; Shlens, J.; Jaitly, N.; and Goodfellow, I. J. 2015.
Adversarial Autoencoders. CoRR abs/1511.05644.

Mind2mind github repository. 2020. URL https://github.com/
maskedforreview/mindgan.

Patrini, G.; Carioni, M.; Forré, P.; Bhargav, S.; Welling, M.; van den
Berg, R.; Genewein, T.; and Nielsen, F. 2019. Sinkhorn AutoEn-
coders. In UAI.

Pidhorskyi, S.; Adjeroh, D. A.; and Doretto, G. 2020. Adversar-
ial Latent Autoencoders. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR). [to appear].

ProGAN github repository. 2018. URL https://github.com/tkarras/
progressive growing of gans.

Salimans, T.; Goodfellow, I. J.; Zaremba, W.; Cheung, V.; Radford,
A.; and Chen, X. 2016. Improved Techniques for Training GANs.
In NIPS.

Shan, H.; Zhang, Y.; Yang, Q.; Kruger, U.; Kalra, M. K.; Sun,
L.; Cong, W.; and Wang, G. 2018. 3-D Convolutional Encoder-
Decoder Network for Low-Dose CT via Transfer Learning From a
2-D Trained Network. IEEE Transactions on Medical Imaging 37:
1522–1534.

StyleGAN github repository. 2019. URL https://github.com/
NVlabs/stylegan.

Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; and Liu, C. 2018.
A Survey on Deep Transfer Learning. In ICANN.

Tolstikhin, I. O.; Bousquet, O.; Gelly, S.; and Schölkopf, B. 2017.
Wasserstein Auto-Encoders. CoRR abs/1711.01558.

Villani, C. 2008. Optimal transport: old and new, volume 338.
Springer Science & Business Media.

Wang, Y.; Wu, C.; Herranz, L.; van de Weijer, J.; Gonzalez-Garcia,
A.; and Raducanu, B. 2018. Transferring GANs: Generating Im-
ages from Limited Data. In ECCV.

Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learning Algo-
rithms. CoRR abs/1708.07747.

Zhao, J. J.; Kim, Y.; Zhang, K.; Rush, A. M.; and LeCun, Y. 2018.
Adversarially Regularized Autoencoders. In ICML.

http://arxiv.org/abs/1810.01325
https://github.com/podgorskiy/ALAE
https://github.com/podgorskiy/ALAE
http://leon.bottou.org/papers/arjovsky-chintala-bottou-2017
http://leon.bottou.org/papers/arjovsky-chintala-bottou-2017
http://www.sciencedirect.com/science/article/pii/S1077314218304272
http://www.sciencedirect.com/science/article/pii/S1077314218304272
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://www.idris.fr/jean-zay/jean-zay-presentation.html
http://www.idris.fr/jean-zay/jean-zay-presentation.html
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/masked for review/mindgan
https://github.com/masked for review/mindgan
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan

A Proof of things
We first recall notions that will be needed. We then give the
proof of our main theoretical result.

A.1 Wasserstein distance and Lipschitz functions
In the following, all the metric spaces considered will be
subsets of normed vector spaces, with the metric on the sub-
set induced by the norm.

First, one recalls some definitions (more details can be
found in (Villani 2008)).
Definition (transference plan). Let (X,PX) and (Y,PY) be
two probability spaces. A transference plan γ is a measure
on X × Y such that :∫

A×Y
dγ = PX(A),

and, ∫
X×B

dγ = PY (B).

PX and PY are called the marginals of γ. The set of trans-
ference plans with marginals PX and PY is denoted by
Π(PX ,PY).
Definition (p-Wasserstein distance). Let (X, ‖.‖) be a met-
ric space and p ∈ [1,+∞). For two probability measure P1,
P2 on X , the p-Wasserstein distance between P1 and P2 is
defined by the following

Wp(P1,P2) =

(
inf

γ∈Π(P1,P2)
E(x,y)∼γ‖x− y‖p

) 1
p

.

In this paper, we used the notation W (P1,P2) instead of
W1(P1,P2).
Definition (Lipschitz function). Let φ : X → Y be a map
between metric spaces X and Y . It is called a C-Lipschitz
function if there exists a constant C such that :

∀x and y ∈ X, ‖φ(x)− φ(y)‖Y ≤ C‖x− y‖X .
Lemma 1. Let φ : X → Y be a locally Lipschitz map, with
X compact, then there exists a constant C such that

WY (φ]µ, φ]ν) ≤ CWX(µ, ν).

Proof. Let γ be a transference plan realisingWX(µ, ν). De-
fine γ′ := (φ× φ)]γ. One can check that γ′ defines a trans-
ference plan between φ]µ and φ]ν. Therefore, one has the
following relation

WY (φ]µ, φ]ν) ≤
∫
‖x− y‖dγ′(x, y)

=

∫
‖φ(x)− φ(y)‖dγ(x, y)

≤
∫
C‖x− y‖dγ(x, y)

= CWX(µ, ν),

where the first inequality comes from the fact that γ′ is a
transference plan, the first equality from the definition of the
push forward of a measure by a map (recalled in section 2),
the last inequality from lemma 2, and the last equality from
the choice of γ.

Lemma 2. Let φ : X → Y be a locally Lipschitz map, and
X a compact metric space. Then there exists C such that φ
is a C-Lipschitz function.

Proof. By definition of a locally Lipschitz map, for all x in
X , there exists Ux a neighbourhood of x and a constant Cx
such that φ is Cx-Lipschitz on Ux.
So
⋃
x∈X Ux is a cover of X . Since X is compact, there ex-

ists a finite set I such that
⋃
i∈I Ui is a cover of X .

One can check that φ is C-Lipschitz on X , with C :=
maxi∈I(Cxi).

A.2 Proof of theorem 1
We can finally turn to the proof of theorem 1 :

Theorem. There exist two positive constants a and b such
that

W (PD′ ,P′θ) ≤ a W (PD,PD′) +W (PD, AE(PD))

+ b W (c1]PD′ ,P′0θ).

Proof. From the triangle inequality property of the Wasser-
stein metric and the definition of P′θ, one has :

W (PD′ ,P′θ) ≤W (PD′ , AE(PD′))+W (AE(PD′), g1]P′0θ).

One concludes with lemma 3 and lemma 1 with φ = g1.

Lemma 3. There exist a positive constant a such that

W (PD′ , AE(PD′)) ≤ aW (PD,PD′) +W (PD, AE(PD)).

Proof. Applying twice the triangle inequality, one has :

W (PD′ , AE(PD′)) ≤ W (PD′ ,PD) +W (PD, AE(PD))

+ W (AE(PD), AE(PD′)).

One concludes with lemma 1 with φ = g1 ◦ c1.

Remark 3. It is important to remark that in order to be
able to apply lemma 1 in the proof of theorem 1, one needs
the assumption that P′0θ and c1]PD′ have compact support.
But as χ is itself compact, this is not a problem for c1]PD′

since the image of a compact χ by a continuous function c1
is compact. However, the compacity of the support of P′0θ is
not a priori granted. An easy fix is to choose a prior PZ with
compact support. Therefore, we choose this setting in our
applications.

Remark 4. Our proof of theorem 1 implicitly assumed that
neural networks are locally Lipschitz maps (see lemmata 1
and 3). This assumption is justified by the following lemma.

Lemma. Let g : Z → X be a neural network and PZ a
prior over Z such that Ez∼PZ (‖z‖) < ∞ (such as Gaus-
sian) then g is locally Lipschitz and Ez∼PZ (Lz) <∞, where
Lz are the local Lipschitz constants.

Proof. See Corollary 1. of (Arjovsky, Chintala, and Bottou
2017)

A.3 Application to Wasserstein autoencoders.
The main theorem of (Patrini et al. 2019), theorem 3.1,
guarantees the convergence of a Wasserstein autoencoder
(WAE). We recall this theorem and show that it is a direct
consequence of our theorem 1.
Theorem 2.

W (PD, g1]PZ) ≤ W (PD, AE(PD)) (4)

+ bW (c1]PD,PZ). (5)

Proof. Since WAEs do not involve transfer, one has D =
D′, i.e. PD = PD′ . Then it suffices to replace P′0θ by PZ and
P′θ becomes g1]PZ .

Remark 5. Our proof of theorem 1 is very similar to the
proof of theorem 2 given in (Patrini et al. 2019). Therefore,
our contribution here consists rather in finding a versatile
statement that applies to both problems (transfer and WAE)
than in the originality of the tools used in the proofs.
Remark 6. When one restricts our approach to the case
when D = D′, it does not coincide with WAE. Indeed, with
the notations of our paper, WAE work with a fixed prior
PM on M that one tries to approximate by c1]PD, while
constraining c1 to be a right inverse (in measure) of g1,
and g1]PM to approximate (in measure) PD. On the other
hand, our approach involves an extra auxiliary latent space
Z. Therefore we can consider g0]PZ as a replacement of
PM . Via the flexibility of the learnable weights of g0, we
use g0]PZ to approximate c1]PD, instead of using c1]PD to
approximate PM as in (Makhzani et al. 2015). This is funda-
mental, because in a setting where D 6= D′, this decoupling
permits to train c1 and g1 on D and c0 and g0 on c1(D′),
enabling us to do transfer.

B Mind2Mind conditional GANs
As suggested to us by L. Cetinsoy, the Mind2Mind approach
also applies to conditional GANs. However, one needs to
implement the following modifications : replace M by M ×
L and Z by Z × L in the diagram

M M

Z χ R,

g1 c0g0

g

c1

c

(6)

where L stands for the space of conditions, in order to get

M × L M × L

Z × L χ× L R.

g1×IL cc0gc0

gc

c1×IL

cc

(7)
Here, (gc0, c

c
0) and (gc, cc) are conditional GANs, with

the generators of the form gc0(z, l) = (m(z, l), l) and
gc(z, l) = (x(z, l), l). The autoencoder (c1 × IL, g1 × IL)
can be trivially deduced from an autoencoder (c1, g1)
via the formulas c1 × IL(x, l) := (c1(x), l) and
g1 × IL(m, l) := (c1(m), l).

In practice, the algorithm 1 becomes a classical conditional
GAN algorithm :

Algorithm 2 Conditional-MindGAN transfer learning.

Require: (c1, g1), an autoencoder trained on a source dataset D,
α, the learning rate, b, the batch size, n, the number of iterations
of the critic per generator iteration, D′ ⊂ χ × L, a dataset with
conditions, ϕ′ and θ′ the initial parameters of the critic cc0 and of
the generator gc0.
Compute (c1 × IL)(D′).
while θ′ has not converged do

for t = 0, ..., ncritic do
Sample {(m(i), l(i))}bi=1 ∼ (c1 × IL)]PD′ a batch from

(c1 × IL)(D′).
Sample {(z(i), l(i))}bi=1 ∼ PZ×L a batch of prior sam-

ples with conditions.
Update cc0 by descending Lc.

end for
Sample{(z(i), l(i))}bi=1 ∼ PZ×L a batch of prior samples

with conditions.
Update gc0 by descending −Lg .

end while
return g1 ◦ gc0.

C Supplementary experiments
In figure 3 we display additional samples from a MindGAN
on CelebaHQ transferred from FFHQ. We also display in
figure 4 the mean and standard deviation over 10 runs of the
training of a MindGAN in 28 × 28. The source dataset in
figure 5 is D′ = FashionMNIST, while in figure 6, D′ =
MNIST. For comparison, we display in figure 7 samples
from a vanilla WGAN.

Figure 3: Mind2Mind on CelebaHQ transfered from FFHQ
.

Figure 4: Mean and standard deviation of the training of a
MindGAN.

Figure 5: MindGAN from FashionMNIST.

Figure 6: MindGAN from MNIST.

Figure 7: Vanilla WGAN.

	1 Introduction
	2 Preliminaries
	3 Related works
	4 Mind to mind algorithm
	5 Theoretical guarantee for convergence
	6 Evaluation
	7 Comparison to other works
	8 Disadvantages
	9 Conclusion
	A Proof of things
	A.1 Wasserstein distance and Lipschitz functions
	A.2 Proof of theorem 1
	A.3 Application to Wasserstein autoencoders.

	B Mind2Mind conditional GANs
	C Supplementary experiments

