
UC Berkeley
UC Berkeley Previously Published Works

Title
MedleySolver: Online SMT Algorithm Selection

Permalink
https://escholarship.org/uc/item/6484j1kw

ISBN
978-3-030-80222-6

Authors
Pimpalkhare, Nikhil
Mora, Federico
Polgreen, Elizabeth
et al.

Publication Date
2021

DOI
10.1007/978-3-030-80223-3_31

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6484j1kw
https://escholarship.org/uc/item/6484j1kw#author
https://escholarship.org
http://www.cdlib.org/

Chu-Min Li
Felip Manyà (Eds.)

LN
CS

 1
28

31 Theory and Applications
of Satisfiability Testing –
SAT 2021
24th International Conference
Barcelona, Spain, July 5–9, 2021
Proceedings

Lecture Notes in Computer Science 12831

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Chu-Min Li • Felip Manyà (Eds.)

Theory and Applications
of Satisfiability Testing –

SAT 2021
24th International Conference
Barcelona, Spain, July 5–9, 2021
Proceedings

123

Editors
Chu-Min Li
Laboratoire MIS
University of Picardie Jules Verne
Amiens, France

Felip Manyà
IIIA-CSIC
Spanish National Research Council (CSIC)
Bellaterra, Barcelona, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-80222-6 ISBN 978-3-030-80223-3 (eBook)
https://doi.org/10.1007/978-3-030-80223-3

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6886-8434
https://orcid.org/0000-0002-8366-1458
https://doi.org/10.1007/978-3-030-80223-3

Preface

This volume contains the papers presented at the 24th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2021), held during July 5–9,
2021, in Barcelona. Because of the COVID-19 pandemic, SAT 2021 followed a hybrid
format, with both in-person and virtual participation options.

The SAT conference is the premier annual meeting for researchers focusing on the
theory and applications of the propositional satisfiability problem, broadly construed.
Aside from plain propositional satisfiability, the scope of the meeting includes Boolean
optimization, including MaxSAT and pseudo-Boolean (PB) constraints, quantified
Boolean formulas (QBF), satisfiability modulo theories (SMT), and constraint pro-
gramming (CP) for problems with clear connections to Boolean reasoning.

Many challenging combinatorial problems can be tackled using SAT-based tech-
niques, including problems that arise in formal verification, artificial intelligence,
operations research, computational biology, cryptology, data mining, machine learning,
mathematics, etc. Indeed, the theoretical and practical advances in SAT research over
the past 25 years have contributed to making SAT technology an indispensable tool in
various domains.

SAT 2021 welcomed scientific contributions addressing different aspects of SAT
interpreted in a broad sense, including theoretical advances (such as exact algorithms,
proof complexity, and other complexity issues), practical search algorithms, knowledge
compilation, implementation-level details of SAT solvers and SAT-based systems,
problem encodings and reformulations, and applications (including both novel appli-
cation domains and improvements to existing approaches), as well as case studies and
reports on findings based on rigorous experimentation.

SAT 2021 received 73 submissions, comprising 44 long papers, 18 short papers, and
11 tool papers. At least three Program Committee members reviewed each paper. The
reviewing process included an author response period, during which the authors were
given the opportunity to respond to the initial reviews for their submissions. To reach a
final decision, a Program Committee discussion period followed the author response
period. External reviewers supporting the Program Committee were also invited to
participate directly in the discussion for the papers they reviewed. This year, most
submissions received a meta-review, summarizing the discussion that occurred after the
author response and an explanation of the final recommendation. In the end, the
Program Committee decided to accept a total of 37 papers: 25 long, 3 short, and 9 tool
papers.

The Program Committee singled out the following two submissions for the Best
Paper Award and the Best Student Paper Award, respectively:

– Shaowei Cai and Xindi Zhang: “Deep Cooperation of CDCL and Local Search for
SAT”.

– Alexis de Colnet and Stefan Mengel: “Characterizing Tseitin-Formulas with Short
Regular Resolution Refutations”.

In addition to presentations on the accepted papers, the scientific program of SAT
included two invited talks by the following speakers:

– Carlos Ansótegui, University of Lleida, Spain.
– Adnan Darwiche, University of California, Los Angeles (UCLA), USA.

The conference hosted various associated events. In particular, the following three
workshops, affiliated with SAT-2021, were held July 5–6, 2021:

– International Workshop on Model Counting and Sampling (MCW 2021), organized
by Johannes K. Fichte, Kuldeep Meel, Markus Hecher, and Mate Soos.

– Pragmatics of SAT Workshop (PoS 2021), organized by Matti Järvisalo and Daniel
Le Berre.

– Quantified Boolean Formulas and Beyond Workshop (QBF 2021), organized by
Hubie Chen, Florian Lonsing, Martina Seidl, and Friedrich Slivovsky.

The results of several competitive events were also announced at SAT 2021:

– EDA Challenge 2021, organized by Armin Biere, Chu-Min Li, Felip Manyà, and
Zhipeng Lü.

– MaxSAT Evaluation 2021, organized by Fahiem Bacchus, Jeremias Berg, Matti
Järvisalo, and Ruben Martins.

– Model Counting Competition 2021 (MC 2021), organized by Johannes K. Fichte
and Markus Hecher.

– SAT Competition 2021, organized by Tomáš Balyo, Nils Froleyks, Markus Iser,
Marijn Heule, Matti Järvisalo, and Martin Suda.

We thank everyone who contributed to making SAT 2021 a success. In particular,
we thank the Publicity Chair, Jesús Giráldez; the Workshop Chair, Djamal Habet; the
Local Arrangements Chairs, Josep Argelich and Jordi Planes; and all the organizers
of the SAT affiliated workshops and competitions.

We are indebted to the Program Committee members and the external reviewers,
who dedicated their time to review and evaluate the submissions to the conference. We
thank the authors of all submitted papers for their contributions, the SAT Association
for their guidance and support in organizing the conference, and the EasyChair con-
ference management system for facilitating the submission and selection of papers as
well as the assembly of these proceedings.

We gratefully thank the sponsors of SAT 2021: The Artificial Intelligence journal
and CAS Software AC for providing travel support to students attending the confer-
ence, Springer for sponsoring the best paper awards, and the University of Picardie
Jules Verne and its Modelling, Information and Systems (MIS) laboratory, the Spanish
National Research Council (CSIC) and its Artificial Intelligence Research Institute
(IIIA), and the Spanish Network on Satisfiability and Constraint Programming for
financial and organizational support. Finally, we thank Huawei for its support to SAT
2021.

May 2021 Chu-Min Li
Felip Manyà

vi Preface

Organization

Program Committee Chairs

Chu-Min Li Université de Picardie Jules Verne, France
Felip Manyà IIIA-CSIC, Spain

Program Committee

Gilles Audemard CNRS-Université d’Artois, France
Fahiem Bacchus University of Toronto, Canada
Jeremias Berg University of Helsinki, Finland
Olaf Beyersdorff Friedrich Schiller University Jena, Germany
Armin Biere Johannes Kepler University Linz, Austria
Miquel Bofill Universitat de Girona, Spain
Shaowei Cai Chinese Academy of Sciences, China
Jordi Coll Aix-Marseille Université, France
Gilles Dequen Université de Picardie Jules Verne, France
Fei He Tsinghua University, China
Marijn Heule Carnegie Mellon University, USA
Alexey Ignatiev Monash University, Australia
Mikoláš Janota Czech Technical University in Prague, Czech Republic
Jie-Hong Roland Jiang National Taiwan University, Taiwan
Matti Järvisalo University of Helsinki, Finland
Oliver Kullmann Swansea University, UK
Massimo Lauria Sapienza University of Rome, Italy
Daniel Le Berre CNRS - Université d’Artois, France
Jordi Levy IIIA-CSIC, Spain
Zhipeng Lü Huazhong University of Science and Technology,

China
Inês Lynce INESC-ID/IST, Universidade de Lisboa, Portugal
Meena Mahajan The Institute of Mathematical Sciences, India
Vasco Manquinho INESC-ID/IST, Universidade de Lisboa, Portugal
Joao Marques-Silva IRIT, CNRS, France
Ruben Martins Carnegie Mellon University, USA
Carlos Mencía University of Oviedo, Spain
Stefan Mengel CNRS, CRIL, France
Tomáš Peitl Friedrich Schiller University Jena, Germany
Luca Pulina University of Sassari, Italy
Lakhdar Sais CNRS-Université d’Artois, France
Martina Seidl Johannes Kepler University Linz, Austria
Laurent Simon Bordeaux Institute of Technology, France
Carsten Sinz Karlsruhe Institute of Technology, Germany

Takehide Soh Kobe University, Japan
Ofer Strichman Technion, Israel
Zhouxing Su Huazhong University of Science and Technology,

China
Stefan Szeider TU Wien, Austria
Mateu Villaret Universitat de Girona, Spain
Toby Walsh University of New South Wales, Australia

Additional Reviewers

Balyo, Tomáš
Bonacina, Ilario
Böhm, Benjamin
de Colnet, Alexis
Dreier, Jan
Fleming, Noah
Fleury, Mathias
Galesi, Nicola
Gocht, Stephan

Hůla, Jan
Iser, Markus
Ivrii, Alexander
Jabbour, Said
Kochemazov, Stepan
Korhonen, Tuukka
Morgado, Antonio
Möhle, Sibylle
Nabeshima, Hidetomo

Rabe, Markus N.
Scheder, Dominik
Schleitzer, Agnes
Semenov, Alexander
Shukla, Ankit
Slivovsky, Friedrich
Trimoska, Monika
Xu, Ke
Zaikin, Oleg

viii Organization

Contents

OptiLog: A Framework for SAT-based Systems . 1
Carlos Ansótegui, Jesús Ojeda, Antonio Pacheco, Josep Pon,
Josep M. Salvia, and Eduard Torres

PyDGGA: Distributed GGA for Automatic Configuration 11
Carlos Ansótegui, Josep Pon, Meinolf Sellmann, and Kevin Tierney

QBFFam: A Tool for Generating QBF Families from Proof Complexity 21
Olaf Beyersdorff, Luca Pulina, Martina Seidl, and Ankit Shukla

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 30
Joshua Blinkhorn, Tomáš Peitl, and Friedrich Slivovsky

Lower Bounds for QCDCL via Formula Gauge . 47
Benjamin Böhm and Olaf Beyersdorff

Deep Cooperation of CDCL and Local Search for SAT 64
Shaowei Cai and Xindi Zhang

Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers 82
Henrik Cao

Hardness and Optimality in QBF Proof Systems Modulo NP 98
Leroy Chew

Characterizing Tseitin-Formulas with Short Regular
Resolution Refutations . 116

Alexis de Colnet and Stefan Mengel

Weighted Model Counting Without Parameter Variables 134
Paulius Dilkas and Vaishak Belle

ProCount: Weighted Projected Model Counting with Graded
Project-Join Trees . 152

Jeffrey M. Dudek, Vu H. N. Phan, and Moshe Y. Vardi

Efficient All-UIP Learned Clause Minimization . 171
Mathias Fleury and Armin Biere

Solving Non-uniform Planted and Filtered Random SAT
Formulas Greedily. 188

Tobias Friedrich, Frank Neumann, Ralf Rothenberger,
and Andrew M. Sutton

MCP: Capturing Big Data by Satisfiability (Tool Description) 207
Miki Hermann and Gernot Salzer

Chinese Remainder Encoding for Hamiltonian Cycles 216
Marijn J. H. Heule

Efficient SAT-Based Minimal Model Generation Methods for Modal
Logic S5 . 225

Pei Huang, Rundong Li, Minghao Liu, Feifei Ma, and Jian Zhang

DiMo – Discrete Modelling Using Propositional Logic 242
Norbert Hundeshagen, Martin Lange, and Georg Siebert

SAT-Based Rigorous Explanations for Decision Lists 251
Alexey Ignatiev and Joao Marques-Silva

Investigating the Existence of Costas Latin Squares via
Satisfiability Testing . 270

Jiwei Jin, Yiqi Lv, Cunjing Ge, Feifei Ma, and Jian Zhang

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT. . . 280
Stepan Kochemazov, Alexey Ignatiev, and Joao Marques-Silva

Projection Heuristics for Binary Branchings Between Sum and Product 299
Oliver Kullmann and Oleg Zaikin

On Dedicated CDCL Strategies for PB Solvers . 315
Daniel Le Berre and Romain Wallon

Efficient Local Search for Pseudo Boolean Optimization 332
Zhendong Lei, Shaowei Cai, Chuan Luo, and Holger Hoos

Scheduling Reach Mahjong Tournaments Using
Pseudoboolean Constraints . 349

Martin Mariusz Lester

On the Hierarchical Community Structure of Practical Boolean Formulas. . . . 359
Chunxiao Li, Jonathan Chung, Soham Mukherjee, Marc Vinyals,
Noah Fleming, Antonina Kolokolova, Alice Mu, and Vijay Ganesh

Smt-Switch: A Solver-Agnostic C++ API for SMT Solving 377
Makai Mann, Amalee Wilson, Yoni Zohar, Lindsey Stuntz, Ahmed Irfan,
Kristopher Brown, Caleb Donovick, Allison Guman, Cesare Tinelli,
and Clark Barrett

The MERGESAT Solver . 387
Norbert Manthey

x Contents

Proof Complexity of Symbolic QBF Reasoning . 399
Stefan Mengel and Friedrich Slivovsky

XOR Local Search for Boolean Brent Equations . 417
Wojciech Nawrocki, Zhenjun Liu, Andreas Fröhlich, Marijn J. H. Heule,
and Armin Biere

A Fast Algorithm for SAT in Terms of Formula Length 436
Junqiang Peng and Mingyu Xiao

MedleySolver: Online SMT Algorithm Selection. 453
Nikhil Pimpalkhare, Federico Mora, Elizabeth Polgreen,
and Sanjit A. Seshia

Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving 471
Nicolas Prevot, Mate Soos, and Kuldeep S. Meel

A Proof Builder for Max-SAT . 488
Matthieu Py, Mohamed Sami Cherif, and Djamal Habet

Certified DQBF Solving by Definition Extraction . 499
Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider

Scalable SAT Solving in the Cloud . 518
Dominik Schreiber and Peter Sanders

DQBDD: An Efficient BDD-Based DQBF Solver . 535
Juraj Síč and Jan Strejček

Logical Cryptanalysis with WDSat . 545
Monika Trimoska, Gilles Dequen, and Sorina Ionica

Author Index . 563

Contents xi

OptiLog: A Framework for SAT-based
Systems

Carlos Ansótegui(B), Jesús Ojeda(B), Antonio Pacheco(B), Josep Pon(B),
Josep M. Salvia(B), and Eduard Torres(B)

Logic and Optimization Group (LOG), University of Lleida, Lleida, Spain
{carlos.ansotegui,jesus.ojedacontreras,josep.pon,eduard.torres}@udl.cat,

jpacheco@alumnes.udl.cat

Abstract. We present OptiLog, a new Python framework for rapid pro-
totyping of SAT-based systems. OptiLog allows to use and integrate SAT
solvers currently developed in C/C++ just by implementing the iSAT
C++ interface. It also provides a Python binding to the PBLib C++
toolkit for encoding Pseudo Boolean and Cardinality constraints. Finally,
it leverages the power of automatic configurators by allowing to easily
create configuration scenarios including multiple solvers and encoders.

1 Introduction

Python [33] has emerged as one of the most preferred programming languages
for rapid prototyping of applications because of its straightforward syntax and
the great amount of established libraries that provide common functionality for
researchers to readily use. We can find several of these libraries into diverse Arti-
ficial Intelligence disciplines like, for example, Numpy [20], Pandas [29], scikit-
learn [31], Pytorch [30] or Keras [12].

In terms of performance, the core of the critical components of these sys-
tems is implemented with more efficient languages such as C++, although their
interconnection is commonly materialized through Python.

Within the area of Constraint Programming, Python has also become quite
popular. CPLEX [23], Gurobi [19], OR-Tools [18], COIN-OR [13], SCIP [17], Z3
[14] and many others have Python bindings. In particular, in the SAT community
there have also been several contributions. PySAT [24] was the first framework,
to our best knowledge, to provide Python bindings for several SAT solvers.

Recently, there have been other contributions that can be queried from
Python such as SAT Heritage [4], intended to serve as an archive and to easily
compile and run all SAT solvers that have been released so far, or cnfgen [25],
that produces hard SAT benchmarks coming from research in Proof Complexity.

Supported by MINECO-FEDER TASSAT3 (TIN2016-76573-C2-2-P), MICINNs
PROOFS (PID2019-109137GB-C21) and FPU fellowship (FPU18/02929).

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 1–10, 2021.
https://doi.org/10.1007/978-3-030-80223-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_1

2 C. Ansótegui et al.

Our contribution in OptiLog1 is two-fold. First, we provide a Python binding
[28] for the PBLib [32] that allows to encode Pseudo Boolean (PB) constraints
into SAT. This binding is also currently integrated into PySAT.

Second, we take a step further, easing both the integration of new C++ SAT
solvers in OptiLog and their end usage into practical environments.

We isolate the development of C++ SAT solvers so that by implementing
the iSAT C++ interface OptiLog gently incorporates the new SAT solver. In
contrast, PySAT requires the user to write some ad-hoc additional Python code
plus the Python bindings. The iSAT interface is inspired by the C interface
IPASIR (Reentrant Incremental Sat solver API, in reverse) [7] and the PySAT
interface.

To optimize the end-SAT-based system, the end-user is commonly forced to
play by hand with a non-negligible amount of adjustable parameters coming
from the solvers or encoders it uses. Automatic configurators should have to be
used in this context. Unfortunately, it takes a while to become familiar on how
to create the configuration of the scenarios, which is usually a source of countless
bugs. OptiLog get rids of all this complexity and automatically generates all the
pieces needed for the configuration, delivering a ready-to-tune application.

There have been a number of methods developed for tuning parameters auto-
matically, such as CALIBRA [1], ParamILS [22], I/F-Race [11], SMAC [21] and
GGA [2,3]. OptiLog currently provides support for SMAC and GGA.

The paper is structured as follows: In Sect. 2 we present the OptiLog frame-
work with detail about the most important modules implemented, and how a
new SAT solver can be integrated into it. Section 3 will present a comprehen-
sive example of the framework. Finally, we will end with Sect. 4, providing some
closing thoughts and future work.

2 OptiLog Framework Architecture

The general architecture of OptiLog is described in Fig. 1. Four main modules
compose the end-user OptiLog API, which we briefly describe in the follow-
ing subsections: the Formula module, the SAT Solver module, the PB Encoder
module and the Automatic Configuration (AC) module. Additionally, new C++
SAT solvers can be integrated into OptiLog by implementing the C++ iSAT
interface. Full details can be found in the OptiLog manual accessible from [27].

2.1 Formula Module

The Formula module is designed to ease the implementation and manipulation of
boolean formulas. As such, two specific classes are created: CNF (for the typical
Conjunctive Normal Form) and WCNF (for the Weigthed CNF version). These

1 Opti stands for Optimization and LOG stands for Logic Optimization Group at UdL
(http://ulog.udl.cat/).

http://ulog.udl.cat/

OptiLog: A Framework for SAT-based Systems 3

Fig. 1. OptiLog’s architecture.

Formulas have the common functionality of setting new variables, adding clauses
and exporting to the DIMACS file format.

CNF: The CNF class provides the traditional representation of a Conjunctive
Normal Form fomula, a conjunction of clauses defined as disjunctions of literals.
In code, clauses are provided as lists of integers.

WCNF: The WCNF class provides the interface for partial and weighted partial
CNF formulas. In this case, clauses can be added with a weight. If this is the
case, these clauses are considered soft. Hard clauses are added without weight
or by specifying the weight INF_WEIGHT that represents ∞.

As an example, CNF Formula (x1 ∨ x2) ∧ (x3 ∨ ¬x2) and WCNF Formula
(x1 ∨ x2, 1) ∧ (x3 ∨ ¬x2,∞) would be implemented as follows

1 from optilog.sat import CNF, WCNF
2 cnf = CNF()
3 cnf.add_clauses([[1, 2], [3, -2]])
4 wcnf = WCNF()
5 wcnf.add_clause([1, 2], weight=1)
6 wcnf.add_clause([3, -2]) # equivalent to weight=WCNF.INF_WEIGHT

Aside from the typical formula manipulation methods, OptiLog pro-
vides additional methods. In particular, it provides explicit functions
load_{cnf|wcnf} from the optilog.loaders Python module. These functions
allow to load the formula directly into a SAT solver.

2.2 SAT Solver Module

OptiLog is inspired on the interfaces of IPASIR [7] and PySAT. The behaviour
of some functions can slightly deviate, see the manual [27] for details. The solvers
currently integrated in OptiLog are: Cadical [10], Glucose 4.1 and Glucose 3.0
[5], Picosat [8], Minisat [15] and Lingeling 18 [9]. Not all the solvers implement
all the methods in the iSAT API, the only one that fully does is a modified
version of Glucose 4.1. Here, we briefly describe some of the additional methods
that we incorporated into the iSAT API and that are currently supported by
the modified version of Glucose 4.1 delivered with the OptiLog tool.

4 C. Ansótegui et al.

solver.set & solver.get: Used to set and get the value of parameters that
modify the behaviour of the solver.

solver.set decision var: Used to set whether the input variable can be used
as a decision variable.

solver.set static heuristic: Used to set a static decision heuristic.

solver.solve hard limited: Solves the current formula with a strict budget in
terms of conflicts or propagations.

solver.learnt clauses: This method returns the learnt clauses that are cur-
rently in the solver including learnt unit clauses.

2.3 PB Encoder Module

The PB Encoder module currently integrates the Python binding for PBLib we
developed for this project, which provides the access to PB and Card encoders,
some of them incremental. It also incorporates the Totalizer incremental encoder
implemented in Python in PySAT. The user can transparently create PB/Card
constraints that are automatically encoded through PBLib and PySAT Card
functions into a set of SAT clauses. If all coefficients (weights) in the constraint
are equal to 1, Card constraint encoders are applied.

1 from optilog.sat.pbencoder import IncrementalEncoder
2 L = [1,2,-3]
3 W = [4,3,3]
4 encoder, max_var, C = IncrementalEncoder.init(
5 lits=L, bound=7, weights=W, max_var=3, encoding="seqcounter")

Lines 2–5 in the above example show how to encode the PB constraint 4 ·x+ 3 ·
y+3·¬z ≤ 7 through an incremental encoder into SAT using OptiLog. Currently,
we only support PB constraints with positive coefficients2.

Function IncrementalEncoder.init takes as input the list of literals L, the
bound, the list of weights W , the maximum variable and the encoding to be
used. It returns an encoder object that can be used to refine the upper bound,
the maximum variable used by the encoder and the list of clauses that encode
the constraint C. In our example, to refine the upper bound to ≤ 6 we can use
the command max_var, C = encoder.extend(6), which returns the clauses C
to force the new upper bound and the maximum variable used in C.

The possible encodings supported in PBLib for incremental encoding are bdd
and card for cardinality constraints and seqcounter and adder for PB. PySAT
Card supports totalizer for cardinality constraints. All these encodings are avail-
able in IncrementalEncoder through the parameter encoding in the init method.
By default PBLib automatically overrides the user selected encoding when it
detects it can generate too many clauses. In contrast, OptiLog always applies
the encoding selected by the user.
2 We will add in short a normalization step for general PB constraints.

OptiLog: A Framework for SAT-based Systems 5

2.4 Automatic Configuration (AC) Module

The AC module provides an API to generate configuration scenarios for AC
tools. An AC tool searches for a setting, to the configurable parameters of a
target function (algorithm), that optimizes some objective function or run time
on a set of instances (data) under different seeds. We present the module features:

1 import random
2 from optilog.autocfg import ac, Bool, Int, Real, Categorical, CfgCall
3 from optilog.autocfg.configurators import SMACConfigurator
4 @ac
5 def func1(
6 x, data, p1: Bool() = True, p2: Real(-1.3, 2) = 0,
7 p3: Int(-5, 5) = 0, p4: Categorical("A", "B", "C") = "A"):
8 ...
9 @ac

10 def func2(
11 data, seed, l_func1: CfgCall(func1), n: Int(1, 10) = 1):
12 random.seed(seed)
13 res = n * l_func1(random.randint(20,30), data)
14 print("Result:", res)
15 return res
16
17 configurator = SMACConfigurator(
18 func2, global_cfgcalls=[func2], runsolver_path=’./runsolver’,
19 input_data=[’path1’, ’path2’, ’path3’],
20 data_kwarg=’data’, seed_kwarg=’seed’,
21 run_obj=’quality’, cutoff=30, time_limit_sec=43200,
22 quality_regex=r"ˆResult: (\d+)$")
23 configurator.generate_scenario(’./scenario’)

Configurable Parameters: Leveraging Python’s type hints we can specify the
type, domain and default value of the parameters to configure. For example, the
AC module will recognize four configurable parameters in func1 (p1, p2, p3, p4),
where parameter p3 is of type optilog.autocfg.Int, and will collect the anno-
tated information for creating the configuration scenario.

Configurable Functions: The AC module allows to gather the configurable
parameters of a configurable function (decorated with @ac). All calls to the
same global CfgCall function will share the same values for the configurable
parameters, while calls to local CfgCall functions can have different values. In
the example, func2 is global while l func1 is a local call to func1.

Configuration Scenario: class SMACConfigurator is used to automatically
generate the scenario for the SMAC configurator. It receives as parameters: (l.
18) the entry point func2 (i.e., the function that SMAC will call), the list of
global configurable functions [func2] (notice that in our example func2 is itself
configurable), the path to the runsolver tool, (l. 19) the list of input data (which
is printed, item by item, to a text file and used by SMAC as the description of
the set of instances where the function to be tuned will be evaluated), (l. 20) the

6 C. Ansótegui et al.

parameters (data kwarg, seed kwarg) that will use the AC tool to send the data
and seed to the entry point on which the current configuration will be evaluated,
(l. 21) the objective is set to quality in order to minimize the result of the entry
point (runtime is another possible objective), a set of parameters related to the
automatic configuration process (cutoff, time limit sec), and (l. 22) the regular
expression to extract the quality reported to the AC tool.

2.5 Adding SAT Solvers to OptiLog Through iSAT Interface

OptiLog automatically generates bindings to C++ SAT solvers that implement
the iSAT abstract interface. In order to integrate a new SAT solver, the solver
source code has to be included into the compilation pipeline and an implemen-
tation to the abstract iSAT interface has to be provided.

The Extern/sat directory contains the source code of the SAT solver. For
example, in Extern/sat/glucose41 we find the source code for Glucose 4.1.

The Module/sat directory contains the implementation for the iSAT inter-
face. In particular, the files solver.{cpp|hpp} define the implementation of the
iSAT abstract interface. These files contain macros that will be used to automat-
ically generate Python bindings. In the Glucose 4.1 example, the implementation
of the interface is located in Module/sat/glucose41.

All the process described above is automatically performed by executing the
new_solver script provided by OptiLog.

3 Example: The Linear MaxSAT Algorithm with OptiLog

SAT-based MaxSAT algorithms reformulate the MaxSAT optimization problem
into a sequence of SAT decision problems. Each SAT instance of the sequence
encodes whether there exists an assignment with a cost ≤ k, encoded as a PB or
Card constraint depending on the weights of the soft constraints. SAT instances
with a k less than the optimal cost are unsatisfiable, the others being satisfi-
able. In particular, the subclass of model-guided algorithms iteratively refine
(decrease) the upper bound and guide the search with satisfying assignments
(models) obtained from satisfiable SAT instances.

Left hand side of Program 1 shows an implementation of the Linear algorithm
[16,26], a SAT-based model-guided algorithm for Weighted MaxSAT formulas,
with OptiLog. The linear function takes as parameters the path to the Weighted
MaxSAT instance in DIMACS format and the seed (lines 7, 8). Lines 10–12 create
the incremental SAT solver, set its seed and load the hard clauses directly into
the solver while the soft clauses are stored in the WCNF formula f .

Lines 15–19 make a relaxed copy of the soft clauses (adding a new blocking
variable per clause) that is added to the SAT solver. Line 22 creates an incre-
mental PB constraint on the blocking variables B that uses as coefficients W ,
the weights of the soft constraints, and the initial upper bound ub as the inde-
pendent term. It retrieves the set of initial SAT clauses C for the PB encoding
(added to the SAT solver in line 24), the max var auxiliary variable used in

OptiLog: A Framework for SAT-based Systems 7

1
f
r
o
m
o
p
t
i
l
o
g
.
s
a
t

i
m
p
o
r
t

G
l
u
c
o
s
e
4
1

2
f
r
o
m
o
p
t
i
l
o
g
.
s
a
t
.
p
b
e
n
c
o
d
e
r

i
m
p
o
r
t
I
n
c
r
e
m
e
n
t
a
l
E
n
c
o
d
e
r

3
f
r
o
m
o
p
t
i
l
o
g
.
l
o
a
d
e
r
s
i
m
p
o
r
t

l
o
a
d
_
w
c
n
f

4 5 6
d
e
f
l
i
n
e
a
r
(

7
i
n
s
t
a
n
c
e
,

8
s
e
e
d

9
)
:

1
0

s
=
G
l
u
c
o
s
e
4
1
(
)

1
1

s
.
s
e
t
(
’
s
e
e
d
’
,

s
e
e
d
)

1
2

f
=
l
o
a
d
_
w
c
n
f
(
i
n
s
t
a
n
c
e
,

s
)

1
3

B
,

W
,

m
a
x
_
v
a
r
=

[
]
,
[
]
,
f
.
m
a
x
_
v
a
r
(
)

1
4

1
5

f
o
r
w
,

c
i
n
f
.
s
o
f
t
_
c
l
a
u
s
e
s
:

1
6

m
a
x
_
v
a
r
+
=

1
1
7

s
.
a
d
d
_
c
l
a
u
s
e
(
c

+
[
m
a
x
_
v
a
r
]
)

1
8

B
+
=
[
m
a
x
_
v
a
r
]

1
9

W
+
=
[
w
]

2
0

2
1

r
e
s
,
u
b
=

T
r
u
e
,

f
.
t
o
p
_
w
e
i
g
h
t
(
)

2
2

e
n
c
o
d
e
r
,
m
a
x
_
v
a
r
,
C

=
I
n
c
r
e
m
e
n
t
a
l
E
n
c
o
d
e
r

2
3

.
i
n
i
t
(
B
,

u
b
,

W
,

m
a
x
_
v
a
r
)

2
4

s
.
a
d
d
_
c
l
a
u
s
e
s
(
C
)

2
5

2
6

w
h
i
l
e
r
e
s
i
s
T
r
u
e
a
n
d
u
b
>

0
:

2
7

m
a
x
_
v
a
r
,
C

=
e
n
c
o
d
e
r
.
e
x
t
e
n
d
(
u
b
-

1
)

2
8

s
.
a
d
d
_
c
l
a
u
s
e
s
(
C
)

2
9

r
e
s
=

s
.
s
o
l
v
e
(
)

3
0

i
f

r
e
s
i
s
T
r
u
e
:

3
1

u
b

=
f
.
c
o
s
t
(
s
.
m
o
d
e
l
(
)
)

3
2

p
r
i
n
t
(
"
o
"
,

u
b
)

3
3

3
4

r
e
t
u
r
n

u
b

1
f
r
o
m
o
p
t
i
l
o
g
.
a
u
t
o
c
f
g
i
m
p
o
r
t

a
c
,

C
a
t
e
g
o
r
i
c
a
l
,

C
f
g
C
a
l
l

2
f
r
o
m
o
p
t
i
l
o
g
.
a
u
t
o
c
f
g
.
s
a
t

i
m
p
o
r
t

g
e
t
_
g
l
u
c
o
s
e
4
1

3
@
a
c

4
d
e
f
l
i
n
e
a
r
(

5
i
n
s
t
a
n
c
e
,

6
s
e
e
d
,

7
i
n
i
t
_
s
o
l
v
e
r
_
f
n
:

C
f
g
C
a
l
l
(
g
e
t
_
g
l
u
c
o
s
e
4
1
)
,

8
e
n
c
o
d
i
n
g
:
C
a
t
e
g
o
r
i
c
a
l
(
’
b
e
s
t
’
,
’
a
d
d
e
r
’
,
’
s
e
q
c
o
u
n
t
e
r
’
)

=
’
b
e
s
t
’

9
)
:

1
0

s
=
i
n
i
t
_
s
o
l
v
e
r
_
f
n
(
s
e
e
d
=
s
e
e
d
)

1
1

1
2

f
=
l
o
a
d
_
w
c
n
f
(
i
n
s
t
a
n
c
e
,

s
)

1
3

B
,

W
,

m
a
x
_
v
a
r
=

[
]
,
[
]
,
f
.
m
a
x
_
v
a
r
(
)

1
4

1
5

f
o
r
w
,

c
i
n

f
.
s
o
f
t
_
c
l
a
u
s
e
s
:

1
6

m
a
x
_
v
a
r
+
=
1

1
7

s
.
a
d
d
_
c
l
a
u
s
e
(
c

+
[
m
a
x
_
v
a
r
]
)

1
8

B
+
=
[
m
a
x
_
v
a
r
]

1
9

W
+
=
[
w
]

2
0

2
1

r
e
s
,
u
b

=
T
r
u
e
,

f
.
t
o
p
_
w
e
i
g
h
t
(
)

2
2

e
n
c
o
d
e
r
,
m
a
x
_
v
a
r
,
C

=
I
n
c
r
e
m
e
n
t
a
l
E
n
c
o
d
e
r

2
3

.
i
n
i
t
(
B
,

u
b
,

W
,

m
a
x
_
v
a
r
,

e
n
c
o
d
i
n
g
)

2
4

s
.
a
d
d
_
c
l
a
u
s
e
s
(
C
)

2
5

2
6

w
h
i
l
e
r
e
s
i
s
T
r
u
e
a
n
d
u
b

>
0
:

2
7

m
a
x
_
v
a
r
,
C

=
e
n
c
o
d
e
r
.
e
x
t
e
n
d
(
u
b
-

1
)

2
8

s
.
a
d
d
_
c
l
a
u
s
e
s
(
C
)

2
9

r
e
s

=
s
.
s
o
l
v
e
(
)

3
0

i
f

r
e
s
i
s
T
r
u
e
:

3
1

u
b
=
f
.
c
o
s
t
(
s
.
m
o
d
e
l
(
)
)

3
2

p
r
i
n
t
(
"
o
"
,

u
b
)

3
3

3
4

r
e
t
u
r
n

u
b

P
ro

gr
am

1:
L
in

ea
r
M

ax
SA

T
al

go
ri

th
m

im
pl

em
en

te
d

w
it

h
O

pt
iL

og
(l

ef
t)

an
d

m
od

ifi
ca

ti
on

s
re

qu
ir

ed
to

th
e

sa
m

e
im

pl
em

en
ta

ti
on

to
en

ab
le

it
s

au
to

m
at

ic
co

nfi
gu

ra
ti

on
(r

ig
ht

).
T

he
im

po
rt

s
fo

r
In

cr
em

en
ta

lE
nc

od
er

an
d

lo
ad

w
cn

f
ar

e
om

it
te

d
in

th
e

au
to

m
at

ic
co

nfi
gu

ra
ti

on
ex

am
pl

e.

8 C. Ansótegui et al.

the encoding and the object encoder through which we will be able to generate
additional SAT clauses to further restrict the constraint (see line 27).

Lines 26–32 conform the main loop of the algorithm. The new clauses to
extend the incremental PB constraints are generated and added (lines 27,28).
Line 29 calls the SAT solver and, if the current SAT instance is satisfiable, the
model is retrieved using its cost to refine the upper bound (lines 30,31).

Right hand side of Program 1 shows how the definition of the linear function
has to be changed so that it can be automatically configured. There are, in
particular, two main configurable aspects: the SAT solver and the PB encoder
to be used plus their respective adjustable parameters.

Instead of initializing the SAT solver in line 10, we use the configurable
function get glucose41 that returns a configured Glucose41 solver3.

The other aspect to be configured is the incremental encoder that we are
using. We add a configurable categorical parameter called encoding (line 8),
which is passed to the init method of IncrementalEncoder in line 22.

The following lines show how the SMACConfigurator object is created. Line
7 is used to report the quality to the AC tool and line 8 is used to specify the
default quality when there is a crash such as a system timeout or memout.

1 configurator = SMACConfigurator(
2 linear, runsolver_path="./runsolver", global_cfgcalls=[linear],
3 input_data=["inst1.wcnf", "inst2.wcnf", ..., "instN.wcnf"],
4 data_kwarg="instance", seed_kwarg="seed",
5 cutoff=30, memory_limit=6 * 1024,
6 wallclock_limit=43200, run_obj="quality",
7 quality_regex=r"ˆo (\d+)$",
8 cost_for_crash=(2 << 64) - 1, # Max sum WCNF weights
9)

10 configurator.generate_scenario("./scenario")

We experimented with the configurable version of the Linear algorithm on
a computer cluster with 2.1 GHz cores. As benchmarks, we used the set of 600
instances from the complete weighted track of the MaxSAT 2020 evaluation [6].

We executed SMAC in parallel with 32 runs (one of them with the default
configuration of Glucose41 and PB encoder). In 5 out of the 32 runs, SMAC
was able to find a better configuration than the default. These 5 runs provide
suboptimal values for 446, 445, 443, 443 and 424 instances, while the default
only on 388. Curiously, 2 out of the 5 best runs (443, 424) set the PB encoder
to adder (default value is best). The rest of the changes are applied on the
Glucose41 parameters. This is a sign of the benefit of using AC tools even on
systems that combine several pieces that already have good default parameters.

3 A SAT solver developer can make his solver configurable providing a json describing
all the parameters with their domain and default value. More details can be consulted
in the online documentation [27].

OptiLog: A Framework for SAT-based Systems 9

4 Conclusions and Future Work

The SAT community has generated amazing tools that we need to make more
accessible to our and other communities. OptiLog contributes in this sense, eas-
ing the access to solvers and encoders, providing the iSAT interface that could
become the basis for an standard SAT API., and the AC module that can poten-
tially be applied to tune any Python function.

As future work, we will add other solvers, like MaxSAT or PB solvers, adding
support for more complex compilation flags. We will also provide support for call-
back functions as in Gurobi [19] to be applied on critical points: restarts, pick lit-
eral decision, conflict analysis, etc. Finally, we will integrate crafted and random
instance generators and allow dynamic instance downloading from repositories.

References

1. Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experi-
mental design and local search. Oper. Res. 54(1), 99–114 (2006)

2. Ansotegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming, pp. 142–157
(2009)

3. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: IJCAI, pp. 733–739 (2015)

4. Audemard, G., Paulevé, L., Simon, L.: SAT heritage: a community-driven effort
for archiving, building and running more than thousand SAT solvers. In: Pulina,
L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 107–113. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51825-7 8

5. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: Proceedings of the 21st International Joint Conference on Artifical Intelligence,
pp. 399–404. IJCAI 2009. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (2009)

6. Bacchus, F., Berg, J., Järvisalo, M., Martins, R.: MaxSAT evaluation 2020: solver
and benchmark descriptions (2020)

7. Balyo, T., contributors: The standard interface for incremental satisfiability solv-
ing. https://github.com/biotomas/ipasir (2014)

8. Biere, A.: PicoSAT essentials. J. Satisfiability, Boolean Model. Comput. 4(2–4),
75–97 (2008)

9. Biere, A.: Lingeling, plingeling and treengeling entering the sat competition 2013.
Proc. SAT Competition 2013, 1 (2013)

10. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT
Competition 2020 - Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

11. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race:
an overview. In: Empirical Methods for the Analysis of Optimization Algorithms,
pp. 311–336 (2010)

12. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

https://doi.org/10.1007/978-3-030-51825-7_8
https://github.com/biotomas/ipasir
https://github.com/fchollet/keras

10 C. Ansótegui et al.

13. COIN-OR Foundation: Computational infrastructure for operations research.
https://www.coin-or.org/ (2016)

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

15. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

16. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. J. Sat-
isfiability, Boolean Model. Comput. 2(1–4), 1–26 (2006). IOS Press

17. Gamrath, G., et al.: The SCIP Optimization Suite 7.0. ZIB-Report 20–10, Zuse
Institute Berlin, March 2020

18. Google: Google OR-Tools. https://developers.google.com/optimization (2021)
19. Gurobi Optimization: Gurobi. https://www.gurobi.com/ (2021)
20. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362

(2020). https://doi.org/10.1038/s41586-020-2649-2
21. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-Based Optimization

for General Algorithm Configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

22. Hutter, F., Hoos, H., Leyton-Brown, K., Stuetzle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

23. IBM: IBM ILOG CPLEX. https://www.ibm.com/products/ilog-cplex-
optimization-studio (2021)

24. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a Python toolkit for proto-
typing with SAT oracles. In: SAT, pp. 428–437 (2018)

25. Lauria, M., Elffers, J., Nordström, J., Vinyals, M.: CNFgen: a generator of crafted
benchmarks. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
464–473. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 30

26. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiability, Boolean
Model. Comput. 7(2–3), 59–64 (2010). IOS Press

27. Logic and Optimization Group: Optilog official documentation (2021). http://ulog.
udl.cat/static/doc/optilog/html/index.html

28. Logic Optimization Group: PyPBLib: PBLib Python3 bindings. https://pypi.org/
project/pypblib/ (2019)

29. McKinney, W.: Data Structures for Statistical Computing in Python. In: van der
Walt, S., Millman, J. (eds.) In: Proceedings of the 9th Python in Science Confer-
ence, pp. 56–61 (2010). https://doi.org/10.25080/Majora-92bf1922-00a

30. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox,
E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc. (2019)

31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

32. Philipp, T., Steinke, P.: PBLib – a library for encoding pseudo-Boolean constraints
into CNF. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 9–16.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 2

33. Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA (2009)

https://www.coin-or.org/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24605-3_37
https://developers.google.com/optimization
https://www.gurobi.com/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://doi.org/10.1007/978-3-319-66263-3_30
http://ulog.udl.cat/static/doc/optilog/html/index.html
http://ulog.udl.cat/static/doc/optilog/html/index.html
https://pypi.org/project/pypblib/
https://pypi.org/project/pypblib/
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1007/978-3-319-24318-4_2

PyDGGA: Distributed GGA
for Automatic Configuration

Carlos Ansótegui1(B), Josep Pon1(B), Meinolf Sellmann2(B),
and Kevin Tierney3(B)

1 LOG Group, University of Lleida, Lleida, Spain
carlos.ansotegui@diei.udl.cat, josep.pon@udl.cat

2 General Electric, Boston, USA
meinolf@ge.com

3 Decision and Operation Technologies Group, Bielefeld University,
Bielefeld, Germany

kevin.tierney@uni-bielefeld.de

Abstract. We present PyDGGA, a Python tool that implements a
distributed version of the automatic algorithm configurator GGA, which
is a specialized genetic algorithm to find high quality parameters for
solvers and algorithms. PyDGGA implements GGA using an event-
driven architecture and runs a simulation of future generations of the
genetic algorithm to maximize the usage of the available computing
resources. Overall, PyDGGA offers a friendly interface to deploy elastic
distributed AC scenarios on shared high-performance computing clus-
ters.

Keywords: Automatic algorithm configuration · Satisfiability

1 Introduction

Automatic algorithm configuration (AAC) methods have become a critical tool
for solver developers and users to squeeze every last drop of performance out of
their approaches, as well as customize algorithms to perform well on a particular
set of instances. AAC tools do this by trying out different parameter settings
for solvers and returning the one that performs the best according to some
objective function, e.g., solver runtime or heuristic quality. Parameters range in
scope and can, for example, determine the type of heuristic an algorithm should
use, modify a learning rate, or decide whether to perform random restarts or not.
Regardless of what the parameters actually are, setting them to a specific value
can dramatically affect an algorithm’s overall ability to solve problem instances
of a particular type. However, finding suitable parameters is difficult and time

This work was partially supported by the MINECO-FEDER project TASSAT3
(TIN2016-76573-C2-2-P) and the MICINNs project PROOFS (PID2019-109137GB-
C21).
c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 11–20, 2021.
https://doi.org/10.1007/978-3-030-80223-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_2

12 C. Ansótegui et al.

consuming because each evaluation of the algorithm being configured is very
computationally expensive.

Setting parameters automatically dramatically reduces manual efforts and
can result in orders of magnitude improvements in performance. Over the past
decade there have been several methods developed for tuning parameters auto-
matically, such as CALIBRA [1], ParamILS [13], I/F-Race [6], SMAC [12],
ReACT/ReACTR [9,10] and CPPL [8]. We focus on the algorithm configurator
GGA [3,4], which uses a gender-based genetic algorithm to search through the
space of configurations on a set of instances to assign good values to parameters.

While previous work has explored parallel algorithm configuration in the
context of ParamILS, SMAC [11] and grid search [18], we want to leverage the
advantage of population-based approaches followed by GGA, and the inherent
potential for parallelization [7] of genetic algorithms. We provide several novel
enhancements of GGA that allow it to fully utilize parallel resources by simulat-
ing future generations even before the current generation is completely finished.
Our experimental results show the effectiveness of our enhancements, leading to
significant improvements on five different SAT benchmarks.

This paper is organized as follows. We first formalize AAC and provide some
background information. Then we describe the PyDGGA architecture and novel
components versus previous versions of GGA. We then provide brief instructions
on how to use PyDGGA. Finally, we experiment on SAT problems and conclude.

2 Preliminaries

In this paper, we present a tool for AAC that extends the algorithm GGA [3],
which we briefly present at the end of this section. Formally, in AAC, given a
target algorithm A with parameter configuration space Θ, a set of instances Π
and a cost metric ĉ : Θ × Π → R, the objective is to find a parameterization
θ ∈ Θ of A that minimizes ĉ over Π. We refer to the combination of A, Θ, Π
and the configuration of the AAC tool, including ĉ, as an AAC scenario. Since
the behavior of A is determined by its parameterization, we could also state that
AAC generates a specialized version of A to tackle the instances in Π and other
instances with a similar structure more efficiently or effectively.

It is common for A to be a black-box, meaning it accepts some inputs (the
parameters and a problem instance) and provides some output (e.g., ĉ), but
we cannot see internal functionality. Practically speaking, A is implemented as a
binary file that outputs its results in a format adequate for its domain, but likely
not for the AAC tool. Moreover, it may also be necessary to limit the resources
that A can use to solve an instance, such as memory or CPU time. The standard
way of addressing these issues in AAC tools is for the user to replace A with a
wrapper script that handles these and any other aspects that may be necessary.

The configuration space Θ is composed of categorical and numerical param-
eters. The former represent parameters with discrete domains whose values have
no order, whereas the latter have an order and can be sub-classified as either
integer or real parameters. Some AAC approaches, like GGA, support modeling
Θ with dependencies or simple constraints.

PyDGGA 13

GGA
GGA is a genetic algorithm-based approach to general AAC that has been used in
practice for a wide array of applications, such as tuning solvers in SAT [15]/Max-
SAT [2], machine reassignment [17], and mixed-integer programming [15]). As a
genetic algorithm, it has the archetypal loop in which each iteration is referred
to as a generation, and tries to improve the solution via recombination and
mutation operators. In GGA, the population is partitioned into competitive and
non-competitive groups. The former is evaluated on A, whereas the latter acts
as a source of diversity to escape local optima. To conduct the evaluations of
each generation, GGA uses a parallel racing scheme, called a tournament. If the
entire population was placed into a single tournament, it would be too large for
a single processor. Thus, the tournament is split into mini-tournaments that are
run sequentially. This division yields one winner per mini-tournament, each of
which is recombined with members of the non-competitive group to generate the
offspring for the next generation.

In the first generations, we expect most individuals to perform rather poorly
since they are generated at random. Thus, we do not wish to evaluate these
individuals on the entire instance set Π. Instead, each tournament is evaluated
using a randomly selected subset of Π. Initially, this subset is quite small (around
5 instances), but as further generations are expected to have better individuals,
the size of the subset is increased linearly until roughly 75% of all generations
have been carried out, and the subset becomes Π. For further details on GGA
please refer to [3].

3 PYDGGA

PyDGGA is a distributed version of GGA written in Python that has been
adapted to exploit the resources of High-Performance Computing (HPC) clus-
ters. In this section, we first focus on the parts of the algorithm that have been
modified to adapt GGA to HPC clusters. Then, we introduce a new instance
selection policy and what we refer to as an elite mini-tournament, which are
extensions to the original GGA introduced in PyDGGA. Finally, we comment
on some practical enhancements that do not alter the original GGA approach.

3.1 Distributed Architecture

To adapt GGA to a distributed computing architecture while preserving the
core algorithm as close as possible to the original description, PyDGGA is
implemented using an event-driven architecture, which is known to be good for
horizontal scalability. The events represent steps from the original GGA, such
as the generation of new offspring or evaluation of a genome on an instance.
Each event has the necessary information attached to it to perform its associ-
ated action and triggers the next event in a way to maintain the original GGA
execution logic.

14 C. Ansótegui et al.

Fig. 1. Master-Worker architecture

To exploit the available computing resources to the fullest extent, PyDGGA
uses a master-worker architecture, shown in Fig. 1 with just one worker for
the sake of clarity, to distribute the genome-instance evaluations across sev-
eral machines. The master runs the event-based core and the workers wait for
parameters and instance data to evaluate and return the result. The workers
have none of GGA’s logic and can be added or removed at any time. The master
will simply use the workers still available and rollback incomplete evaluations, if
necessary. We use this approach instead of just relying on a batch-queuing sys-
tem, such as SGE or SLURM, because these systems are used by multiple users
concurrently and their tasks are interleaved, which adds a non-negligible delay
when only a handful of tasks are to be executed. Since PyDGGA tries to run
as many evaluations as possible, this delay ends up being a burden. The worker
approach lets PyDGGA run on any distributed environment regardless of the
batch-queuing system, as long as there is a shared file system. This ensures com-
puting resources are reserved for a longer period and allows the user to terminate
and re-submit more workers later to release resources for other jobs temporarily.

3.2 Simulation

Simply rewriting a sequential algorithm in a parallel or distributed fashion is no
guarantee that it can exploit the full capacity of modern hardware. This holds for
PyDGGA as well, thus we make some additions to the parallel logic to improve
its performance. In PyDGGA, we run a simulation of the population’s evolution,
which creates a directed-graph that represents the dependencies between the
different steps of the algorithm. In this graph, the nodes represent individuals
and mini-tournaments, and the edges describe the action that they trigger on
other individuals or mini-tournaments. For example, when a mini-tournament
finishes it triggers a “create offspring” event on all those individuals that are to
be children of the winner.

When coupling the simulator with the event-driven architecture, PyDGGA
can exploit distributed environments even further by interlacing steps from dif-
ferent generations. For example, when a mini-tournament is done, the individuals
of the next generation that depend on the winner of the mini-tournament can
be generated and evaluated without waiting for the current generation to finish.

PyDGGA 15

3.3 Scheduling and Canceling

A problem arises when we can run evaluations of different generations distribu-
tively at the same time. Which should be run first? It makes sense to run the
evaluations in an order relative to the generation they belong to. This way we
keep on fulfilling the dependencies of later generations, which trigger more evalu-
ations, and thus the hardware rarely idles. However, this static order may break
the efficiency of the original GGA racing scheme.

GGA uses mini-tournaments with size equal to the number of CPU cores on
a single machine, and runs the evaluation of each individual on a different core.
Then, as soon as an individual can be declared the winner it simply cancels the
evaluations of the other individuals in the mini-tournament that have not been
started yet.

PyDGGA can handle many more resources than GGA and can evaluate
entire mini-tournaments at the same time, which means that it will waste
time running evaluations that GGA would have skipped. To tackle this issue,
PyDGGA keeps a dynamic priority value that determines the next evaluation
to run. However, computing this value so as to maximize overall efficiency is
still an open question. Our current approach tries to mimic the racing scheme
behaviour. Finally, since the scheduling is not perfect, we know that PyDGGA
will start some evaluations that will end up being unnecessary. To mitigate this,
we also implement a way for PyDGGA to terminate running evaluations.

3.4 Instance Selection

As mentioned before, GGA randomly selects a subset of Π at each generation,
meaning that two consecutive generations may be evaluated on completely dif-
ferent instances. Other approaches, such as IRACE [6] or SMAC [12], use a
randomly augmented superset of the set used in the previous iteration. It seems
likely that this type of instance selection would be beneficial for GGA in some
scenarios, as many instances will have already been evaluated by the surviving
individuals of a generation, and this will reduce the amount of work to determine
the winner of the next generation.

We want to clarify, however, that using this strategy makes it easier to overfit
the initial subset of instances, which may or may not be representative enough.
For example, it may be a good approach to configure a solver for a specific family
of SAT instances, but can lead to worse results if one wants a configuration that
generalizes to all the instances in the crafted or industrial categories.

3.5 Elite Mini-Tournament

During the configuration process some genomes that used to be among the best
of a generation end up being lost due to the changing subset of Π used to
evaluate them. Nonetheless, we have observed that some of these would have
become relevant again, or even the overall best genome as the subset of Π

16 C. Ansótegui et al.

becomes larger. To address this phenomenon we introduce an additional mini-
tournament, the so-called “elite mini-tournament”, to each generation in which
only the best overall genomes of previous generations can compete. This gives a
chance to these genomes to continue to be part of the recombination procedure
and help drive the algorithm to their region of the search space should they
become relevant again.

3.6 Other Tool Enhancements

On top of the more profound changes commented above, we also introduce some
additional modifications to make PyDGGA more user-friendly.

– Stop/Resume: PyDGGA keeps a cache of all the evaluations performed
so far inside the scenario directory. If the same scenario is used again it will
reuse the cache whenever possible, which has the effect of resuming the search
from wherever it was stopped as all the evaluations in the simulation graph
up to that point are resolved instantly.

– Enhanced configurations constraints: GGA allows the user to specify
combinations of forbidden values, but only can only express very simple con-
straints, such as a = 10 & b = 5 is forbidden, which forces the user to write
the Cartesian product of all the forbidden parameter-value combinations.
PyDGGA uses Python’s abstract syntax tree module, which lets the user
write Python logical expressions that must be satisfied (True) by all valid
configurations, for example: 10 <= a < 20 and b in [5, 6, 7].

– Abort Search: GGA only supports two possible evaluation results: SUC-
CESS and CRASHED. The first denotes that the evaluation was successful
and the second captures cases where A failed but are not critical, for example
because it run out of memory. While CRASHED works fine in most situations,
there are others that leave the user waiting for the algorithm to finish just to
realize at the end that all the evaluations CRASHED. As an example, imagine
that the instances or the target algorithm binary are moved while PyDGGA
is running, or imagine that the user decides to abort if the program detects
that the result it is computing is not correct and the same error may arise in
the rest of the executions. For these situations, we add the evaluation result
ABORT, which stops PyDGGA immediately.

– Objective function: GGA was designed with runtime tuning in mind.
PyDGGA extends this to support a different type of objective function.
Namely, the user can pass any value as the evaluation metric (including the
runtime) and PyDGGA will try to configure the target algorithm for that
metric.

4 Using PYDGGA

PyDGGA is available as a command-line tool from https://ulog.udl.cat/?page_
id=30. There one can download a pre-built binary, the user manual and some

https://ulog.udl.cat/?page_id=30
https://ulog.udl.cat/?page_id=30

PyDGGA 17

examples. For the sake of brevity, we do not describe the details of the whole
process. Instead, we explain what a scenario is and show that running PyDGGA
locally or in a distributed environment is quite similar. We encourage the reader
to follow the complete example on how to tune the SAT solver glucose 4 in the
user manual.

A configuration scenario for PyDGGA is just a directory with some special
files that contain the information required to configure the target algorithm.
These files are:

– conf.xml: This file describes the parameter structure of A, as a tree. Addi-
tionally, it may also contain the so called seed genomes, i.e., the default solver
parameter’s values, and constraints to filter forbidden parameterizations.

– instances.txt: A simple text file that contains the instances that form Π.
Each line of the file contains the path to an instance and the seed that the
target algorithm should use to initialize the pseudo-random number generator
of A when evaluating that instance.

– settings.txt: The configuration of PyDGGA itself, such as the number of
generations, the size of the population, etc. It also contains the name of the
wrapper file.

– wrapper file: This could be the target algorithm A or a script that acts as
the interface between PyDGGA and A.

Once a scenario is set up, running or testing it is as simple as running the
following command to start PyDGGA locally:

pydgga gga -s "/path/to/scenario_dir"

If the scenario works locally, it is almost ready for use in a distributed envi-
ronment. The only additional element is a script that PyDGGA will invoke any
time it needs to start a new worker. For example, to run it on an environment
that uses qsub to submit jobs, the script could be:

1 #!/usr/bin/env sh
2
3 QUEUE="yourqueue.q" # System specific configuration
4 PENV="smp"
5 MEM_LIMIT="35840M" # 35 GB
6 RT_LIMIT=172800 # 2 Days
7
8 name=${1} # session name | Extract fixed parameters
9 slots=${2} # number of slots | passed by pydgga

10 shift 2 # remove ’name’ and ’slots’ from ${@}
11
12 olog="/path/to/stdout/directory"
13 elog="/path/to/stderr/directory"
14
15 echo "pydgga dggaw ${@}" | qsub -V -cwd -pe ${PENV} ${slots}\
16 -l h_vmem=${MEM_LIMIT} -l h_rt=${RT_LIMIT} -q ${QUEUE} \

18 C. Ansótegui et al.

17 -N ${name} -o "${olog}" -e "${elog}"
18
19 exit 0

Then to run the same scenario distributed, one simply runs:

pydgga dgga -s "/path/to/scenario_dir" --worker-script "/path/to

/script" --slots SLOTS_PER_WORKER --num-workers NUM_WORKERS

5 Experiments with SAT

In this section we conduct some experiments to showcase that PyDGGA can
outperform the default parameters on several SAT scenarios. We focus on min-
imizing the runtime of a SAT solver. The experiments are conducted in a com-
pute cluster with nodes equipped with two octo-core Intel Xeon Silver 4110 @
2.10GHz processors and 96 GB of RAM. The selected solver is the award-winning
SparrowToRiss [5], which has a large configuration space with 222 parame-
ters open for configuration. The instances come from the industrial and crafted
benchmarks used in [16]: Bounded Model Checking (BMC), Circuit Fuzz (CF),
IBM-Hardware Verification, Graph Isomorphism (GI), and N-Rooks, which are
all available, including the train/test splits, in the AClib [14].

To configure the solver, we let PyDGGA run for 2 days. In both the training
and test phases we use a time limit of 300 s and 5 GB per evaluation. We present
the results of our evaluation in Table 1, which show that PyDGGA can find better
parameteriztions than the defaults for SparrowToRiss on all the evaluated SAT
benchmarks. The cost metric employed is PAR10, which is defined as the time
needed to solve the instance if solved within the time limit, otherwise the run is
penalized with a value 10 times the time limit. We report the results using the
PAR10 metric as well as the number of solved instances. Finally, to make the
PAR10 value more readable, we remove the constant value post hoc added by
instances that are never solved by any configuration.

Table 1. PAR10 performance (# solved instances) on the test instances

BMC CF IBM GI N-Rooks

Default 346 (262) 297 (276) 113 (232) 247 (307) 116 (348)
PyDGGA 171 (267) 89 (283) 10 (232) 91 (317) 6.3 (351)

6 Conclusions and Future Work

PyDGGA is able to exploit the resources of a distributed computing environ-
ment. Experiments using the SAT solver SparrowToRiss demonstrated that it
can boost the performance of an algorithm by automatically finding a parameter-
ization that yields better results than the default one. Additional performance

PyDGGA 19

gains could be achieved by integrating surrogate models or by improving the
evaluations scheduling to utilize the computing resources more efficiently. More-
over, the usability of the tool could be improved by using zero-configuration
networking protocols on HPC clusters, and by providing an API that let the
users integrate PyDGGA in their pipelines using Python code.

References

1. Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experi-
mental design and local search. Oper. Res. 54(1), 99–114 (2006)

2. Ansótegui, C., Malitsky, Y., Sellmann, M.: MaxSAT by improved instance-specific
algorithm configuration. In: Twenty-Eighth AAAI Conference on Artificial Intelli-
gence (2014)

3. Ansotegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming, pp. 142–157
(2009)

4. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: IJCAI, pp. 733–739 (2015)

5. Balint, A., Manthey, N.: Sparrowtoriss. In: Belov, A., Diepold, D., Heule, M.J.,
Järvisalo, M. (eds.) Proceedings of SAT Competition 2014. Department of Com-
puter Science Series of Publications B, vol. B-2014-2, p. 77. University of Helsinki,
Helsinki, Finland (2014)

6. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: an
overview. In: Empirical Methods for the Analysis of Optimization Algorithms, pp.
311–336 (2010)

7. Cantu-Paz, E.: A survey of parallel genetic algorithms. Calculateurs paralleles,
reseaux et systems repartis 10 (1998)

8. El Mesaoudi-Paul, A., Weiß, D., Bengs, V., Hüllermeier, E., Tierney, K.: Pool-based
realtime algorithm configuration: a preselection bandit approach. In: Kotsireas,
I.S., Pardalos, P.M. (eds.) LION 2020. LNCS, vol. 12096, pp. 216–232. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-53552-0_22

9. Fitzgerald, T., Malitsky, Y., O’Sullivan, B., Tierney, K.: ReACT: real-time algo-
rithm configuration through tournaments. In: Proceedings of the Symposium on
Combinatorial Search (2014)

10. Fitzgerald, T., Malitsky, Y., O’Sullivan, B.: ReACTR: realtime algorithm con-
figuration through tournament rankings. In: Twenty-Fourth International Joint
Conference on Artificial Intelligence. Citeseer (2015)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In:
Proceedings of LION-6, pp. 55–70 (2012)

12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3_40

13. Hutter, F., Hoos, H., Leyton-Brown, K., Stuetzle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

14. Hutter, F., et al.: AClib: a benchmark library for algorithm configuration. In:
Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014.
LNCS, vol. 8426, pp. 36–40. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-09584-4_4

https://doi.org/10.1007/978-3-030-53552-0_22
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-319-09584-4_4
https://doi.org/10.1007/978-3-319-09584-4_4

20 C. Ansótegui et al.

15. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC-Instance-Specific Algo-
rithm Configuration. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings
of the 19th European Conference on Artificial Intelligence (ECAI). Frontiers in
Artificial Intelligence and Applications, vol. 215, pp. 751–756. IOS Press (2010)

16. Lindauer, M., Hutter, F.: Warmstarting of model-based algorithm configuration.
In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Appli-
cations of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Edu-
cational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2–7, 2018, pp. 1355–1362. AAAI Press (2018). https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/17235

17. Malitsky, Y., Mehta, D., O’Sullivan, B., Simonis, H.: Tuning parameters of
large neighborhood search for the machine reassignment problem. In: Gomes, C.,
Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 176–192. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_12

18. Prettenhofer, P.: Parallel grid search for Sklearn Gradient Boosting. https://gist.
github.com/pprett/3989337. Accessed May 2015

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17235
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17235
https://doi.org/10.1007/978-3-642-38171-3_12
https://gist.github.com/pprett/3989337
https://gist.github.com/pprett/3989337

QBFFam: A Tool for Generating QBF
Families from Proof Complexity

Olaf Beyersdorff1 , Luca Pulina2 , Martina Seidl3 , and Ankit Shukla3(B)

1 Friedrich Schiller University Jena, Jena, Germany
olaf.beyersdorff@uni-jena.de

2 University of Sassari, Sassari, Italy
lpulina@uniss.it

3 Johannes Kepler University Linz, Linz, Austria
{martina.seidl,ankit.shukla}@jku.at

Abstract. We present QBFFam, a tool for the generation of formula fam-
ilies originating from the field of proof complexity. Such formula fami-
lies are used to investigate the strength of proof systems and to show
how they relate to each other in terms of simulations and separations.
Furthermore, these proof systems underlie the reasoning power of QBF
solvers. With our tool, it is possible to generate informative and scalable
benchmarks that help to analyse the behavior of solvers. As we will see
in this paper, runtime behavior predicted by proof complexity is indeed
reflected by recent solver implementations.

Keywords: Quantified boolean formulas · Formula generator ·
Benchmarking

1 Introduction

In recent years, much progress has been achieved in the theory and practice of
solving quantified Boolean formulas (QBF) [12], offering a rich solving infras-
tructure, ranging from preprocessing over solving to result validation, strategy
extraction, and theoretical lower bounds. As the decision problem for QBF
(QSAT) is PSPACE-complete, many practical application problems [35] from
fields such as formal verification, artificial intelligence, and reactive synthesis
can be efficiently encoded in QBF and handed over to a QBF solver. Because of
the PSPACE-completeness of QSAT, however, solving a QBF is a difficult task.

To solve QBFs various solving approaches have been presented (see [12] for
a description of recent QBF solving techniques). Conflict-driven clause/cube
learning (QCDCL) generalizes the successful CDCL paradigm that is dominant
in SAT solving. Expansion-based techniques that build propositional abstractions

This work has been supported by the Austrian Science Fund (FWF) under project
W1255-N23, the LIT AI Lab funded by the State of Upper Austria, and a grant by the
Carl Zeiss Foundation.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 21–29, 2021.
https://doi.org/10.1007/978-3-030-80223-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_3&domain=pdf
http://orcid.org/0000-0002-2870-1648
http://orcid.org/0000-0003-0258-3222
http://orcid.org/0000-0002-3267-4494
http://orcid.org/0000-0002-1038-3602
https://doi.org/10.1007/978-3-030-80223-3_3

22 O. Beyersdorff et al.

and then exploit the power of SAT solvers have been extremely successful in the
last QBFEval competitions [34].

Empirical observations indicated that different approaches have a different
reasoning power, resulting in a more diverse solving technique landscape than
present in SAT. These observations can be confirmed by proof complexity results,
offering explanations how the different approaches relate to each other by estab-
lishing separation and simulation results of the proof systems underlying the
solvers. In many cases, formula families play a crucial role to characterize what
is easy/hard for a solver.

In this paper, we present QBFFam, a tool for generating prominent formula
families from proof complexity. With this tool, we provide a diverse collection of
benchmarks that can be arbitrarily scaled and that are used in proof complexity
to compare those proof systems that underlie the behavior of the state-of-the-art
solvers. In this way, it becomes possible to obtain an improved understanding
of solver implementations and their behavior, because for the generated families
many theoretical results with respect to lower and upper bounds have been
established.

Our tool is available at

https://github.com/marseidl/qbffam.git

It is implemented in Python and is called via qbffam <family> <n> where n is
the size of the generated formula according to the definition of the respective
family and family is one of the following 12 formula families:

KBKF KBKF LD KBKF QU
Parity LQParity QUParity
EQ EQ-Sq BEQ
LONSING TRAPDOOR CR

Details on the formula families as well as an overview of their applications
in proof complexity are given in Sect. 3. All of the generated formulas are
false QBFs in prenex conjunctive normal form (PCNF) and have the structure
QX1 . . . QXn.φ where the prefix Q1X1 . . . QnXn contains quantifiers Qi ∈ {∀,∃}
and the matrix φ is a propositional formula in conjunctive normal form (CNF).
As usual, a CNF is a conjunction of clauses, a clause is a disjunction of literals,
and a literal is a variable or a negated variable. All formulas are closed, i.e.,
all variables are quantified. Formulas in PCNF are typically represented in the
QDIMACS1 format which is supported by the majority of modern QBF solvers.

Organisation. The rest of the paper is structured as follows. We first review
related work in Sect. 2. In Sect. 3 we discuss the 12 formula families supported by
QBFFam. Here we also give an overview of relevant results from proof complexity
for these formulas in several QBF proof systems. In particular, we report which
formula family has/does not have short proofs in what proof systems. In Sect. 4

1 http://www.qbflib.org/qdimacs.html.

https://github.com/marseidl/qbffam.git
http://www.qbflib.org/qdimacs.html

QBFFam: A Tool for Generating QBF Families 23

we describe a case study, where we evaluate modern QBFs solvers on two formula
families. We conclude with an outlook to future work in Sect. 5.

2 Related Work

The tool most closely related to QBFFam is the tool CNFGen [29] which is a genera-
tor for crafted SAT instances from propositional proof complexity. Among others,
it supports the generation of formula families such as the pigeonhole formulas
or the Tseitin formulas. Many of the provided formula families are known to be
exponentially hard for propositional resolution and therefore for plain resolution-
based CDCL solvers, as propositional resolution and (non-deterministic) CDCL
are known to be equivalent [3,33]. This is also underpinned by experimental eval-
uations. Together with the rigorous lower bounds obtained in proof complexity
such experiments help to understand the solving behavior of SAT solvers, iden-
tify their limitations, and also point towards directions for improvement.

To the best of our knowledge, there is no similar generator in the context of
QBF solving so far. There are tools and frameworks for generating hard random
formulas with a CNF matrix [15] or non-CNF matrix [18]. These random gen-
erators are used to empirically support theoretical characterizations of random
formulas (cf. for example [17]). On the practical side they form the foundation
for fuzzing, a testing technique that aims to find defects in solvers by massively
solving random instances, thus achieving high code coverage, which is important
to detect conceptual errors and only sporadically triggered corner cases [14].

3 Formula Families

Currently, our tool QBFFam supports the generation of 12 different formula fam-
ilies which are summarized in Table 1 together with a characterization in terms
of number of quantifier alternations, number of variables, and number of clauses.
Additionally, we also provide information on their proof complexity indicating
for which proof systems short proofs or lower bounds are known.

Q-resolution (QRes) is the simplest among the considered proof systems, pro-
viding rules for resolution over existential variables and universal reduction [28].
In QRes-QU [20] resolution over universals is allowed as well. In long-distance
resolution QRes-LD [1] certain resolution steps, forbidden in Q-Resolution, gen-
erating tautologous clauses are allowed. The system QRes-LQU+ [2] combines
long-distance resolution with resolution over universals, yielding a very power-
ful proof system. Another extension of QRes is QRes-SYM [26] which is able to
exploit symmetries of formulas [27].

The proof system ∀Exp-Res [25] is the formal basis for expansion-based QBF
solving. In addition to the resolution rule it has a rule that captures the expan-
sion of universal variables and the renaming of existential variables in terms of
annotations. The more powerful proof systems IR-calc and IRM-calc provide more
flexibility than ∀Exp-Res in the way how and when annotations are obtained [10].

24 O. Beyersdorff et al.

Table 1. Characteristics of the families and overview of some results from proof theory.

Formula

family

#alt #vars #cl QRes QRes-LD QRes-QU QRes-LQU+ ∀Exp-Res IR-calc IRM-calc QRes-SYM

KBKF n + 1 4n 4n + 1 ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓

KBKF LD n + 1 4n 4n + 1 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

KBKF QU n + 1 5n 4n + 1 ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

Parity 2 2n 4n − 2 ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

LQParity 2 2n 8n − 6 ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

QUParity 2 2n+1 8n − 6 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

EQ 3 3n 2n + 1 ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

EQ-Sq 3 n2 + 4n 5n2 ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

BEQ 4 6n + 2 5n + 2 ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗

CR 2 n2 2n ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TRAPDOOR 3 O(n2) O(n2) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LONSING 2 O(n2) O(n2) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ . . . short proofs (poly size) ✗ . . . no short proofs (exponential lower bounds)

#alt . . . number of quantifier alternations

#vars . . . number of variables #cl . . . number of clauses

In the following, we briefly discuss the supported formula families.

KBKF Formulas and Extensions KBKF LD , KBKF QU. Already in their first paper
on Q-resolution from 1995 [28] Kleine Büning, Karpinski, and Flögel introduced
a formula family that is nowadays known as the KBKF formula family. Since their
inception, the KBKF formulas have triggered lots of research in QBF proof com-
plexity. The original motivation of [28] was to provide quantified extended Horn
formulas that have no short QRes proofs. Interestingly, the formulas also provide
exponential separations between QRes and QRes-QU [20] as well as between QRes
and QRes-LD [19]. The formulas KBKF have unbounded quantifier complexity, and
much later it became clear [7], that such formulas are indeed needed for sepa-
rating QRes and QRes-QU. The KBKF formulas remain hard in expansion-based
systems ∀Exp-Res and IR-calc, but become easy in IRM-calc [10].

Extensions of KBKF have been introduced to obtain hard formulas for more
powerful proof systems. In particular, the formula family KBKF QU duplicates uni-
versal variables in the prefix and in clauses and becomes hard for QRes-QU, but
remains easy for QRes-LD [2]. Another modification KBKF LD [2] adds variables
from the innermost existential quantifier block to some clauses. These formulas
are hard for the systems QRes-LD [2] and IRM-calc [10]. All three formula fam-
ilies exhibit many symmetries, making them simple if reasoning on symmetries
is supported [26].

A simple self-contained proof of the hardness of KBKF in QRes is given in [5].
Most further hardness results mentioned above lift QRes hardness to stronger
proof systems.

Parity Formulas Parity and Extensions LQParity , QUParity. The formulas of
the parity family Parity are Tseitin-transformed CNF representations of QBFs

QBFFam: A Tool for Generating QBF Families 25

with structure ∃x1, . . . , xn∀z.(z∨φn)∧(¬z∨¬φn) where φn = x1⊕ . . .⊕xn. The
unique strategy for falsifying the formula is to set the only universal variable z to
x1⊕. . .⊕xn. Hence, the unique Herbrand function for z must compute the parity
function, which is exponentially hard for bounded-depth circuits AC0 [22]. As
strategy extraction in QRes and QRes-QU is in AC0 [1], the QRes and QRes-QU
proofs of Parity must be of exponential size. An alternative proof of hardness
for Parity in QRes, not relying on the complex machinery of AC0 lower bounds,
is given in [7].

In contrast, Parity is easy for QRes-LD [16] and ∀Exp-Res [10]. The exten-
sions LQParity and QUParity are constructed to obtain hard formulas for QRes-
LD and QRes-LQU+, respectively [10].

Equality Formulas EQ and Extensions EQ-Sq and BEQ. The equality formulas [6]
have a quantifier prefix of the form ∃x1 . . . xn∀u1 . . . un∃t1 . . . tn and encode that
xi ↔ ui for 1 ≤ i ≤ n. The ti variables are Tseitin variables for obtaining a
PCNF, collected in one clause of size n. Arguably, the equality formulas are the
simplest formulas hard formulas for QRes. In [6] a semantic technique via cost
is developed to show their hardness (as well as many more hardness results).
A related technique [4] is applicable to show their hardness for the expansion
systems ∀Exp-Res and IR-calc. However, they become easy in QRes-LD [8].

The EQ-Sq formulas [8] are a ‘squared’ version of the EQ formulas with n
additional variables in each of the first two blocks and n2 innermost Tseitin
variables. They are used to show an exponential separation between QRes-LD
without universal reduction (exponential lower bounds for EQ-Sq) and the proof
system M-Res (short proofs for EQ-Sq) [8].

Finally the blocked equality formulas BEQ introduce a blocker such that sym-
metries are destroyed and cannot be exploited to find short proofs [13]. This
technique does not only work for the equality formulas, but it is a general app-
roach to eliminate symmetries from a formula without changing its meaning.

Completion Principle, Trapdoor, and Lonsing Formulas. The last block of for-
mulas from Table 1 comprises of three formula families that are easy for all of the
described proof systems. Though QCDCL is associated with the proof systems
QRes and QRes-LD (QCDCL runs can be efficiently translated into QRes-LD
refutations as clauses learned in QCDCL can be derived in QRes-LD), this cor-
respondence is not an exact one as demonstrated by recent research [5,23]. In
particular, [23] has shown that practical QCDCL does not simulate QRes. This
builds on the completion principle formulas CR, first described in [25], which
describe an easy ‘completion’ game, played on an n × n matrix by two players
(cf. [25]). These formulas are easy for QRes, but hard for practical QCDCL using
UIP learning [23].

This result was further strengthened in [9], where QRes and QCDCL (with
arbitrary learning schemes) are shown to be incomparable. This is witnessed by

26 O. Beyersdorff et al.

the Parity formulas, which are hard in QRes, but easy in QCDCL (with the
right heuristics, possibly difficult to find in practice).2

In the opposite direction, the TRAPDOOR and LONSING formulas (first defined
in [9] and [30], respectively) are easy for QRes, but require exponential run-
ning time in QCDCL (even with arbitrary learning schemes). Both principles
build QBFs that incorporate the well-known propositional pigeonhole principle
(PHP). Using the right quantifier prefix, which needs to be obeyed by QCDCL
decision heuristics, they ‘trap’ QCDCL into refuting the PHP formulas (which
are exponentially hard for propositional resolution [21] and hence for (Q)CDCL),
while easy (even constant size) QRes proofs of TRAPDOOR and LONSING exist.

4 Case Study

Our tool QBFFam opens up many possibilities to conduct interesting experiments.
In particular, it can be used to investigate whether the solver implementations
indeed follow the behavior predicted by proof complexity and to compare their
strength.

As a first case study, we consider 30 formulas of the KBKF family as well as
30 formulas of the LQParity family. We selected those families because they
are well investigated in proof complexity and correspond to incomparable proof
systems as discussed above. In both cases we selected the values 10, 15–40, 50,
60, 70, 80 for n.

In our experiments, we considered five solvers in six configurations. The
QCDCL solver DepQBF (version 6.1) [31] was run with and without long-distance
enabled. We included the solver Qute [32] as a second QCDCL solver which sup-
ports dynamic dependency learning. As expansion-based solvers, we included
Rareqs [24] which recursively processes the quantifier alternations to build the
propositional abstraction of a formula as well as the non-recursive expansion-
based solver Ijtihad. Finally, we included the solver Caqe that implements causal
abstraction [36] and which dominated the QBFEval competitions [34]3 over the
last years. All experiments were run on Intel Xeon E5-2620 v4 CPU machines
with the timeout set to 300 s and the memory restricted to 7 GB.

The results of our experiments are shown in Fig. 1. The plot on the left shows
the runtimes for the KBKF family. For four of the six solvers, the formulas are very
hard, especially for the expansion-based solvers Rareqs, which does not solve any
formula, and Ijtihad, which solves only one formula within the time limit. Also,
for Qute and DepQBF the formulas get difficult with increasing n. Both get until
n = 20. For this formula, DepQBF needs 167 s and Caqe needs 241 s. For DepQBF
with long-distance resolution and Qute these formulas are very easy: all of them
are solved in less than one second, confirming results from proof complexity.

The situation is different for the LQParity formulas (see Fig. 1 on the right).
Here Caqe, Ijtihad, and Rareqs solve all of the formulas quickly. This is also in
2 However, formulas hard for QRes-LD such as LQParity are hard for QCDCL (with

arbitrary heuristics) from a theory point of view.
3 http://www.qbfeval.org.

http://www.qbfeval.org

QBFFam: A Tool for Generating QBF Families 27

accordance with the results from proof complexity. The formulas are hard for the
QCDL-based solvers, which could only solve 24 formulas (both configurations of
DepQBF) and five formulas (Qute).

This also indicates that there is a close connection between the theoretical
properties of the underlying proof systems and the practical implementations of
the solvers.

Fig. 1. Runtime comparison on KBKF formulas (left) and LQParity formulas (right).

5 Conclusion

We presented QBFFam, a tool for the generation of instances related to prominent
formula families from proof complexity. We briefly described these families and
surveyed recent results from proof complexity which help to understand the
power of proof systems, and thus the power of QBF decision procedures and
their implementations in QBF solvers. In a small case study we evaluated recent
QBF solvers on two formula families and could indeed observe that the properties
predicted by proof complexity are reflected by the solving runtimes. This opens
the way to many further interesting experiments.

In future, QBFFam can be extended to support graph-based formulas [11] or
random formulas [6]. Both also play an important role in the context of proof
complexity. Another extension of QBFFam that seems to be of practical interest
is the generation of true formulas. True QBFs are currently not investigated in
proof complexity with the argument that in QBF, proof systems for satisfiability
are dual to those of unsatisfiability. Having such formula families, however, seems
to be useful for evaluating solver implementations as well.

References

1. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods Syst. Des. 41(1), 45–65 (2012)

28 O. Beyersdorff et al.

2. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 12

3. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)

4. Beyersdorff, O., Blinkhorn, J.: Dynamic QBF dependencies in reduction and expan-
sion. ACM Trans. Comput. Log. 21(2), 8:1–8:27 (2020)

5. Beyersdorff, O., Blinkhorn, J.: A simple proof of QBF hardness. Inf. Process. Lett.
168, 106093 (2021)

6. Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: A semantic
technique for hard random QBFS. Log. Methods Comput. Sci. 15(1), 13:1–13:39
(2019)

7. Beyersdorff, O., Blinkhorn, J., Mahajan, M.: Hardness characterisations and size-
width lower bounds for QBF resolution. In: Proceedings ACM/IEEE Symposium
on Logic in Computer Science (LICS), pp. 209–223. ACM (2020)

8. Beyersdorff, O., Blinkhorn, J., Mahajan, M.: Building strategies into QBF proofs.
J. Autom. Reasoning 65(1), 125–154 (2021)

9. Beyersdorff, O., Böhm, B.: Understanding the relative strength of QBF CDCL
solvers and QBF resolution. In: Proceedings of Innovations in Theoretical Com-
puter Science (ITCS), pp. 12:1–12:20 (2021)

10. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theor. 11(4), 26:1–26:42 (2019)

11. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF
resolution calculi. Logical Methods Comput. Sci. 13(2), 1–20 (2017)

12. Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified Boolean formulas.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability, 2nd edn. IOS press, Frontiers in Artificial Intelligence and Applications
(2021)

13. Blinkhorn, J., Beyersdorff, O.: Proof complexity of QBF symmetry recomputation.
In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 36–52. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 3

14. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44–57. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-
7 6

15. Chen, H., Interian, Y.: A model for generating random quantified boolean formu-
las. In: Proc. of the 19th International Joint Conferences on Artificial Intelligence
(IJCAI 2005), pp. 66–71. Professional Book Center (2005)

16. Chew, L.: QBF proof complexity. Ph.D. thesis, University of Leeds, Leeds (2017)
17. Creignou, N., Daudé, H., Egly, U., Rossignol, R.: New results on the phase transi-

tion for random quantified Boolean formulas. In: Kleine Büning, H., Zhao, X. (eds.)
SAT 2008. LNCS, vol. 4996, pp. 34–47. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-79719-7 5

18. Creignou, N., Egly, U., Seidl, M.: A framework for the specification of random
SAT and QSAT formulas. In: Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS,
vol. 7305, pp. 163–168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30473-6 14

19. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and
strategy extraction in search-based QBF solving. In: Proceedings of Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR), pp. 291–308 (2013)

https://doi.org/10.1007/978-3-319-09284-3_12
https://doi.org/10.1007/978-3-030-24258-9_3
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-540-79719-7_5
https://doi.org/10.1007/978-3-540-79719-7_5
https://doi.org/10.1007/978-3-642-30473-6_14
https://doi.org/10.1007/978-3-642-30473-6_14

QBFFam: A Tool for Generating QBF Families 29

20. Gelder, A.: Contributions to the theory of practical quantified Boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 47

21. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
22. H̊astad, J.: Computational Limitations of Small Depth Circuits. MIT Press, Cam-

bridge (1987)
23. Janota, M.: On Q-resolution and CDCL QBF solving. In: Proceedings of Interna-

tional Conference on Theory and Applications of Satisfiability Testing (SAT), pp.
402–418 (2016)

24. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

25. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

26. Kauers, M., Seidl, M.: Short proofs for some symmetric quantified Boolean formu-
las. Inf. Process. Lett. 140, 4–7 (2018)

27. Kauers, M., Seidl, M.: Symmetries of quantified Boolean formulas. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 199–216. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94144-8 13

28. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

29. Lauria, M., Elffers, J., Nordström, J., Vinyals, M.: CNFgen: a generator of crafted
benchmarks. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
464–473. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 30

30. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. Ph.D. thesis, Johannes Kepler University Linz (2012)

31. Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional
QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–
384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 23

32. Peitl, T., Slivovsky, F., Szeider, S.: Qute in the QBF evaluation 2018. J. Satisf.
Boolean Model. Comput. 11(1), 261–272 (2019)

33. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175(2), 512–525 (2011)

34. Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (qbfeval’16 and
qbfeval’17). Artif. Intell. 274, 224–248 (2019)

35. Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of quantified
boolean formulas. In: Proceedings of the the 31st IEEE International Conferences
on Tools with Artificial Intelligence, (ICTAI 2019), pp. 78–84. IEEE (2019)

36. Tentrup, L.: CAQE and quabs: Abstraction based QBF solvers. J. Satisf. Boolean
Model. Comput. 11(1), 155–210 (2019)

https://doi.org/10.1007/978-3-642-33558-7_47
https://doi.org/10.1007/978-3-319-94144-8_13
https://doi.org/10.1007/978-3-319-66263-3_30
https://doi.org/10.1007/978-3-319-63046-5_23

Davis and Putnam Meet Henkin: Solving
DQBF with Resolution

Joshua Blinkhorn1 , Tomáš Peitl1(B) , and Friedrich Slivovsky2

1 Friedrich-Schiller-Universität Jena, Jena, Germany
{joshua.blinkhorn,tomas.peitl}@uni-jena.de

2 TU Wien, Vienna, Austria
fslivovsky@ac.tuwien.ac.at

Abstract. Davis-Putnam resolution is one of the fundamental theo-
retical decision procedures for both propositional logic and quantified
Boolean formulas.

Dependency quantified Boolean formulas (DQBF) are a generalisation
of QBF in which dependencies of variables are listed explicitly rather
than being implicit in the order of quantifiers. Since DQBFs can suc-
cinctly encode synthesis problems that ask for Boolean functions match-
ing a given specification, efficient DQBF solvers have a wide range of
potential applications. We present a new decision procedure for DQBF
in the style of Davis-Putnam resolution. Based on the merge resolution
proof system, it directly constructs partial strategy functions for derived
clauses. The procedure requires DQBF in a normal form called H-Form.
We prove that the problem of evaluating DQBF in H-Form is NEXP-
complete. In fact, we show that any DQBF can be converted into H-Form
in linear time.

1 Introduction

Continuing advances in the performance of propositional satisfiability (SAT)
solvers are enabling a growing number of applications in the area of electronic
design automation [28], such as model checking [6], synthesis [24], and symbolic
execution [3]. In artificial intelligence, SAT solvers are a driving force behind
recent progress in constrained sampling and counting [19], and they act as com-
binatorial search engines in competitive planning tools [10]. In most of these
cases, SAT solvers deal with problems from complexity classes beyond NP and
propositional encodings that grow super-polynomially in the size of the original
instances. Clever techniques such as incremental solving can partly alleviate this
issue, but ultimately the underlying asymptotics lead to formulas that are too
large to be solved by even the most efficient SAT solvers.

This research was supported by the Vienna Science and Technology Fund (WWTF)
under grant number ICT19-060, and by the Austrian Science Fund (FWF) under grant
number J-4361N.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 30–46, 2021.
https://doi.org/10.1007/978-3-030-80223-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_4&domain=pdf
http://orcid.org/0000-0001-7452-6521
http://orcid.org/0000-0001-7799-1568
http://orcid.org/0000-0003-1784-2346
https://doi.org/10.1007/978-3-030-80223-3_4

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 31

This has prompted the development of decision procedures for more suc-
cinct generalizations of propositional logic such as Quantified Boolean Formu-
las (QBFs). Deciding satisfiability of QBFs is PSPACE-complete [25] and thus
believed to be much harder than SAT, but in practice the trade-off between
encoding size and tractability can be in favour of QBF [13]. Dependency QBF
(DQBF) in turn generalise QBF [1,2]. Whereas the nesting of quantifiers implic-
itly determines the arguments of Skolem (or Herbrand) functions of a QBF,
Henkin quantifiers explicitly specify the arguments of Skolem (or Herbrand)
functions in a DQBF. As a result, DQBFs can succinctly encode problems con-
cerning the existence of Boolean functions subject to a set of constraints. For
instance, equivalence checking of partial circuit designs (PEC) can be naturally
encoded as DQBF [16].

Existing decision procedures for DQBF either use quantifier expansion to
obtain an equivalent propositional formula or QBF, or else adapt search-based
algorithms from QBF by introducing additional constraints to make sure the
search tree is consistent with the dependency sets of the input DQBF. Seman-
tically, reasoning at the level of functions is more natural, but recent attempts
at lifting conflict-driven clause learning (CDCL) to the level of Skolem functions
are currently limited to 2QBF [21].

Our main contribution is a new decision algorithm for DQBF that oper-
ates directly at the level of functions. Based on the merge resolution (M-Res)
proof system [4], it maintains a set of clauses annotated with partial Herbrand
functions. Like the original Davis-Putnam procedure [12], it successively elim-
inates (existentially quantified) variables by creating all possible resolvents at
each step. Crucially, resolvents are created only for pairs of clauses with par-
tial Herbrand functions that are consistent and can be combined into a larger
partial Herbrand function. Once all variables have been eliminated, either the
set of clauses is empty, in which case the input DQBF is true, or it contains
the empty clause, in which case the formula is false and the Herbrand functions
in the annotation form a countermodel. In contrast to variable elimination by
Q-resolution [5,18], where innermost existentially quantified variables must be
eliminated first, our algorithm may eliminate variables in any order. While this
is not surprising in DQBF, where there is no syntactic ordering of variables, it
means that our algorithm can be used to eliminate variables of a QBF in arbi-
trary order, too—possibly at the cost of increased computational complexity.

There is a surprising obstacle in the way of generalizing variable elimination
by resolution to DQBF—it is insufficient to resolve only clauses that contain the
current pivot variable being eliminated. In fact, we may need to resolve even pairs
of clauses neither of which contains the pivot variable. The requisite combination
of weakening and resolution has previously been studied under the name w-
resolution [8,9]. In turn, w-resolution paves the way for a seemingly absurd case:
a clause can now be resolved with itself—self-resolution. While self-resolution is
not essential, we show that it is a very natural explanation for why we keep
certain clauses between individual elimination steps. That understanding casts
the algorithm in a different light; as a series of transformations, which result in
a normal form where strategies are recorded explicitly.

32 J. Blinkhorn et al.

Strictly speaking, our algorithm (as well as merge resolution) operates on
H-form DQBF, where Henkin quantifiers specify the arguments of universal
variables and the matrix is in conjunctive normal form [2]. NEXP-hardness of
evaluating DQBF in this form does not immediately follow from known results [1,
23], and determining the complexity of this problem was recently stated as an
open question [4]. As a further contribution, we show that it is in fact NEXP-
complete, and that DQBF in H-form and the more frequently studied S-form
(where Henkin quantifiers are used for existential variables) are interconvertible
at a linear overhead while preserving strategies. Thus our variable elimination
algorithm can be used to evaluate and construct (counter)models of arbitrary
DQBFs.

The paper is structured as follows: after preliminaries in Sect. 2, we give our
decision procedure in Sect. 3, and discuss NEXP-completeness of H-form DQBF
in Sect. 4, concluding with a summary in Sect. 5.

2 Preliminaries

H-Form DQBF Intuition. The notion of H-form DQBF is arguably counter-
intuitive, and so instead of a formal definition, we start informally. Consider an
S-form DQBF, i.e. a formula of the form ∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn

) · φ,
where each existential variable xi has a dependency set Sxi

⊆ {u1, . . . , um}, and
φ is a DNF. The goal with such a formula is to find a set of functions—called
a model—for the existential variables respecting the dependencies so that after
substitution into φ, the formula becomes a tautology in the universal variables.
An example of such a formula is

Ψ = ∀u1 ∀u2 ∃x1(u1) ∃x2(u2) (u1 ∧ x2) ∨ (u1 ∧ x2) ∨ (u2 ∧ x1) ∨ (u2 ∧ x1)

along with the model x1 = u1, x2 = u2—whose substitution into Ψ indeed
produces a tautology. An H-form DQBF with a CNF matrix is then simply a
negation of an S-form DQBF with a DNF matrix, where strategies are sought for
universal variables and the goal is to make the substituted formula unsatisfiable,
rather than valid.

H-form DQBF Syntax. A variable is an element z of the countable set V. A
literal is a variable z or its negation z. The negation of a literal a is denoted
a, where z := z for any variable z. A clause is a disjunction of literals. A
conjunctive normal form formula (CNF) is a conjunction of clauses. The set of
variables appearing in a formula ψ is denoted vars(ψ). For ease, we often write
clauses as sets of literals, and CNFs as sets of clauses.

An H-form dependency quantified Boolean formula (DQBF) is a sentence of
the form Ψ := ∃x1 · · · ∃xn∀u1(Hu1) · · · ∀um(Hum

) · ψ, where the part that holds
quantification information is called the prefix, and the matrix ψ is a CNF. In the
quantifier prefix, each universal variable ui is associated with a dependency set
Hui

, which is a subset of the existential variables {x1, . . . , xn}. With vars∃(Ψ)

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 33

and vars∀(Ψ) we denote the existential and universal variable sets of Ψ , and with
vars(Ψ) their union. We deal only with DQBFs for which vars(ψ) ⊆ vars(Ψ).

H-form DQBF Semantics. An assignment α to a set Z of Boolean variables
is a function from Z into the set {0, 1, ∗}. An assignment whose range is {0, 1}
is called total. The set of all assignments to Z is denoted 〈〈Z〉〉, and the set of all
total assignments is denoted 〈Z〉. The domain restriction of α to a subset Z ′ of
its domain is written α�Z′ . We say that α extends α′, denoted by α′ ⊆ α, when
α(z) = α′(z) for each z ∈ dom(α′) with α′(z) ∈ {0, 1}.

The restriction of a formula ψ by an assignment α, denoted ψ[α], is the result
of substituting each variable z in the preimage α−1({0, 1}) by α(z), followed by
applying the standard simplifications for Boolean constants, i.e. 0 �→ 1, 1 �→ 0,
φ ∨ 0 �→ φ, φ ∨ 1 �→ 1, φ ∧ 1 �→ φ, and φ ∧ 0 �→ 0. We say that α satisfies ψ when
ψ[α] = 1, and falsifies ψ when ψ[α] = 0.

For a DQBF Ψ := ∃x1 · · · ∃xn∀u1(Hu1) · · · ∀um(Hum
) ·ψ, any set of functions

h := {hu : u ∈ vars∀(Ψ)} of the form hu : 〈Hu〉 → 〈〈{u}〉〉 is called a strategy
for Ψ . For convenience, we use the alias h(α) := {hu(α�Hu

) : u ∈ vars∀(Ψ)}. A
strategy for Ψ is called winning when each combined assignment α∪h(α) falsifies
ψ. The terms ‘winning strategy’ and ‘countermodel ’ are used interchangably. A
DQBF is called false when it has a countermodel, otherwise it is called true.

3 Davis-Putnam Resolution for H-Form DQBF

In this section we describe a decision procedure for H-form DQBF in the style
of Davis-Putnam resolution. We start by explaining the high-level idea by com-
parison to propositional DP-resolution.

In a nutshell, DP-resolution for propositional logic eliminates variables by
exhaustive resolution—pick variables one at a time in arbitrary order, for every
variable produce all resolvents, and then drop all clauses containing the elimi-
nated variable.1 If at the end the clause set is empty, the formula is satisfiable.
If, on the other hand, we are left with the empty clause (we have eliminated
all variables, so any clause must be empty), the formula is unsatisfiable, and we
have constructed a resolution refutation.

For DQBF we adapt this process in three ways: First, we will only eliminate
existential variables. We can still do so in arbitrary order.

Second, we treat universal variables in the spirit of the DQBF proof system
M-Res [4]—by splitting clauses into the existential part and a partial-strategy
part, initially constructed from universal literals. Strategies may prevent resolu-
tion steps if they mismatch; or they may be updated for variables that depend
on the pivot—similarly to how it is done in M-Res—with a consistency check in
place of the originally used and more strict isomorphism test. Consequently, at
the end we obtain either the empty set, in which case the formula is true, or a

1 The algorithm described by Davis and Putnam [12] also considers unit clauses and
pure literals, but since these are neither necessary for completeness, nor complete
on their own, we think of DP-resolution as consisting of variable elimination.

34 J. Blinkhorn et al.

set containing clause-strategy pairs with empty existential parts, in which case
the formula is false, and the partial strategies form a countermodel.

Third, when eliminating an existential variable x, we will need to weaken
clauses that do not contain any literal on x with both x and x (separately), and
such weakened clauses will enter the elimination step for x. M-Res is incomplete
for DQBF without weakening, and the same issue forces us to include weakening
in our algorithm as well. No such thing is necessary in the propositional case,
intuitively because the only way how a variable can directly interact with a
clause is if it occurs in the clause. In DQBF however, existential variables can
affect dependent universal variables and thereby interact in complex ways with
clauses where they do not occur at all. An elegant way of capturing this is by
incorporating weakening directly into the resolution rule—resulting in a system
known as w-resolution [8].

We begin the algorithm exposition by defining some relations and operations
in Subsect. 3.1. The algorithm itself is described in Subsect. 3.2, and its cor-
rectness and completeness are shown in Subsect. 3.3. We discuss suitable data
structures for the storage and manipulation of strategies in Subsect. 3.4.

3.1 Strategy Operations

We introduce a consistency relation and two operations for the manipulation of
individual strategy functions.

Definition 1. Let X be a set of variables and ε, δ ∈ 〈〈X〉〉. We say that ε and
δ are consistent, denoted by ε � δ, if for every x ∈ X for which ε(x) �= ∗ and
δ(x) �= ∗ we have ε(x) = δ(x).

By abuse of notation, we treat (partial) assignments as both functions and
sets of literals, i.e. an assignment ε corresponds to the set of literals it satisfies,
namely {x : ε(x) = 1} ∪ {x : ε(x) = 0}. Through this correspondence we define
the union of two assignments, and we say that δ extends (is an extension of) ε
if ε ⊆ δ.

Lemma 1. Let X be a set of variables and ε, δ ∈ 〈〈X〉〉. The following conditions
are equivalent: (1) ε and δ are consistent; (2) there is an assignment γ ∈ 〈〈X〉〉
which extends both ε and δ; (3) ε ∪ δ is an assignment.

Furthermore, any assignment that extends both ε and δ also extends ε ∪ δ.

Let Ψ be a DQBF, let u ∈ vars∀(Ψ) be a universal variable, and let hu and h′
u

be individual strategy functions for the variable u; that is, functions from 〈Hu〉
into 〈〈{u}〉〉.
• Consistency: We say that hu and h′

u are consistent (written hu � h′
u) when

hu(ε) � h′
u(ε) for each ε ∈ 〈Hu〉.

• Union: Provided hu � h′
u, their union is (hu ◦ h′

u)(ε) := hu(ε) ∪ h′
u(ε).

• If-then-else: For each x ∈ vars∃(Ψ), we define the if x then hu else h′
u

function
(
hu

x
�	 h′

u

)
(ε) :=

{
hu(ε) if ε(x) = 1 ,

h′
u(ε) if ε(x) = 0 ,

ε ∈ 〈Hu〉 .

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 35

3.2 Definition of the Construction

Given a DQBF ∃x1 · · · ∃xn∀u1(Hu1) · · · ∀um(Hum
) · ψ, we define recursively a

collection of sets DP(Ψ , i), for i in {0, . . . , n}. Each DP(Ψ , i) is a set of clause-
strategy pairs. A clause-strategy pair is of the form (C, h), where C is a clause
with vars(C) ⊆ vars∃(Ψ), and h is a strategy for Ψ .

We will obtain the set DP(Ψ , i) by applying w-resolution—resolution pre-
ceded by weakening—to DP(Ψ , i − 1). The w-resolvent of C and D, over a pivot
z with z �∈ C and z �∈ D, is defined as C ∪· z D := (C \ {z}) ∪ (D \ {z}) [8,9]. The
w-resolvent is equal to the traditional resolvent if the pivot literals are present
in the clauses, but it additionally extends resolution to cases when the pivot is
absent from one or both premises—the condition z �∈ C and z �∈ D ensures that
weakening by the corresponding pivot literal does not create a tautology.

The recursive definition begins with DP(Ψ , 0) := {(C∃, hC∀) : C ∈ ψ}, where
C∃ and C∀ are the existential and universal subclauses of C, and the strategy
hC∀ is the collection of constant functions

hC∀
u (ε) :=

⎧
⎪⎨

⎪⎩

u �→ 0 if u ∈ C∀ ,

u �→ 1 if u ∈ C∀ ,

u �→ ∗ otherwise ,
ε ∈ 〈Hu〉 ,

over u ∈ vars∀(Ψ). Here, DP(Ψ , 0) is merely a representation of the matrix of Ψ
as clause-strategy pairs. The universal subclauses are replaced by strategies, in
which each individual literal is represented by the falsifying constant function.

For i ≥ 1, we define the set R(Ψ , i) as consisting of all resolvent clause-
strategy pairs (C0 ∪· xi

C1, h
1,0) for (C0, h

0) �= (C1, h
1) ∈ DP(Ψ , i − 1) satisfying

(a) xi �∈ C0 and xi �∈ C1, (b) C0 ∪· xi
C1 is not a tautology, and (c) h1

u � h0
u, for

each u with xi /∈ Hu, where the strategy h1,0 is the collection of functions

h1,0
u :=

{
h1

u

x
�	 h0

u if xi ∈ Hu ,

h1
u ◦ h0

u if xi /∈ Hu ,

over u ∈ vars∀(Ψ). Finally we define DP(Ψ , i) as the set

R(Ψ , i) ∪ {(C, h) ∈ DP(Ψ , i − 1) : xi /∈ vars(C)} ,

The set R(Ψ , i) consists of all possible w-resolvents with pivot xi formed
from clause-strategy pairs (C1, h

1) and (C0, h
0) in the previous set DP(Ψ , i − 1),

where the individual strategy functions h1
u, h0

u must be consisent whenever u does
not depend on xi. The strategy for the resolvent is the union of h1

u and h0
u when

u is indeed independent of xi, otherwise it is ‘if xi then h1
u else h0

u.’ 2

2 Note that we still take the if-then-else even if the functions are compatible, and in
particular also if one of the functions is undefined. This is slightly counter-intuitive at
first because we could just take the union in those cases, but the if-then-else results
in a more compatible strategy and is in fact necessary to ensure completeness.

36 J. Blinkhorn et al.

Note that, for any clause-strategy pair (C, h) ∈ DP(Ψ , i), each individual
function hu depends only on the variables {x1, . . . , xi}∩Hu. This is an important
observation, which we use later in our proof of completeness (Theorem 2).

We will be particularly interested in the final set of clause-strategy pairs
generated by this process. Hence we write DP(Ψ) := DP(Ψ , n). An immediate
consequence of the construction is that each clause-strategy pair (C, h) ∈ DP(Ψ)
has the empty clause C = �. The construction is summarised in Aglorithm 1.

Algorithm 1. Davis-Putnam resolution for DQBF.
function DP(Ψ)

Ψ∗ = DP(Ψ , 0)
for x ∈ vars∃(Ψ) do

Ψ∗ = Ψ∗ ∪ weaken and resolve(x,Ψ∗)
Ψ∗ = Ψ∗ \ {(C, h) ∈ Ψ∗ : x ∈ vars(C)}

end for
return Ψ∗ �= ∅

end function

function weaken and resolve(x,Ψ∗)
R = ∅
for all (C0, h

0) �= (C1, h
1) ∈ Ψ∗ × Ψ∗ do

if x �∈ C0, x �∈ C1 and h0
u � h1

u when x �∈ Hu then

h1,0 = {h1
u

x
�� h0

u : x ∈ Hu} ∪ {h1
u ◦ h0

u : x �∈ Hu}
R = R ∪ {(C1 ∪· x C0, h

1,0)}
end if

end for
return R

end function

There is a crucial difference compared to propositional or even QBF DP-res-
olution. While in those cases we only resolve pairs of clauses that do contain the
pivot, here we need to resolve all pairs that have a w-resolvent (provided that
the strategies are compatible where necessary). An interesting special case that
arises out of this is self-resolution: when we take the w-resolvent of a clause with
itself. It is readily verified that a clause C has a self-resolvent on a variable x
if, and only if, x �∈ vars(C). Self-resolving C on any variable simply produces C
again. Moreover, since both the self-union and the if-then-else of any strategy
function is equivalent to itself, self-resolving an entire clause-strategy pair makes
no change to it. Thus, keeping the set {(C, h) ∈ DP(Ψ , i − 1) : xi /∈ vars(C)} for
DP(Ψ , i) is tantamount to self-resolving each of those clauses and keeping only
resolvents, discarding DP(Ψ , i − 1) fully. This allows us to see the algorithm in
a slightly different light; as a series of formula transformations. However, self-
resolving clauses is not the most intuitive thing to do, and so for the sake of
clarity and similarity to other versions of DP-resolution we assume we always
resolve different clause-strategy pairs, as written in the pseudocode of Algo-
rithm 1. We invite the reader to appreciate how adopting self-resolution and

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 37

full discarding would eliminate case distinctions from some of the forthcoming
proofs, arguably making them more elegant, if less humanly.

3.3 Correctness and Completeness

Now we show that the Davis-Putnam construction is both correct and com-
plete, by which we mean that DP(Ψ) is non-empty if (completeness), and only
if (correctness), Ψ is false.

Correctness. Our proof of correctness follows the same argument as the proof
of soundness in the proof system M-Res [4].3 For any pair (C, h) ∈ DP(Ψ , i), we
show that h is a partial countermodel for Ψ with respect to C. This means that
h behaves like a countermodel on input assignments that falsify C. The notion
is captured formally in the statement of the following lemma.

Lemma 2. Given a DQBF Ψ, an existential variable xi, a clause-strategy pair
(C, h) ∈ DP(Ψ , i), and an assignment γ ∈ 〈vars∃(Ψ)〉, the following holds:

γ falsifies C ⇒ γ ∪ h(γ) falsifies ψ .

Proof. We prove the theorem by induction on i ∈ {0, . . . , n}. Let Ψ be the
arbitrary DQBF Ψ := ∃x1 · · · ∃xn∀u1(Hu1) · · · ∀um(Hum

) · ψ.

Base case i = 0. Let (C∃, hC∀) ∈ DP(Ψ , 0). By definition, hC∀(γ) falsifies C∀ for
each γ, and the lemma statement follows immediately.

Inductive Step i ≥ 1. Let (C, h) ∈ DP(Ψ , i). Then, there are pairs (C0, h
0)

and (C1, h
1) in DP(Ψ , i − 1) such that C = C0 ∪· xi

C1 and h = h1,0. Aiming
for contradiction, suppose that there exists some γ ∈ 〈vars∃(Ψ)〉 violating the
lemma statement; that is, γ falsifies C, but γ ∪ h1,0(γ) does not falsify ψ.

Now, let us assume for the moment that γ(xi) = 1. For each u, let us consider
the value of h1,0

u (γ�Hu
). If xi ∈ Hu, then

h1,0
u (γ�Hu

) =
(
h1

u

xi
�	 h0

u

)
(γ�Hu

) = h1
u(γ�Hu

) . (1)

Otherwise, if xi /∈ Hu, then h1,0
u (γ�Hu

) =
(
h1

u ◦ h0
u

)
(γ�Hu

), from which we get

h1
u(γ�Hu

)(u) �= ∗ ⇒ h1,0
u (γ�Hu

) = h1
u(γ�Hu

) , (2)

by definition of h1
u ◦ h0

u.
From (1) and (2), we see that h1,0(γ) extends h1(γ). Together with the fact

that γ ∪ h1,0(γ) does not falsify ψ, we deduce that γ ∪ h1(γ) does not falsify ψ.
This contradicts the inductive hypothesis, which asserts the lemma statement
for (C1, h

1) ∈ DP(Ψ , i − 1) and the assignment γ, which falsifies C1 ⊆ C ∪ {xi}.
The alternative case γ(xi) = 0 follows the same lines, where the roles of C1,

h1 and h1
u are played instead by C0, h0 and h0

u. One shows that γ ∪ h0(γ) does
not falsify ψ, and a contradiction with the inductive hypothesis ensues.
3 We cannot use soundness of M-Res, because our strategy compatibility notion is

stronger.

38 J. Blinkhorn et al.

The correctness of DP-resolution follows from Lemma 2.

Theorem 1. Given a DQBF Ψ, if DP(Ψ) is non-empty, then Ψ is false.

Proof. Suppose that DP(Ψ) is non-empty for some DQBF Ψ . Then there exists
at least one pair (�, h) ∈ DP(Ψ). Since every assignment falsifies �, h is a
countermodel for Ψ , by Lemma 2. Therefore Ψ is false.

Completeness. To demonstrate completeness, we must show that DP(Ψ) is
non-empty whenever Ψ is false. A false DQBF must have at least one counter-
model, h say. We show that h is ‘represented’ at each level of the DP construction;
that is, for each 0 ≤ i ≤ n we can find a subset of DP(Ψ , i) whose strategies
collectively describe h. Consequently the final set DP(Ψ) must be non-empty.

Lemma 3. Let Ψ := ∃x1 · · · ∃xn∀u1(Hu1) · · · ∀um(Hum
)·ψ, and let h be a coun-

termodel for Ψ. For each i ∈ {0, . . . , n} and each ε in 〈{xi+1, . . . , xn}〉, there
exists some pair (C, g) ∈ DP(Ψ , i) such that (a) ε falsifies C, and (b) g(γ) ⊆ h(γ)
for every ε ⊆ γ ∈ 〈vars∃(Ψ)〉.
Proof. Base case i = 0. Let ε ∈ 〈{x1, . . . , xn}〉 = 〈vars∃(Ψ)〉. Since ε is a full
assignment, there is only one extension γ = ε. By definition of countermodel,
γ ∪ h(γ) falsifies some C ∈ ψ. By definition of DP(Ψ , 0), there exists a clause-
strategy pair (C∃, gC∀) ∈ DP(Ψ , 0), where γ falsifies C∃ and h(γ) extends gC∀(γ).

Inductive Step i ≥ 1. Let ε ∈ 〈{xi+1, . . . , xn}〉 be an assignment with extensions
ε0 = ε ∪ {xi} and ε1 = ε ∪ {xi}. By the inductive hypothesis, there exists a
pair (C0, g

0) ∈ DP(Ψ , i − 1) such that ε0 falsifies C0 and h(γ0) extends g0(γ0)
for every extension γ0 ⊇ ε0, and similarly (C1, g

1) ∈ DP(Ψ , i − 1) for ε1. If
(C0, g

0) = (C1, g
1), we have xi �∈ vars(C0), so (C0, g

0) ∈ DP(Ψ , i), and it is the
witness for ε.

Otherwise, we claim that the pairs (C0, g
0) and (C1, g

1) are resolvable.
Firstly, xi �∈ C0 because C0 is falsified by ε0 and xi �∈ C1 because C1 is fal-
sified by ε1; hence the existential parts have an w-resolvent, and this resolvent
cannot be a tautology because it is falsified by ε. Secondly, we need to show that
the strategies g0u and g1u for variables u that do not depend on xi are consistent.
Consider u ∈ vars∀(Ψ) with xi �∈ Hu, and an assignment γ ∈ 〈vars∃(Ψ)〉. We
will show that g0u(γ�Hu

) � g1u(γ�Hu
). For j ∈ {0, 1}:

• let γj be γ with values of the variables xi, . . . , xn overwritten to match εj .
Since xi �∈ Hu, we have γ0�Hu

= γ1�Hu
.

• Because gj
u only depends on x1, . . . , xi−1 (because we have so far only resolved

on those variables), we have gj
u(γj�Hu

) = gj
u(γ�Hu

).
• Because εj ⊆ γj , by the inductive hypothesis, gj

u(γj�Hu
)) ⊆ hu(γj�Hu

).

Because γ0�Hu
= γ1�Hu

, we have hu(γ0�Hu
) = hu(γ1�Hu

), and by Lemma 1
g0u(γ0�Hu

) � g1u(γ1�Hu
). Put together, we have

g0u(γ�Hu
) = g0u(γ0�Hu

) � g1u(γ1�Hu
) = g1u(γ�Hu

).

Thus, g0u � g1u.

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 39

We claim that the resolvent (C1 ∪· xi
C0, g

1,0) of (C0, g
0) and (C1, g

1) is the
witness for ε we are looking for. Clearly, ε falsifies C1∪· xi

C0. To verify the second
condition, consider an extension γ ⊇ ε, and consider γ0 and γ1 with the values
of xi overwritten to 0 and 1, respectively.

Consider u ∈ vars∀(Ψ) with xi ∈ Hu. Without loss of generality assume
γ = γ0 ⊇ ε0. Then, by definition of g1,0, we have g1,0

u (γ�Hu
) = g0u(γ�Hu

), and by
the inductive hypothesis g0u(γ�Hu

) ⊆ hu(γ�Hu
), as required.

On the other hand, consider u ∈ vars∀(Ψ) with xi �∈ Hu, and observe that
γ0�Hu

= γ1�Hu
= γ�Hu

. Then, by definition of g1,0, we have

g1,0
u (γ�Hu

) = g0u ◦ g1u(γ�Hu
) = g0u(γ�Hu

) ∪ g1u(γ�Hu
) = g0u(γ0�Hu

) ∪ g1u(γ1�Hu
).

Because ε0 ⊆ γ0, we have g0u(γ0�Hu
) ⊆ hu(γ0�Hu

) = hu(γ�Hu
), and similarly

g1u(γ1�Hu
) ⊆ hu(γ�Hu

). Thus g0u(γ�Hu
) ∪ g1u(γ�Hu

) ⊆ hu(γ�Hu
) by Lemma 1.

Theorem 2. Given a DQBF Ψ, if Ψ is false, then DP(Ψ) is non-empty.

Theorem 2 follows directly from Lemma 3 for i = n since DP(Ψ) = DP(Ψ , n).
We will prove a slightly stronger version, which gives a finer lower bound on the
size of DP(Ψ) based on the number of minimal countermodels.

Definition 2. Let g, h be two strategies for a DQBF Ψ. We say that g extends
h, denoted by h ⊆ g, if for every total assignment γ ∈ 〈vars∃(Ψ)〉, h(γ) ⊆ g(γ).
A countermodel g is minimal, if for every countermodel h with h ⊆ g, g = h.
We denote the set of minimal countermodels of Ψ by μ(Ψ).

Since the existential part of every pair in DP(Ψ) is the empty clause, we can
afford to abuse our notation and treat DP(Ψ) as a set of strategies. This allows
us to state the following theorem.

Theorem 3. For a DQBF Ψ, μ(Ψ) ⊆ DP(Ψ).

Proof. By Lemma 3, every minimal countermodel g extends some strategy h in
DP(Ψ). By Lemma 2, h is a countermodel, and by minimality of g, h = g.

Theorem 2 now follows from Theorem 3 as any false DQBF must have a
minimal countermodel.

Example 1. Let us illustrate a run of Algorithm 1 on the following DQBF Ψ :

∃x1 ∃x2 ∀u1(x1) ∀u2(x2) (u1 ∨ x2) ∧ (u1 ∨ x2) ∧ (u2 ∨ x1) ∧ (u2 ∨ x1)

Algorithm 1 first constructs the set DP(Ψ , 0), which is
{

(x2, {u1 = 1, u2 = ∗}), (x2, {u1 = 0, u2 = ∗}),

(x1, {u1 = ∗, u2 = 1}), (x1, {u1 = ∗, u2 = 0})
}
.

We begin by eliminating x1 (we could just as well start with x2). Resolving
the two clauses that contain literals on x1 is impossible due to strategy mismatch

40 J. Blinkhorn et al.

on u2, which is independent of x1. Moving on to w-resolution, resolving (on
x1) the only two clauses that contain x2 produces a tautology and so can be
safely ignored. This leaves us with four w-resolution steps to take: clause pairs
(1, 3); (1, 4); (2, 3); (2; 4). Consequently, the set DP(Ψ , 1) looks as follows:

{
from DP(Ψ ,0)

︷ ︸︸ ︷
(x2, {u1 = 1}), (x2, {u1 = 0}),

(x2, {u1 = 1
x1
�	 ∗, u2 = 1}), (x2, {u1 = 0

x1
�	 ∗, u2 = 1}),

(x2, {u1 = ∗ x1
�	 1, u2 = 0}), (x2, {u1 = ∗ x1

�	 0, u2 = 0})
}
.

In the next iteration we eliminate x2. This time no weakening is necessary as
all clauses contain a literal on x2. Examining all pairs we find out that strategy
mismatch on u1 prevents resolving either of the original pairs with any of the
new pairs, and that among the new pairs we can resolve only the first with the
fourth and the second with the third. That finally gives us DP(Ψ , 2) = DP(Ψ):

(�, {u1 = 1
x1
�	 0, u2 = 0

x2
�	 1}), (�, {u1 = 0

x1
�	 1, u2 = 1

x2
�	 0}).

The strategy in the first pair can also be succinctly written as u1 = x1, u2 = x2,
and the one in the second pair is u1 = x1, u2 = x2. It can easily be verified that
both of them are indeed countermodels, in fact minimal ones. Moreover, since
these strategies cannot be extended (they already assign a definitive value to
all variables in all cases), and every countermodel must extend a strategy from
some final pair, Ψ has no further countermodels. ��

A natural question is why and how much weakening do we need to make
Algorithm 1 work. The fewer clauses to resolve, the better the performance of
the algorithm, and while Algorithm 1 works as presented thanks to Theorems 1
and 2, it would be ideal if we could limit ourselves to resolving only clauses that
contain the pivot, like in the propositional case. Example 1 shows that does not
work—without weakening, resolving on both x1 and x2 would be impossible due
to strategy mismatch, and hence the algorithm would finish with the empty set,
wrongly concluding that Ψ is true. Example 2 goes a step further—it shows
that already restricting the algorithm to resolving only pairs where at least one
premise contains the pivot kills completeness.

Example 2. Consider the following DQBF Ψ :

∃x1 ∃x2 ∀u1(x1) ∀u2(x2) (x2 ∨ u1 ∨ u2) ∧ (x2 ∨ u1 ∨ u2) ∧
(x1 ∨ x2 ∨ u1 ∨ u2) ∧ (x1 ∨ x2 ∨ u1 ∨ u2).

It is readily verified that Ψ is false, with the unique countermodel u1 = x1

and u2 = x2.
Imagine now that Algorithm 1 was modified to resolve only those pairs of

clauses where the pivot is present in at least one clause. We will show that this
variant would report the formula to be true. We start with DP(Ψ , 0) as usual:

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 41

{
(x2, {u1 = 0, u2 = 1}), (x2, {u1 = 1, u2 = 1}),

(x1, x2, {u1 = 1, u2 = 0}), (x1, x2, {u1 = 0, u2 = 0})
}
.

Assume we first resolve on x1. We can resolve the third and the fourth clause,
the pivot is present in both premises. Tautologies on x2 prevent all other reso-
lution steps except with the first two clauses. But x1 does not occur in either of
those clauses, so that resolution is forbidden. Thus, DP(Ψ , 1) is

{
(x2, {u1 = 0, u2 = 1}), (x2, {u1 = 1, u2 = 0}), (x2, {u1 = 1

x1
�	 0, u2 = 0})

}
.

The u1-strategies are now pairwise incompatible, and hence resolution on x2

is impossible. Since all clauses contain a literal on x2, they are all deleted, and
the algorithm finishes with the empty set DP(Ψ), wrongly concluding that Ψ is
true.

Had we resolved the first two clauses on x1 as required, DP(Ψ , 1) would have
instead been
{

(x2, {u1 = 0, u2 = 1}), (x2, {u1 = 1, u2 = 0}), (x2, {u1 = 1
x1
�	 0, u2 = 0}),

(x2, {u1 = 0
x1
�	 1, u2 = 1}), (x2, {u1 = 1

x1
�	 0, u2 = 1})

}
,

and a further resolution step is possible, after which we arrive at the correct
DP(Ψ) = {(�, {u1 = 1

x1
�	 0, u2 = 1

x2
�	 0}), containing the unique countermodel.

Notice how we have to weaken each clause that does not contain x1 in both
possible ways, and take both resolvents—only one of them ends up being useful
in the next iteration, but we cannot know which one it will be upfront. ��

3.4 Representing Strategies

In this subsection we discuss some details for a potential implementation of Algo-
rithm 1. The most complicated component of the algorithm is the storage and
reasoning with strategy functions, which can in general become exponentially
large. Naturally, it is preferable to store strategies in such a way that consis-
tency checking, union, and if-then-else are as fast as possible. We will show that
ordered binary decision diagrams (OBDDs) with a fixed ordering, a well-studied
target language in knowledge compilation, are a suitable data structure for all
these tasks.

Definition 3 ([11,22]). Let V be a countable set of propositional variables and
≤ a total order on V. An OBDD≤ on V is a finite rooted labeled directed acyclic
graph O whose each sink is labeled with either 0 or 1, whose non-sinks have out-
degree 2, are labeled with variables from V, and their outgoing edges are labeled
with the two literals of the vertex label, and such that the vertex labels along any
path are pairwise different and respect the order ≤.

The order ≤ we use for the OBDD is the same as the order in which we
eliminate variables in Algorithm 1, which can be arbitrary but fixed. However,

42 J. Blinkhorn et al.

since our strategy functions are 3-valued, we cannot simply write them down as
an OBDD (which is 2-valued). Instead, we will rewrite each strategy gu into a
pair of Boolean strategy functions (g�

u , g⊥
u) defined as

g�
u (γ) =

{
1 if gu(γ) = 1
0 otherwise

, g⊥
u (γ) =

{
1 if gu(γ) = 0
0 otherwise

,

and we will represent g�
u and g⊥

u as OBDDs. We refer to the pair (g�
u , g⊥

u) as the
Boolean basis of gu. Clearly, any strategy uniquely defines its Boolean basis, and
for any Boolean basis it holds that g�

u ∧ g⊥
u is unsatisfiable. Conversely, from a

Boolean basis, we can easily reconstruct the original function.

Lemma 4. Let g1, g2 be two Boolean functions such that g1∧g2 is unsatisfiable.
Then, there is a unique 3-valued function g such that g1 = g� and g2 = g⊥.

Proof. g is defined to output 1 when g1 outputs 1, 0 when g2 outputs 1, and ∗
otherwise. This is well defined thanks to g1 ∧ g2 being unsatisfiable, and clearly
it is the only such g.

The following proposition, which is an easy consequence of the definition,
shows how to answer consistency queries with Boolean bases, as well as how to
perform union and if-then-else on them.

Proposition 1. Let gu, hu be strategy functions for a universal variable u of a
DQBF Ψ. Then

– gu � hu ⇐⇒ both g�
u ∧ h⊥

u and g⊥
u ∧ h�

u are unsatisfiable;
– (gu ◦ hu)� = g�

u ∨ h�
u ; (gu ◦ hu)⊥ = g⊥

u ∨ h⊥
u ;

– (gu
x
�	 hu)� = g�

u

x
�	 h�

u ; (gu
x
�	 hu)⊥ = g⊥

u

x
�	 h⊥

u ;

Proposition 1 requires satisfiability checking (also known as consistency
checking), taking the conjunction and the disjunction of two functions (also
known as bounded conjunction and disjunction), and the if-then-else. OBDDs
support consistency checking and bounded conjunction and disjunction in poly-
nomial time [11]. Since the variables on which we perform if-then-else come in
a fixed order, it is clear we can compute g

x
�	 h simply by creating a new x-

labeled vertex pointing to g and h. The constant functions in DP(Ψ , 0) can be
represented with 1-node OBDDs, and thus we can perform all updates and all
consistency checks in polynomial time.4 At the end, the algorithm will produce
the Boolean basis of a countermodel represented as a pair of OBDDs.

4 NEXP-completeness of CNF H-Form DQBF

For this section we recall an alternative syntactic form of DQBF: A DQBF in
S-form is an expression of the form ∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn

) · ψ, where
4 In the size of the functions, which may, inevitably, become exponential.

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 43

ψ is a propositional formula. The roles of universal and existential variables are
swapped; we say that an S-form DQBF is true if there is a model, i.e. a set
of functions for the existential variables with the right universal dependencies
whose substitution in the matrix results in a propositional tautology. It is known
that evaluating S-form DQBF is NEXP-complete, even if the matrix is restricted
to a CNF [1,23].

It is easy to see that evaluating H-form DQBF, like evaluating S-form DQBF,
is in NEXP. Additionally, any S-form DQBF can be translated, via negation,
into an H-form DQBF, which shows that evaluating H-form DQBF with a DNF
matrix is NEXP-complete. If we want the resulting matrix to be a CNF, we must
start from an S-form DQBF in DNF. We therefore give a linear-time reduction
from S-form DQBF in CNF, which is known to be NEXP-complete, into S-form
DQBF in DNF, thereby establishing NEXP-hardness of the latter, and by exten-
sion of H-form DQBF in CNF. The reduction is in fact a direct generalization of
the Tseitin translation known from propositional logic and QBF [27]—we add
universal Tseitin variables and make no existential variable depend on them.

We say that two DQBFs Ψ and Ψ ′ are logically equivalent if they have the
same set of models.

Theorem 4. There is a linear-time algorithm that takes an input S-form DQBF
with a CNF matrix and outputs a logically equivalent S-form DQBF with a DNF
matrix.

Proof. Let Ψ = ∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn
) ·ψ be an S-form DQBF where

the matrix ψ = C1 ∧ · · · ∧ Cr is a CNF. We define DNF(Ψ) as

∀t1 · · · ∀tr∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn
) · DNF(ψ) ,

where DNF(ψ) is the usual propositional Tseitin conversion into DNF applied to
the matrix ψ, and whose auxiliary variables are T := {t1, . . . , tr}, i.e.

DNF(ψ) := DNF(C1) ∨ · · · ∨ DNF(Cr) ∨ (t1 ∧ · · · ∧ tr) ,

where DNF(Ci) := Ti

∨
a∈Ci

Ti,a , Ti,a := (ti ∧ a), and Ti := (ti
∧

a∈Ci
a). Note

that this translation does indeed generalise QBF Tseitin translation.
Clearly, DNF(Ψ) can be computed in linear time. We now show that Ψ and

DNF(Ψ) are logically equivalent. Since no existential variable depends on any
T -variable, the dependency structure of both formulas is the same.

Let f model Ψ , and let α ∈ 〈vars∀(DNF(Ψ))〉. If α(t1) = · · · = α(tr) = 1, then
the top-level term t1∧· · ·∧ tr is satisfied. Otherwise, let i be such that α(ti) = 0.
Because f is a model for Ψ , there is a literal a ∈ Ci for which the following
holds: α�vars∀(Ψ) ∪ f(α�vars∀(Ψ))(a) = 1. Hence, the term Ti,a is satisfied. That
means f is a model for DNF(Ψ) as well.

Conversely, let f be a model for DNF(Ψ). For an assignment α ∈ 〈vars∀(Ψ)〉,
let Zα := {i : Ci[α ∪ f(α)] = 0} (we can write f(α) because no function in
f depends on any variable in T , and so α contains full information for the
application of f). We show that Zα = ∅ for every α ∈ 〈vars∀(Ψ)〉, which means

44 J. Blinkhorn et al.

f is a model for Ψ . Let α ∈ 〈vars∀(Ψ)〉. Consider the β ∈ 〈T 〉 defined by
β(ti) = 0 ⇐⇒ i ∈ Zα. It is easy to see that, whether i ∈ Zα or not, α ∪ β ∪
f(α ∪ β) falsifies every term Ti and Ti,a, a ∈ Ci. But f is a model for DNF(Ψ),
so α ∪ β ∪ f(α ∪ β) must satisfy some term—we conclude that it satisfies the
top-level term t1 ∧ · · · ∧ tr, and hence Zα = ∅.

Corollary 1. Evaluating S-form DQBF in DNF and H-form DQBF in CNF is
NEXP-complete.

Note that the proof of Theorem 4 goes through without modification even if
we omit the terms Ti. Indeed, such a version would be a generalization of the
Plaisted-Greenbaum translation for propositional logic and QBF [20].

The computational complexity of H-form DQBF manifests in an interesting
way. Algorithm 1 proceeds in essentially the same way as QBF (and proposi-
tional) DP-resolution, eliminating variables one by one. In the QBF case, this
process runs in at most single-exponential time, since there is only a single-
exponential number of different clauses. In DQBF however, that would vio-
late the hypothesis that EXP �= NEXP, and indeed, our algorithm can in gen-
eral take double-exponential time and space. This is because our objects are
clause-strategy pairs, and the number of different strategies is in general double-
exponential. Every variable elimination step can asymptotically square the num-
ber of objects in the database, and this repeated squaring, unchecked by a bound
on the total number of available objects, results in a double-exponential blow-
up. Thus, in a sense, DQBF is ‘one of the hardest’ problems that can still be
tackled with a DP-resolution-style algorithm—repeated squaring unfolds into its
worst case here and, under standard complexity assumptions, cannot work for
super-double-exponential problems anymore.

5 Conclusion

We presented a new decision procedure for DQBF in the style of Davis-Putnam
resolution [12]. Based on the M-Res proof system [4], it constructs partial Her-
brand functions along with derived clauses. The algorithm can thus be said to
reason directly at the level of strategies. This is in contrast with known decision
procedures for DQBF, which rely on quantifier expansion to reduce the prob-
lem to SAT/QBF [7,17], or adapt search-based algorithms for QBF by imposing
additional constraints that enforce consistency with DQBF semantics [14,15,26].
Our decision procedure requires input DQBF in H-Form, as opposed to the more
commonly used S-Form [2]. We presented a linear-time algorithm that converts
S-Form DQBF into H-Form DQBF, thereby showing that this requirement can
be easily met. As a corollary, we establish NEXP-completeness of evaluating
DQBF in H-Form.

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 45

References

1. Azhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative
games of incomplete information. J. Comput. Math. Appl. 41, 957–992 (2001)

2. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and Boolean formu-
lae: a certification perspective of DQBF. Theor. Comput. Sci. 523, 86–100 (2014)

3. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018)

4. Beyersdorff, O., Blinkhorn, J., Mahajan, M.: Building strategies into QBF proofs.
J. Autom. Reasoning (2020). (in Press)

5. Giunchiglia, E., Tacchella, A. (eds.): SAT 2003. LNCS, vol. 2919. Springer, Hei-
delberg (2004). https://doi.org/10.1007/b95238

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

7. Bubeck, U., Büning, H.K.: Dependency quantified horn formulas: models and com-
plexity. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 198–211.
Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 21

8. Buss, S.R., Hoffmann, J., Johannsen, J.: resolution trees with lemmas: resolu-
tion refinements that characterize DLL algorithms with clause learning. Logical
Methods Comput. Sci. 4, (4), (2008). https://doi.org/10.2168/LMCS-4(4:13)2008,
https://lmcs.episciences.org/860

9. Buss, S.R., Kolodziejczyk, L.A.: Small stone in pool. Logical Methods Com-
put. Sci. 10(2), (2014). https://doi.org/10.2168/LMCS-10(2:16)2014, https://
lmcs.episciences.org/852

10. Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of the full PDDL+
language into SMT. In: Coles, A.J., Coles, A., Edelkamp, S., Magazzeni, D., Sanner,
S. (eds.) Proceedings of the Twenty-Sixth International Conference on Automated
Planning and Scheduling, ICAPS 2016, pp. 79–87. AAAI Press (2016)

11. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002) (electronic)

12. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

13. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
354–370. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-
5 20

14. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF,
presented at Workshop on Pragmatics of SAT (POS) (2012). https://arise.or.at/
pubpdf/Algorithm for Solving DQBF .pdf

15. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: instantiation-based DQBF
solving. In: Berre, D.L. (ed.) Workshop on Pragmatics of SAT (POS). EPiC Series
in Computing, vol. 27, pp. 103–116. EasyChair (2014)

16. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence
checking of partial designs using dependency quantified boolean formulae. In: IEEE
31st International Conference on Computer Design, ICCD 2013, pp. 396–403. IEEE
Computer Society (2013)

17. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: Nebel, W., Atienza, D. (eds.) Design,
Automation & Test in Europe Conference (DATE), pp. 1617–1622. ACM (2015)

https://doi.org/10.1007/b95238
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/11814948_21
https://doi.org/10.2168/LMCS-4(4:13)2008
https://lmcs.episciences.org/860
https://doi.org/10.2168/LMCS-10(2:16)2014
https://lmcs.episciences.org/852
https://lmcs.episciences.org/852
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-662-54577-5_20
https://arise.or.at/pubpdf/Algorithm_for_Solving__DQBF_.pdf
https://arise.or.at/pubpdf/Algorithm_for_Solving__DQBF_.pdf

46 J. Blinkhorn et al.

18. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

19. Meel, K.S., et al.: constrained sampling and counting: universal hashing meets
SAT solving. In: Darwiche, A. (ed.) Beyond NP. AAAI Workshops, vol. WS-16-05.
AAAI Press (2016)

20. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form transla-
tion. J. Symbolic Comput. 2(3), 293–304 (1986). https://doi.org/10.1016/S0747-
7171(86)80028-1

21. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 375–392. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 23

22. Randal E. Bryant: Graph-based algorithms for boolean function manipulation.
IEEE Trans. Comput. C-35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.
1676819

23. Scholl, C., Jiang, J.R., Wimmer, R., Ge-Ernst, A.: A PSPACE subclass of depen-
dency quantified Boolean formulas and its effective solving. In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 1584–1591. AAAI
Press (2019)

24. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combinato-
rial sketching for finite programs. In: Shen, J.P., Martonosi, M. (eds.) Proceedings
of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, pp. 404–415. ACM (2006)

25. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Prelim-
inary report. In: Aho, A.V., et al. (eds.) ACM Symposium on Theory of Computing
(STOC), pp. 1–9. ACM (1973)

26. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Janota, M., Lynce, I.
(eds.) SAT 2019. LNCS, vol. 11628, pp. 388–405. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24258-9 27

27. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Stud.
Constructive Math. Math. Logic Part 2, 115–125 (1968)

28. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their
applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-030-24258-9_27

Lower Bounds for QCDCL
via Formula Gauge

Benjamin Böhm(B) and Olaf Beyersdorff(B)

Friedrich Schiller University Jena, Jena, Germany
{benjamin.boehm,olaf.beyersdorff}@uni-jena.de

Abstract. QCDCL is one of the main algorithmic paradigms for solving
quantified Boolean formulas (QBF). We design a new technique to show
lower bounds for the running time in QCDCL algorithms. For this we
model QCDCL by concisely defined proof systems and identify a new
width measure for formulas, which we call gauge. We show that for a
large class of QBFs, large (e.g. linear) gauge implies exponential lower
bounds for QCDCL proof size.

We illustrate our technique by computing the gauge for a number
of sample QBFs, thereby providing new exponential lower bounds for
QCDCL. Our technique is the first bespoke lower bound technique for
QCDCL.

Keywords: QBF · QCDCL · Proof complexity · Resolution · Lower
bounds

1 Introduction

The satisfiability problem for propositional formulas (SAT) is one of the central
problems of computer science. Traditionally perceived as a hard problem due to
its NP completeness, SAT is nowadays very efficiently tackled by SAT solvers,
building on the paradigm of conflict-driven clause learning (CDCL) [27], which
solve problems in even millions of variables on many industrial problems.

The success of SAT solving has been transferred to computationally even
more challenging settings, with quantified Boolean formulas (QBF) receiving key
attention during the last decade [14]. One of the main approaches to QBF solving
lifts CDCL to the quantified level, resulting in QCDCL [34]. In addition to
QCDCL there are a number of further competing approaches to QBF solving [20,
24,28]. Due to its PSPACE completeness, QBFs allow to encode many problems
more succinctly, thus allowing to tackle even further applications [31].

Understanding which formulas are hard for (Q)CDCL is one of the most
fascinating questions, both from a theoretical and a practical point of view.
The main approach to this problem is through interpreting runs of SAT and
QBF solvers on unsatisfiable formulas as formal proofs of their unsatisfiability.
Since learned clauses in CDCL are derivable in resolution, it was noted early on
that each run of a CDCL solver on an unsatisfiable formula can be efficiently
c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 47–63, 2021.
https://doi.org/10.1007/978-3-030-80223-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_5

48 B. Böhm and O. Beyersdorff

translated into a resolution refutation [3]. Somewhat surprisingly, the converse
holds as well, and when allowing arbitrary non-deterministic decision schemes,
CDCL and propositional resolution are equivalent [29]. However, practical CDCL
using decision schemes such as VSIDS [33] is exponentially weaker than the full
resolution system [32].

Nevertheless, practical CDCL schemes are simulated by resolution and thus
proof size lower bounds for resolution translate into lower bounds for CDCL run-
ning time. To obtain such lower bounds we can utilise the vast proof complexity
machinery of resolution lower bound techniques [22] to show a plethora of lower
bounds for combinatorial, random, and further formulas. Indeed, resolution is
arguably the best-understood proof system, intensively studied long before the
advent of SAT solving.

The situation is somewhat more intricate regarding the relation between
QCDCL and Q-resolution, the latter being the simplest and most-studied ana-
logue of propositional resolution for QBF [21]. The first result regarding their rel-
ative strength is due to Janota [19], who proved that practical QCDCL does not
simulate Q-resolution. This can be interpreted as the QBF analogue of Vinyals
result for practical CDCL vs resolution [32] (though [19] actually predates [32]).
In contrast, the celebrated result on the equivalence of non-deterministic CDCL
and resolution [29] does not lift to QBF as very recently shown in [7]: (non-
deterministic) QCDCL and Q-resolution are incomparable, i.e., there exist for-
mulas exponentially hard for Q-resolution, but easy for QCDCL, and vice versa.

This leaves us with the conundrum of how to show lower bounds for QCDCL.
Though we understand Q-resolution fairly well and have a number of dedicated
techniques for lower bounds in that system [5,6,8–10,12], unlike in the SAT case,
these do not automatically apply to QCDCL.

The existing information on QCDCL lower bounds can be summarized as
follows. In addition to the above-mentioned lower bound of [19] for practical
QCDCL, we showed in [7] that under certain conditions, lower bounds from
Q-resolution can be lifted to QCDCL. Also, while QCDCL runs on false QBFs
cannot be efficiently transformed into Q-resolution proofs, they can be translated
into long-distance Q-resolution proofs, an exponentially stronger proof system
designed to model clause learning in QCDCL [1,16]. However, we only have very
few examples of hard formulas for long-distance Q-resolution [2,9,10], which
again are lifted from Q-resolution hardness.

In summary, it is fair to say that QCDCL is rather poorly understood from
a theoretical point of view and in particular lower bound techniques that would
allow to show exponential lower bounds for QCDCL are lacking.

Our Contributions. We devise the first dedicated lower bound technique for
QCDCL (with arbitrary clause learning mechanisms including those used in prac-
tise). In contrast to previous lower bounds for QCDCL, our technique does not
import Q-resolution hardness and thus applies to different formulas, regardless
of whether they are hard for Q-resolution or not. We already mention at this
point though, that our technique is not completely general, but is restricted to
Σb

3-formulas that meet a certain XT-condition, considered already in [7].

Lower Bounds for QCDCL via Formula Gauge 49

Technically, our approach rests on interpreting QCDCL runs in a formal
framework of proof systems, already used in [7]. Further, we define a property
of long-distance Q-resolution proofs, which we call quasi level-ordered. This is
inspired by the notion of level-ordered proofs, introduced in [20], where the order
of resolution steps in proofs must follow the quantification order in the prefix.
Quasi level-order proofs relax that condition (Definition 4).

Our lower bound technique then rests on two steps: (1) We show that for Σb
3-

formulas with the XT-condition, QCDCL proofs can be efficiently translated into
quasi level-ordered Q-resolution proofs. (2) We define a new measure called the
gauge of a QBF and show that large (i.e. linear) gauge implies exponential size in
quasi level-ordered Q-resolution. Together, (1) and (2) imply that formulas with
the XT-property and large gauge are hard for QCDCL (our main Theorem 13).

We illustrate our technique on a couple of examples on which computing the
gauge is fairly straightforward. Thus, though showing (1) and (2) above is rather
technical, the lower bound technique itself is quite easily applicable.

It is also interesting to mention that our new notion of gauge is some kind
of width measure on clauses. Showing proof size lower bounds via width lower
bounds is a very well-explored theme in proof complexity, both propositionally
[4] and in QBF [6,11]. We show, however, that gauge and proof width are not
related in general.

Organisation. The remainder of this article is organised as follows. We start in
Sect. 2 by reviewing notions from QBF, including Q-resolution and long-distance
Q-resolution. In Sect. 3 we sketch QCDCL and explain how to model it as a
formal proof system QCDCL. In Sect. 4 we introduce a new notion of quasi level-
ordered proofs and give an algorithm to translate QCDCL proofs into quasi-level
ordered Q-resolution. Section 5 introduces our lower bound method for quasi-level
ordered proofs via the gauge measure, which we apply in Sect. 6 to a number of
old and new QBF families. We conclude in Sect. 7 with some open questions.

2 Preliminaries

Propositional and Quantified Formulas. Variables and negated variables
are called literals, i.e., for a variable x we can form two literals: x and its negation
x̄. We denote the corresponding variable as var(x) := var(x̄) := x.

A clause is a disjunction of literals, sometimes also viewed as a set of literals.
The empty clause is the clause consisting of zero literals, denoted (⊥). Terms are
conjunctions of literals. Again, terms can be considered as sets of literals. A CNF
(conjunctive normal form) is a conjunction of clauses. For C = �1 _ . . . _ �m we
define var(C) := {var(�1), . . . , var(�m)}. For a CNF φ = C1 ^ . . . ^ Cn we define
var(φ) :=

⋃n
i=1 var(Ci). A clause C is called tautological, if there is a variable x

with x, x̄ P C.
An assignment σ of a set of variables X is a non-tautological set of literals,

such that for all x P X there is � P σ with var(�) = x. The restriction of a clause
C by an assignment σ is defined as C|σ := � (true) if C Xσ ‰ H, and

∨
�PC,� �Pσ �

50 B. Böhm and O. Beyersdorff

otherwise. One can interpret σ as an operator that sets all literals from σ to the
Boolean constant 1. We denote the set of assignments of X by 〈X〉.

A QBF (quantified Boolean formula) Φ = Q · φ is a propositional formula
φ (also called matrix) together with a prefix Q. A prefix Q1x1Q2x2 . . . Qkxk

consists of variables x1, . . . , xk and quantifiers Q1, . . . , Qk P {∃,∀}. We obtain
an equivalent formula if we unite adjacent quantifiers of the same type. Therefore
we can always assume that our prefix is in the form of Q = Q′

1X1Q
′
2X2 . . . Q′

sXs

with non-empty sets of variables X1, . . . , Xs and quantifiers Q′
1, . . . , Q

′
s P {∃,∀}

such that Q′
i ‰ Q′

i+1 for i P [s − 1]. For a variable x in Q we denote the
quantifier level with respect to Q by lv(x) = lvΦ(x) = i, if x P Xi. Variables
from Φ are called existential, if the corresponding quantifier is ∃, and universal
if the quantifier is ∀.

A QBF with CNF matrix is called a QCNF. We require that all clauses from
a matrix of a QCNF are non-tautological, otherwise we just delete these clauses.
We further require that all variables in the matrix appear in the prefix. Since we
will only discuss refutational proof systems, we only consider false QCNFs.

A QBF can be interpreted as a game between two players ∃ and ∀. These
players have to assign the respective variables one by one along the quantifier
order from left to right. The ∀-player wins the game if and only if the matrix of
the QBF gets falsified by this assignment. It is well known that for every false
QBF Φ = Q · φ there exists a winning strategy for the ∀-player.

Q-resolution and Long-Distance Q-Resolution. Let C1 and C2 be two
clauses of a QCNF Φ. Let also � be an existential literal with var(�) �P var(C1) Y
var(C2). Then the resolvent of C1 _ � and C2 _ �̄ over � is defined as

(C1 _ �)
�
�� (C2 _ �̄) := C1 _ C2.

Let C := u1 _ . . . _ um _ x1 _ . . . _ xn _ v1 _ . . . _ vs be a clause from Φ, where
u1, . . . , um, v1, . . . , vs are universal literals, x1, . . . , xn are existential literals and
v1, . . . , vs are exactly those literals v P C such that v is universal and lv(v) >
lv(xi) for all i P [n]. Then we can perform a reduction step and obtain

red(C) := (u1 _ . . . _ um _ x1 _ . . . _ xn).

For a CNF φ = {C1, . . . , Ck} we define red(φ) := {red(C1), . . . , red(Ck)}.
Q-resolution [21] is a refutational proof system for false QCNFs. A Q-resolution

proof π of a clause C from a QCNF Φ = Q · φ is a sequence of clauses π =
C1, . . . , Cm with Cm = C. Each Ci has to be derived by one of the following
three rules:

– Axiom: Ci P φ;
– Resolution: Ci = Cj

x
�� Ck for some j, k < i and x P var∃(Φ), and Ci is

non-tautological;
– Reduction: Ci = red(Cj) for some j < i.

Note that none of our axioms are tautological by definition. A refutation of
a QCNF Φ is a proof of the empty clause (⊥).

Lower Bounds for QCDCL via Formula Gauge 51

To model clause learning in QCDCL, the proof system long-distance Q-
resolution was introduced in [1,34]. This extension of Q-resolution allows to derive
universal tautologies under specific conditions. As in Q-resolution, there are three
rules by which a clause Ci can be derived. The axiom and reduction rules are
identical to Q-resolution, but the resolution rule is changed to

– Resolution (long-distance): Ci = Cj
x
�� Ck for some j, k < i and x P var∃(Φ).

The resolvent Ci is allowed to contain a tautology u _ ū if u is a universal
variable. If u P var(Cj) X var(Ck), then we additionally require lv(u) > lv(x).

Note that a long-distance Q-resolution proof without tautologies is just a Q-
resolution proof.

3 QCDCL as a Formal Proof System

In this section we review quantified conflict-driven clause learning (QCDCL) and
its formalisation as a proof system from [7]. This provides the formal framework
for our subsequent proof complexity analysis.

QCDCL is the quantified version of the well-known CDCL algorithm (see
[27,33] for further details on CDCL, and [17,23,34] for QCDCL). Let Φ = Q·φ be
a false QCNF. Roughly speaking, QCDCL consists of two interleaved processes:
propagation and learning.

In the propagation process we generate assignments with the goal to either
find a satisfying assignment or to obtain a conflict. We start with clauses from
φ that force us to assign literals such that we do not falsify these clauses (called
unit clauses). The underlying idea of this process is unit propagation. One can
think of a clause x1 _ . . ._xn as an implication (x̄1 ^ . . .^ x̄n−1) → xn. That is,
if we already assigned the literals x̄1, . . . , x̄n−1, then we are forced to assign xn

in order to satisfy this clause. In QBF, we also insert reduction steps into this
process, i.e., we are interested in clauses that become unit after reduction. For
example, the clause (x̄1 ^ . . .^ x̄n−1) → (xn _u) for an existential literal xn and
a universal literal u with lv(xn) < lv(u) can also be used as a ground clause for
propagating xn.

Performing unit propagation, the goal is to prevent a conflict for as long as
possible. However, it is not guaranteed that we can even perform any unit prop-
agations by just starting with the formula. Therefore we will make decisions, i.e.,
we assign literals without any solid reason. With the aid of these decisions (one
can also think of assumptions) we can provoke further unit propagations. Since
decision making is one of the non-deterministic components of the algorithm, we
only make decisions if there are no more unit propagations available. In QCDCL
these decisions follow the quantification order, i.e., we always decide a variable
from the leftmost quantifier block.

After obtaining a conflict, i.e., falsifying a clause, we start the clause learning
process. Here the underlying idea is to use Q-resolution resp. long-distance Q-
resolution. We start with the clause that caused the conflict and resolve it with
clauses that implied previous literals in the assignment in the reverse propagation

52 B. Böhm and O. Beyersdorff

order. At the end we get a clause such that is derived from existing clauses by
long-distance Q-resolution. We add the learned clause to φ, backtrack to a state
before we assigned all literals of this clause and restart the propagation process.
The algorithm ends when we learn the empty clause (⊥) and therefore obtain a
refutation of Φ.

QCDCL has to handle both refutations of false formulas as well as prove the
validity of true formulas. Therefore one would additionally need to implement
cube learning (or term learning) for satisfying assignments. Since we are only
interested in refutations (otherwise we could not compare with Q-resolution), we
will omit this aspect of QCDCL.

To prove rigorous lower bounds on the running time of QCDCL we cast
QCDCL as a formal proof system. We recall the relevant details from [7], where
we fully formalised all components of QCDCL. Each QCDCL run consists of
backtracking steps and restarts. Between them we create trails, in which we
store all information on decisions and unit propagations.

Definition 1 (trails, repeated from[7]). Let Φ = Q · φ be a QCNF in n
variables. A trail T for Φ is a sequence of literals (or ⊥) of variables from Φ
with some specific properties. We distinguish two types of literals in T : decision
literals, that can be both existential and universal, and propagated literals, that
are either existential or ⊥. We write a trail T as

T = (p(0,1), . . . , p(0,g0);d1, p(1,1), . . . , p(1,g1); . . . ;dr, p(r,1), . . . , p(r,gr)),

where we denote decision literals by di and propagated literals by p(i,j). We are
not allowed to make a new decision unless there are no more propagations pos-
sible. Also, decision literals have to be level-ordered, i.e., we have to choose a
leftmost quantified variable (still unassigned) as the next decision.

There are some further requirements on T , for which we refer to [7].

For unit propagation we need the notion of unit clauses that allow us to
assign a variable without making a decision. We call a clause C a unit clause if
red(C) = (x) for an existential literal x or x = ⊥.

The next definition presents the main framework for the analysis of QCDCL
as a proof system. After having defined trails in a general way, we want to specify
the way a trail can be generated during a QCDCL run.

Definition 2 (QCDCL proof systems[7]). Let Φ = Q · φ be a QCNF. We
call a triple of sequences

ι = ((T1, . . . , Tm), (C1, . . . , Cm), (π1, . . . , πm))

a QCDCL proof from Φ of a clause C, if for all i P [m] the trail Ti uses the
QCNF Q · (φ Y {C1, . . . , Ci−1}), where Cj is a clause learnable from Tj and
Cm = C. Each πi is the long-distance Q-resolution derivation of the clause Ci

from Q · (φ Y {C1, . . . , Ci−1}) that we learned from the trail Ti.
Between two trails Ti and Ti+1 we backtrack to some point which we can

choose freely. Backtracking to the start (before any variable was assigned) is
called restarting. If C = (⊥) we call ι a refutation.

Lower Bounds for QCDCL via Formula Gauge 53

By sticking together π1, . . . , πm, we obtain a long-distance Q-resolution deriva-
tion π of C from Φ. We identify QCDCL proofs with this exact π.

We require that all trails are naturally created, which means that we are not
allowed to skip unit propagations if they are possible, as we explained before. A
more detailed description of this condition is given in [7].

We remark that though QCDCL proofs are basically long-distance Q-resolution
derivations (i.e., QCDCL is simulated by long-distance Q-resolution), these sys-
tem are not equal as QCDCL imposes a particular structure on long-distance
Q-resolution proofs. Indeed, long-distance Q-resolution is exponentially stronger
than QCDCL (cf. [7]).

4 Quasi Level-Ordered Proofs

For the remainder of this article we will entirely focus on Σb
3 formulas and

throughout fix the prefix ∃X∀U∃T , where X, U , and T are pairwise disjoint and
non-empty sets of variables.

Our ultimate aim will be to develop a lower bound technique for such formulas
for QCDCL. Conceptually, our technique is inspired by an approach for level-
ordered proofs, which is why we recall that notion from [20].

Definition 3 ([20]). A long-distance Q-resolution proof π from a QCNF Φ of a
clause C is called level-ordered if for each path P in π and two resolution steps
in P over variables �1 and �2 the following holds: if the resolution over �1 is
closer to the root C than the resolution over �2, then lv(�1) ď lv(�2).

For level-ordered proofs one can devise lower bounds as follows. A level-
ordered long-distance Q-resolution refutation π of a Σb

3-formula Φ = ∃X∀U∃T ·φ
always starts with T -resolutions and ends with X-resolutions. We then count
the clauses consisting only of X-literals at the transitions from a T -resolution
to some X-resolution. For each τ P 〈X〉 we can find such a clause Cτ that is
falsified by τ .

We will use this idea in a more general setting by introducing the notion of
quasi level-ordered proofs where only the existence of these Cτ is required.

Definition 4. A long-distance Q-resolution refutation π of a Σb
3 formula with

prefix ∃X∀U∃T is called quasi level-ordered, if for each assignment τ P 〈X〉
there exists an X-clause Cτ which is falsified by τ and the subproof πCτ

⊆ π of
Cτ is level-ordered.

Clearly, level-ordered proofs are quasi level-ordered, but the converse does not
hold in general.

In Sect. 5 we will devise a lower bound technique for quasi level-ordered
proofs. To get the connection to QCDCL, we show that each QCDCL refutation
of Σb

3 formulas with a special property can be efficiently transformed into a quasi
level-ordered Q-resolution refutation. The property needed is the XT-property,
which we recall from [7].

54 B. Böhm and O. Beyersdorff

Definition 5 ([7]). Let Φ be a QCNF of the form ∃X∀U∃T ·φ. We call a clause
C in the variables of Φ

– X-clause, if var(C) X X ‰ H, var(C) X U = H and var(C) X T = H,
– T-clause, if var(C) X X = H, var(C) X U = H and var(C) X T ‰ H,
– XT-clause, if var(C) X X ‰ H, var(C) X U = H and var(C) X T ‰ H,
– XUT-clause, if var(C) X X ‰ H, var(C) X U ‰ H and var(C) X T ‰ H.

We say that Φ fulfils the XT -property if φ contains no XT -clauses as well
as no unit T-clauses and there do not exist two T-clauses C1, C2 P φ that are
resolvable.

Intuitively, this says that there is no direct connection between the X- and
T -variables, i.e., Φ does not contain clauses with X- and T -variables, but no
U -variables. This XT-property allows us to prove several properties regarding
QCDCL refutations.

Lemma 6 ([7]). Let Φ be a QCNF that fulfils the XT-property. Then the fol-
lowing holds:

(i) It is not possible to derive XT -clauses by long-distance Q-resolution.
(ii) It is not possible to resolve two XUT -clauses over an X-literal in a QCDCL

proof.
(iii) Each QCDCL refutation of Φ is a Q-resolution refutation (not just a long-

distance Q-resolution refutation).

Now we will work towards the transformation of QCDCL proofs into quasi
level-ordered Q-resolution refutations. This transformation is described as an
algorithm in the following theorem.

Theorem 7. Let Φ be a Σb
3 QCNF that fulfils the XT-property. Then each

QCDCL refutation π of Φ can be efficiently transformed into a quasi level-ordered
Q-resolution refutation π′ of Φ with |π′| P O(|π|4).

Proof. First, because of the XT-property each QCDCL refutation is also a Q-
resolution refutation.

Let π = C1, . . . , Cm = ⊥. Note that clauses could occur more than once in
a proof since we cannot simply shorten a proof in QCDCL. Hence we will use
indices to identify clauses in a proof. Each index not only determines the clause
itself, but also its position in the proof. This is the reason why we will only use
indices in the algorithm in order to store informations about a particular clause.

Technically, we define an order that will help us determine if a resolution
Cd �� Ce takes place before or after another resolution Cd′ �� Ce′ in a given
proof. For this we define a total order � on {{d, e} : d, e P N, d ‰ e} as follows:

A � B ⇔ max A < max B or (max A = max B and minA ď min B).

Lower Bounds for QCDCL via Formula Gauge 55

We use the notation A ≺ B for A � B and A ‰ B.
Algorithm 1: The algorithm needs a QCDCL refutation π as input and
outputs a quasi level-ordered long-distance Q-resolution refutation π′.
1 MX := {m}; MXUT := H; L := H; π′ := π; i := 1;
2 while MX �= H do
3 while MX �= H do
4 choose c P MX maximal;
5 if subproof πCc

of Cc is level-ordered then
6 add c to L;
7 else
8 if last step in π′

Cc
was a resolution over X, say Cc = Cd

x
�� Ce

then
9 add d and e to MX

10 else
11 Under all transitions from X-resolutions to T -resolutions in

π′
Cc

of the form Cd
x
�� Ce = Cf and Cf

t
�� Cg = Cj let {d, e}

be maximal with respect to �;
12 W.l.o.g. let Cd be the XUT-clause and Ce be the X-clause

(otherwise swap d and e);
13 add (d, e, c) to MXUT ;
14 add e to MX ;
15 end
16 end
17 delete c from MX ;
18 end

19 M
(i)
XUT := MXUT ;

20 i := i + 1;
21 while MXUT �= H do
22 Choose (d, e, c) P MXUT ;
23 Let Cd, Ca1 , Ca2 , . . . , Cak

, Cc be the path from Cd to Cc. Since Cc

is an X-clause, all T -literals from Cd have to be resolved away. Let
Ca1 = Cd

x
�� Ce, Caj

= Caj−1

rj

�� Cbj−1 for T -variables rj , some
indices bj−1, j = 2, . . . , k and Cc = red(Cak

);

24 Add the clauses Ca′
2

:= Cd
r1
�� Cb1 , Ca′

j
:= Ca′

j−1

rj

�� Cbj−1 for
j = 3, . . . , k and Ca′

k+1
:= red(Ca′

k
). If somewhere the resolution

does not work due to a lacking literal rj or x, we define the
corresponding Ca′

j
as the clause that lacks this literal. The Ca′

j
are

inserted at the end of the proof.;
25 add a′

k+1 to MX ;
26 delete (d, e, c) from MXUT ;
27 end
28 end

56 B. Böhm and O. Beyersdorff

We sketch how the transformation (Algorithm 1) works: Throughout the
whole process we work with two sets MX and MXUT . The set MX contains
indices of X-clauses, where initially we start with MX = {m} (remember that
Cm = (⊥)). For each c P MX we check whether the clause Cc has a level-ordered
subproof. If the subproof is not level-ordered, and if the last step before Cc was
an X-resolution, we just add the indices both parent clauses of Cc to MX and
delete c from it. Otherwise, if the subproof is not level-ordered, but the last step
before Cc was no X-resolution, we search for the last transition that violates
the level-order condition. This must be a transition from an X-resolution to a
T -resolution. After this transition there will be only T -resolutions until we reach
Cc. One of the parent clauses of this X-resolution, which we call Cd and Ce, is an
X-clause and the other one is an XUT-clause due to the XT-property (Lemma
6). The index of the X-clause (either d or e) is again stored in MX , while we
delete c from MX . However, for the XUT-clauses, which are stored as triples
(d, e, c) in MXUT (where Cd is the XUT-clause), we have to add several clauses
to the proof, including a new X-clause Ca′ . This clause Ca′ is then added to MX

as well, and the loop repeats until there are no more clauses in MX left. Note
that these added clauses will be part of a dead end in the proof and therefore
are not necessary for the refutation itself. However, we need these new clauses
for a counting argument in our lower bound technique.

We will show that at the end we return a proof that is quasi level-ordered.
More specifically, the X-clauses we detect during the run whose subproofs are
level-ordered will be exactly the clauses Cτ from the definition of quasi level-
ordered proofs. This holds because, starting from the empty clause, whenever
we detect an X-resolution we can choose which parent clause we will consider
next. Hence we can choose the polarity of the X-variable we resolve over in the
current step. At the end, this last X-clause (whose subproof is level-ordered)
only consists of variables with the right polarity as previously chosen. Figure 1
depicts how the algorithm transforms a proof.

�

Algorithm 1 can be easily modified to also transform long-distance Q-
resolution refutations by adding more case distinctions to line 12. However, this
might lead to an exponential blow up.

5 A Lower Bound Technique via Gauge

Now that we have proven that QCDCL is simulated by quasi level-ordered proofs,
we continue by introducing a measure for Σb

3 QCNFs that will provide an expo-
nential lower bound for quasi level-ordered refutations of these formulas.

Definition 8. For a Σb
3 QCNF Φ with prefix ∃X∀U∃T let WΦ be the set of all

Q-resolution derivations π from Φ of some X-clause such that π only contains
T -resolution and reduction steps. We define the gauge of Φ as

gauge(Φ) := min{|C| : C is the root of some π P WΦ}.

Lower Bounds for QCDCL via Formula Gauge 57

Fig. 1. Sketch of the functionality of the algorithm. Below each clause Cj we specify
the type of clause (X- or XUT-clause). Newly added parts are coloured red. Triangles
labeled with “l.-o.” are level-ordered subproofs, otherwise they are not level-ordered
and we can find a transition from an X-resolution to a T -resolution. The corresponding
clause Cc is then one of the Cτ clauses for a particular τ . (Color figure online)

Intuitively, gauge(Φ) is the minimal number of X-literals that are necessarily
piled up in a level-ordered Q-resolution derivation in which we want to get rid of
all T -literals (hence we consider proofs of X-clauses).

Before showing how gauge lower bounds imply proof size lower bounds let us
consider an example for which we recall the CRn formulas from [20].

Definition 9 ([20]). The QCNF CRn consists of the quantifier prefix

∃x(1,1), . . . , x(1,n), x(2,1), . . . , x(2,n), . . . , x(n,1), . . . , x(n,n)∀u∃s1, . . . , sn, t1, . . . , tn

and matrix clauses (x(i,j)_u_si), (x̄(i,j)_ū_tj) for i, j P [n] as well as
∨

iP[n] s̄i

and
∨

iP[n] t̄i.

The CRn formulas describe a ‘completion’ game on an (n × n)-matrix (cf.
[20]). It is readily checked that the CRn formulas fulfil the XT-property. We can
now compute their gauge. Note that according to our convention, the T -variables
comprise of all variables s1, . . . , sn, t1, . . . , tn.

58 B. Böhm and O. Beyersdorff

Lemma 10. We have gauge(CRn) = n.

Proof. Since there are no X-clauses as axioms, we necessarily need to resolve
over T somehow. For this we need T -literals of negative polarity, hence each
π P WCRn

contains
∨

iP[n] s̄i or
∨

iP[n] t̄i. In each π P WCRn
every T -literal has to

be resolved away. For this reason we need the corresponding clauses x(i,j)_u_si

or x̄(i,j) _ ū _ tj . Because we cannot resolve over X in π P WCRn , there are at
least n X-literals that are piled up and therefore gauge(CRn) = n.
�

Towards our lower bound technique we now estimate the size of derivations
of X-clauses in terms of gauge.

Lemma 11. Let Φ be a Σb
3 QCNF. Let π be a level-ordered Q-resolution proof

from Φ of a non-tautological X-clause D with |D| = c. Then |π| ě 2gauge(Φ)−c.

Proof. Let V := X\var(D). For each assignment τ P 〈V 〉 we will find a path Pτ

in πn by going backwards starting from D. For each resolution step over some
x P V we choose the path whose literals are negated by τ , hence we choose the
clause that contains x if τ(x) = 0 and the other clause otherwise. If there are
resolution steps over variables from var(D), then we will always choose the literal
from D. If we reach a reduction step, we will just expand the path by this one
parental clause. If we detect a resolution step over a T -literal, we stop there.

Let Cτ be the clause at which we stop. Clearly, the subproof πCτ
of Cτ is

one of the derivations in WΦ, hence |Cτ | ě gauge(Φ). Then Cτ has to be a
non-tautological X-clause with at least gauge(Φ) different X-literals. Then Cτ

contains at least gauge(Φ)−c different X-literals whose variables are in V . These
literals are negated by the assignment τ .

Now let a be the number of these clauses Cτ by summing over all τ . Since
for each Cτ there are at most |X| − gauge(Φ) variables that are not contained
as some literal in the clause, there are at most 2|X|−gauge(Φ) paths that can lead
to each Cτ . Multiplying with the number of Cτ gives us at least the number of
paths τ P 〈V 〉, hence

2|X|−gauge(Φ) · a ě 2|X|−c

⇔ a ě 2|X|−c/2|X|−gauge(Φ) = 2gauge(Φ)−c.

Since each Cτ is a clause from π, we get |π| ě a ě 2gauge(Φ)−c.
�

Note that the bound from Lemma 11 is an exact lower bound (no asymptotics
involved). We will now use Lemma 11 to get a lower bound for quasi level-ordered
Q-resolution refutations. We will do this with a similar counting argument as in
Lemma 11 by counting the number of clauses Cτ in quasi level-ordered proofs.

Proposition 12. Each quasi level-ordered Q-resolution refutation of a Σb
3

QCNF Φ has size 2Ω(gauge(Φ)).

Lower Bounds for QCDCL via Formula Gauge 59

Proof. Let π be the shortest quasi level-ordered refutation of Φ. By the definition
of quasi level-ordered proofs we can find clauses Cτ for each τ P 〈X〉.

Let h := minτP〈X〉 |Cτ |. By Lemma 11 we get |π| ě 2gauge(Φ)−h, hence h ě
gauge(Φ)− log |π|. Each clause Cτ can have at most 2|X|−h assignments α P 〈X〉
such that Cα = Cτ . Let a := |{Cτ : τ P 〈X〉}|, then a · 2|X|−h ě 2|X| and thus

|π| ě a ě 2h ě 2gauge(Φ)−log |π| =
2gauge(Φ)

|π| .

We conclude that |π|2 P 2Ω(gauge(Φ)).
�

We combine Theorem 7 and Proposition 12 above and obtain a lower bound
for QCDCL on formulas with the XT-property.

Theorem 13. Each QCDCL refutation of a Σb
3 QCNF Φ that fulfils the XT-

property has size 2Ω(gauge(Φ)).

6 Applications of the Lower Bound Technique

We now apply our new lower bound technique via gauge to show exponential
lower bounds for QCDCL proof size (and thereby for QCDCL running time) for
a number of QBF families. First, by combining Lemma 10 with Theorem 13 we
obtain hardness for the CRn formulas from [20].

Corollary 14. The formulas CRn require exponential-size proofs in QCDCL.

With this result we gain an improved separation between Q-resolution and
QCDCL. It was already shown in [7] that Q-resolution and QCDCL are incompa-
rable. This involves constructing QBFs that are easy for QCDCL, but hard for
Q-resolution, and vice versa. One direction is shown via the QParity formulas
(Definition 18 below), which are hard for Q-resolution [9], but easy in QCDCL [7].
For the other direction, [7] used the Trapdoor [7] and Lonsing formulas [23], both
of which are easy for Q-resolution, but hard for QCDCL. However, both QBF fam-
ilies incorporate the propositional pigeonhole principle (PHP) and the hardness
of these formulas for QCDCL rests entirely on the hardness of PHP for propo-
sitional resolution [18]. This is somewhat unsatisfactory, as the hardness results
do not refer to quantification and in particular do not hold in the presence of
NP oracles (cf. [13,26] for a detailed formal account on how to equip QBF proofs
with NP oracles or equivalently QBF solving with SAT calls).

Our improved separation is shown in Corollary 14 above, as these formulas
are hard in QCDCL, but easy in Q-resolution [20]. Unlike the separations from [7],
this hardness result does not make any reference to propositional hardness but
also holds under NP oracles in the framework of [13].

We also note that Janota [19] already proved hardness of the QBFs CRn for
QCDCL with UIP learning. Corollary 14 improves on that result as well as our
hardness result holds for arbitrary learning schemes in QCDCL.

As our second example we introduce the following formulas.

60 B. Böhm and O. Beyersdorff

Definition 15. Let ENarrown := ∃x1, . . . , xn+1∀u1, . . . , un+1∃t1, . . . , tn·ψn with
the matrix ψn containing the clauses:

x1 _ u1 _ t1, x̄1 _ ū1 _ t1,
xi _ ui _ t̄i−1 _ ti, x̄i _ ūi _ t̄i−1 _ ti, for i = 2, . . . , n
xn+1 _ un+1 _ t̄n, x̄n+1 _ ūn+1 _ t̄n.

It is easy to see that ENarrown fulfils the XT-property. Next we will show an
exponential lower bound for ENarrown in QCDCL.

Lemma 16. We have gauge(ENarrown) = n + 1.

Proof. Let π P WENarrown . Define the sets of clauses

Z1 := {x1 _ u1 _ t1, x̄1 _ ū1 _ t1}
Zi := {xi _ ui _ t̄i−1 _ ti, x̄i _ ūi _ t̄i−1 _ ti} for i = 2, . . . , n

Zn+1 := {xn+1 _ un+1 _ t̄n, x̄n+1 _ ūn+1 _ t̄n}.

Let C be an axiom clause in π. Then C has to be contained in some set Zi as
above.

Case 1: C P Z1.
Then we have to get rid of t1 P C, hence we need a clause from Z2. But then

we have to get rid of t2 and so on: Z1 � Z2 � . . . � Zn � Zn+1. We conclude
that π has to contain at least one clause from each Zj , j P [n + 1]. Therefore we
have to pile up n + 1 X-literals.

Case 2: C P Zi for some i P {2, . . . , n}.
Then we have to get rid of t̄i−1 and ti P C, hence we need a clause from Zi−1

and Zi+1. After this we have to resolve over t̄i−2 and ti+1 and so on, leading to
a chain of resolutions Z1 ø . . . ø Zi−1 ø Zi � Zi+1 � . . . � Zn+1. Again,
we conclude that π has to contain at least one clause from each Zj , j P [n + 1].
Therefore we have to pile up n + 1 X-literals.

Case 3: C P Zn+1.
This works similarly to Case 1, except that we start at Zn+1 and go back-

wards: Z1 ø Z2 ø . . . ø Zn ø Zn+1.
�
Corollary 17. The QBFs ENarrown require exponential-size proofs in QCDCL.

The gauge of a formula is obviously some width measure and it seems natural
to wonder how it relates to the notion of the existential proof width1 of long-
distance Q-resolution refutations of a formula as studied in [6,11,15]. However, it
turns out that these two measures are not directly related. On the one hand, it is
easy to see that ENarrown has long-distance Q-resolution refutations of constant
existential clause width. Hence these formulas have small (constant) existential
proof width, but linear gauge.

On the other hand, there are also formulas with constant gauge and linear
proof width. For this we revisit the parity formula from [9].
1 The existential width of a clause is defined as the number of existential literals in

this clause. The existential proof width is defined as the maximal existential width
over all clauses in this proof.

Lower Bounds for QCDCL via Formula Gauge 61

Definition 18 ([9]). QParityn consists of the prefix ∃x1 . . . xn∀u∃t2 . . . tn and
the matrix

x1 _ x2 _ t̄2, x1 _ x̄2 _ t2, x̄1 _ x2 _ t2, x̄1 _ x̄2 _ t̄2,

xi _ ti−1 _ t̄i, xi _ t̄i−1 _ ti, x̄i _ ti−1 _ ti, x̄i _ t̄i−1 _ t̄i for i P {3, . . . , n}
u _ tn, ū _ t̄n.

It was shown in [6,11] that QParityn requires linear proof width. Here we
modify this formula such that proof width remains unaffected, but gauge is small.
Let mQParityn be the modified variant of this formula that consists of the prefix
∃x1, . . . , xn, y∀u∃t2, . . . , tn and the matrix (ȳ) ^ ∧

CPQParityn
(y _ C). Obviously,

because of the unit clause (ȳ), we have gauge(mQParityn) = 1, but still linear
proof width.

We can also use the QParityn formulas to show that large gauge alone is not
sufficient to guarantee QCDCL hardness, but some further assumption such as
the XT-condition is needed.

We continue with the equality formula from [5] as a further example of hard
formulas for QCDCL. In [7] QCDCL hardness of Equalityn was already proven by
lifting Q-resolution hardness of these formulas to QCDCL. However, with our new
lower bound technique it is possible to prove QCDCL hardness directly without
importing Q-resolution lower bounds.

Definition 19 ([5]). The formula Equalityn is defined as the QCNF

∃x1 . . . xn∀u1 . . . un∃t1 . . . tn · (t̄1 _ . . . _ t̄n) ^
n∧

i=1

((x̄i _ ūi _ ti) ^ (xi _ ui _ ti)).

Proposition 20. We have gauge(Equalityn) = n. Consequently the formulas
are exponentially hard for QCDCL.

Proof. Let π P WEqualityn
. Since none of the axioms are X-clauses, we have to

resolve over T somehow. For this we need the clause t̄1_ . . ._ t̄n. But that means
we have to resolve over each ti at least once in π, and therefore we will pile up
all n X-variables.
�

7 Conclusion

We initiated the study of devising lower bound methods tailored to QCDCL.
At the moment our techniques only applies to Σb

3-formulas. Though this is a
quite relevant class of QBFs, also prominently represented in QBF benchmarks
[25,30], it would be very interesting to extend the method to QBFs of higher
quantifier complexity.

In another direction, future research should explore further conditions
(besides the XT-condition considered here) that allow to efficiently translate
QCDCL into quasi level-ordered proofs and thus enable to show lower bounds
via gauge.

62 B. Böhm and O. Beyersdorff

References

1. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Form.
Methods Syst. Des. 41(1), 45–65 (2012)

2. Balabanov, V., Widl, M., Jiang, J.H.R.: QBF resolution systems and their proof
complexities. In: Proceedings of Theory and Applications of Satisfiability Testing
(SAT), pp. 154–169 (2014)

3. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)

4. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple.
J. ACM 48(2), 149–169 (2001)

5. Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: a semantic tech-
nique for hard random QBFs. Logical Methods Comput. Sci 15(1), 13:1–13:39
(2019)

6. Beyersdorff, O., Blinkhorn, J., Mahajan, M.: Hardness characterisations and size-
width lower bounds for QBF resolution. In: Proceedings of ACM/IEEE Symposium
on Logic in Computer Science (LICS), pp. 209–223. ACM (2020)

7. Beyersdorff, O., Böhm, B.: Understanding the relative strength of QBF CDCL
solvers and QBF resolution. In: Proceedings of Innovations in Theoretical Com-
puter Science (ITCS), pp. 12:1–12:20 (2021)

8. Beyersdorff, O., Bonacina, I., Chew, L., Pich, J.: Frege systems for quantified
Boolean logic. J. ACM 67(2), 1–36 (2020)

9. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theor. 11(4), 26:1–26:42 (2019)

10. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF
resolution calculi. Logical Methods Comput. Sci. 13, 7:1–7:20 (2017)

11. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow? QBF
resolution is not so simple. ACM Trans. Comput. Logic 19, 1–26 (2018)

12. Beyersdorff, O., Chew, L., Sreenivasaiah, K.: A game characterisation of tree-like
Q-resolution size. J. Comput. Syst. Sci. 104, 82–101 (2019)

13. Beyersdorff, O., Hinde, L., Pich, J.: Reasons for hardness in QBF proof systems.
ACM Trans. Comput. Theor. 12(2), 1–27 (2020)

14. Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified Boolean formulas.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability, 2nd edn. IOS press, Frontiers in Artificial Intelligence and Applications
(2021)

15. Clymo, J., Beyersdorff, O.: Relating size and width in variants of Q-resolution. Inf.
Process. Lett. 138, 1–6 (2018)

16. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and
strategy extraction in search-based QBF solving. In: Proceedings of Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR), pp. 291–308 (2013)

17. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. 26, 371–416
(2006)

18. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
19. Janota, M.: On Q-Resolution and CDCL QBF solving. In: Proceedings of Interna-

tional Conference on Theory and Applications of Satisfiability Testing (SAT), pp.
402–418 (2016)

20. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

Lower Bounds for QCDCL via Formula Gauge 63

21. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

22. Kraj́ıček, J.: Proof complexity, Encyclopedia of Mathematics and Its Applications,
vol. 170. Cambridge University Press (2019)

23. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. Ph.D. thesis, Johannes Kepler University Linz (2012)

24. Lonsing, F., Egly, U.: DepQBF 6.0: A search-based QBF solver beyond traditional
QCDCL. In: Proceedings of International Conference on Automated Deduction
(CADE), pp. 371–384 (2017)

25. Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. In:
Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 276–294. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98334-9 19

26. Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. In: Creignou,
N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 435–452. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-40970-2 27

27. Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers. In: Handbook of Satisfiability. IOS Press (2009)

28. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell.
Res. 65, 180–208 (2019)

29. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175(2), 512–525 (2011)

30. Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16
and QBFEVAL’17). Artif. Intell. 274, 224–248 (2019)

31. Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of quantified
Boolean formulas. In: Proceedings of IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), pp. 78–84 (2019)

32. Vinyals, M.: Hard examples for common variable decision heuristics. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence (AAAI) (2020)

33. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in Boolean satisfiability solver. In: Proceedings of IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pp. 279–285 (2001)

34. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: Proceedings of IEEE/ACM International Conference on Computer-aided
Design (ICCAD), pp. 442–449 (2002)

https://doi.org/10.1007/978-3-319-98334-9_19
https://doi.org/10.1007/978-3-319-40970-2_27

Deep Cooperation of CDCL and Local
Search for SAT

Shaowei Cai1,2(B) and Xindi Zhang1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{caisw,zhangxd}@ios.ac.cn
2 School of Computer Science and Technology,

University of Chinese Academy of Sciences, Beijing, China

Abstract. Modern SAT solvers are based on a paradigm named conflict
driven clause learning (CDCL), while local search is an important alter-
native. Although there have been attempts combining these two meth-
ods, this work proposes deeper cooperation techniques. First, we relax the
CDCL framework by extending promising branches to complete assign-
ments and calling a local search solver to search for a model nearby.
More importantly, the local search assignments and the conflict fre-
quency of variables in local search are exploited in the phase selection and
branching heuristics of CDCL. We use our techniques to improve three
typical CDCL solvers (glucose, MapleLCMDistChronoBT and Kissat).
Experiments on benchmarks from the Main tracks of SAT Competitions
2017–2020 and a real world benchmark of spectrum allocation show that
the techniques bring significant improvements, particularly on satisfi-
able instances. For example, the integration of our techniques allow the
three CDCL solvers to solve 62, 67 and 10 more instances in the bench-
mark of SAT Competition 2020. A resulting solver won the Main Track
SAT category in SAT Competition 2020 and also performs very well on
the spectrum allocation benchmark. As far as we know, this is the first
work that meets the standard of the challenge “Demonstrate the success-
ful combination of stochastic search and systematic search techniques,
by the creation of a new algorithm that outperforms the best previous
examples of both approaches.” [35] on standard application benchmarks.

Keywords: CDCL · Local search · Application benchmarks

1 Introduction

The Satisfiability problem (SAT) asks to determine whether a given propositional
formula is satisfiable or not. In the SAT problem, propositional formulas are

S. Cai and X. Zhang—The authors are considered to have equal contributions. Cai
contributes mostly on the ideas and partly on the implementations and writes the
paper, while Zhang contributes mostly on the implementations and partly on the ideas.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 64–81, 2021.
https://doi.org/10.1007/978-3-030-80223-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_6

Deep Cooperation of CDCL and Local Search for SAT 65

usually presented in Conjunctive Normal Form (CNF), i.e., F =
∧

i ∨j�ij . A
growing number of problem domains are successfully tackled by SAT solvers,
including the electronic design automation (EDA) industry [37], mathematical
theorem proving [20], AI planning [21], spectrum allocation [32], among others.
Also, SAT solvers are often used as a core component of more complex tools
such as solvers for Satisfiability Module Theory (SMT), which are indispensable
for program analysis and software verification.

Many approaches have been proposed to solve SAT, among which conflict
driven clause learning (CDCL) is the most popular one. Since their inception in
the mid-90s, CDCL-based SAT solvers have been applied, in many cases with
remarkable success, to a number of practical applications. Indeed, one of the
main reasons of the widespread use of SAT is that CDCL solvers are so effective
in practice. CDCL is evolved from the DPLL backtracking procedure [14], and
usually involves a number of key techniques, mainly including 1) clause learning
from conflicts [36], 2) exploiting the structure of conflicts during clause learning
[36], 3) learnt clause management scheme [4], 4) lazy data structures for the
representation of formulas [31], 5) effective branching heuristics, e.g., VSIDS
[31], and 6) periodically restarting [18]. Additional techniques used in recent
CDCL solvers include phase saving [34], switching between “stabilizing” mode
(seldom-restart) and frequent-restart mode [33], clause veriification [29], among
others.

On the other hand, there is another paradigm named local search, which is
a main incomplete method biased towards the satisfiable side. Local search SAT
solvers begin with a complete assignment and iteratively modify the assignment
until a model is found or a resource limit (usually the time limit) is reached.
Although local search solvers usually have poor performance on application
instances, they may be competitive on certain types of instances [10,12,26].

There have been attempts combining CDCL and local search solvers. How-
ever, in previous hybrid solvers, CDCL and local search solvers usually see each
other as a black box and the hybrid solver invokes the respective solver according
to different situations [3,5,19,24,30]. This work is devoted to deeper cooperation
of CDCL and local search for SAT, where CDCL is the main solver and local
search is used as an aiding tool. We propose three ideas to use local search to help
CDCL in different ways. The first idea is a method for plugging a local search
solver into a CDCL solver, while the other two ideas concern with using infor-
mation produced by the local search solver to enhance CDCL. We summarize
the three techniques below.

– Explore promising branches by local search (Sect. 3)
The first idea is to a novel method to plug a local search solver into a CDCL
solver. We relax the backtrack process by allowing some promising branches to
be extended to a complete assignment without backtracking, even if conflicts
are met during extending the assignment. Then, a local search solver is called
to find a model nearby. If the local search cannot find a model within a given
time limit, the CDCL search process continues as normal from the node where
the algorithm enters the non-backtracking phase.

66 S. Cai and X. Zhang

– Phase selection with local search assignments (Sect. 4)
Phase selection refers to pick a truth value (usually called phase) to assign the
branching variable. Most modern CDCL solvers implement a phase selection
heuristic named phase saving [34], which keeps the branching phase and uses
the saved phase when a variable is picked to branch. Recent progress shows
that using some other forms of target phase, e.g., the value under the largest
conflict-free assignment in the solver, random value and the opposite of the
saved phase, to reset the saved phase periodically could be beneficial [10]. We
propose a phase resetting technique, which mainly relies on the assignments
produced by the integrated local search solver.

– Branching with local search conflict information (Sect. 5)
We use the variables’ conflict frequency, i.e., the frequency appearing in
unsatisfied clauses during local search, to enhance the branching heuristic in
CDCL. Specifically, such information is used to modify the variables’ activity
in VSIDS heuristic and the variables’ learning rate in LRB heuristic.

We apply our techniques to three state-of-the-art CDCL solvers, including
the latest version of glucose [4], and the winner of the Main track of SAT Compe-
tition 2019 and 2020 namely MapleLCMDistChronoBT-DL [22] and Kissat sat
[10]. The experimental results show that our techniques allow them to solve a
remarkable number of additional instances in the main track benchmark of SAT
Competition 2017–2020. For example, the integration of our techniques allow
the three CDCL solvers to solve 62, 67 and 10 more instances in the benchmark
of SAT Competition 2020. Besides, the improved version of the three CDCL
solvers also shows better results on a real world benchmark arising from a spec-
trum repacking problem in the context of bandwidth auction.

Seen from experiments, the promising branches exploration technique and the
local search based phase resetting techniques are very helpful to solve satisfiable
instances, with a price of slight degradation on unsatisfiable instances (usually
solving 2 or 3 fewer unsatisfiable instances). The local search conflict frequency
enhanced branching strategy can be positive to satisfiable and also saves back
a few unsatisfiable instances. Overall, these techniques significantly improves
the performance of the CDCL solvers, leading to a remarkable increase on the
number of total solved instances.

2 Preliminaries

2.1 Preliminary Definitions and Notations

Let V = {x1, x2, ..., xn} be a set of Boolean variables, a literal is either a variable
x or its negation ¬x. A clause is a disjunction of literals. A clause that contains
only one single literal is called a unit clause. A Conjunctive Normal Form (CNF)
formula F = C1 ∧ C2 ∧ ... ∧ Cm is a conjunction of clauses.

A mapping α : V → {0, 1} is called an assignment. If α maps all vari-
ables to a Boolean value, it is a complete assignment; otherwise, it is a partial
assignment. The size of an assignment α, denoted as |α|, is the number of

Deep Cooperation of CDCL and Local Search for SAT 67

assigned variables in it. The value of a variable x under an assignment α is
denoted as α[x]. An assignment α satisfies a clause iff at least one literal evalu-
ates to true under α, and satisfies a CNF formula iff it satisfies all its clauses.
A CNF formula F is satisfiable iff there is at least one satisfying assignment.
The empty clause � is always unsatisfiable, and represents a conflict. SAT is the
problem of deciding whether a given CNF formula is satisfiable.

The process of conditioning a CNF formula F on a literal � amounts to
removing the clauses containing an occurrence of � and all occurrences of ¬�. A
key procedure in CDCL solvers is unit propagation. For a unit clause, the variable
is assigned to satisfy this unit clause, and then the formula is conditioned on this
setting. The iterative execution of such steps until no more unit clause remains
is called unit propagation.

2.2 CDCL Solvers

A CDCL solver performs a backtracking search (can be non-chronological) in
the space of partial assignments, which is organized as a tree. Each node of
the tree corresponds to a partial assignment, and the out edges represent the
two branching value (also known as branching phase) for a variable. The root
represents the empty assignment, while each leaf corresponds to a complete
assignment. CDCL solvers can prune a large part of the tree thanks to reasoning
techniques. A branch is a path from the root to an inner node. In this work, we use
α max to denote the largest conflict-free assignment that has been encountered
by the solver so far.

Algorithm 1 shows the standard procedure of a CDCL solver, where α is the
current assignment, dl is the current decision level and bl denotes the backtrack
level. Arguments to the functions are assumed to be passed by reference, and
thus F and α are supposed to be modified during the search. The functions
are explained here. PickBranchVar consists of selecting a variable to assign and
the respective phase. UnitPropagation performs unit propagation on the formula,
and if a conflict is identified, then a conflict indication is returned. Once a conflict
is derived, the reasons are analyzed and a clause is learnt (known as learnt
conflict clause) and then added to the clause database. This is done by the
ConflictAnalysis function. Finally, BackTrack backtracks to the decision level
computed by ConflictAnalysis. Note that Algorithm 1 shows the skeleton of a
typical CDCL algorithm, and does not describe a few often used techniques,
including restarts, clause deletion polices, learnt clause simplification, among
others.

We introduce two branching heuristics that are used to pick the variable to
assign in CDCL, which are used in the studied solvers of this paper.

68 S. Cai and X. Zhang

Algorithm 1: Typical CDCL algorithm: CDCL(F, α)
dl ← 0; //decision level1

if UnitPropagation(F ,α)==CONFLICT then return UNSAT2

while ∃ unassigned variables do3

/* PickBranchVar picks a variable to assign and picks the

respective value */

(x, v) ← PickBranchV ar(F, α);4

dl ← dl + 1;5

α ← α ∪ {(x, v)};6

if UnitPropagation(F ,α)==CONFLICT then7

bl ← ConflictAnalysis(F, α);8

if bl < 0 then9

return UNSAT;10

else11

BackTrack(F, α, bl);12

dl ← bl;13

return SAT;14

Variable State Independent Decaying Sum (VSIDS) [31]: Here we
describe the version used in MiniSAT [15] and most modern CDCL solvers.
Each variable has an activity attached to it. Every time a variable occurs in a
recorded conflict clause, its activity is increased. This is referred to as bumping.
After the conflict, the activity of all the variables in the system are multiplied by
a constant less than 1, thus decaying the activity of variables over time. When
selecting a branching variable, VSIDS picks the variable with the maximum
activity score.

Learning Rate Branching (LRB) [27]: It frames branching as an optimiza-
tion problem that picks a variable to maximize a metric called learning rate.
The learning rate of a variable x at interval I is defined as P (x,I)

L(I) , where I is the
interval of time between the assignment of x until x transitions back to being
unassigned, P (x, I) is the number of learnt clauses x participates in interval I,
and L(I) is the number of learnt clauses generated in interval I. The authors
of LRB proposed to solve the optimization problem via a Multi-Armed Bandit
algorithm.

2.3 Local Search Solvers

For local search algorithms, we need to define the search space and a neighbor-
hood relation. In the context of SAT, the search space is the set of complete
assignments which can be characterized as the set of strings {0, 1}n, where n is
the number of variables in the formula. For SAT, the seemingly most natural
neighborhood N maps candidate solutions to their set of Hamming neighbors,

Deep Cooperation of CDCL and Local Search for SAT 69

i.e., candidate solutions that differ in exactly one variable. A local search algo-
rithm starts from a position of search space and then moves to one neighbor of
the current position in each step, trying to find a position which represents a
satisfying assignment.

2.4 Experiment Preliminaries

In this work, we use our methods to improve CDCL solvers and carry out exten-
sive experiments to evaluate the effectiveness of the methods. In this subsection,
we introduce the experiment setup including base solvers, benchmarks, running
environment and reporting methodology.

Base Solvers: We choose three state of the art CDCL solvers as the base solvers
for our studies, including glucose (v4.2.1)1 [4], MapleLCMDistChronoBT-DL
(v2.1)2 [22], and Kissat sat (2414b6d)3 [10]. Glucose is a milestone of mod-
ern CDCL solvers and has won several gold medals in SAT Competitions.
MapleLCMDistChronoBT-DL won the SAT Race 2019 and Kissat sat won the
Main Track of SAT Competition 2020.

We choose CCAnr [12] as the local search solver to integrate into the CDCL
solvers glucose and MapleLCMDistChronoBT-DL, while Kissat sat itself already
includes a local search solver YalSAT [9]. CCAnr is a local search solver with
the aim for solving structured SAT instances and has shown competitive results
on various structured instances from SAT competitions and applications.

Benchmarks: The experiments are carried out with the main track benchmarks
of the latest four SAT Competitions/Race (2017–2020). Additionally, we evaluate
the solvers on an important application benchmark suite consisted of 10000
instances4 from the spectrum repacking in the context of bandwidth auction
which resulted in about 7 billion dollar revenue [32].

Experiment Setup: All experiments were conducted on a cluster of comput-
ers with Intel Xeon Platinum 8153 @2.00GHz CPUs and 1024G RAM under the
operating system CentOS 7.7.1908. For each instance, each solver was performed
one run, with a cutoff time of 5000 CPU seconds. For each solver for each bench-
mark, we report the number of solved SAT/UNSAT instances and total solved
instances, denoted as ‘#SAT’, ‘#UNSAT’ and ‘#Solved’, and the penalized run
time ‘PAR2’ (as used in SAT Competitions), where the run time of a failed run
is penalized as twice the cutoff time.

3 Exploring Promising Branches by Local Search

In this section, we present our method for plugging a local search solver into a
CDCL solver. The method helps finding a model faster, by exploring promising
branches via local search.
1 http://sat-race-2019.ciirc.cvut.cz/solvers/glucose-4.2.1.zip.
2 http://sat-race-2019.ciirc.cvut.cz/solvers/MapleLCMDistChronoBT-DL-v2.1.zip.
3 https://github.com/arminbiere/kissat.git.
4 https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm cnfs.tar.gz.

http://sat-race-2019.ciirc.cvut.cz/solvers/glucose-4.2.1.zip
http://sat-race-2019.ciirc.cvut.cz/solvers/MapleLCMDistChronoBT-DL-v2.1.zip
https://github.com/arminbiere/kissat.git
https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz

70 S. Cai and X. Zhang

First, we provide the motivation of our method. By using reasoning tech-
niques, CDCL solvers are able to prune most of the branches of the search tree.
This is useful for solving unsatisfiable instances—to prove a formula is unsatis-
fiable, a CDCL solver needs to examine the whole search space, and therefore
the more of the search tree is pruned, the more efficient the solver is. However,
when solving satisfiable formulas, some promising branches that are close to a
satisfying assignment are also pruned without any exploitation. This would make
CDCL solvers miss some opportunities of finding a solution. In our opinion, the
exploration on promising branches may improve CDCL solvers on satisfiable
formulas, and a natural way to do so is to employ local search at such branches.

Now, we present a method to explore promising branches during the search
procedure of CDCL solvers, which can improve the ability to find solutions while
keeping the completeness of the solvers. For this method, we need to identify
which branches (i.e., partial assignments) deserve exploration. We propose two
conditions below, and any assignment α satisfying at least one of them is con-
sidered as promising and will be explored:

– |α|
|V | > p and there is no conflict under α, where p is a parameter and is set
to 0.4 according to preliminary experiments on a random sample of instances
from recent SCs.

– |α|
|α max| > q and there is no conflict under α, where q is set to 0.9 similarly.

Fig. 1. Overall Procedure of Relaxed CDCL

With the conditions of promising assignments, the method is described as
follows (depicted in Fig. 1). During the search of CDCL, whenever reaching
a node corresponding to a promising assignment, the algorithm enters a non-
backtracking mode, which uses unit propagation and heuristics in CDCL to

Deep Cooperation of CDCL and Local Search for SAT 71

assign the remaining variables without backtracking, even an empty clause is
detected. At the end, this leads to a complete assignment β, which is fed to a
local search solver to search for a model nearby. If the local search fails to find a
model within a certain time budget, then the algorithm goes back to the normal
CDCL search from the node where it was interrupted (we call this a breakpoint).
The non-backtracking phase does not change the data structures used for CDCL
search process. In this work, each call of the local search solver is cutoff when
reaching a certain amount of memory accesses (5 × 107).

4 Phase Resetting with Local Search Assignments

In Sect. 3, we propose a method to plug a local search solver into boost CDCL
solvers. Now, we propose a phase resetting heuristic based on the assignments
obtained by the local search processes.

Phase selection is an important component of a CDCL solver. Most modern
CDCL solvers utilize the phase saving heuristic [34], which returns the phase of
a variable x corresponding to the last time x was assigned. This caching scheme
reduces the repetition caused by non-chronological backtracking. Recently, Biere
et al. proposed a phase resetting technique which overwrites all saved phases with
some other information, based on the interval of number of conflicts encountered,
which gives another boost to the performance [10].

Algorithm 2 describes a CDCL solver that implements the idea of exploring
promising branches and phase resetting technique. After each time the CDCL
solver is restarted, the technique overwrites the saved phases of all variables with
assignments produced by local search. To this end, we record the best assignment
(with the fewest unsatisfied clauses) in each run of the local search solver, and
when we say the assignment of a local search procedure (run), we refer to the
best assignment in this procedure.

For our phase resetting technique, we consider the following assignments, all
of which come from the assignments of the local search procedures.

– α max LS. This refers to the assignment of the local search procedure in
which the initial solution is extended based on α max. Thus, whenever α max
is updated, the algorithm calls the local search solver and updates α max LS.

– α latest LS. This is the assignment of the latest local search procedure.
– α best LS. Among all local search assignments so far, we denote the best one

(with the fewest unsatisfied clauses) as α best LS.

It is easy to see that α max LS and α best LS serve for the aim to maximize
the depth of the branch, while α latest LS adds diversification in some sense,
as different local search procedures start with initial assignments built upon
different branches. Overall, it is expected this phase resetting technique with
local search assignments would work well particularly for satisfiable instances,
and our experiment results confirm this.

Phase Resetting Based on Local Search Assignment: Whenever the
CDCL is restarted, we overwrites the saved phases. For each variable x, its
phase is set according to the following probability distribution (Table 1).

72 S. Cai and X. Zhang

Algorithm 2: Relaxed CDCL Algorithm with Phase Reset
dl ← 0, α ← ∅, α max ← ∅ ;1

if UnitPropagation(F ,α)==CONFLICT then2

return UNSAT3

while ∃ unassigned variables do4

(x, v) ← PickV ariable(F, α);5

dl ← dl + 1;6

α ← α ∪ {(x, v)};7

if UnitPropagation(F ,α)==CONFLICT then8

bl ← ConflictAnalysis(F, α);9

if bl < 0 then10

return UNSAT11

else12

α max ← max(α max, α);13

BackTrack(F, α, bl), dl ← bl;14

/* lines 15-22 corresponds to the technique in Section 3 */

else if (|α|/|V | > p OR |α|/|α max| > q) then15

β ← α;16

while β is not complete do17

(x, v) ← PickV ariable(F, β);18

β ← β ∪ {(x, v)};19

UnitPropagation(F ,β);20

if LocalSearch(β, terminate condition) then21

return SAT22

if Meet Restart Conditions then23

BackTrack(F, α, 0) ;24

dl ← 0;25

PhaseReset(); //corresponds to Section 426

return SAT;27

Table 1. Probability of different phases in our phase resetting mechanism

Phase Name α max LS[x] α latest LS[x] α best LS[x] no change

Probability 20% 65% 5% 10%

5 Branching with Conflict Frequency in Local Search

CDCL is a powerful framework owing largely to the utilization of the conflict
information, and branching strategies aim to promote conflicts. In this section,
we use a variable property which we refer to as conflict frequency in local search
to improve the branching strategy of CDCL.

The best known branching strategy is VSIDS (Variable State Independent
Decaying Sum) [31], which is surprisingly effective and also works well with

Deep Cooperation of CDCL and Local Search for SAT 73

restarts. Although variants [7,8,15–17] have been proposed over the years, they
are similar in spirit to VSIDS in the sense that they prefer to pick variables
participating in recent conflicts. Briefly speaking, the VSIDS heuristic maintains
an activity score for each variable, and prefers to pick the variable with the
maximum activity score. The activity score of a variable reflects the frequency
that it occurs in conflicts, with emphasis on those in the recent period (please
refer to [31] and [15] for more details).

Recently, a new branching strategy LRB (the learning rate based branching
heuristic) [27] shows its effectiveness in the Maple series, which regularly won
gold medals in main track of SAT Competitions since 2016. LRB is based on the
concept called learning rate, which measures the portion of learnt clauses involv-
ing the variable among all learnt clauses in the period between the assignment
of x until it transitions back to being unassigned (please refer to [27] for more
details).

Intuitively, both VSIDS and LRB prefer to pick variables with higher fre-
quencies occurring in conflicts, with an emphasis in a recent period. We propose
to enhance the branching strategy by utilizing the conflict frequency of variables
in the latest local search procedure.

Definition 1. In a local search process for SAT, for a variable x, its conflict
frequency, denoted as ls confl freq(x), is the number of steps in which it appears
in at least one unsatisfied clause divided by the total number of steps of the local
search process.

Now we describe how to use the local search conflict frequency in the branch-
ing strategies. As ls confl freq(x) is a real number between 0 and 1, we first
transfers it to an integer number so that it can be combined well with VSIDS and
LRB. For each variable x, we multiply ls confl freq(x) with a constant integer
(100 in this work), and the resulting number is denoted as ls conflict num(x).
We use ls conflict num(x) to enhance the branching strategies as follows. Note
that ls conflict num(x) is calculated according to the latest local search pro-
cedure. After each restart of the CDCL solver, ls conflict num(x) is used to
modify the activity score for VSIDS and learning rate for LRB.

– VSIDS: for each variable x, its activity score is increased by
ls conflict num(x).

– LRB: for each variable x, the number of learnt clause during its period I is
increased by ls conflict num(x). That is, both P (x, I) and L(I) are increased
by ls conflict num(x).

6 Experiments

We carry out extensive experiments to evaluate the effectiveness of our
methods. The experiment setup is described in Sect. 2.4. For glucose and
MapleLCMDistChronoBT-DL-v2.1, we implement all the three techniques in
this work, including relaxed CDCL with local search (denoted as rx), phase

74 S. Cai and X. Zhang

resetting with local search (denoted as rp) and local search conflict frequency
enhanced branching (denoted as cf). For Kissat sat, we only implement the cf
technique, as it is challenging to implement the relaxed CDCL framework in it,
due to the difficulty of identifying all current clauses (which should be provided
to local search) in the Kissat sat solver. Nevertheless, it is easy to apply the
cf technique to Kissat, which is what we do in this work. All the source codes,
origin experiment statistics and the detailed data for Table 2 can be downloaded
online.5

Evaluations on Benchmarks of SAT Competitions. The results of evalu-
ations of all the base solvers and the different versions with our techniques are
reported in Table 2. According to the results, we have some observations.

Table 2. Experiment results on benchmarks from SAT Competitions 2017–2020, where
Maple-DL-v2.1 is short for MapleLCMDistChronoBT-DL-v2.1

solver #SAT #UNSAT #Solved PAR2 #SAT #UNSAT #Solved PAR2

SC2017(351) SC2018(400)

glucose 4.2.1 83 101 184 5220.0 95 95 190 5745.9

glucose+rx 88 95 183 5237.0 113 95 208 5283.4

glucose+rx+rp 112 94 206 4618.2 141 87 228 4698.3

glucose+rx+rp+cf 110 94 204 4668.5 150 91 241 4438.2

Maple-DL-v2.1 101 113 214 4531.0 133 102 235 4533.9

Maple-DL+rx 101 112 213 4520.3 149 101 250 4148.6

Maple-DL+rx+rp 111 103 214 4447.1 158 93 251 4147.2

Maple-DL+rx+rp+cf 116 107 223 4139.4 162 97 259 3927.6

Kissat sat 115 114 229 3943.5 167 98 265 3786.4

Kissat sat+cf 113 113 226 4001.0 178 104 282 3409.4

CCAnr 13 N/A 13 9629.9 56 N/A 56 8622.0

SC2019(400) SC2020(400)

glucose 4.2.1 118 86 204 5437.6 68 91 159 6494.6

glucose+rx 120 84 204 5443.9 93 88 181 6018.1

glucose+rx+rp 134 85 219 5096.3 130 85 215 5123.7

glucose+rx+rp+cf 140 85 225 4923.6 134 87 221 4977.9

Maple-DL-v2.1 143 97 240 4601.8 86 104 190 5835.7

Maple-DL+rx 146 93 239 4602.1 121 105 226 4977.8

Maple-DL+rx+rp 155 94 249 4416.3 142 99 241 4589.2

Maple-DL+rx+rp+cf 154 95 249 4377.4 151 106 257 4171.1

Kissat sat 159 88 247 4293.5 146 114 260 4048.8

Kissat sat+cf 162 90 252 4211.7 157 113 270 3896.8

CCAnr 13 N/A 13 9678.3 45 N/A 45 8978.7

– The rx technique improves glucose and MapleLCMDistChronoBT-DL-v2.1
on solving satisfiable instances, particularly for the benchmarks of 2018
(increased by 18 and 16 for #SAT) and 2020 (increased by 25 and 35 for

5 https://github.com/caiswgroup/relaxed-sat.

https://github.com/caiswgroup/relaxed-sat

Deep Cooperation of CDCL and Local Search for SAT 75

#SAT). On the other hand, the glucose+rx and Maple-DL+rx have slightly
worse performance than the original versions on UNSAT instances, and the
decrease on #UNSAT is only 2 on average, considering both solvers on all
benchmarks.

– By adding the rp technique, glucose+rx+rp and Maple-DL+rx+rp gain fur-
ther improvement on #SAT, which is significant for all benchmarks. Specifi-
cally, the #SAT number of glucose+rx+rp is greater than glucose+rx by 24,
28, 14 and 37 for benchmarks of 2017, 2018, 2019 and 2020 respectively, and
the increment is 10, 9, 9 and 21 for Maple-DL+rx+rp over Maple-DL+rx.
Similar to the rx technique, we observe slight degradation on solving UNSAT
instances, and the decrease on #UNSAT is 3 on average for both solvers.

– The impact of the cf technique can be seen from the comparisons
of glucose+rx+rp vs. Glucose+rx+rp+cf, Maple-DL+rx+rp vs. Maple-
DL+rx+rp+cf, and Kissat sat vs. Kissat sat+cf. Overall, the cf technique is
positive for solving both satisfiable and unsatisfiable instances on all bench-
marks, with the exceptions of glucose+rx+rp+cf and Kissat sat+cf on the
2017 benchmark (dropping 2 and 3 instances). For the benchmarks of 2018,
2019 and 2020, the cf technique leads to a remarkable increment on the
#Solved number, which is (13, 6, 6) for glucose+rx+rp+cf, (8, 0, 7) for
Maple-DL+rx+rp+cf, and (17, 5, 10) for Kissat sat+cf. Particularly, not-
ing that Kissat sat is the winner of Main Track in SC 2020 and represents
the latest state of the art, such improvements are remarkable by a single
technique.

– By implementing all the three techniques, very large improvements are
obtained for glucose and MapleLCMDistChronoBT-DL-v2.1 for all the bench-
marks. Particularly, glucose+rx+rp+cf solves 62 additional instances than
the original solver, and Maple-DL+rx+rp+cf solves 67 additional instances
than its original solver for the SC2020 benchmark (which has 400 instances).
We note that, Maple-DL+rx+rp+cf is a simplified and optimized version of
our solver Relaxed LCMDCBDL newTech which won the gold medal of Main
Track SAT category and the silver medal of the Main Track ALL category in
SC 2020.

Evaluations on Benchmarks of Spectrum Repacking. We also carry
out experiments on a suite of instances arising from an important real world
project—the spectrum repacking project in US Federal Communication Com-
mission (FCC). The instances from this project was available on line6 [32]. This
benchmark contains 10 000 instances, including both satisfiable and unsatisfiable
instances. We compare each base CDCL solver with its final version using our
techniques, as well as the underlying local search solver CCAnr.

The results on this benchmark suite are reported in Table 3. According to
the results, for each of the base CDCL solvers, the improved version with our
techniques has better performance than the base solver. Particularly, the Maple-

6 https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm cnfs.tar.gz.

https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz

76 S. Cai and X. Zhang

DL+rx+rp+cf solver solves the most instances (8759+218=8977), significantly
better than all the other solvers.

Table 3. Comparing with state-of-the-art solvers on FCC. glucose+ is short for glu-
cose+rx+rp+cf, and malple+ is short for Maple-DL+rx+rp+cf.

glucose glucose+ Maple Maple+ kissat sat kissat sat+cf CCAnr

Benchmark #SAT #SAT #SAT #SAT #SAT #SAT #SAT

#UNSAT #UNSAT #UNSAT #UNSAT #UNSAT #UNSAT #UNSAT

#Solved #Solved #Solved #Solved #Solved #Solved #Solved

PAR2 PAR2 PAR2 PAR2 PAR2 PAR2 PAR2

FCC (10000) 7330 8075 8084 8759 8192 8214 7853

187 197 215 218 207 211 0

7517 8272 8299 8977 8399 8425 7853

2555.85 1850.58 1867.13 1243.66 1760.55 1734.61 2215.35

Further Analyses on the Cooperation. We perform more analyses to
study the role of local search in the hybrid solvers based on glucose and
MapleLCMDIstChronoBT-DL. This experiment does not include Kissat sat as
we do not apply the relaxed CDCL framework to it and the statistics in this
experiment are not applicable to Kissat sat+cf. Some important information is
provided in Table 4.

We can see that the local search solver returns a solution for some instances,
and this number varies considerably with the benchmarks. A natural question
is: Whether the improvements come mainly from the complementation of CDCL
and local search solvers that they solve different instances? If this were true, then
a simple portfolio that runs both CDCL and local search solvers would work sim-
ilarly to the hybrid solvers in this work. To answer this question, we compare
the instances solved by the hybrid solvers with those by the base CDCL solver
and the local search solver (both the CDCL and local search solver are given
5000 s for each instance). We observe that, there is a large number of instances
(denoted by #SAT bonus) that both CDCL and local search solvers fail to solve
but can be solved by the hybrid solvers. For these instances, even a virtual best
solver that picks the solver with the best result for each instance would fail. For
glucose, this number reaches 29, 36, 26 and 37 for the four benchmarks respec-
tively, while for MapleLCMDIstChronoBT-DL, this number reaches 16, 18, 15
and 36 respectively. This indicates the cooperation techniques have essential
contributions to the good performance of the hybrid solvers.

We also calculate the number of calls of the local search solver in each run.
This figure is usually from 10 to 25 for these benchmarks. As for the run time
of local search, which can be seen as the price paid for the benefit of using local
search, we calculate the portion of the time spent on local search. This figure is
between 6% and 20% for the satisfiable instances, and it drops significantly on
unsatisfiable instances, which is usually less than 7%. This is not inconsistent
with the observations that the number of local search calls is not necessarily

Deep Cooperation of CDCL and Local Search for SAT 77

Table 4. Analyses on the impact of Local Search on the CDCL solvers. Maple is short
for Maple-DL to save space, #byLS is the number of instance for which the solution
is given by the local search solver, #SAT bonus is the number of instances for which
both base CDCL solver and Local Search solver fail to solve but the hybrid solver
finds a satisfiable solution. #LS call is the average number of calls on Local Search,
while LS time is the average value of the proportion of time (in percentage %) spent
on local search in the whole run, and these two figures are calculated for satisfiable
and unsatisfiable instances respectively.

Solver Analysis for SAT Analysis for UNSAT

#byLS #SAT bonus #LS call LS time(%) #LS call LS time(%)

SC2017(351)

glucose+rx 20 11 24.28 21.66 16.36 5.52

glucose+rx+rp 10 33 17.77 18.46 14.33 4.86

glucose+rx+rp+cf 17 29 22.7 22.19 15.3 5.81

Maple+rx 16 9 13.86 7.52 11.18 2.03

Maple+rx+rp 11 15 9.63 10.43 6.54 2.36

Maple+rx+rp+cf 6 16 12.59 7.49 8.59 2.12

SC2018(400)

glucose+rx 50 4 11.27 20.66 29.62 4.94

glucose+rx+rp 47 31 9.46 18.4 21.66 5.64

glucose+rx+rp+cf 53 36 11.43 20.28 20.62 6.64

Maple+rx 52 7 4.8 13.02 11.69 2.81

Maple+rx+rp 56 13 4.84 15.21 8.7 3.04

Maple+rx+rp+cf 51 18 6.52 12.53 15.62 2.94

SC2019(400)

glucose+rx 14 8 26.46 10.79 17.42 6.39

glucose+rx+rp 10 26 22.68 8.67 14.59 5.14

glucose+rx+rp+cf 11 26 20.39 11.82 15.51 5.95

Maple+rx 14 7 12.66 2.67 12.94 1.98

Maple+rx+rp 9 14 8.6 3.17 16.59 2.53

Maple+rx+rp+cf 12 15 11.21 3.05 17.23 2.22

SC2020(400)

glucose+rx 30 9 14.94 11.75 14.67 10.27

glucose+rx+rp 23 37 13.17 10.79 9.4 9.71

glucose+rx+rp+cf 23 37 12.78 11.67 10.52 10.28

Maple+rx 19 13 14.21 6.69 10.24 5.25

Maple+rx+rp 30 29 8.53 6.62 11.7 6.18

Maple+rx+rp+cf 23 36 10.95 6.05 14.17 5.42

fewer on unsatisfiable instances, because the portion of the time on local search
also depends on the total time of the hybrid solver. Our statistics show that the
averaged time on solving UNSAT instances is about 1.5× to 2× that on SAT
instances for both glucose+rx+rp+cf and Maple-DL+rx+rp+cf. In a nutshell,
the price is acceptable and usually small for the UNSAT instances, which also

78 S. Cai and X. Zhang

partly explains that our techniques do not have obvious negative impact on
solving UNSAT instances although they incline to the satisfiable side.

7 Related Works

There has been interest in combining systemic search and local search for solv-
ing SAT. Indeed, it was pointed as a challenge by Selman et al. [35]. Pre-
vious attempts can be categorized into two families according to the type
(DPLL/CDCL or local search) of the main body solver.

A family of hybrid solvers use a local search solver as the main body solver.
An incomplete hybrid solver hybridGM [5] calls CDCL search around local min-
ima with only one unsatisfied clause. Audemard et al. proposed a hybrid solver
named SATHYS [2,3]. Each time the local search solver reaches a local min-
imum, a CDCL solver is launched. Some reasoning techniques or information
from CDCL solvers have been used to improve local search solvers. Resolution
techniques were integrated to local search solvers [1,13]. Recently, Lorenz and
Wörz developed a hybrid solver GapSAT [28], which used a CDCL solver as a
preprocessor before running the local search solver ProbSAT. The experiments
showed that, the learnt clauses produced by CDCL solver were useful to improve
the local search solver on random instances.

The other family of hybrid solvers focus on boosting CDCL solvers by local
search, and this work belongs to this line. A simple way for hybridizing local
search and CDCL is to call local search before CDCL begins, trying to solve the
instance or derive information such as variable ordering to be used in CDCL.
The hyrid solvers Sparrow2Riss [6], CCAnr+glucose [11] and SGSeq [25] belong
to this family.

Some works use local search to find a subformula for CDCL to solve. In [30], a
local search solver is used to find a part of the formula which is satisfiable, which
helps to divide the formula into two parts for the DPLL solver. In HINOTOS
[24], a local search is used to identify a subset of clauses to be passed to a CDCL
solver in an incremental way.

The most related works belong to those that call a local search solver during
the CDCL procedure. WalkSatz [19] calls a local search solver WalkSAT at each
node of a DPLL solver Satz. However, this is time consuming. This can be
done in parallel with shared memory [23]. In CaDiCaL and Kissat [10], a local
search solver is called when the solver resets the saved phases, and the phases
produced by local search are used only once immediately after the local search
process. However, the way CaDiCaL and Kissat use the local search assignments
is different from our phase resetting method based on local search. CaDiCaL and
Kissat only record the current local search assignment, which is used just for once
right after the local search exists. They do not use information of previous local
search processes. In fact, we also carry out experiments to see the impact of local
search on the performance of Kissat sat, which turns out to be limited. When
Kissat sat works without local search, #SAT drops by 5 on average over the SC
benchmarks.

Deep Cooperation of CDCL and Local Search for SAT 79

Although previous attempts have been made trying to combine the strength
of CDCL and local search, they did not lead to hybrid solvers essentially better
than CDCL solvers on application instances. This work, for the first, meets
the standard of the challenge “create a new algorithm that outperforms the best
previous examples of both approaches” [35] on standard application benchmarks
from SAT Competitions.

8 Conclusions

This work took a large step towards deep cooperation of CDCL and local search.
We proposed three techniques for using local search to improve CDCL solvers.
The first idea is to protect promising branches from being pruned, and exploit
them using a local search solver. The second idea is to utilize the assignments of
the local search processes to reset the saved phases in the phase selection heuris-
tic. Finally, we proposed to enhance the branching strategy of CDCL solvers
by considering the conflict frequency of variables in the local search process.
These techniques significantly improve the performance of state of the art CDCL
solvers on application benchmarks. The proposed methods are generic and can
be applied to improve other CDCL solvers.

This is the first time that the combination of stochastic search and systematic
search techniques leads to essential improvements over the state of the art of both
approaches on application benchmarks, thus answering Challenge 7 of the Ten
Challenges in Propositional Reasoning and Search [35].

Acknowledgement. This work is supported by Beijing Academy of Artificial Intel-
ligence (BAAI), and Youth Innovation Promotion Association, Chinese Academy of
Sciences [No. 2017150].

References

1. Anbulagan, Pham, D.N., Slaney, J.K., Sattar, A.: Old resolution meets modern
SLS. In: Proceedings of AAAI 2005, pp. 354–359 (2005)

2. Audemard, G., Lagniez, J., Mazure, B., Sais, L.: Integrating conflict driven clause
learning to local search. In: Proceedings of LSCS 2009, pp. 55–68 (2009)

3. Audemard, G., Lagniez, J.-M., Mazure, B., Säıs, L.: Boosting local search thanks to
cdcl. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp.
474–488. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-
8 34

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of IJCAI 2009, pp. 399–404 (2009)

5. Balint, A., Henn, M., Gableske, O.: A novel approach to combine a SLS- and
a DPLL-solver for the satisfiability problem. In: Kullmann, O. (ed.) SAT 2009.
LNCS, vol. 5584, pp. 284–297. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02777-2 28

6. Balint, A., Manthey, N.: SparrowToRiss 2018. In: Proceedings of SAT Competition
2018: Solver and Benchmark Descriptions, pp. 38–39 (2018)

https://doi.org/10.1007/978-3-642-16242-8_34
https://doi.org/10.1007/978-3-642-16242-8_34
https://doi.org/10.1007/978-3-642-02777-2_28
https://doi.org/10.1007/978-3-642-02777-2_28

80 S. Cai and X. Zhang

7. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7 4

8. Biere, A.: Pre, icosat@sc’09. In: SAT 2009 Competitive Event Booklet, pp. 42–43
(2009)

9. Biere, A.: Yet another local search solver and lingeling and friends entering the sat
competition 2014. Sat Competition 2014(2), 65 (2014)

10. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Paracooba, Plingeling
and Treengeling entering the SAT Competition, Kissat, pp. 51–53 (2020)

11. Cai, S., Luo, C., Su, K.: CCAnr+glucose in SAT Competition 2014. In: Proceedings
of SAT Competition 2014: Solver and Benchmark Descriptions, p. 17 (2014)

12. Cai, S., Luo, C., Su, K.: CCAnr: a configuration checking based local search solver
for non-random satisfiability. In: Proceedings of SAT 2015, pp. 1–8 (2015)

13. Cha, B., Iwama, K.: Adding new clauses for faster local search. In: Proceedings of
AAAI, vol. 96, pp. 332–337 (1996)

14. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

15. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

16. Gershman, R., Strichman, O.: Haifasat: a new robust SAT solver. In: Ur, S., Bin,
E., Wolfsthal, Y. (eds.) Proceedings of Haifa Verification Conference 2005, pp.
76–89 (2005)

17. Goldberg, E.I., Novikov, Y.: Berkmin: a fast and robust sat-solver. In: Proceedings
of DATE (2002), pp. 142–149 (2002)

18. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through
randomization. In: Proceedings of AAAI/IAAI 1998, pp. 431–437 (1998)

19. Habet, D., Li, C.M., Devendeville, L., Vasquez, M.: A hybrid approach for SAT.
In: Proceedings of CP 2002, pp. 172–184 (2002)

20. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 15

21. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of ECAI 1992,
pp. 359–363 (1992)

22. Kochemazov, S., Zaikin, O., Kondratiev, V., Semenov, A.: Maplelcmdistchronobt-
dl, duplicate learnts heuristic-aided solvers at the sat race 2019. In: Proceedings of
SAT Race, pp. 24–24 (2019)

23. Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating systematic and local
search paradigms: a new strategy for maxsat. In: Proceedings of IJCAI 2009, pp.
544–551 (2009)

24. Letombe, F., Marques-Silva, J.: Improvements to hybrid incremental SAT algo-
rithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp.
168–181. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-
7 17

25. Li, C.M., Habet, D.: Description of RSeq2014. In: Proceedings of SAT Competition
2014: Solver and Benchmark Descriptions, p. 72 (2014)

26. Li, C.M., Li, Yu.: Satisfying versus falsifying in local search for satisfiability.
In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 477–478.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8 43

https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-540-79719-7_17
https://doi.org/10.1007/978-3-540-79719-7_17
https://doi.org/10.1007/978-3-642-31612-8_43

Deep Cooperation of CDCL and Local Search for SAT 81

27. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 9

28. Lorenz, J.-H., Wörz, F.: On the effect of learned clauses on stochastic local search.
In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 89–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51825-7 7

29. Luo, M., Li, C., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause minimization
approach for CDCL SAT solvers. In: Proceedings of IJCAI 2017, pp. 703–711 (2017)

30. Mazure, B., Sais, L., Grégoire, É.: Boosting complete techniques thanks to local
search methods. Ann. Math. Artif. Intell. 22(3–4), 319–331 (1998)

31. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, pp. 530–535 (2001)

32. Newman, N., Fréchette, A., Leyton-Brown, K.: Deep optimization for spectrum
repacking. Commun. ACM 61(1), 97–104 (2018)

33. Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In:
Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 23

34. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72788-0 28

35. Selman, B., Kautz, H.A., McAllester, D.A.: Ten challenges in propositional rea-
soning and search. In: Proceedings of IJCAI, vol. 97, pp. 50–54 (1997)

36. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Proceedings of ICCAD 1996, pp. 220–227 (1996)

37. Silva, J.P.M., Sakallah, K.A.: Boolean satisfiability in electronic design automation.
In: Proceedings of the DAC 2000, pp. 675–680 (2000)

https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-030-51825-7_7
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0_28

Hash-Based Preprocessing and
Inprocessing Techniques in SAT Solvers

Henrik Cao(B)

Computer Science Department, Aalto University, Espoo, Finland
henrik.cao@aalto.fi

Abstract. Modern satisfiability solvers are interwoven with important
simplification techniques as preprocessors and inprocessors. Implemen-
tations of these techniques are hampered by expensive memory accesses
which result in a large number of cache misses. This paper explores the
application of hash functions in encoding clause structures and bitwise
operations for detecting relations between clauses. The evaluation showed
a significant increase in performance for subsumption and Blocked Clause
Elimination on the Main track benchmark of the 2020 SAT competition.

Keywords: SAT · CDCL · Preprocessing · Inprocessing · Hash

1 Introduction

Modern satisfiability (SAT) solvers are complemented with various simplification
techniques before and during solving [4–7,18,19]. These techniques test impor-
tant relational properties between clauses, the implementation of which requires
expensive memory accesses. For example, in order to check whether C ⊆ D for
two clauses (i.e., C subsumes D), we typically have to access both the literals
and their signatures (i.e., literal marks).

The use of hash functions in the context of simplification techniques was first
documented in [19] and [4]. The authors proposed novel subsumption algorithms
incorporating signature-based pre-checks for testing whether C � D. A similar
pre-check is used in the MaxSAT preprocessor MaxPre to detect non-tautological
clauses during variable elimination [9].

Signature-based approaches persist in some solvers and preprocessors today
[2], but no formal analysis of these methods has been given. Also, as of this
writing, I am unaware of literature documenting the use of similar methods in
other simplification techniques. This is in spite of the extensive research on hash
functions and their myriad applications in computer science [1,14,15]. Ironically,
the use of SAT technology in encoding, testing and optimizing hash functions
has become a hot topic of its own [8,10–13,16,17].

In this paper, I discuss the application of clause signatures in testing rela-
tional properties between clauses, especially those arising in simplification tech-
niques on formulae in conjunctive normal form (CNF). In particular, I translate

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 82–97, 2021.
https://doi.org/10.1007/978-3-030-80223-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_7&domain=pdf
http://orcid.org/0000-0003-0525-4344
https://doi.org/10.1007/978-3-030-80223-3_7

Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers 83

the contrary of four clause relations (subsumption, disjointness, membership and
tautological resolvency) into their signature-based relations, which can then be
tested using bitwise logical operators. The signature-based tests are constant-
time and do not rely on accessing the underlying clause structure, thus intro-
ducing minimal computational overhead. Furthermore, the methods developed
herein are auxiliary in nature and can be integrated into existing implemen-
tations. As a direct application, I demonstrate their use in three popular sim-
plification techniques: Subsumption [3], Blocked Clause Elimination (BCE) [6]
and Bounded Variable Elimination (BVE) [4]. I further provide a probabilis-
tic analysis of signature-based methods, shedding light on their strengths and
limitations.

Lastly, I offer full (C++) implementations of subsumption, BCE and BVE
using signature-based techniques and a complete evaluation on the Main track
benchmark dataset of the 2020 SAT competition [2].

2 Preliminaries

Let V = {1, . . . , N} denote a set of propositional variables1. A literal l can be a
variable v or its negation v and I will denote by L the set of literals on V. A clause
C ⊆ L will be any literal subset with its logical interpretation C = l1 ∨ · · · ∨ ln.
However, I have shunned references to the logical properties of clauses and you
may think of C simply as a set of integers. Furthermore, to simplify notation, I
have made C assume the dual role of C and |C| (the number of literals in C).

Here are the main set-theoretic properties that I will consider.

Definition 1. A clause C is tautological if both l ∈ C and l ∈ C.

Definition 2. A subset C ⊆ D is said to subsume D.

Definition 3. Let l ∈ C and l ∈ D. The resolvent C ⊗l D on l is the set
C \ {l} ∪ D \ {l}.
Definition 4. Let l ∈ C and l ∈ D. C strengthens D if C ⊗l D ⊆ D.

When querying properties in Definitions 1–4 over a set of clauses C, simpli-
fication techniques rely on efficient data structures with constant-time access to
certain subsets of clauses. The most common data structure is the occurrence
list, O, which is a list of sets O(l) = {C ∈ C | l ∈ C} of all clauses with an
occurrence of the literal l.

The methods I will discuss operate on signatures (or words), which are fixed-
length natural numbers of m bits. A signature, then, is a number2 in the range
[0, 2m), but I encourage you to think of signatures as strings or vectors of m bits.
The signature of zeroes, 0 . . . 0, like all zeros, is an abounding quantity and I will

1 When there is a need to distinguish between a variable name and the numeral, e.g.,
the variable ‘17’ and the number 17, we will explicitly write (17)int for the latter.

2 The binary representation of an integer is indexed right to left, i.e., 01011 = 11.

84 H. Cao

substitute it with the innocuous abbreviation 0. Analogous to the usual Boolean
operators ¬,∧,∨,⊕ (negation, conjunction, disjunction, exclusive disjunction)
on the Boolean values 0 and 1, signatures are subject to the bit-wise operators3

∼,&, |, ⊕. For example, 01011&11101 = 01001 and 01011 ⊕ 11101 = 10110.
Signatures are partially ordered by the relation ≤, where a ≤ b =⇒ a&b = a,
and so 01100 ≤ 01110 but 01100 �≤ 11001.

A hash function is a mapping h : U
→ M from some universe, U , to the
set of signatures or hash values, M. I will consider hash functions exclusively on
the subsets C ⊆ L and onto the domain [0, 2m). Unless explicitly mentioned,
you may assume signatures to be 64-bit natural numbers (i.e., m = 64). When
C = {l}, I like to write h(l) instead of h({l}).

A hash function that often occurs in practice is defined by element-wise
division (modulo m):

ha(C) =
∑

v∈C

2 |v| mod m (1)

where |v| is the absolute value of the variable, e.g., |17| = |17| = (17)int. The
mapping ha for C1 = {7, 10, 13, 2, 8} and m = 8 is illustrated in Fig. 1. Notice
in particular the collision of indices corresponding to the literals 10 and 2. In
general, ha is not injective (ha(v) = ha(u) �=⇒ v = u) and collisions will occur
even for prodigious values of m.

1 0 1 0 0 1 1 0

{7, 10, 13, 2, 8}

Fig. 1. A mapping of the hash function ha.

Proofs in this paper involve the combinatorial quantities:
{
n

k

}
=

1
k!

k∑

j=0

(−1)j
(
k

j

)
(k − j)n (2)

and {
n

k

}

≥2

=
k∑

i=0

(−1)i
(
n

i

) k−i∑

j=0

(−1)j(k − i − j)n−i

j!(k − i − j)!
, (3)

which are the stirling number of the second kind and the 2-associated stirling
number of the second kind respectively.

{
n
k

}
counts the number of unique sur-

jective functions that map n elements into k bins, whereas
{
n
k

}
≥2

counts the

3 In mixed symbol expressions, bit-wise operators take precedence, i.e., p& q = 0 ∨
r ⊕ s �= 0 evaluates as ((p& q) = 0) ∨ ((r ⊕ s) �= 0).

Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers 85

number of unique surjective functions that map n elements into k bins such that
at least two elements are mapped into each bin. In order to simplify formulas
arising in proofs, I adopt the convention

{
n
0

}
≥2

= 1.

3 Hash-Based Methods

Simplification techniques rely on fast access to relevant data structures, espe-
cially clauses, literals and their respective properties. To expedite search, good
implementations utilize efficient data structures (e.g., occurrence lists) and
lookup tables (such as vector-based literal markers). Unfortunately the underly-
ing data structures remain relatively expensive to access and tend to be scattered
in memory, causing a large number of cache misses in practice.

For moderately sized clauses (|C| < 103), hash functions such as (1) provide
a means to encode an abstraction of a clause C as an m-bit signature h(C).
This clause signature is a space-efficient abstraction of a set of literals and can
be stored independently of the clause container, providing a compact means of
querying properties of C in relation to other clauses. In particular, for a suitable
family of hash functions H, the signatures of two clauses can be used to assess
(the contrary of) a number of important set relations.

Some common properties tested by simplification techniques are:

Definition 5. Subsumption, C ⊆ D, for clauses C,D.

Definition 6. Disjointness, C ∩ D = ∅, for clauses C,D.

Definition 7. Tautological resolvency, C⊗lD = �, for clauses C,D with l ∈ C
and l ∈ D.

Definition 8. Membership, l ∈ C, for a clause C and literal l.

Due to collisions, the properties of Definitions 5–8 cannot be answered reli-
ably; in other words, false positives may occur. However, failed queries are admis-
sible (and tend to be more common anyhow). To show this, I will presume a
family of hash functions, H, with the following properties:

• h ∈ H maps variables independently and uniformly at random and

• h(l) = h(l), i.e., l and l map to the same index.

Definition 9. Let h(C) be the m-bit hash value of a clause C. The collision
signature u(C) of h(C) is the m-bit signature with the ith bit marked if there is
a collision in the ith bit of h(C).

For example, the clause C2 = {2, 3, 5, 8} (with m = 5) hashes to ha(C2) =
01101 and has the collision signature u(C2) = 01000 with a collision on the
literals 3 and 8.

86 H. Cao

Proposition 1. Let h ∈ H. If h(C)& ∼h(D) �= 0 or u(C)& ∼u(D) �= 0, then
C �⊆ D.

Proof. For suppose h(C)&∼h(D) �= 0. Then h(l)&∼h(D) �= 0 for some literal
l ∈ C, which implies l /∈ D and therefore C �⊆ D. Now let u(C)& ∼u(D) �= 0. We
must have h(l)&∼u(D) �= 0 and h(l) = h(o) for distinct literals l, o ∈ C. This
implies that there is at most one literal r ∈ D colliding with l, o ∈ C. Therefore
either l /∈ D or o /∈ D and again C �⊆ D.

Proposition 2. Let h ∈ H. h(C)&h(D) = 0 =⇒ C ∩ D = ∅ for all h ∈ H.

Proof. If h(C)&h(D) = 0, then h(l)&h(o) = 0 for all literal pairs (l, o) with
l ∈ C and o ∈ D. We conclude that C ∩ D = ∅.

Proposition 3. Let h ∈ H, l ∈ C and l ∈ D. If u(C)&u(D)&h(l) = 0 and
h(C)&h(D) = h(l), then C ⊗l D is non-tautological.

Proof. h(C) & h(D) = h(l) says that h(l) is the only overlapping index (i.e.,
o ∈ C ∩ D =⇒ h(o) = h(l)). If, in addition, u(C)&u(D)&h(l) = 0, then
either l is the unique literal in C with h(l) = h(l) or l is the unique literal in
D with h(l) = h(l). Either way, the intersection C ∩ D = ∅ and the resolvent
C ⊗l D = (C ∪ D) \ {l, l} is non-tautological.

Proposition 4. Let h ∈ H. h(C)&h(l) = 0 =⇒ l /∈ C.

Proof. Clearly, if l ∈ C then h(C)&h(l) �= 0.

Through Propositions 1–4 we may now utilize the signature representation
(h(C), u(C)) of a clause to test for the contrary of Definitions 5–8 respectively.
As our first application, consider a typical subsumption routine (Algorithm 1)
designed to remove all clauses D ∈ F (a set of clauses) for which there exists
a subsuming clause C ⊆ D. Line 5 in Algorithm 1 applies Proposition 1 just
before an explicit subsumption test on line 7. Importantly, Proposition 1 can
be tested without accessing the clause structures of C or D; we only need their
signatures and collision signatures.

As a second application, let us consider Proposition 3 for non-tautological
resolvents. One of my favourite applications of tautological resolvent querying is
in the detection of blocked clauses [6]. To this end, let C⊗lO(l) = {C⊗lD | D ∈
O(l} and O(l)⊗l O(l) = {C ⊗l D | C ∈ O(l),D ∈ O(l)} be the extensions of the
resolvent operator to sets of clauses. A blocked clause is a clause C with some
literal l ∈ C whose resolvents C ⊗l D with all clauses D ∈ O(l) are tautological
(and thus C is, in a sense, redundant). Indeed, to test whether C is blocked by a
literal l ∈ C, we must check its resolvents C ⊗l O(l), which is almost always too
costly to verify for all clauses in a formula. What makes this routine so appealing
to signature-based methods is that it suffices to provide just one clause D ∈ O(l)
with a non-tautological resolvent C ⊗l D to show that C is not blocked by l.

I have sketched a typical BCE routine in Algorithm 2, where you will find
Proposition 3 on line 6. Notice, again, how accessing the clause containers of C
and D is deferred until an explicit check on line 11.

Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers 87

Algorithm 1. Subsumption
1: Input : F // set of clauses
2: K = ∅ // checked clauses
3: for C ∈ sorted (F , <) do // increasing size
4: for D ∈ K do // ensures |D| ≤ |C|
5: if h(D)& ∼h(C) �= 0 or u(D)& ∼u(C) �= 0 then // Proposition 1
6: continue
7: else if D ⊆ C then // explicit check
8: F = F \ {C} // remove clause
9: break

10: if C ∈ F then
11: K = K ∪ {C} // keep clause

12: return F

Algorithm 2. Blocked clause elimination
1: Input : F // set of clauses
2: for l ∈ L do
3: for C ∈ O(l) do
4: tautology = True
5: for D ∈ O(l) do
6: if h(C)&h(D) = h(l) and u(C)&u(D)&h(l) = 0 then // Prop. 3
7: tautology = False
8: break
9: if tautology = True then

10: for D ∈ O(l) do
11: if C ⊗v D �= � then // explicit check
12: tautology = False
13: break
14: if tautology = True then
15: F = F \ {C} // remove clause

16: return F

Algorithm 3. Bounded variable elimination
1: Input : F , bound // set of clauses
2: for v ∈ V do
3: count = 0
4: for (C,D) ∈ O(v) × O(v) do
5: if h(C)&h(D) = h(v) ∧ u(C)&u(D)&h(v) = 0 then // Proposition 3
6: count = count + 1

7: if count > |O(v) ∪ O(v)| + bound then // bound exceeded
8: continue
9: for (C,D) ∈ O(v) × O(v) do

10: if h(C)&h(D) �= h(v) ∨ u(C)&u(D)&h(v) �= 0 then // Proposition 3
11: if C ⊗v D �= � then // explicit check
12: count = count + 1

13: if count ≤ |O(v) ∪ O(v)| + bound then
14: F = (F \ (O(v) ∪ O(v))) ∪ (O(v) ⊗v O(v)) // eliminate v

15: return F

88 H. Cao

Tautological resolvent querying also emerges in BVE [4], which eliminates
variables v ∈ V by substituting the (satisfiability-equivalent) resolvents O(l) ⊗l

O(l) for the clauses O(l)∪O(l). In particular, only variables with |O(l)⊗lO(l)| ≤
|O(l) ∪ O(l)| + bound are eliminated, which amounts to counting the number
of non-tautological resolvents (since tautological resolvents may be discarded
after the substitution). Algorithm 3 sketches the routine with the application of
Proposition 3 on line 5 and on line 10.

4 Probabilistic Analysis

On account of Propositions 1–4 derived in the previous section, we can test the
complementary properties of Definitions 5–8 from the clause signatures h(C) and
u(C). But how useful are these signatures in practice? From a practical point
of view, we are interested in the probability that an arbitrary pair of clauses
satisfies the premises corresponding to Propositions 1–4.

Clearly, if m � |C|, the signatures h(C) and u(C) tend to 1 . . . 1, and the
comparisons h(C)&h(D) = 0 and u(C)&u(D) = 0 become vacuous. Therefore,
the effectiveness of h(C) and u(C) is largely dependent on the number of col-
lisions (overlaps) of literals in C under h. This relates to the size of C (fewer
literals incur less collision) and how well h distributes C over m bits.

Notice that for a clause C whose literals are selected uniformly at random
from L (and our assumption that h ∈ H distributes uniformly at random), we
can model the mapping h(C) as if C were drawn from the range [0,m) instead.
Let ‖w‖ denote the bit sum of w (e.g., ‖01101‖ = 3).

Proposition 5. Let h ∈ H. E [‖h(C)‖] = m(1 − (m−1
m)C).

Proof. We model the mapping h(C) as C random and independent draws from
[0,m). Let h(C)i denote the ith index in h(C). Pr[h(C)i = 1] = 1− (m−1

m)C . By
linearity of expectation, E [‖h(C)‖] =

∑m−1
i=0 Pr[h(C)i = 1] = m(1 − (m−1

m)C).

Proposition 6. Let h ∈ H. E [‖u(C)‖] = m(1 − (1 − C
m−1)(m−1

m)C).

Proof. We model the mapping h(C) as C random and independent draws from
[0,m). Let u(C)i denote the ith index in u(C). If u(C)i = 0, then either one
or zero literals in C are mapped to h(C)i. The probability that h(C)i is zero is
p = (m−1

m)C . The probability that exactly one literal is mapped to index i is q =
C
m (m−1

m)C−1. Thus, Pr[u(C)i = 1] = 1−p−q = 1−(1− C
m−1)(m−1

m)C . By linearity
of expectation, E [‖u(C)‖] =

∑m−1
i=0 Pr[u(C)i = 1] = m(1 − (1 − C

m−1)(m−1
m)C).

Using Proposition 5, the expected number of collisions is E [|collisions|] =
C−E [‖h(C)‖]. I have plotted this together with the results of Proposition 5 and
Proposition 6 in Fig. 2 (left) for m = 64. You can see how the signature h(C) is
quickly populated after some 250 literals, beyond which all new literals collide
with some previously populated index. The collision signature, u(C), fills up
more slowly and is expected to hit its capacity after ≈ 400 literals (which makes

Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers 89

Fig. 2. (left) The expected size of h(C) (blue), the expected size of u(C) (orange)
and the expected number of collisions (green) for m = 64 and clauses 2 ≤ C ≤ 400.
(right) The distributions of ‖h(C)‖ (blue) and the distribution of ‖u(C)‖ for |C| = 150
(orange). (Color figure online)

sense, as two literals corresponding to h(l)i are required to tick u(l)i). Moreover,
from a SAT point of view, it is comforting to know that literal collisions are
independent of the number of overall literals |L| in a formula.

We can also find expressions for the distributions of Pr [‖h(C)‖ = k] and
Pr [‖u(C)‖ = k], which I have plotted in Fig. 2 for C = 150.

Lemma 1. Let h ∈ H. For k ≤ |C|,

Pr [‖h(C)‖ = k] =
1

mC

{
C

k

}(
m

k

)
k!

Proof. By counting the number of clauses C with ‖h(C)‖ = k. We model the
mapping h(C) as C random and independent draws from the range [0,m). For
h ∈ H there are mC ways to sample C elements from [0,m). There are

(
m
k

)

k-element subsets in m bit indices, each having k! permutations, and
{
C
k

}
ways

to partition C into k disjoint subsets. Multiplying through and dividing by mC

gives the desired distribution.

Proposition 7. Let h ∈ H. For 2k ≤ |C|,

Pr [‖u(C)‖ = k] =
1

mC

min{m−k,C−2k}∑

j=0

{
C − j

k

}

≥2

(
C

C − j

)(
m

k + j

)
(k + j)!

Proof. By counting the number of clauses C with ‖u(C)‖ = k. We model the
mappings h(C) and u(C) as C random and independent draws from [0,m). Let
‖h(C)‖ = k+ j, so that exactly k+ j of the m bit indices are set by literals in C.
If ‖u(C)‖ = k, then j bit positions have exactly one literal mapped to them. The
remaining C − j literals are mapped to k bits, which can be done in

{
C−j
k

}
≥2

90 H. Cao

ways. The partition corresponding to ‖h(C)‖ = k + j can be chosen in
(

m
k+j

)

ways and from (k+ j)! permutations. Lastly, there are
(

C
C−j

)
ways to choose the

subset of C − j elements from C. In total, there are
{
C−j
k

}
≥2

(
C

C−j

)(
m

k+j

)
(k + j)!

clauses with ‖h(C)‖ = k+ j and ‖u(C)‖ = k. It remains to sum over all possible
sizes k + j. Clearly, we must have k ≤ k + j ≤ m. If C − 2k ≤ m − k, then we
require k + j ≤ C − k. Combining these two inequalities we have k ≤ k + j ≤
min{m,C − k} or 0 ≤ j ≤ min{m − k,C − 2k}. Summing over these limits and
dividing by the total number of mappings mC yields the desired distribution.

Let us now return to the premise of Proposition 2 and provide a probabilistic
analysis; namely the probability that the clause signatures of two clauses are
disjoint.

Proposition 8. Let h ∈ H. Then

Pr [h(C)&h(D) = 0] =
1

mC+D

min{C,m}∑

k=1

(
C

k

){
C

k

}
k!(m − k)D.

Proof. We model the mapping h(C) as C random and independent draws from
[0,m). Let ED

C = (h(C)&h(D) = 0) and consider the conditional formulation

Pr
[
ED

C

]
=

min{C,m}∑

k=1

Pr
[
ED

C | ‖h(C)‖ = k] Pr[‖h(C)‖ = k
]

(4)

summed over all sizes of ‖h(C)‖, i.e., the range 1 ≤ k ≤ min(C,m). Notice that
this defines a partition of the set of possible values for h(C). For any particular
‖h(C)‖ = k, there are m − k bits that can be mapped to by h(D) without
violating ED

C and mD choices in total, so that Pr[ED
C | ‖h(C)‖ = k] = (m −

k)D/mD. Plugging this and the result of Lemma 1 into (4) yields the desired
equation.

The probability distribution of Proposition 8 is depicted in Fig. 3 (left) for
m = 64 and clauses of size 2 ≤ C,D ≤ 52. It visualizes nicely how the disjointness
of large clauses (|C| > 10 and |D| > 10) is difficult to certify from their signatures
alone, which is to be expected unless m � C +D. On the other hand, if h(C) �=
1 . . . 1 (respectively h(D) �= 1 . . . 1) and |D| < 10 (respectively |C| < 10) then
Proposition 8 still predicts a reasonable probability of success for signature-based
disjointness querying.

Next, consider the signature-based subset relation from Proposition 1. The
probability that the clause signatures of C and D detect the property C � D is
given as the following Proposition.

Proposition 9. Let h ∈ H. Pr[h(C)& ∼h(D) �= 0 or u(C)& ∼u(D) �= 0]

= 1− 1

mC+D

min{m,C}
min{k1,C−k1}∑

k1=0
r1=I[C≤m]

min{m,D}
min{k2,D−k2}∑

k2=k1
r2=max{r1,I[D>m]}

SC
k1,r1

SD
k2,r2

(m
k2

)(k2
k1

)(k1
r1

)(k2 − r1

r2 − r1

)
,

Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers 91

SC
k,r = r!(k − r)!

(
C

k − r

){
C − (k − r)

r

}

≥2

.

Proof. Let HD
C and UD

C be the events h(C)& ∼h(D) �= 0 and u(C)& ∼u(D) �= 0
respectively and denote their complements by HD

C and UD
C (i.e., HD

C is the
event h(C)& ∼h(D) = 0). The union probability Pr[HD

C ∪ UD
C] is equivalent

to the complementary probability 1 − Pr[HD
C ∩ UD

C] and as there are mC+D

clause pairs in total, it remains to count the pairs satisfying HD
C ∩UD

C . Now, two
clauses C,D satisfy HD

C if h(C) ≤ h(D). Similarly, two clauses C,D satisfy UD
C if

u(C) ≤ u(D). Notice that u(·) ≤ h(·) holds in general. We can count the number
of clauses C with ‖h(C)‖ = k and ‖u(C)‖ = r by distributing k − r literals into
h(C) and distributing the remaining C−(k−r) literals into r unset bits in h(C).
This can be done in SC

k,r = r!(k−r)!
(

C
C−(k−r)

){
C−(k−r)

r

}
≥2

ways. If r = 0, we let{
p
r

}
≥2

= 1. Let ‖h(C)‖ = k1, ‖h(D)‖ = k2, ‖u(C)‖ = r1 and ‖u(D)‖ = r2. There
are

(
m
k2

)
choices for the subset h(D) in an m-bit signature. For each choice,

we can distribute the k1 bits of h(C) in
(
k2
k1

)
ways such that h(C) ≤ h(D).

There are then
(
k1
r1

)
choices for u(C) ≤ h(C) and

(
k2−r1
r2−r1

)
choices for distributing

the remaining r2 − r1 bits of u(D) to lie outside of u(C). In summary, there
are SC

k1,r1
SD
k2,r2

(
m
k2

)(
k2
k1

)(
k1
r1

)(
k2−r1
r2−r1

)
pairs (C,D) with ‖h(C)‖ = k1, ‖h(D)‖ =

k2, ‖u(C)‖ = r1 and ‖u(D)‖ = r2 satisfying HD
C ∩ UD

C . It remains to establish
the limits of the summation. Clearly, k1 ∈ [0,min{m,C}] and 0 ≤ r1 ≤ k1. When
r1 = 0, however, C must distribute into k1 distinct bits, which can only happen
if C ≤ m. Furthermore, for ‖u(C)‖ = r1 there must be at least (k1 − r1) +
2r1 = k1 + r1 literals to distribute, and so I[C ≤ m] ≤ r1 ≤ min{k1, C − k1}.
The limits for k2 and r2 are similar, except that k2 ≥ k1 and r2 ≥ r1. We
have k1 ≤ k2 ≤ min{m,D} and max{r1, I[D > m]} ≤ r2 ≤ min{k2,D − k2}.
Summation over k1, k2, r1 and r2 yields the desired probability.

I plot the probability of Proposition 9 in Fig. 3 (right) for m = 64 and
clauses in the range 2 ≤ C,D ≤ 800. The diagonal line (white) shows the
boundary where |C| = |D| and in particular C � D in the upper triangle,
because |C| > |D|.

We see immediately that a signature-based test will most certainly fail if
|D| > 500. As we discussed above, this is due to the clause signatures filling up
for large clauses, i.e., ‖h(C)‖ → m and ‖u(C)‖ → m as |C| → 400. This effect
persists into the upper triangle, because although Pr[C � D] = 1 if |C| > |D|,
the signature-based test fails for |D| > 500 (see the white area in the upper
triangle of Fig. 3 (right)).

For clauses in the range 100 ≤ |D| ≤ 500, Proposition 9 predicts that a
signature-based test is indeed effective, unless |C| � |D|. This is within expec-
tation, since the region |C| � |D| houses most clauses with C ⊂ D.

For clauses in the range |C| ≤ 20 and |D| ≤ 200 (bottom left corner of Fig. 3
(right)), Proposition 9 predicts that most clauses with C � D are detectable
from their signatures.

92 H. Cao

Fig. 3. The probabilities of Proposition 8 (left) and Proposition 9 (right).

Lastly, let us analyse the corresponding probability for non-tautological resol-
vent detection from Proposition 3.

Proposition 10. Let h ∈ H, l ∈ C and l ∈ D. Then

Pr[u(C)&u(D)&h(l) = 0 and h(C)&h(D) = h(l)]

=
1

mC+D−2

min{C−1,m}∑

k=1

(
C − 1
k

){
C − 1
k

}
k!(m − k)D−1.

Proof. Let UD
C and HD

C be the events u(C)&u(D)&h(l) = 0 and h(C)&h(D) =
h(l) respectively. Since l ∈ C and l ∈ D we have that UD

C ⇐⇒ h(C\{l})&h(D\
{l})&h(l) = 0. We also have HD

C ⇐⇒ h(C)&h(D)& ∼h(l) = 0 ⇐⇒ h(C \
{l})&h(D \ {l})& ∼h(l) = 0. Combining these, we find that UD

C ∧ HD
C ⇐⇒

h(C \ {l})&h(D \ {l}) = 0. Applying the results of Proposition 8 on the sets
C \ {l} and D \ {l} yields the desired probability.

The probability of Proposition 10 is two literals more forgiving than Propo-
sition 8. Unfortunately, it still confirms that testing non-tautological resolvency
from clause signatures is ineffective if |C| > 10 and |D| > 10 (see Fig. 4 (top-
left)).

Verifying that C is not a blocked clause from the signatures h(C), u(C)
(lines 5–8 of Algorithm 2) amounts to finding a clause D ∈ O(l) satisfying
Proposition 3. The probability that at least one non-tautological resolvent in
the set O(l) is found can be computed as follows.

Proposition 11. Let h ∈ H and l ∈ C. Then

Pr[(u(C)&u(D)&h(l) = 0 and h(C)&h(D) = h(l)) for some D ∈ O(l)]

= 1 −
∏

D∈O(l)

⎡

⎣1 − 1
mC+D−2

min{C−1,m}∑

k=1

(
C − 1
k

){
C − 1
k

}
k!(m − k)D−1

⎤

⎦ .

Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers 93

Proof. Let ED
C be the event u(C)&u(D)&h(l) = 0 and h(C)&h(D) = h(l).

Pr
[∃DED

C

]
= 1 − Pr

[
∀DED

C

]

= 1 −
∏

D∈O(l)

Pr
[
ED

C

]

= 1 −
∏

D∈O(l)

(1 − Pr[ED
C]),

where ∃ and ∀ are the existential and universal quantifiers over the set O(l).
Plugging in the probability from Proposition 10 gives the result.

Fig. 4. Proposition 10 (top-left). Proposition 11 for |O(l)| = 3 (top-right). Proposi-
tion 11 for |O(l)| = 10 (bottom-left). Proposition 11 for |O(l)| = 25 (bottom-right).

Figures 4 (top-right), (bottom-left) and (bottom-right), plot the probability
of Proposition 11 for occurrence lists of size |O(l)| = 3, 10, 25 respectively. This
example is somewhat artificial, since every clause C ∈ O(l) is forced to be equal
in size. The benefits of Proposition 11 compared to Proposition 10, however,
should be apparent: Finding a counterexample in a larger list is more likely
than finding one from a smaller one. In practice, the probability of certifying
non-blockedness using clause signatures is greatly enhanced if at least one of the
clauses in C ∪ O(l) is small.

94 H. Cao

5 Evaluation

By way of demonstrating the effectiveness of the signature-based methods devel-
oped in Sect. 3, I implemented Algorithms 1–3 in the popular C++ programming
language4 and ha as the underlying hash function. My subsumption algorithm
(Algorithm 1) is based on a literal marking scheme and discussions in [3]. It
seemed natural to test strengthening candidates in conjunction with subsump-
tion, so I modified my implementation to test for both properties. My imple-
mentations of the BCE (Algorithm 2) and BVE procedures (Algorithm 3 with
bound = 16) utilize the same literal marking scheme to test for tautological
resolvents. To maintain the efficiency of these simplification techniques on large
formulae, it was necessary to eliminate tests on gargantuan clauses and occur-
rence lists, so as to limit both memory and computational resources. I therefore
chose to skip checks on clauses |C| > 104 and occurrence lists |O(l)| > 104.

The benchmark I used comprises the full Main track dataset of the 2020 SAT
competition [2], which includes a variety of formulae with 102−108 clauses. Each
method was run independently as a preprocessing technique, with and without
a signature-based check, on all 400 formulae. No timeout or randomness was
involved, so as to force the runs to be as identical as possible. Furthermore,
no actual simplification was performed; only the number of simplifications was
counted. The times measured are the total run-time (including construction of
relevant data structures, e.g., occurrence lists), but excluding time spent on
reading input formulae. Computation was done on an AMD RyzenTM 9 3900X
and 32 GB of RAM.

Figure 5 plots the resulting execution time gain 100(tbase − thash)/tbase for
Algorithms 1–3, where thash and tbase measure the total time spent by the algo-
rithm with signature-based checks enabled and disabled respectively. I ordered
the execution times in Fig. 5 in ascending order for better visualization, there-
fore the dataset indices between subplots (top),(middle) and (bottom) do not
necessarily coincide.

Figure 5 (top) shows a promising gain in execution time for the Subsumption
procedure (Algorithm 1) when signature-based checks were enabled. Especially
for large formulae, the signature-based checks were able to avoid a large portion
of clause accesses. The accumulative time spent on the benchmark was 601 s
with signature-based tests enabled and 2451 s without.

Figure 5 (middle) shows that BCE (Algorithm 2) maintains an almost 20%
gain in efficiency on the benchmark when signature-based methods were enabled.
The difference in execution time was especially large for formulae with larger
clause-to-variable ratios, which aligns with our analysis in Sect. 4 that clause-
blockedness is easier to refute for large occurrence lists. The accumulative time
spent on the benchmark was 154 s with signature-based tests enabled and 232 s
without.

Figure 5 (bottom) verifies that BVE (Algorithm 3) does not consistently ben-
efit from the signature-based approach. Upon closer analysis, this was in part

4 Code available at www.github.com/incudine/sat2021.

www.github.com/incudine/sat2021

Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers 95

Fig. 5. The gain in execution time 100(tbase − thash)/tbase for Algorithm 1 (top),
Algorithm 2 (middle) and Algorithm 3 (bottom) for each formula.

due to the extra time spent constructing the larger occurrence lists to include
the clause signatures. The accumulative time spent on the benchmark was 116 s
with signature-based tests enabled and 96 s without.

Lastly, Fig. 6 plots the ratio of positive signature-based checks divided by
the total number of checks for Algorithms 1–3 (note that I have once again
ordered the ratios, wherefore indices between different algorithms do not nec-
essarily coincide). Importantly, it shows the fraction of explicit checks which

96 H. Cao

Fig. 6. The fraction of positive signature checks for Algorithms 1–3.

could be avoided by testing the clause signatures. Figure 6 is in close agreement
with the experimental findings of Fig. 5, as well as the theoretical analysis of
Sect. 4. In particular, explicit testing of subsumption/blockedness properties for
a large number of clauses arising in practical applications can be avoided using
signature-based methods.

6 Conclusions

I have discussed the use of hash-based methods using clause signatures and their
application in Subsumption, BCE, and BVE. The theoretical findings of Sect. 4
promote their use in Subsumption and BCE, but not in BVE. This was verified
in the evaluation, which shows a significant decrease in execution time for the
Subsumption and BCE algorithms, especially on larger formulae.

In addition to fast pre-checking of clause relations, implementations of
signature-based methods hold the advantage of not having to access clause con-
tainers. This seems to be the most salient factor in reducing runtime, although
it comes at the cost of having to construct and maintain larger occurrence lists
for storing clause signatures.

References

1. Bakhtiari, S., Safavi-Naini, R., Pieprzyk, J., et al.: Cryptographic hash functions:
A survey. Technical Report, Citeseer (1995)

2. Balyo, T., Froleyks, N., Heule, M.J., Iser, M., Järvisalo, M., Suda, M.: Proceedings
of sat competition 2020: Solver and benchmark descriptions (2020)

3. Bayardo, R.J., Panda, B.: Fast algorithms for finding extremal sets. In: Proceedings
of the 2011 SIAM International Conference on Data Mining, pp. 25–34. SIAM
(2011)

4. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 5

https://doi.org/10.1007/11499107_5

Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers 97

5. Han, H., Somenzi, F.: On-the-fly clause improvement. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 209–222. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02777-2 21

6. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-12002-2 10

7. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 28

8. Jovanović, D., Janičić, P.: Logical analysis of hash functions. In: Gramlich, B. (ed.)
FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 200–215. Springer, Heidelberg (2005).
https://doi.org/10.1007/11559306 11

9. Korhonen, T., Berg, J., Saikko, P., Järvisalo, M.: MaxPre: an extended MaxSAT
preprocessor. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
449–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 28

10. Legendre, F., Dequen, G., Krajecki, M.: Encoding hash functions as a sat problem.
In: 2012 IEEE 24th International Conference on Tools with Artificial Intelligence,
vol. 1, pp. 916–921. IEEE (2012)

11. de Mare, M., Wright, R.N.: Secure set membership using 3Sat. In: Ning, P., Qing,
S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 452–468. Springer, Heidelberg
(2006). https://doi.org/10.1007/11935308 32

12. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash func-
tions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115.
Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 13

13. Nejati, S., Liang, J.H., Gebotys, C., Czarnecki, K., Ganesh, V.: Adaptive restart
and CEGAR-based solver for inverting cryptographic hash functions. In: Paskevich,
A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 120–131. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72308-2 8

14. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: A survey. arXiv
preprint arXiv:1408.2927 (2014)

15. Wang, J., Zhang, T., Sebe, N., Shen, H.T., et al.: A survey on learning to hash.
IEEE Trans. Pattern Anal. Mach. intell. 40(4), 769–790 (2017)

16. Weaver, S., Heule, M.: Constructing minimal perfect hash functions using sat tech-
nology. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 1668–1675 (2020)

17. Weaver, S.A., Ray, K.J., Marek, V.W., Mayer, A.J., Walker, A.K.: Satisfiability-
based set membership filters. J. Satisfiability Boolean Model. Comput. 8(3–4),
129–148 (2012)

18. Wotzlaw, A., van der Grinten, A., Speckenmeyer, E.: Effectiveness of pre-and inpro-
cessing for cdcl-based sat solving. arXiv preprint arXiv:1310.4756 (2013)

19. Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499107 42

https://doi.org/10.1007/978-3-642-02777-2_21
https://doi.org/10.1007/978-3-642-02777-2_21
https://doi.org/10.1007/978-3-642-12002-2_10
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/11559306_11
https://doi.org/10.1007/978-3-319-66263-3_28
https://doi.org/10.1007/11935308_32
https://doi.org/10.1007/11814948_13
https://doi.org/10.1007/978-3-319-72308-2_8
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1310.4756
https://doi.org/10.1007/11499107_42

Hardness and Optimality in QBF Proof
Systems Modulo NP

Leroy Chew(B)

Technische Universität Wien, Vienna, Austria
lchew@ac.tuwien.ac.at

http://leroychew.wordpress.com/

Abstract. In this paper we show that extended Q-resolution is optimal
among all QBF proof systems that allow strategy extraction modulo an
NP oracle. In other words, for any QBF refutation system f where cir-
cuits witnessing the Herbrand functions can be extracted in polynomial
time from f -refutations, f can be simulated by extended Q-resolution
augmented with an NP oracle as described by Beyersdorff et al. We argue
that using NP oracles and strategy extraction gives a natural framework
to study QBF systems as they have relations to SAT calls and game
instances, respectively, in QBF solving.

A weaker version of QBF extension variables also put forward by Jus-
sila et al. does not have this optimality result, and we show that under
an NP oracle there is no improvement of weak extended Q-Resolution
compared to ordinary Q-Resolution.

Keywords: QBF · Proof complexity · Simulation · Resolution ·
Extended Frege · NP oracles · Optimal proof systems · Strategy
extraction

1 Introduction

Quantified Boolean formulas (QBF) are an extension of propositional logic and
extend the SAT problem from NP-complete to PSPACE-complete [31]. In the
last decade the SAT community has developed a strong interest in QBF solv-
ing as a successor to SAT and the number of QBF solvers, benchmarks and
proof systems has multiplied considerably. QBF solving employs a variety of
new reasoning techniques not found in SAT in order to deal with quantification.
However, universally verifying the results of these different solvers over incom-
parable techniques remains a difficult problem. Proof systems such as extended
Q-Res [22] or the even stronger QRAT [18] have been put forward as candidates
for universal checking formats but have not yet been put to significant use.

We show that extended Q-Res has theoretical properties that make it a good
candidate for a QBF checking format under a reasonable set of assumptions, and
through these results, we can conjecture that it can simulate the proof systems
that underpin the most commonly used QBF solving techniques.
c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 98–115, 2021.
https://doi.org/10.1007/978-3-030-80223-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_8&domain=pdf
http://orcid.org/0000-0003-0226-2832
https://doi.org/10.1007/978-3-030-80223-3_8

Hardness and Optimality in QBF Proof Systems Modulo NP 99

Just as in the SAT case, proof complexity is the main theoretical framework
for analysing the relative strengths of QBF solvers. To use proof complexity,
solvers are classified by their underlying proof systems, which express the lim-
its of that solver. Because there are a variety of QBF solving methods, there
are also many different QBF proof systems. Expansion-based solvers such as
RAReQS [19] use the definition of QBF and expand into potentially exponential
size propositional formulas. Expansion solvers are captured by proof systems
such as ∀Exp+Res [20]. Conflict-driven clause-learning (CDCL), from SAT solv-
ing, is another technique that can be adapted for a QBF setting. This deals
with quantification via a reduction rule. Combining existential resolution and
universal reduction in proof theory gives the refutationally complete system Q-
resolution (Q-Res) [26]. More general CDCL solvers that can perform stronger
unit propagations are better described by so-called long-distance Q-Resolution
(LD-Q-Res), an exponentially more powerful system[2]. An example of a QBF
solver using CDCL is Dep-QBF [29]. The “Dep” part of Dep-QBF actually
indicates another quantification technique which uses the awareness of spuri-
ous dependencies in the ordered quantifier prefix. The theory of dependency is
also hugely important for QBF solving and theory [9,28,32] and has given rise
to other stronger variants of Q-Res that utilise the dependency schemes, such as
the reflexive resolution scheme [32].

Solvers can be modified to output certificates that are used to verify their
results. It is natural for these certificates to be valid proofs for the corresponding
proof systems. As well as being able to output proofs of truth or falsity, solvers
are often asked to provide the strategies that witness how each variable must be
set. In some applications, the strategy is the whole point of using a QBF solver. In
Feldman et al. [13], circuit design algorithms explicitly used the strategy circuits
output by QBF solvers rather than the true/false results. If these strategies
are circuits that are easy to compute from the proofs, that proof system is
said to have strategy extraction, an often desirable property for proof systems
corresponding to solvers. All proof systems in the previous paragraph have this
property.

While the above proof systems are meant to correspond to particular solvers,
there is no agreed upon universal checking format for certification for every
known type of QBF solver. One approach is to incorporate as many techniques
as possible into the proof system. The proof system IRM-calc [6] combines the
main concepts from the expansion-based ∀Exp+Res and the CDCL-based LD-
Q-Res into one sound system. While this is interesting in understanding how
expansion and CDCL systems can interact, IRM-calc is somewhat ad hoc, and a
new technique could easily emerge which IRM-calc is not designed to deal with.
For example, IRM-calc can not deal with the resolution of universal variables [6].

Another approach is to pick one strong system and prove that each solving
technique can be simulated. This approach can be seen in the QRAT system,
where it was first shown that a number of QBF preprocessing techniques were
simulated by it [18]. Later it was shown to simulate LD-Q-Res [23] and ∀Exp+Res

100 L. Chew

[24]. From these results, one could estimate that QRAT is indeed strong, but we
would prefer a stronger theoretical reason for this.

If we want a QBF proof system suitable for universal certification, then the
absolute ideal situation would be that it simulates every other QBF proof system.
This is probably too ambitious as the existence of a theoretical optimal proof
system remains a contested and open problem in propositional proof complexity,
and it is an even stronger claim to suggest one exists for QBF. However, we
can restrict our search to just proof systems with strategy extraction, and the
problem becomes more manageable.

We find that with some extra help, extended Q-resolution is optimal among
the proof systems with strategy extraction. Firstly we show in Theorem 1 that
extended QU-Resolution (the ‘U’ in QU allows resolution on universal variables)
is equivalent to the system eFrege+∀red.

Theorem 1. Extended QU-Res and eFrege +∀red are p-equivalent.

eFrege+∀red has an important result where it can only have a lower bound
if eFrege has a lower bound or PSPACE /∈ P/poly [5]. While this does not give us
a simulation of another QBF proof system, it already indicates the strength of
the system. With additional propositional power we show the next theorem.

Theorem 2. For every refutational QBF Proof System S that has P/poly-
strategy extraction, there is a set of polynomial-time verifiable propositional tau-
tologies ‖Ψ‖ such that eFrege +∀red +‖Ψ‖ simulates S.

For reasons that we discuss in Sect. 3, the extra propositional tautologies
will not play a large role. Our main conjecture is that for the most interesting
systems, the simulation requires no additional help.

Conjecture 1. ∀Exp+Res, IR-calc, LD-Q-Res, IRM-calc, QRAT(UR) and Q(Drrs)-
Res are all simulated by eFrege+∀red.

We saw that extra help needed for simulations can come in the form of
propositional tautologies, but there is a second setting which achieves the same
result- the use of NP oracles in a proof system.

This idea was first proposed by Chen [10] and refined by Beyersdorff, Hinde
and Pich [8]. The Beyersdorff et al. NP derivation rule roughly allows one to
make any propositional derivation in addition to the normal rules of whatever
system we are adding the rule to. The motivation was to provide a theoretical
framework that differentiated out genuine QBF hardness for QBF proof systems.

NP oracles model what happens in practice, as QBF solving algorithms often
make black-box calls to SAT solvers. This usually does not affect strategy extrac-
tion as we see in Theorem 3.

Theorem 3. The following strategy extraction theorems hold:

– QU-Res NP has depth-1 circuit decision list strategy extraction.
– For circuit class C, C-Frege +∀red NP has C-decision list strategy extraction.

Hardness and Optimality in QBF Proof Systems Modulo NP 101

NP oracles remove the need for the families of propositional tautologies, and
we can express our simulation results in terms of optimality.

Theorem 4. Extended Q-ResNP is optimal among all QBF proof systems with
strategy extraction.

The final three theorems examine a weaker form of extension in Q-Res and
QU-Res under the lens of NP oracles.

Theorem 5. Weak extended QU-Res NP does not simulate extended Q-Res.

Theorem 6. Weak extended Q-Res does not simulate QU-Res.

Theorem 7. Q-Res ≡NP QU-Res ≡NP Weak Ext.Q-Res ≡NP Weak Ext.QU-Res.

1.1 Organisation

In Sect. 2 we recap some essential definitions on QBF. In Sect. 3 we show The-
orem 1 and 2 and discuss why this leads to Conjecture 1. Section 4 begins an
analysis of proof systems under NP oracles with Theorems 3 and 4. This is
finished in Sect. 5 where we prove Theorems 5, 6 and 7.

2 Preliminaries

2.1 Proof Complexity

Formally, a proof system [12] for a language L over alphabet Γ is a polynomial-
time computable partial function f : Γ� ⇁ Γ� with rng(f) = L, where rng
denotes the range. A proof system maps proofs to theorems. A refutation is a
proof system where the language L is of contradictions. The partial function
f gives a proof checking function. Soundness and completeness are given by
rng(f) ⊆ L and rng(f) ⊇ L, respectively. The polynomial-time computability is
an indication of feasibility.

Proof size is given by the number of characters appearing in a proof. Proof
systems are compared by simulations. We say that a proof system f simulates g
(g ≤ f) if there exists a polynomial p such that for every g-proof πg there is an
f -proof πf with f(πf) = g(πg) and |πf | ≤ p(|πg|). If πf can even be constructed
from πg in polynomial-time, then we say that f p-simulates g (g ≤p f). Two
proof systems f and g are (p-)equivalent (g ≡(p) f) if they mutually (p-)simulate
each other.

Definition 1 (Messner, Toran [30]). A proof system in language L is (p-
)optimal if and only if it can (p-)simulate all other proof systems for L.

102 L. Chew

A1 . . . An (r)
B

Here A = {A1 . . . An} and r(A,B) holds.

Fig. 1. Example of rule r in a line-based proof system

Line-Based Proofs. A proof system is line-based if every proof consists of
a sequence L1 . . . Ln of lines Li. The data types of lines are dependent on the
proof systems. A line-based system is verified by a set of rules R. Each rule is
a relation between a set of lines, which are known as the premises, and a single
conclusion line. Correct proofs have that for each line Li, there is some rule r in
R and a subset A of {Lj |0 ≤ j < i} such that r(A,Li) holds (see Fig. 1).

Given a line based proof system P with a set of rules RP and a rule r, we
can write P + r to mean the proof system that consists of the rules of RP ∪ {r}
under the lines acceptable in P . If S is a set of propositional formulas, the proof
system P + S is the system P + r, where r is a rule that allows a conclusion s
(with empty premises) if and only if s ∈ S. Note that rules and sets of lines have
to be polynomial-time verifiable in order for the resulting system to be a proof
system. While adding a rule r to a complete system P preserves completeness,
soundness is not guaranteed and has to be reasoned for separately.

2.2 Propositional Logic

Propositional logic involves Boolean variables under operations ¬,∧,∨, 0, 1. A
literal is a variable or its negation, a clause is a disjunction of literals and a
conjunctive normal form (CNF) is a conjunction of clauses. A formula is satisfi-
able if there is a 0, 1 assignment to variables so that the formula evaluates to 1.
Deciding whether a propositional formula is satisfiable is NP-complete.

Propositional Proof Systems. Resolution (Res) is a propositional refutation
system that works on formulas in conjunctive normal form. Resolution is line-
based, where every line is a clause. The axiom rule allows us to download any
clause in our original CNF. The inference rule takes two premise clauses C ∨ x
and D ∨ ¬x and outputs conclusion C ∨ D.

Extended resolution (Ext. Res) for propositional logic [33], enables adding
clauses expressing the equality v ⇔ (¬x ∨ ¬y), for a fresh variable v. As NAND
gates can be defined by new variables, subsequent new variables can represent
more complicated functions.

Frege systems are line-based systems that work on propositional formulas.
Frege systems consist of an implicationally complete finite set of sound rules,
each of which is represented by a single example, which can be generalised by

Hardness and Optimality in QBF Proof Systems Modulo NP 103

substitution. All Frege systems are known to be p-equivalent. While the lines
of Frege systems are required to be formulas, a generalised version of Frege,
denoted here by C-Frege, allows/restricts the lines to belong in circuit class C.
For example, AC0-Frege [3] is the Frege system where the lines are circuits with
unbounded fan-in but have bounded-depth. NC 1-Frege is the Frege system where
the lines have bounded fan-in and logarithmic depth, this is equivalent to the
original Frege system [12] where lines are formulas. P/poly-Frege (defined as
Circuit Frege by Jeřábek [21]) is the Frege system where general circuits have
unbounded fan-in and depth. Extended Frege is known to be p-equivalent to
P/poly-Frege, so we often use the notation eFrege to denote P/poly-Frege.

2.3 Quantified Boolean Formulas

Quantified Boolean Formulas extend propositional logic with quantifiers ∀,∃ that
work on propositional variables [25]. For formula (or circuit) A, we define A[x/y]
so that we replace all instances of y in A with x. The standard QBF semantics
are that ∀xΨ is satisfied by the same truth assignments as Ψ [0/x] ∧ Ψ [1/x], and
∃xΨ is satisfied by the same truth assignments as Ψ [0/x] ∨ Ψ [1/x].

A prenex QBF is a QBF where all quantification is done outside of the
propositional connectives. A prenex QBF Ψ therefore consists of a propositional
part φ called the matrix and a prefix of quantifiers Π and can be written as
Ψ = Πφ. Starting from left to right we give each bound variable a numerical level
(lv) starting from 1 and increasing by one each time the quantifier changes (it
stays the same whenever the quantifier is not changed). When the propositional
matrix of a prenex QBF is a CNF, then we have a PCNF. We can feasibly
transform any QBF into prenex form. A prenex QBF without any variables in
the prefix is just a propositional formula.

A closed QBF is a QBF where all variables are bound in quantifiers. A
closed QBF must be either true or false, since if we semantically expand all the
quantifiers we have a Boolean connective structure on 0, 1. TQBF and FQBF
are used to denote the languages of true and false closed QBF, respectively.

QBF Game Semantics. Often it is useful to think of a closed prenex QBF
Q1X1 . . . QkXk. φ, where Xi are blocks of variables, as a game between ∀ and ∃.
In the i-th step of the game, the player Qi assigns values to all the variables Xi.
The existential player wins the game if and only if the matrix φ evaluates to 1
under the assignment constructed in the game. The universal player wins if and
only if the matrix φ evaluates to 0. Given a universal variable u with index i, a
strategy for u is a function, which maps the variables of lower index than u to
{0, 1} (the intended response for u). A strategy for the universal player for QBF
Πφ is a set which contains exactly one strategy for each universal variable in Π. A
QBF is false if and only if there exists a winning strategy for the universal player,
i.e. if the universal player has a strategy for all universal variables that wins any
possible game [15][1, Sec. 4.2.2][31, Chap. 19]. Note that we differentiate between
a universal strategy and what is known in the literature as a Herbrand function.

104 L. Chew

Strategies are allowed to depend on previous universal variables, whereas the
input to Herbrand functions must be purely existential (this allows us to get
Theorem 3 to work). Since strategies for each universal variable are Boolean
functions, they can be expressed as circuits. In many QBF solvers, as well as
evaluating the truth of a QBF, solvers output circuits expressing the strategies
for each universal (existential) variable whenever the QBF is false (true).

QBF Proof Systems. QBFs extend propositional formulas, therefore it is
natural that many QBF proof systems use rules from propositional inference. In
addition, QBF systems have to include rules that keep quantification in mind.

Q-resolution (Q-Res) by Kleine Büning, Karpinski, and Flögel [26] is a QBF
resolution system. It uses the propositional resolution rule on existential vari-
ables. In addition, Q-resolution has a universal reduction rule to locally assign
universal variables in clauses (for Fig. 2 recall that ¬¬z = z for literals). QU-
resolution (QU-Res) [34] removes the restriction from Q-Res that the resolved
variable must be existential and also allows resolution of universal variables.

(Ax)
C

C ∨ x D ∨ ¬x (Res)
C ∨ D

Ax : C is a clause in the propositional matrix.
Res: variable x is existential.

C ∨ l (∀-Red)
C

literal l has variable u, which is universal and all other existential variables x ∈ C
are left of u in the quantifier prefix. Literal ¬l does not appear in C.

Fig. 2. The rules of Q-Res [26]

Extended resolution for propositional resolution, enables adding clauses
expressing the equality v ⇔ (¬x ∨ ¬y), for a fresh variable v. We follow this
idea in the context of Q-resolution. Here, we need to decide the position of the
fresh variable in the prefix. Two versions are considered; a weak one and a general
one. Both versions require extension variables to be existential. However, they
differ in their placement of the existential quantifier. Weak extended Q-resolution
[22] is the calculus of Q-Res enhanced with the extension rule in its weak form.
Every extension variable appears at the end (innermost) of the prefix.

Extended Q-resolution is the calculus of Q-Res enhanced with the extension
rule in general form (ext. Q-Res). Each extension variable is quantified after the
variables it is defined from. Just as QU-Resolution introduces universal resolu-
tion to Q-Res, we can also get extended QU-resolution (ext. QU-Res) which adds

Hardness and Optimality in QBF Proof Systems Modulo NP 105

universal resolution to extended Q-Res, the same can be done for weak extended
QU-resolution.

C-Frege +∀red uses circuit lines from the class C. It combines rules from
Frege systems that operate on the circuit class C, with the reduction rule (See
Fig. 3). While Frege systems are inferential, because we are using reduction,
which is mainly used for refutation, C-Frege +∀red is a refutational system.

(Ax)
D

C1, . . . Ck (C-Frege)
D

Ax : D is a circuit in the propositional matrix.
C-Frege: deriving circuit D from circuits C1, . . . Ck is compliant with an axiom or
rule in the C-Frege proof system.

B is a C circuit in variables left of u.
D (∀-Red)

D[B/u]

Variable u is universal and all other variables x ∈ D are left of u in the prefix.

Fig. 3. The rules of C-Frege+ ∀red [5]

In practice, we concentrate on a few special cases of C, particularly when C
is AC0 (bounded-depth), AC0[p] (bounded depth with mod p gates), NC 1 (the
standard Frege systems) or P/poly (circuit Frege, equivalent to eFrege).

Definition 2 (Strategy Extraction). A refutational proof system P has (cir-
cuit) strategy extraction if there is a polynomial-time algorithm that takes P
refutations π of QBF Ψ and outputs a circuit Du for each universal variable u
in prenex QBF Ψ , where the input variables of Du are quantified to the left of
u in Ψ and playing every u according to the output of Du constitutes a winning
strategy for the universal player.

We look at the strategy extraction lower-bound technique, using the circuit
extracted from the proof. The technique depends on the proof systems having a
strategy extraction property- that a circuit giving the winning strategy for the
universal player can be efficiently extracted from the proof. If that circuit is large
then the proof must also be large. For specific circuit class C, C-strategy extrac-
tion for a particular proof system P is the property that there is a polynomial-
time way to extract from a P -proof of a false QBF, a winning universal strategy
in circuit class C for the relevant false QBF. For example, the QBF proof sys-
tem AC0[p]-Frege+∀red has AC0[p]-strategy extraction [5]. Circuit lower bounds
for AC0[p] can then be exploited to prove AC0[p]-Frege +∀red proof-size lower
bounds.

106 L. Chew

One circuit model that is very useful when dealing with strategy extraction
is the decision list. Below we define the C-decision list for circuit class C.

Definition 3 (C-decision list). A C-decision list is a program of the following
form

if C1(x) then u ← B1(x);
else if C2(x) then u ← B2(x);

...

else if C�−1(x) then u ← B�−1(x);
else u ← B�(x),

where C1, . . . , C�−1 and B1, . . . , B� are circuits in the class C. Hence a decision
list as above computes a Boolean function u = g(x).

This comes from the original decision list where Ci is a term (conjunction of
literals) and Bi is a Boolean constant. QU-Res has strategy extraction in these
original depth-1 circuit decision lists, while other QBF systems have strategy
extraction in C-decision lists where C depends on the system. Extended Q-Res
and extended QU-Res have strategy extraction [7] in P/poly since they use the
bounded-depth strategy extraction of Q-Res and QU-Res, but the extension
variables disguise arbitrary circuits.

NP Oracles. In the above QBF proof systems, we take a propositional proof
system and augment it with some rules in order for it to deal with genuine
QBFs. This approach is mostly unavoidable as every QBF proof system also is a
propositional system. The drawback is that when observing lower bounds every
propositional lower bound is inherited for QBFs. We would like to separate lower
bounds from propositional logic from “genuine” QBF hardness.

Recent work [8,10] has started to factor out the component of propositional
hardness in QBF. Most work has been done on the QU-Res systems but generalise
to other systems as well.

Definition 4 (NP Oracle derivations[8]). For QBF proof system S, a SNP

proof of a QBF Ψ is a derivation of the empty clause by any of the S rules or
the NP-derivation rule.

C1, . . . Cl (NP-derivation)
D

For any l, where there is some Σb
1-relaxation Π ′ of the prefix Π such that

Π ′ ∧l
i=1 Ci � Π ′ ∧l

i=1 Ci ∧ D. D and Ci have to be lines permitted in S (e.g.
clauses, formulas).

We will not here define a Σb
k-relaxation for every k we will just define for

k = 1. We replace all universal quantifiers with existential ones. In other words,
we can infer ΠD ∧ ∧l

i=1 Ci from Π
∧l

i=1 Ci whenever
∧l

i=1 Ci � D holds. When

Hardness and Optimality in QBF Proof Systems Modulo NP 107

we do add D we do not change the prefix Π. Hence PNP augments QBF proof
system P with all propositional inference.

Notice that PNP is not a proof system unless we can check the NP-derivation
in polynomial-time. This cannot be done unless P = NP. However, it gives us
a framework for analysing QBF proof systems ignoring propositional hardness,
which would otherwise be pervasive in QBF proof complexity. A similar approach
was made previously by Chen [10].

Definition 5. Let P,Q be QBF proof systems, then we write P ≡NP Q whenever
QNP and PNP mutually p-simulate each other.

3 Simulations with Extension Variables

In this section, we study the proof complexity of Ext QU-Resolution without
NP oracles. NP oracles will be used in the next section. One may notice that
in the definition of Beyersdorff et al. [5] eFrege +∀red is actually P/poly-Frege
+∀red, and despite its name, it does not use extension variables in its definition.
The fact that P/poly-Frege and Frege with extension variables are equivalent
propositionally requires the proof of Jeřábek [21], and this has to be proven
again for QBF versions. In fact, we prove an even stronger equivalence by using
only resolution instead of Frege.

Theorem 1. Extended QU-Res (with general extension variables) and P/poly-
Frege +∀red are p-equivalent.

Proof. First, we show P/poly-Frege+∀red p-simulates extended QU-Res. We take
a proof π in extended QU-Res and convert it to a proof in P/poly-Frege +∀red
with the same structure. In order to do this we must convert the clausal lines in
π to circuits without extension variables.

We replace every extension variable with the circuit it is describing (using
the full circuit when an extension variable is based on others). The circuits
introduced are only as large as π because they have to be defined using extension
clauses. Hence the new proof is polynomial.

The resolution rule can be easily copied by P/poly-Frege steps. The exten-
sion rules are now tautologies that can be easily inferred (or taken as axioms).
The reduction rule can be copied, but we have to verify that the new reduction
instances are valid. The new clauses now have circuits in place of extension vari-
ables. Fortunately, the variables of the circuits are left of the extension variables,
by definition. A clause C ∨ u in π where the variables in C are quantified before
u is transformed into a circuit D ∨ u where the circuit D is in variables that are
quantified before u. Hence reduction is valid.

We now show the converse- that extended QU-Res p-simulates P/poly-Frege
+∀red. Let π be a refutation in eFrege +∀red of Πφ. Π is a prefix where every
universal is yi for some 1 ≤ i ≤ n and lv(yi) ≤ lv(yi+1). We can (in polynomial
time) change π into a normal form P/poly-Frege +∀red proof π′, which consists
of two parts [5]. The first part contains a P/poly-Frege proof of

∨n
i=1(yi �= σyi

),

108 L. Chew

where σyi
are the extracted strategies from π. The second part is the QBF

refutation of
∨n

i=1(yi �= σyi
) where reduction rules are used.

Consider a CNF version of
∨n

i=1(yi �= σyi
) with extension variables involved:

n∧

i=1

Def (si = σyi
)∧ tn ∧ ¬t0 ∧

n∧

i=1

(¬ti ∨ yi ∨ si ∨ ti−1)∧
n∧

i=1

(¬ti ∨ ¬yi ∨ ¬si ∨ ti−1)

si are extensions variables that are defined as σyi
in Def (si = σyi

), possibly
using more extension variables for the logic gates used in the circuits of σyi

. ti
are extra variables that allow us to split our large disjunction up, for j ≥ 0, tj
is an extension variable defining

∨j
i=1(yi �= si). Since the gate variables in σyi

the si and ti−1 variables only depend on variables to the left of yi we can place
them in the quantifier prefix before yi. As the CNF is a straightforward logical
consequence from

∨n
i=1(yi �= σyi

) it also has a short proof.

Induction Hypothesis: We can find short proofs of tn−k using extended
QU-Res with weakening (adding an extra literal to a clause) on Πφ.

Base Case: The singleton clause (tn) is a simple restatement of
∨n

i=1(yi �= σyi
).

We can derive (tn) in extended resolution with weakening (adding an extra
literal), as extended resolution with weakening simulates P/poly-Frege in propo-
sitional logic. Note that when we incorporate this into QBF, we have to use
Ext. QU-Res, not Ext. Q-Res as Ext. Res. does not distinguish between ∃ and ∀.
(Whether Ext. QU-Res and Ext. Q-Res are equivalent is still an open problem.)

Inductive Step: Suppose we have clause (ti) with i = n − k, we can resolve it
with both (¬ti ∨ yi ∨ si ∨ ti−1) and (¬ti ∨ ¬yi ∨ ¬si ∨ ti−1) to get (yi ∨ si ∨ ti−1)
and (¬yi ∨ ¬si ∨ ti−1). Since si and ti−1 variables occur before yi in the prefix
we can reduce yi in both cases to get (si ∨ ti−1) and (¬si ∨ ti−1) which we can
resolve to get clause (ti−1).

Once we derive t0, we get a contradiction. In order to derive (tn), we added
extra literals to the clauses with weakening. These literals are not needed in a
refutation. Therefore, we remove all of these clause weakening steps and end up
with an extended QU-Res refutation. ��

Theorem 1 gives us that our next results will hold for both extended QU-Res
and P/poly-Frege which we will now refer to as eFrege+∀red.

But the proof itself also tells us something important- it uses strategy extrac-
tion for simulation. Contrast this with how strategy extraction has been used
previously for QBF lower bounds [5,6]. This idea has the potential to be used
for other proof systems or even solvers. Say we have proof system f that has
P/poly strategy extraction. If we have an f refutation of QBF Πφ, we can use
strategy extraction to gain circuits σyi

for each of the universal variables yi and
substitute each yi for σyi

in φ, giving us a propositional contradiction. If we can
confirm this contradiction in eFrege, we would be able to prove

∨n
i=1(yi �= σyi

),
and we can continue an eFrege +∀red proof to get a refutation. This is almost
a simulation of f by eFrege +∀red. The thing that could go wrong is there is

Hardness and Optimality in QBF Proof Systems Modulo NP 109

no guarantee that the substituted propositional matrix has a short eFrege proof.
Nonetheless, eFrege is powerful enough for this problem not to occur very often.
Theorems 2 and 4 give two different ways of clarifying what is meant by almost
a simulation, but we need some technical lemmas on eFrege proofs.

Lemma 1. For propositional circuits A,B and φ(X) any propositional tautology
of the form (A ↔ B) → (φ(A) ↔ φ(B)) has a polynomial-size proof in eFrege.

Lemma 2. Let Π be a QBF prefix where each ∀ variable is given as yi for
1 ≤ i ≤ n. Let φ and σyi

for 1 ≤ i ≤ n be propositional circuits. Now define
φσ,Π to be the propositional circuit that replaces all occurrences of yi with σyi

.
The tautology φ∧¬φσ,Π → ∨n

i=1(yi �= σyi
) has polynomial-size proofs in eFrege,

(in the sizes of φ and σyi
).

We can now talk about simulation by eFrege +∀red. In the next theo-
rem, we have the additional condition that we may need an infinite family of
polynomially-recognisable tautologies added to eFrege+∀red. Bear in mind these
are only propositional tautologies, not QBF.

Theorem 2. For every refutational QBF Proof System S that has P/poly-
strategy extraction, there is a set of polynomial-time verifiable propositional tau-
tologies ‖Ψ‖ such that eFrege +∀red +‖Ψ‖ simulates S.

It is known [27] that any propositional proof system P is simulated by eFrege
+‖refl(P)‖ where ‖refl(P)‖ is a set of propositional tautologies that code arith-
metic statements of P ’s correctness (the name “reflection principle” comes from
the challenge of a system proving its own soundness). The idea is to use these
propositional tautologies in a QBF setting, but we also need reduction and essen-
tially strategy extraction.

Proof. Let S be our FQBF proof system which allows polynomial-time strategy
extraction in circuits. Let Πφ be a closed QBF where Π is a quantifier prefix and
φ is purely propositional. The strategy extraction means that from a refutation
π of QBF Πφ we can extract in polynomial-time circuits σy that are strategies
for each universal variable y. Let φσ,Π be the propositional formula that results
from replacing every universal variable y with σy in φ. Since the strategy is
correct, φσ,Π must be a propositional contradiction.

We can use this observation to design a propositional proof system Strat(S).
The idea is that this proof system verifies the proposition (¬φ)σ,Π instead of
refuting the QBF Πφ. Using the Cook-Reckhow definition of a proof system as
a checking function (see Sect. 2.1) we define it as follows:

Strat(S)(π) =

⎧
⎪⎨

⎪⎩

¬φσ,Π , π is an S refutation of Πφ

and σ is the strategy extracted from it,
eFrege(π), otherwise.

Using information from [27] we know Strat(S) is simulated by eFrege +
‖refl(Strat(S))‖, where ‖refl(Strat(S))‖ is a polynomial-time recognisable set of

110 L. Chew

propositions that encode an arithmetic statement of the correctness of Strat(S).
We will show that eFrege+∀red +‖refl(Strat(S))‖ simulates S, so we let π be a
proof of Πφ in S with strategy extracted σ. Note that π is also a Strat(S) proof.

We let π′
1 be the eFrege +‖refl(Strat(S))‖ proof that simulates π in Strat(S).

We know this is of polynomial-size in π. Likewise as we know the σy are
polynomial-size, this means that by using Lemma 2 the circuit φ ∧ ¬φσ,Π →∨n

i=1(yi �= σyi
) has a polynomial-size eFrege proof π′

2, where yi are the universal
variables in Π in order (yn being the innermost universal variable).

We show that eFrege+∀red +‖refl(Strat(S))‖ can refute Πφ in a short proof.

φ ¬φσ,Π

φ ∧ ¬φσ,Π φ ∧ ¬φσ,Π → ∨n
i=1(yi �= σyi

)
∨n

i=1(yi �= σyi
)

Similarly to Theorem 1, we show an inductive proof of
∨n−k

i=1 (yi �= σyi
) for

increasing k eventually leaving us with the empty clause. This essentially is where
we use the ∀-Red rule. Since we already have

∨n
i=1(yi �= σyi

) we have the base
case and we only need to show the inductive step.

We derive from
∨n+1−k

i=1 (yi �= σyi
) both (0 �= σyn+1−k

) ∨ ∨n−k
i=1 (yi �= σyi

) and
(1 �= σyn+1−k

) ∨ ∨n−k
i=1 (yi �= σyi

) from reduction. We can resolve both with the
easily proved tautology (0 = σyn+1−k

) ∨ (1 = σyn+1−k
) which allows us to derive

∨n−k
i=1 (yi �= σyi

). We continue this until we reach the empty disjunction. ��
Conjecture 1. ∀Exp+Res, IR-calc, LD-Q-Res, IRM-calc, QRAT(UR) and Q(Drrs)-
Res are all simulated by eFrege+∀red.

Let us take one example, e.g. ∀Exp+Res and suppose it is not true. Then
‖refl(Strat(∀Exp+Res))‖ would have to be an eFrege lower bound, an answer to
a major open problem. Put another way, Strat(∀Exp+Res) would be a proposi-
tional proof system more powerful than eFrege on certain families. This would
seem very unlikely. More likely would be that the steps of an ∀Exp+Res refuta-
tion of Πφ combined with formalised knowledge about the strategy extraction
for ∀Exp+Res could help guide a short refutation of φσ,Π using extension vari-
ables and Frege. If so then we would get a simulation.

4 Extended Q-Res Modulo NP

We now analyse QBF proof systems with the NP oracle included. As it allows
new derivations to occur immediately, this can change a system considerably. It
is necessary to prove, where applicable, when strategy extraction remains.

Theorem 3. The following strategy extraction theorems hold:

– QU-Res NP has depth-1 circuit decision list strategy extraction.
– For circuit class C, C-Frege +∀red NP has C-decision list strategy extraction.

Hardness and Optimality in QBF Proof Systems Modulo NP 111

Proof. The proof follows the line-based strategy extraction used by Balabanov et
al. [2] and later generalised byBeyersdorff et al. [5]. Purely propositional rulesmake
no changes to the extraction, and NP-derivations are purely propositional. ��

This is not an automatic result for any QBF proof system with strategy
extraction; recent results [11] on strategy extraction indicate that expansion
based systems may lose strategy extraction when equipped with NP oracles.
It is also unclear whether variants of (Ext) Q(U)-Resolution that allow long-
distance resolution steps have strategy extraction when NP oracles are allowed.
Extended Q-ResNP and extended QU-ResNP are among the systems with strategy
extraction. NP oracles allow us to remove ‖refl(Strat(S))‖ used in Theorem 2,
but also collapses Q-Res and QU-Res into the same system.

Theorem 4. Extended Q-ResNP is optimal among all QBF proof systems with
strategy extraction.

By “optimal among all QBF proof systems with strategy extraction” we
mean that it simulates all QBF proof systems with (circuit-)strategy extraction
and has strategy extraction itself. The caveat is that neither extended Q-Res NP

nor extended QU-Res NP are proof systems due to the NP oracle.

Proof. Ext. Q-Res NP simulates ext. QU-Res NP since universal resolution is sub-
sumed by the NP-derivation rule. We know that ext. QU-Res NP has strategy
extraction by the equivalence of extended QU-Res and P/Poly-Frege +∀red,
which when augmented with an NP-derivation rule has strategy extraction by
Theorem 3.

Suppose we have QBF proof system S that has strategy extraction. We know
from Theorem 2 we can simulate this by system eFrege+∀red +‖refl(Strat(S))‖,
we can simulate this by ext. QU-Res NP, because ‖refl(Strat(S))‖ can be derived
directly from the NP derivation and eFrege +∀red rules can be simulated by
extended QU-Res rules. Note that it does not matter here if S uses an NP deriva-
tion rule as this can be simulated by the NP derivation rule. ��

5 Weaker QBF Systems

So far we have only studied extended QU-Res and Q-Res with general exten-
sions. There remains four weaker systems, extended QU-Res and Q-Res with
weak extensions and standard QU-Res and Q-Res. We will analyse these four for
the remainder of this paper, both with and without the NP oracle.

Theorem 5. Weak extended QU-ResolutionNP does not simulate extended Q-
Resolution.

Proof. We take the QParity formulas [6] which are known to have short proofs
in general extended Q-Res [7]. We will show that these are hard for weak extended

112 L. Chew

QU ResolutionNP. In fact, because of Theorem 7, we will only need to show these
are hard for Q-ResNP.

Let xor(o1, o2, o) be the CNF (¬o1 ∨ ¬o2 ∨ ¬o) ∧ (o1 ∨ o2 ∨ ¬o) ∧ (¬o1 ∨ o2 ∨
o) ∧ (o1 ∨ ¬o2 ∨ o), which defines o to be equal to o1 ⊕ o2. Define QParityn as

∃x1 . . . xn ∀z∃t2 . . . tn xor(x1, x2, t2) ∧
N∧

i=3

xor(ti−1, xi, ti) ∧ (z ∨ tn) ∧ (¬z ∨ ¬tn).

While QParity is false, the only winning strategy of the universal player on
the QParity formulas is to actually compute the Parity function. However,
Parity is the classic example of a function hard for bounded-depth circuits
and AC0-decision lists [14,17]. Q-ResNP has strategy extraction in AC0-decision
lists, but these must be exponential size, which means the proofs themselves are
required to be of exponential size. ��

The separation between Q-Res and QU-Res comes from the formulas from
Kleine Büning, Karpinski and Flögel [26,34]. QU-Res cannot simulate weak
extended Q-Res due to propositional lower bounds like the pigeonhole princi-
ple [16]. We are only left to show one more separation, and we get the complete
picture. Adapting the cost-capacity technique from [4], we can show that the
KBKF formulas are also hard for weak ext. Q-Res, giving Theorem 6.

Theorem 6. Weak extended Q-Res does not simulate QU-Res.

Once we have that final lower bound, we prove the following complete simu-
lation structure in Fig. 4. We then show in Theorem 7, that the opposite is true
when using NP derivations.

Fig. 4. The simulation structure of four variants of Q-Res, all pairwise simulations are
given and are strictly one-way, and other pairs do not yield a simulation.

Theorem 7. Q-Res ≡NP QU-Res ≡NP Weak Ext.Q-Res ≡NP Weak Ext.QU-Res.

Proof. Q-Res ≡NP QU-Res and Weak Ext.Q-Res ≡NP Weak Ext.QU-Res because
NP derivations can be used to simulate universal resolution steps directly. We
are left to show Q-Res ≡NP Weak Ext.Q-Res.

The first observation is that every universal reduction step in Weak Ext.
Q-Res has no extension variables, since these would always be quantified to the
right of every universal variable (and thus block their reduction). This means

Hardness and Optimality in QBF Proof Systems Modulo NP 113

the first lines we perform universal reduction on are just propositional implica-
tions of axioms. Likewise, any later lines we perform universal reduction on are
propositional implications of the axioms plus the clauses that result from uni-
versal reduction (which are not inferred propositionally). So what we can do in
Q-ResNP to simulate Weak Ext. Q-ResNP proofs is to use NP derivations to get to
the lines that need universal reduction and then ∀red these clauses and continue
to alternate between NP derivations steps and universal reduction steps. ��

6 Conclusion

We have shown that extended QU-Res and eFrege+∀red are equivalent as long as
the extension variables are defined generally. eFrege+∀red has an important place
among QBF proof systems, particularly among those with strategy extraction.
This can be qualified with or without an NP oracle. This position allows us to
conjecture that eFrege+∀red will simulate the known QBF systems with strategy
extraction and will be able to certify solvers that have strategy extraction.

These properties do not hold for weak extension variables even with the
NP oracles. In fact, under the NP oracle, weak extended QU-Res has no more
strength than regular Q-Res.

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press, Cambridge (2009)

2. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. For-
mal Methods Syst. Des. 41(1), 45–65 (2012)

3. Bellatoni, S., Pitassi, T., Urquhart, A.: Approximation of small-depth Frege proofs.
SIAM J. Comput. 21, 1161–1179 (1992)

4. Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: a semantic tech-
nique for hard random QBFs. CoRR abs/1712.03626 (2017). http://arxiv.org/abs/
1712.03626

5. Beyersdorff, O., Bonacina, I., Chew, L., Pich, J.: Frege systems for quantified
boolean logic. J. ACM 67(2), (2020). https://doi.org/10.1145/3381881

6. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theory 11(4), 26:1–26:42 (2019). https://
doi.org/10.1145/3352155

7. Beyersdorff, O., Chew, L., Janota, M.: Extension variables in QBF resolution. In:
Beyond, N.P.: Papers from the 2016 AAAI Workshop (2016). http://www.aaai.
org/ocs/index.php/WS/AAAIW16/paper/view/12612

8. Beyersdorff, O., Hinde, L., Pich, J.: Reasons for hardness in QBF proof systems.
Electron. Colloquium Comput. Complexity (ECCC) 24, 44 (2017). https://eccc.
weizmann.ac.il/report/2017/044

9. Blinkhorn, J.L.: Quantified Boolean Formulas: Proof Complexity and Models of
Solving. Ph.D. thesis, University of Leeds (2019)

10. Chen, H.: Proof complexity modulo the polynomial hierarchy: Understanding alter-
nation as a source of hardness. In: ICALP, pp. 94:1–94:14 (2016)

http://arxiv.org/abs/1712.03626
http://arxiv.org/abs/1712.03626
https://doi.org/10.1145/3381881
https://doi.org/10.1145/3352155
https://doi.org/10.1145/3352155
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12612
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12612
https://eccc.weizmann.ac.il/report/2017/044
https://eccc.weizmann.ac.il/report/2017/044

114 L. Chew

11. Chew, L., Clymo, J.: How QBF expansion makes strategy extraction hard. In:
Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol.
12166, pp. 66–82. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51074-9 5

12. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symbolic Logic 44(1), 36–50 (1979)

13. Feldman, A., Kleer, J., Matei, I.: Design space exploration as quantified satisfaction
(05 2019)

14. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-
archy. Math. Syst. Theory 17(1), 13–27 (1984)

15. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generat-
ing proofs and strategies for both true and false QBF formulas. In: Walsh, T.
(ed.) International Joint Conference on Artificial Intelligence IJCAI, pp. 546–553.
IJCAI/AAAI (2011)

16. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
17. H̊astad, J.: One-way permutations in NC0. Inf. Process. Lett. 26(3), 153–155 (1987)
18. Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In:

7th International Joint Conference on Automated Reasoning (IJCAR), pp. 91–106
(2014)

19. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31612-8 10

20. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

21. Jeřábek, E.: Dual weak pigeonhole principle, Boolean complexity, and derandom-
ization. Ann. Pure Appl. Logic 129, 1–37 (2004)

22. Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A first step
towards a unified proof checker for QBF. In: Marques-Silva, J., Sakallah, K.A.
(eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72788-0 21

23. Kiesl, B., Heule, M.J.H., Seidl, M.: A little blocked literal goes a long way. In:
Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 281–297. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 18

24. Kiesl, B., Seidl, M.: QRAT polynomially simulates ∀-Exp+Res. In: Janota, M.,
Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 193–202. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-24258-9 13

25. Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Fron-
tiers in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press
(2009)

26. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

27. Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory,
Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University
Press, Cambridge (1995)

28. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. Ph.D. thesis, Informatik, Johannes Kepler University Linz (2012)

29. Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. JSAT 7(2–3),
71–76 (2010)

https://doi.org/10.1007/978-3-030-51074-9_5
https://doi.org/10.1007/978-3-030-51074-9_5
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-540-72788-0_21
https://doi.org/10.1007/978-3-319-66263-3_18
https://doi.org/10.1007/978-3-030-24258-9_13

Hardness and Optimality in QBF Proof Systems Modulo NP 115

30. Messner, J., Torán, J.: Optimal proof systems for propositional logic and com-
plete sets. Technical Report, TR97-026, Electronic Colloquium on Computational
Complexity, a revised version appears at STACS’98 (1997)

31. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)
32. Slivovsky, F.: Structure in# SAT and QBF. Ph.D. thesis (2015)
33. Tseitin, G.S.: On the complexity of proof in prepositional calculus. Zapiski Nauch-

nykh Seminarov POMI 8, 234–259 (1968)
34. Gelder, A.: Contributions to the theory of practical quantified Boolean formula

solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 47

https://doi.org/10.1007/978-3-642-33558-7_47

Characterizing Tseitin-Formulas with
Short Regular Resolution Refutations

Alexis de Colnet1,2(B) and Stefan Mengel1,2

1 CNRS, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL),
62300 Lens, France

{decolnet,mengel}@cril.fr
2 Univ. Artois, UMR 8188, 62300 Lens, France

Abstract. Tseitin-formulas are systems of parity constraints whose
structure is described by a graph. These formulas have been studied
extensively in proof complexity as hard instances in many proof sys-
tems. In this paper, we prove that a class of unsatisfiable Tseitin-
formulas of bounded degree has regular resolution refutations of poly-
nomial length if and only if the treewidth of all underlying graphs G
for that class is in O(log |V (G)|). To do so, we show that any regular
resolution refutation of an unsatisfiable Tseitin-formula with graph G of
bounded degree has length 2Ω(tw(G))/|V (G)|, thus essentially matching
the known 2O(tw(G))poly(|V (G)|) upper bound up. Our proof first con-
nects the length of regular resolution refutations of unsatisfiable Tseitin-
formulas to the size of representations of satisfiable Tseitin-formulas in
decomposable negation normal form (DNNF). Then we prove that for
every graph G of bounded degree, every DNNF-representation of every
satisfiable Tseitin-formula with graph G must have size 2Ω(tw(G)) which
yields our lower bound for regular resolution.

Keywords: Proof complexity · Regular resolution · DNNF ·
Treewidth

1 Introduction

Resolution is one of the most studied propositional proof systems in proof com-
plexity due to its naturality and it connections to practical SAT solving [9,22].
A refutation of a CNF-formula in this system (a resolution refutation) relies
uniquely on clausal resolution: in a refutation, clauses are iteratively derived
by resolutions on clauses from the formula or previously inferred clauses, until
reaching the empty clause indicating unsatisfiability. In this paper, we consider
regular resolution which is the restriction of resolution to proofs in which, intu-
itively, variables which have been resolved away from a clause cannot be rein-
troduced later on by additional resolution steps. This fragment of resolution is

This work has been partly supported by the PING/ACK project of the French National
Agency for Research (ANR-18-CE40-0011).

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 116–133, 2021.
https://doi.org/10.1007/978-3-030-80223-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_9

Characterizing Tseitin-Formulas with Short Regular Resolution Refutations 117

known to generally require exponentially longer refutations than general res-
olution [1,17,26,27] but is still interesting since it corresponds to DPLL-style
algorithms [12,13]. Consequently, there is quite some work on regular resolu-
tion, see e.g. [3–5,25] for a very small sample.

Tseitin-formulas are encodings of certain systems of linear equations whose
structure is given by a graph [24]. They have been studied extensively in proof
complexity essentially since the creation of the field because they are hard
instances in many settings, see e.g. [4,6,19,20,25]. It is known that different
properties of the underlying graph characterize different parameters of their res-
olution refutations [2,15,19]. Extending this line of work, we here show that
treewidth determines the length of regular resolution refutations of Tseitin-
formulas: classes of Tseitin-formulas of bounded degree have polynomial length
regular resolution refutations if and only if the treewidth of the underlying graphs
is bounded logarithmically in their size. The upper bound for this result was
already known from [2] where it is shown that, for every graph G, unsatisfiable
Tseitin-formulas with the underlying graph G have regular resolution refutations
of length at most 2O(tw(G))|V (G)|c where c is a constant. We provide a matching
lower bound:

Theorem 1. Let T (G, c) be an unsatisfiable Tseitin-formula where G is a con-
nected graph with maximum degree at most Δ. The length of the smallest regular
resolution refutation of T (G, c) is at least 2Ω(tw(G)/Δ)|V (G)|−1.

There were already known lower bounds for the length of resolution refu-
tations of Tseitin-formulas based on treewidth before. For general resolution,
a 2Ω(tw(G)2)/|V (G)| lower bound can be inferred with the classical width-length
relation of [6] and width bounds of [15]. This gives a tight 2Ω(tw(G)) bound when
the treewidth of G is linear in its number of vertices. For smaller treewidth,
there are also bounds from [14] for the stronger proof system of depth-d Frege
proofs which for resolution translate to bounds of size 2tw(G)Ω(1)

, but since the
top exponent is significantly less than 1, these results are incomparable to ours.
Better bounds of 2Ω(tw(G))/ log |V (G)| for regular resolution that almost match
the upper bound where shown in [20] for regular resolution refutations. Building
on [20], we eliminate the division by log |V (G)| in the exponent and thus give a
tight 2Θ(tw(G)) dependence.

As in [20], our proof strategy follows two steps. First, we show that the
problem of bounding the length of regular resolution refutations of an unsat-
isfiable Tseitin-formula can be reduced to lower bounding the size of certain
representations of a satisfiable Tseitin-formula. Itsykson et al. in [20] used a
similar reduction of lower bounds for regular resolution refutations to bounds on
read-once branching programs (1-BP) for satisfiable Tseitin-formulas, using the
classical connection between regular resolution and the search problem which,
given an unsatisfiable CNF-formula and a truth assignment, returns a clause of
the formula it falsifies [21]. Itsykson et al. showed that there is a transformation
of a 1-BP solving the search problem for an unsatisfiable Tseitin-formula into a
1-BP of pseudopolynomial size computing a satisfiable Tseitin-formula with the
same underlying graph. This yields lower bounds for regular resolution from
lower bounds for 1-BP computing satisfiable Tseitin-formulas which [20] also

118 A. de Colnet and S. Mengel

shows. Our crucial insight here is that when more succinct representations are
used to present the satisfiable formula, the transformation from the unsatisfiable
instance can be changed to have only a polynomial instead of pseudopolynomial
size increase. Concretely, the representations we use are so-called decomposable
negation normal forms (DNNF) which are very prominent in the field of knowl-
edge compilation [10] and generalize 1-BP. We show that every refutation of an
unsatisfiable Tseitin-formula can be transformed into a DNNF-representation of
a satisfiable Tseitin-formula with the same underlying graph with only polyno-
mial overhead.

In a second step, we then show for every satisfiable Tseitin-formula with an
underlying graph G a lower bound of 2Ω(tw(G)) on the size of DNNF computing
the formula. To this end, we adapt techniques developed in [8] to a parameterized
setting. [8] uses rectangle covers of a function, a common tool from communica-
tion complexity, to lower bound the size of any DNNF computing the function.
Our refinement takes the form of a two-player game in which the first player
tries to cover the models of a function with few rectangles while the second
player hinders this construction by adversarially choosing the variable partitions
respected by the rectangles from a certain set of partitions. We show that this
game gives lower bounds for DNNF, and consequently the aim is to show that
the adversarial player can always force 2Ω(tw(G)) rectangles in the game when
playing on a Tseitin-formula with graph G. This is done by proving that any
rectangle for a carefully chosen variable partition splits parity constraints of the
formula in a way that bounds by a function of tw(G) the number of models that
can be covered. We show that, depending on the treewidth of G, the adversarial
player can choose a partition to limit the number of models of every rectangle
constructed in the game to the point that at least 2Ω(tw(G)) of them will be
needed to cover all models of the Tseitin-formula. As a consequence, we get the
desired lower bound of 2Ω(tw(G))|V (G)|−1 for regular resolution refutations of
Tseitin-formulas.

2 Preliminaries

Notions on Graphs. We assume the reader is familiar with the fundamentals of
graph theory. For a graph G, we denote by V (G) its vertices and by E(G) its
edges. For v ∈ V (G), E(v) denotes the edges incident to v and N(v) its neighbors
(v is not in N(v)). For a subset V ′ of V (G) we denote by G[V ′] the sub-graph
of G induced by V ′.

A binary tree whose leaves are in bijection with the edges of G is called
a branch decomposition1. Each edge e of a branch decomposition T induces
a partition of E(G) into two parts as the edge sets that appear in the two
connected components of T after deletion of e. The number of vertices of G that
are incident to edges in both parts of this partition is the order of e, denoted
1 We remark that often branch decompositions are defined as unrooted trees. However,

it is easy to see that our definition is equivalent, so we use it here since it is more
convenient in our setting.

Characterizing Tseitin-Formulas with Short Regular Resolution Refutations 119

by order(e, T). The branchwidth of G, denoted by bw(G), is defined as bw(G) =
minT maxe∈E(T) order(e, T), where minT is over all branch decompositions of G.

While it is convenient to work with branchwidth in our proofs, we state our
main result with the more well-known treewidth tw(G) of a graph G. This is
justified by the following well-known connection between the two measures.

Lemma 2. [18, Lemma 12] If bw(G) ≥ 2, then bw(G) − 1 ≤ tw(G) ≤ 3
2bw(G).

A separator S in a connected graph G is defined to be a vertex set such that
G \ S is non-empty and not connected. A graph G is called 3-connected if and
only if it has at least 4 vertices and, for every S ⊆ V (G), |S| ≤ 2, the graph
G \ S is connected.

Variables, Assignments, v-trees. Boolean variables can have value 0 (false) or 1
(true). The notation �x refers to a literal for a variable x, that is, x or its nega-
tion x. Given a set X of Boolean variables, lit(X) denotes its set of literals. A
truth assignment to X is a mapping a : X → {0, 1}. If aX and aY are assign-
ments to disjoint sets of variables X and Y , then aX ∪aY denotes the combined
assignment to X ∪ Y . The set of assignments to X is denoted by {0, 1}X . Let
f be a Boolean function, we denote by var(f) its variables and by sat(f) its
set of models, i.e., assignments to var(f) on which f evaluates to 1. A v-tree of
X is a binary tree T whose leaves are labeled bijectively with the variables in
X. A v-tree T of X induces a set of partitions (X1,X2) of X as follows: choose
a vertex v of T , setting X1 to contain exactly the variables in T that appear
below v and X2 := X \ X1.

Tseitin-Formulas. Tseitin formulas are systems of parity constraints whose
structure is determined by a graph. Let G = (V,E) be a graph and let
c : V → {0, 1} be a labeling of its vertices called a charge function. The Tseitin-
formula T (G, c) has for each edge e ∈ E a Boolean variable xe and for each
vertex v ∈ V a constraint χv :

∑
e∈E(v) xe = c(v) mod 2. The Tseitin-formula

T (G, c) is then defined as T (G, c) :=
∧

v∈V χv, i.e., the conjunction of the parity
constraints for all v ∈ V . By χv we denote the negation of χv, i.e., the parity
constraint on (xe)e∈E(v) with charge 1 − c(v).

Proposition 3. [25, Lemma 4.1] The Tseitin-formula T (G, c) is satisfiable if
and only if for every connected component U of G we have

∑
v∈U c(v) = 0

mod 2.

Proposition 4. [16, Lemma 2] Let G be a graph with K connected components.
If the Tseitin-formula T (G, c) is satisfiable, then it has 2|E(G)|−|V (G)|+K models.

When conditioning the formula T (G, c) on a literal �e ∈ {xe, xe} for e = ab
in E(G), the resulting function is another Tseitin formula T (G, c)|�e = T (G′, c′)
where G′ is the graph G without the edge e (so G′ = G − e) and c′ depends on
�e. If �e = xe then c′ equals c. If �e = xe then c′ = c + 1a + 1b mod 2, where 1v

denotes the charge function that assigns 1 to v and 0 to all other variables.

120 A. de Colnet and S. Mengel

Since we consider Tseitin-formulas in the setting of proof systems for CNF-
formulas, we will assume in the following that they are encoded as CNF-formulas.
In this encoding, every individual parity constraint χv is expressed as a CNF-
formula Fv and T (G, c) :=

∧
v∈V Fv. Since it takes 2|E(v)|−1 clauses to write the

parity constraint χv, each clause containing E(v) literals, we make the standard
assumption that E(v) is bounded, i.e., there is a constant upper bound Δ on
the degree of all vertices in G.

DNNF. A circuit over X in negation normal form (NNF) is a directed acyclic
graph whose leaves are labeled with literals in lit(X) or 0/1-constants, and whose
internal nodes are labeled by ∨-gates or ∧-gates. We use the usual semantics for
the function computed by (gates of) Boolean circuits. Every NNF can be turned
into an equivalent NNF whose nodes have at most two successors in polynomial
time. So we assume that NNF in this paper have only binary gates and thus define
the size |D| as the number of gates, which is then at most half the number of
wires. Given a gate g, we denote by var(g) the variables for the literals appearing
under g. When g is a literal input �x, we have var(g) = {x}, and when it is a
0/1-input, we define var(g) = ∅. A gate with two children gl and gr is called
decomposable when var(gl) ∩ var(gr) = ∅, and it is called complete (or smooth)
when var(gl) = var(gr). An NNF whose ∧-gates are all decomposable is called
a decomposable NNF (DNNF). We call a DNNF complete when all its ∨-gates
are complete. Every DNNF can be made complete in polynomial time. For every
Boolean function f on finitely many variables, there exists a DNNF computing f .

When representing Tseitin-formulas by DNNF, we will use the following:

Lemma 5. Let G be a graph and let c and c′ be two charge functions such
that T (G, c) and T (G, c′) are satisfiable Tseitin-formulas. Then T (G, c) can be
computed by a DNNF of size s if and only if this is true for T (G, c′).

Proof (sketch). T (G, c) can be transformed into T (G, c′) by substituting some
variables by their negations, see [20, Proposition 26]. So every DNNF for T (G, c)
can be transformed into one for T (G, c′) by making the same substitutions. �

Branching Programs. A branching program (BP) B is a directed acyclic graph
with a single source, sinks that uniquely correspond to the values of a finite set Y ,
and whose inner nodes, called decision nodes are each labeled by a Boolean
variable x ∈ X and have exactly two output wires called the 0- and 1-wire
pointing to two nodes respectively called its 0- and the 1-child. The variable x
appears on a path in B if there is a decision node v labeled by x on that path.
A truth assignment a to X induces a path in B which starts at the source and,
when encountering a decision node for a variable x, follows the 0-wire (resp. the
1-wire) if a(x) = 0 (resp. a(x) = 1). The BP B is defined to compute the value
y ∈ Y on an assignment a if and only if the path of a leads to the sink labeled
with y. We denote this value y as B(a). Let f : X → Y be a function where X
is a finite set of Boolean variables and Y any finite set. Then we say that B
computes f if for every assignment a ∈ {0, 1}X we have B(a) = f(a). We say

Characterizing Tseitin-Formulas with Short Regular Resolution Refutations 121

that a node v in B computes a function g if the BP we get from B by deleting
all nodes that are not reachable from v computes g.

Let R ⊆ {0, 1}X × Y be a relation where Y is again finite. Then we say
that a BP B computes R if for every assignment a we have that (a,B(a)) ∈ R.
Let T (G, c) be an unsatisfiable Tseitin-formula for a graph G = (V,E). Then we
define the two following relations: SearchT (G,c) consists of the pairs (a,C) such
that a is an assignment to T (G, c) that does not satisfy the clause C of T (G, c).
The relation SearchVertex(G, c) consists of the pairs (a, v) such that a does not
satisfy the parity constraint χv of a vertex v ∈ V . Note that SearchT (G,c) and
SearchVertex(G, c) both give a reason why an assignment a does not satisfy
T (G, c) but the latter is more coarse: SearchVertex(G, c) only gives a constraint
that is violated while SearchT (G,c) gives an exact clause that is not satisfied.

Regular Resolution. We only introduce some minimal notions of proof complexity
here; for more details and references the reader is referred to the recent survey [9].
Let C1 = x∨D1 and C2 = x∨D2 be two clauses such that D1,D2 contain neither
x nor x. Then the clause D1 ∨ D2 is inferred by resolution of C1 and C2 on x. A
resolution refutation of length s of a CNF-formula F is defined to be a sequence
C1, . . . , Cs such that Cs is the empty clause and for every i ∈ [s] we have that
Ci is a clause of F or it is inferred by resolution of two clauses Cj , C� such that
j, � < i. It is well-known that F has a resolution refutation if and only if F is
unsatisfiable.

To every resolution refutation C1, . . . , Cs we assign a directed acyclic graph G
as follows: the vertices of G are the clauses {Ci | i ∈ [s]}. Moreover, there is an
edge CjCi in G if and only if Ci is inferred by resolution of Cj and some other
clause C� on a variable x in the refutation. We also label the edge CjCi with
the variable x. Note that there might be two pairs of clauses Cj , C� and Cj′ , C�′

such that resolution on both pairs leads to the same clause Ci. If this is the case,
we simply choose one of them to make sure that all vertices in G have indegree
at most 2. A resolution refutation is called regular if on every directed path in G
every variable x appears at most once as a label of an edge. It is known that
there is a resolution refutation of F if and only if a regular resolution refutation
of F exists [13], but the latter are in general longer [1,26].

In this paper, we will not directly deal with regular resolution proofs thanks
to the following well-known result.

Theorem 6. [21] For every unsatisfiable CNF-formula F , the length of the
shortest regular resolution refutation of F is the size of the smallest 1-BP com-
puting SearchF .

Since in our setting, from an unsatisfied clause we can directly inferred an unsat-
isfied parity constraint, we can use the following simple consequence.

Corollary 7. For every unsatisfiable Tseitin-formula T (G, c), the length of the
shortest regular resolution refutation of T (G, c) is at least the size of the smallest
1-BP computing SearchVertex(G, c).

122 A. de Colnet and S. Mengel

3 Reduction from Unsatisfiable to Satisfiable Formulas

To show our main result, we give a reduction from unsatisfiable to satisfiable
Tseitin-formulas as in [20]. There it was shown that, given a 1-BP B com-
puting SearchVertex(G, c) for an unsatisfiable Tseitin-formula T (G, c), one can
construct a 1-BP B′ computing the function of a satisfiable Tseitin-formula
T (G, c∗) such that |B′| is quasipolynomial in |B|. Then good lower bounds on
the size of B′ yield lower bounds for regular refutation by Corollary 7. To give
tighter results, we give a version of the reduction from unsatisfiable to satisfiable
Tseitin-formulas where the target representation for T (G, c∗) is not 1-BP but
the more succinct DNNF. This lets us decrease the size of the representation
from pseudopolynomial to polynomial which, with tight lower bounds in the
later parts of the paper, will yield Theorem 1.

Theorem 8. Let T (G, c) be an unsatisfiable Tseitin-formula where G is con-
nected and let S be the length of its smallest resolution refutation. Then there
exists for every satisfiable Tseitin-formula T (G, c∗) a DNNF of size O(S ×
|V (G)|) computing it.

In the proof of Theorem 8, we heavily rely on results from [20] in particular
the notion of well-structuredness that we present in Sect. 3.1. In Sect. 3.2 we will
then prove Theorem 8.

3.1 Well-Structured Branching Programs for SearchVertex(G, c)

In a well-structured 1-BP computing SearchVertex(G, c), every decision node uk

for a variable xe will compute SearchVertex(Gk, ck) where Gk is a connected
sub-graph of G containing the edge e := ab, and ck is a charge function such
that T (Gk, ck) is unsatisfiable. Since uk deals with T (Gk, ck), its 0- and 1-
successors uk0 and uk1 will work on T (Gk, ck)|�e for �e = xe and �e = xe,
respectively. T (Gk, ck)|�e is a Tseitin-formula whose underlying graph is Gk − e
and whose charge function is ck or ck+1a+1b mod 2 depending on �e. For conve-
nience, we introduce the notation γk(xe) = ck +1a +1b mod 2 and γk(xe) = ck.
Since Gk is connected, Gk − e has at most two connected components. Let Ga

k

and Gb
k denote the components of Gk − e containing a and b, respectively. Note

that Ga
k = Gb

k when e is not a bridge of Gk. Let γa
k(�e) and γb

k(�e) denote the
restriction of γk(�e) to the vertices of Ga

k and Gb
k, respectively. While the graph

for T (Gk, ck)|�e has at most two connected components, exactly one of them
holds an odd total charge, so only the Tseitin-formula corresponding to that
component is unsatisfiable. Well-structuredness states that uk0 and uk1 each
deal with that unique connected component.

Example 9. Consider the graph Gk shown on the left in Fig. 1. Black nodes have
charge 0 and white nodes have charge 1. The corresponding Tseitin-formula
T (Gk, ck) is unsatisfiable because there is an odd number of white nodes. Let
e := ab. Then T (Gk, ck)|xe is the Tseitin-formula for the graph Gk − e with
charges as shown in the middle of Fig. 1. Note that T (Gk, ck)|xe is unsat-

Characterizing Tseitin-Formulas with Short Regular Resolution Refutations 123

a b a b a b

Fig. 1. The graphs of Example 9. On the left the graph Gk, in the middle the result
after assigning 0 to xe, on the right after assigning 1 to xe.

isfiable because of the charges in the triangle component Gb
k. The reparti-

tion of charges for T (Gk, ck)|xe illustrated on the right of Fig. 1 shows that
T (Gk, ck)|xe is unsatisfiable because of the charges in the rombus component Ga

k.
Well-structuredness will ensure that, if uk computes SearchVertex(Gk, ck) and
decides xe, then uk0 computes SearchVertex(Gb

k, γb
k(xe)) and uk1 computes

SearchVertex(Ga
k, γa

k(xe)).

Definition 10. Let T (G, c) be an unsatisfiable Tseitin-formula where G is a
connected graph. A branching program B computing SearchVertex(G, c) is well-
structured when, for all nodes uk of B, there exists a connected subgraph Gk of
G and a charge function ck such that T (Gk, ck) is unsatisfiable, uk computes
SearchVertex(Gk, ck) and

1. if uk is the source, then Gk = G and ck = c,
2. if uk is a sink corresponding to v ∈ V (G), then Gk = ({v}, ∅) and ck = 1v,
3. if uk is a decision node for xab with 0- and 1- successors uk0 and uk1 , set

�0 = xab and �1 = xab, then for all i ∈ {0, 1}, (Gki
, cki

) = (Ga
k, γa

k(�i)) if
T (Ga

k, γa
k(�i)) is unsatisfiable, otherwise (Gki

, cki
) = (Gb

k, γb
k(�i)).

We remark that our definition is a slight simplification of that given by
Itsykson et al. [20]. It can easily be seen that ours is implied by theirs (see
Definition 11 and Proposition 16 in [20]).

Lemma 11. [20, Lemma 17] Let T (G, c) be an unsatisfiable Tseitin-formula
where G is connected and let B be a 1-BP of minimal size2 computing the relation
SearchVertex(G, c). Then B is well-structured.

3.2 Constructing DNNF from Well-Structured Branching Programs

Similarly to Theorem 14 in [20], we give a reduction from a well-structured 1-BP
for SearchVertex(G, c) to a DNNF computing a satisfiable formula T (G, c∗).

Lemma 12. Let G be a connected graph. Let T (G, c∗) and T (G, c) be Tseitin-
formulas where T (G, c∗) is satisfiable and T (G, c) unsatisfiable. For every well-
structured 1-BP B computing SearchVertex(G, c) there exists a DNNF of size
O(|B| × |V (G)|) computing T (G, c∗).

Proof. Let S = |B| and denote by u1, . . . , uS the nodes of B such that if uj is
a successor of ui, then j < i (thus uS is the source of B). For every i ∈ [S], the

2 [20, Lemma 17] is for locally minimal 1-BP, which encompass minimal size 1-BP.

124 A. de Colnet and S. Mengel

node ui computes SearchVertex(Gi, ci). We will show how to iteratively construct
DNNF D1, . . . , DS such that, D1 ⊆ D2 ⊆ · · · ⊆ DS and, for every i ∈ [S],

for all v ∈ V (Gi), there is a gate gv in Di computing T (Gi, ci + 1v). (∗)

Observe that, since T (Gi, ci) is unsatisfiable, T (Gi, ci + 1v) is satisfiable for any
v ∈ V (Gi). We show by induction on i how to construct Di by extending Di−1

while respecting (∗).
For the base case, u1 is a sink of B, so it computes SearchVertex(Gv, 1v)

where Gv := ({v}, ∅) for a vertex v ∈ V (G). Thus we define D1 as a single
constant-1-node which indeed computes T (Gv, 1v + 1v) = T (Gv, 0). So D1 is a
DNNF respecting (∗).

Now for the inductive case, suppose we have the DNNF Dk−1 satisfying (∗).
Consider the node uk of B. If uk is a sink of B, then we argue as for D1 but
since we already have the constant-1-node in Dk−1 we define Dk := Dk−1.

Now assume that uk is a decision node for the variable xe with 0- and 1-
successors uk0 and uk1 . Recall that uk computes SearchVertex(Gk, ck) and let
e = ab. There are two cases. If e is not a bridge in Gk then Ga

k = Gb
k = Gk−e and,

by well-structuredness, uk0 computes SearchVertex(Gk−e, ck) and uk1 computes
SearchVertex(Gk − e, ck + 1a + 1b). For every v ∈ V (Gk), since k0, k1 < k, by
induction there is a gate g0v in Dk0 computing T (Gk − e, ck + 1v) and a gate
g1v in Dk1 computing T (Gk − e, ck + 1a + 1b + 1v). So for every v ∈ V (Gk) we
add to Dk−1 an ∨-gate gv whose left input is xe ∧ g0v and whose right input is
xe ∧ g1v . By construction, gv computes T (Gk, ck + 1v) and the new ∧-gates are
decomposable since e is not an edge of Gk − e and therefore xe and xe do not
appear in Dk0 and Dk1 .

Now if e = ab is a bridge in Gk, by well-structuredness, there exist i ∈
{0, 1} and �e ∈ {xe, xe} such that uki

computes SearchVertex(Ga
k, γa

k(�e)) and
uk1−i

computes SearchVertex(Gb
k, γb

k(�e)). We construct a gate gv computing
T (Gk, ck + 1v) for each v ∈ V (Gk). Assume, without loss of generality, that
v ∈ V (Ga

k), then

– T (Gk, ck + 1v)|�e ≡ T (Ga
k, γa

k(�e) + 1v) ∧ T (Gb
k, γb

k(�e)) ≡ 0
(because of the second conjunct which is known to be unsatisfiable), and

– T (Gk, ck + 1v)|�e ≡ T (Ga
k, γa

k(�e) + 1v) ∧ T (Gb
k, γb

k(�e))

For the second item, since k0, k1 < k, by induction there is a gate gi
v in Dki

computing T (Ga
k, γa

k(�e) + 1v) and there is a gate g1−i
b in Dk1−i

computing
T (Gb

k, γb
k(�e)+1b). But γk(�e) = γk(�e)+1a +1b mod 2, so γb

k(�e) = γb
k(�e)+1b

mod 2, therefore gi−1
b computes the formula T (Gb

k, γb
k(�e)). So we add an ∧-gate

gv whose left input is �e and whose right input is si
v ∧ s1−i

b and add it to Dk−1.
Note that ∧-gates are decomposable since Ga

k and Gb
k share no edge and therefore

Dk0 and Dk1 are on disjoint sets of variables.
Let Dk be the circuit after all gv have been added to Dk−1. It is a DNNF

satisfying both Dk−1 ⊆ Dk and (∗).
It only remains to bound |DS |. To this end, observe that when constructing

Dk from Dk−1 we add at most 3 × |Vk| gates, so |DS | is at most 3(|V1| + · · · +

Characterizing Tseitin-Formulas with Short Regular Resolution Refutations 125

|VS |) = O(S × |V (G)|). Finally, take any root of DS and delete all gates not
reached from it, the resulting circuit is a DNNF D computing a satisfiable Tseitin
formula T (G, c′). We get a DNNF computing T (G, c∗) using Lemma 5. �

Combining Corollary 7, Lemma 11 and Lemma 12 yields Theorem 8.

4 Adversarial Rectangle Bounds

In this section, we introduce the game we will use to show DNNF lower bounds
for Tseitin formulas. It is based on combinatorial rectangles, a basic object of
study from communication complexity.

Definition 13. A (combinatorial) rectangle for a variable partition (X1,X2) of
a variables set X is defined to be a set of assignments of the form R = A × B
where A ⊆ {0, 1}X1 and B ⊆ {0, 1}X2 . The rectangle is called balanced when
|X|
3 ≤ |X1|, |X2| ≤ 2|X|

3 .

A rectangle on variables X may be seen as a function whose satisfying assign-
ments are exactly the a ∪ b for a ∈ A and b ∈ B, so we sometimes interpret
rectangles as Boolean functions whenever it is convenient.

Definition 14. Let f be a Boolean function. A balanced rectangle cover of f
is a collection R = {R1, . . . , RK} of balanced rectangles on var(f), possibly for
different partitions of var(f), such that f is equivalent to

∨K
i=1 Ri. The minimum

number of rectangles in a balanced cover of f is denoted by R(f).

Theorem 15. [8] Let D be a DNNF computing a function f , then R(f) ≤ |D|.
When trying to show parameterized lower bounds with Theorem 15, one

often runs into the problem that it is somewhat inflexible: the partitions of the
rectangles in covers have to be balanced, but in parameterized applications this
is often undesirable. Instead, to show good lower bounds, one wants to be able
to partition in places that allow to cut in complicated subparts of the problem.
This is e.g. the underlying technique in [23]. To make this part of the lower
bound proofs more explicit and the technique more reusable, we here introduce
a refinement of Theorem 15.

We define the adversarial multi-partition rectangle cover game for a func-
tion f on variables X and a set S ⊆ sat(f) to be played as follows: two players,
the cover player Charlotte and her adversary Adam, construct in several rounds a
set R of combinatorial rectangles that cover the set S respecting f (that is, rect-
angles in R contain only models of f). The game starts with R as the empty
set. Charlotte starts a round by choosing an input a ∈ S and a v-tree T of X.
Now Adam chooses a partition (X1,X2) of X induced by T . Charlotte ends the
round by adding to R a combinatorial rectangle for this partition and respect-
ing f that covers a. The game is over when S is covered by R. The adversarial
multi-partition rectangle complexity of f and S, denoted by aR(f, S) is the min-
imum number of rounds in which Charlotte can finish the game, whatever the

126 A. de Colnet and S. Mengel

choices of Adam are. The following theorem gives the core technique for showing
lower bounds later on. Due to space constraints, the proof is given in the full
version.

Theorem 16. Let D be a complete DNNF computing a function f and let S ⊆
sat(f). Then aR(f, S) ≤ |D|.

5 Splitting Parity Constraints

In this section, we will see that rectangles split parity constraints in a certain
sense and show how this is reflected in the underlying graph of Tseitin-formulas.
This will be crucial in proving the DNNF lower bound in the next section with
the adversarial multi-partition rectangle cover game.

5.1 Rectangles Induce Sub-constraints for Tseitin-Formulas

Let R be a rectangle for the partition (E1, E2) of E(G) such that R ⊆
sat(T (G, c)). Assume that there is a vertex v of G incident to edges in E1 and
to edges in E2, i.e., E(v) = E1(v) ∪ E2(v) where neither E1(v) not E2(v) is
empty. We will show that R does not only respect χv, but it also respects a
sub-constraint of χv.

Definition 17. Let χv be a parity constraint on (xe)e∈E(v). A sub-constraint
of χv is a parity constraint χ′

v on a non-empty proper subset of the variables of
χv.

Lemma 18. Let T (G, c) be a satisfiable Tseitin-formula and let R be a rectangle
for the partition (E1, E2) of E(G) such that R ⊆ sat(T (G, c)). If v ∈ V (G) is
incident to edges in E1 and to edges in E2, then there exists a sub-constraint χ′

v

of χv such that R ⊆ sat(T (G, c) ∧ χ′
v).

Proof. Let a1 ∪ a2 ∈ R where a1 is an assignment to E1 and a2 an assignment
to E2. Let a1(v) and a2(v) denote the restriction of a1 and a2 to E1(v) and
E2(v), respectively. We claim that for all a′

1 ∪ a′
2 ∈ R, we have that a′

1(v) and
a1(v) have the same parity, that is, a1(v) assigns an odd number of variables of
E1(v) to 1 if and only if it is also the case for a′

1(v). Indeed if a1(v) and a′
1(v)

have different parities, then so do a1(v)∪a2(v) and a′
1(v)∪a2(v). So either a1∪a2

or a′
1 ∪ a2 falsifies χv, but both assignments are in R, so a1(v) and a′

1(v) cannot
have different parities as this contradicts R ⊆ sat(T (G, c)). Let c1 be the parity
of a1(v), then we have that assignments in R must satisfy χ′

v :
∑

e∈E1(v)
xe = c1

mod 2, so R ⊆ sat(T (G, c) ∧ χ′
v). �

Renaming χ′
v as χ1

v and adopting notations from the proof, one sees that
χ1

v ∧χv ≡ χ1
v ∧χ2

v where χ2
v :

∑
e∈E2(v)

xe = c(v)+ c1 mod 2. So R respects the
formula (T (G, c)−χv)∧χ1

v ∧χ2
v where (T (G, c)−χv) is the formula obtained by

removing all clauses of χv from T (G, c). In this sense, the rectangle is splitting
the constraint χv into two subconstraints on disjoint variables. Since χv ≡ (χ1

v ∧
χ2

v) ∨ (χ1
v ∧ χ2

v) it is plausible that potentially many models of χv are not in R.
We show that this is true in the next section.

Characterizing Tseitin-Formulas with Short Regular Resolution Refutations 127

5.2 Vertex Splitting and Sub-constraints for Tseitin-Formulas

Let v ∈ V (G) and let (N1, N2) be a proper partition of N(v), that is, neither N1

nor N2 is empty. The graph G′ we get by splitting v along (N1, N2) is defined as
the graph we get by deleting v, adding two vertices v1 and v2, and connecting v1

to all vertices in N1 and v2 to all vertices in N2. We now show that splitting a
vertex v in a graph G has the same effect as adding a sub-constraint of χv.

Lemma 19. Let T (G, c) be a Tseitin-formula. Let v ∈ V (G) and let (N1, N2) be
a proper partition of N(v). Let c1 and c2 be such that c1 + c2 = c(v) mod 2 and
let χi

v :
∑

u∈Ni
xuv = ci mod 2 for i ∈ {1, 2} be sub-constraints of χv. Call G′

the result of splitting v along (N1, N2) and set

c′(u) :=

{
c(u), if u ∈ V (G) \ {v}
ci, if u = vi, i ∈ {1, 2}

There is a bijection ρ : var(T (G, c)) → var(T (G′, c′)) acting as a renaming of
the variables such that T (G′, c′) ≡ (T (G, c) ∧ χ1

v) ◦ ρ.

Proof. Denote by T (G, c) − χv the formula equivalent to the conjunction of
all χu for u ∈ V (G) \ {v}. Then T (G, c) ∧ χ1

v ≡ (T (G, c) − χv) ∧ χ1
v ∧ χ2

v. The
constraints χu for u ∈ V (G) \ {v} appear in both T (G′, c′) and in T (G, c) − χv

and the sub-constraints χ1
v and χ2

v are exactly the constraints for v1 and v2 in
T (G′, c′) modulo the variable renaming ρ defined by ρ(xuv) = xuv1 when u ∈ N1,
ρ(xuv) = xuv2 when u ∈ N2, and ρ(xe) = xe when v is not incident to e. �

Intuitely, Lemma 19 says that splitting a vertex in G and adding sub-
constraint are essentially the same operation. This allows us to compute the
number of models of a Tseitin-formula to which a sub-constraint was added.

Lemma 20. Let T (G, c) be a satisfiable Tseitin-formula where G is con-
nected. Define T (G′, c′) as in Lemma 19. If G′ is connected then T (G′, c′) has
2|E(G)|−|V (G)| models.

Proof. By Proposition 3, T (G′, c′) is satisfiable since T (G, c) is satisfiable and∑
u∈V (G′) c′(u) =

∑
u∈V (G) c(u) = 0 mod 2. Using Proposition 4 yields that

T (G′, c′) has 2|E(G′)|−|V (G′)|+1 = 2|E(G)|−|V (G)| models. �

Lemma 21. Let T (G, c) be a satisfiable Tseitin-formula where G is connected.
Let {v1, . . . , vk} be an independent set in G. For all i ∈ [k] let (N i

1, N
i
2) be

a proper partition of N(vi) and let χ′
vi

:
∑

u∈Ni
1
xuvi

= ci mod 2. If the graph
obtained by splitting all vi along (N i

1, N
i
2) is connected, then the formula T (G, c)∧

χ′
v1

∧ · · · ∧ χ′
vk

has 2|E(G)|−|V (G)|−k+1 models.

Proof. An easy induction based on Lemma 19 and Lemma 20. The induction
works since, {v1, . . . , vk} being an independant set, the edges to modify by split-
ting vi are still in the graph where v1, . . . , vi−1 have been split. �

128 A. de Colnet and S. Mengel

5.3 Vertex Splitting in 3-Connected Graphs

When we want to apply the results of the last sections to bound the size of
rectangles, we require that the graph G remains connected after splitting vertices.
This is obviously not true for all choices of vertex splits, but here we will see
that if G is sufficiently connected, then we can always chose a large subset of
any set of potential splits such that, after applying the split for this subset, G
remains connected.

Lemma 22. Let G be a 3-connected graph of and let {v1, . . . , vk} be an inde-
pendent set in G. For every i ∈ [k] let (N i

1, N
i
2) be a proper partition of N(vi).

Then there is a subset S of {v1, . . . , vk} of size at least k/3 such that the graph
resulting from splitting all vi ∈ S along the corresponding (N i

1, N
i
2) is connected.

Proof. Let C1, . . . , Cr be the connected components of the graph G1 that we get
by splitting all vi. If G1 is connected, then we can set S = {v1, . . . , vk} and we
are done. So assume that r > 1 in the following. Now add for every i ∈ [k] the
edge (v1

i , v2
i). Call this edge set L (for links) and the resulting graph G2. Note

that G2 is connected and for every edge set E′ ⊆ L we have that G2 \ E′ is
connected if and only if G is connected after splitting the vertices corresponding
to the edges in E′. Denote by Lin the edges in L whose end points both lie in
some component Cj and let Lout := L \ Lin.

We claim that for every Cj , at least three edges in Lout are incident to a
vertex in Cj . Since G2 is connected but the set Cj is a connected component of
G2 \ L = G1, there must be at least one edge in L incident to a vertex in Cj .
That vertex is by construction one of v1, . . . , vk, say it is vi. Since N i

1 �= ∅ and
N i

2 �= ∅, we have that vi has a neighbor w in Cj and, w �∈ {v1, . . . , vk} since
it is an independent set. Now let Lj

out be the edges in Lout that have an end
point in Cj . Note that if we delete the vertices Sj ⊆ {v1, . . . , vk} for which the
edges in Lj

out were introduced in the construction of G2, then a subset of Cj

becomes disconnected from the rest of the graph (which is non-empty because
there is at least one component different from Cj in G2 which also contains a
vertex not in {v1, . . . , vk} by the same reasoning as before). But then, because
G is 3-connected, there must be at least three edges in Lj

out. Let k′ := |Lout|,
then since |Lout| = 1

2

∑r
j=1 |Lj

out|, we have that

r ≤ 2
3
k′.

Now contract all components Ci in G2 and call the resulting graph G3. Note
that G3 is connected and that E(G3) = Lout. Moreover, whenever G3 \ E∗ is
connected for some E∗ ⊆ Lout, then G is connected after splitting the corre-
sponding vertices. Choose any spanning tree T of G3. Then |E(T)| = r − 1 and
deleting E∗ := Lout \E(T) leaves G3 connected. Thus the graph G∗ we get from
G after splitting the vertices corresponding to E∗ is connected. We have

|E∗| = |Lout| − |E(T)| = k′ − (r − 1) >
k′

3
.

Characterizing Tseitin-Formulas with Short Regular Resolution Refutations 129

Now observe that in G we can safely split all k − k′ vertices vi that correspond
to edges v1

i v2
i such that v1

i and v2
i lie in the same component of G1 without

disconnecting the graph. Thus, overall we can split a set of size

k − k′ + |E∗| > k − k′ +
k′

3
≥ k

3

in G such that the resulting graph remains connected. �

6 DNNF Lower Bounds for Tseitin-Formulas

In this section, we use the results of the previous sections to show our lower
bounds for DNNF computing Tseitin-formulas. To this end, we first show that
we can restrict ourselves to the case of 3-connected graphs.

6.1 Reduction from Connected to 3-Connected Graphs

In [7], Bodlaender and Koster study how separators can be used in the context of
treewidth. They call a separator S safe for treewidth if there exists a connected
component of G\S whose vertex set V ′ is such that tw(G[S ∪V ′]+clique(S)) =
tw(G), where G[S∪V ′]+clique(S) is the graph induced on S∪V ′ with additional
edges that pairwise connect all vertices in S.

Lemma 23. [7, Corollary 15] Every separator of size 1 is safe for treewidth.
When G has no separator of size 1, every separator of size 2 is safe for treewidth.

Remember that a topological minor H of a G is a graph that can be con-
structed from G by iteratively applying the following operations:

– edge deletion,
– deletion of isolated vertices, or
– subdivision elimination: if deg(v) = 2 delete v and connect its two neighbors.

Lemma 24. Let H be a topological minor of G. If the satisfiable Tseitin-formula
T (G, 0) has a DNNF of size s, then so does T (H, 0).

Proof. Edge deletion corresponds to conditioning the variable by 0 so it cannot
increase the size of a DNNF. Deletion of an isolated vertex does not change the
Tseitin-formula. Finally, let e1, e2 be the edges incident to a vertex of degree 2.
Since we assume that all charges c(v) are 0, in every satisfying assignment, xe1

and xe2 take the same value. Thus we can simply forget the variable of xe2 which
does not increase the size of a DNNF [11]. �

Lemma 25. Let G be a graph with treewidth at least 3. Then G has a 3-
connected topological minor H with tw(H) = tw(G).

130 A. de Colnet and S. Mengel

Proof (sketch). We use Lemma 23 to iteratively compute topological minors
that have the same treewidth as the original graph. To this end, while there is a
minimal size separator S of size at most 2, we choose a component of G \ S on
vertices V ′ such that G[S ∪ V ′] + clique(S) has the same treewidth as G and
iterate with that graph. When this process stops, the resulting graph H has
no separator of size 2 anymore and it can be checked that H has more than 3
vertices, so it is 3-connected. It just has to be verified that H is a topological
minor of G which one can do by checking that in every iteration one computes a
topological minor. The details are given in the full version. �

6.2 Proof of the DNNF Lower Bound and of the Main Result

Lemma 26. Let T (G, c) be a satisfiable Tseitin-formula where G is a connected
graph with maximum degree at most Δ. Any complete DNNF computing T (G, c)
has size at least 2Ω(tw(G)/Δ).

Proof. By Lemma 5 we can set c = 0. By Lemmas 24 and 25 we can assume
that G is 3-connected. We show that the adversarial multi-partition rectangle
complexity is lower-bounded by 2k for k := 2tw(G)

9Δ . To this end, we will show
that the rectangles that Charlotte can construct after Adam’s answer are never
bigger than 2|E(G)|−|V (G)|−k+1. Since T (G, c) has 2|E(G)|−|V (G)|+1 models, the
claim then follows.

So let Charlotte choose an assignment a and a v-tree T . Note that since the
variables of T (G, 0) are the edges of G, the v-tree T is also a branch decompo-
sition of G. Now by the definition of branchwidth, Adam can choose a cut of T
inducing a partition (E1, E2) of E(G) for which there exists a set V ′ ∈ V (G) of
at least bw(G) ≥ 2

3 tw(G) vertices incident to edges in E1 and to edges in E2.
G has maximum degree Δ so there is an independent set V ′′ ⊂ V ′ of size at

least |V ′|
Δ . Since G is 3-connected, by Lemma 22 there is a subset V ∗ ⊆ V ′′ of size

at least |V ′′|
3 ≥ 2tw(G)

9Δ = k such that G remains connected after splitting of the
nodes in V ∗ along the partition of their neighbors induced by the edges partition
(E1, E2). Using Lemma 18, we find that any rectangle R for the partition (E1, E2)
respects a sub-constraint χ′

v for each v ∈ V ∗. So R respects T (G, 0)∧∧
v∈V ∗ χ′

v.
Finally, Lemma 21 shows that |R| ≤ 2|E(G)|−|V (G)|−k+1, as required. �

Theorem 1 is now a direct consequence of Theorem 8, Lemma 26 and
Lemma 5

7 Conclusion

We have shown that the unsatisfiable Tseitin-formulas with polynomial length
of regular resolution refutations are completely determined by the treewidth of
their graphs. We did this by connecting lower bounds on these types of refuta-
tions to size bounds on DNNF representations of Tseitin-formulas. Moreover, we
introduced a new two-player game that allowed us to show DNNF lower bounds.

Characterizing Tseitin-Formulas with Short Regular Resolution Refutations 131

Let us discuss some questions that we think are worth exploring in the future.
First, it would be interesting to see if a 2Ω(tw(G)) lower bound for the refutation
of Tseitin-formulas can also be shown for general resolution. In that case the
length of resolution refutations would essentially be the same as that regular
resolution refutations for Tseitin formulas. Note that this is somewhat plausible
since other measures like space and width are known to be the same for the two
proof systems for these formulas [15].

Another question is the relation between knowledge compilation and proof
complexity. As far as we are aware, our Theorem 8 is the first result that connects
bounds on DNNF to such in proof complexity. It would be interesting to see if
this connection can be strenghtened to other classes of instances, other proof
systems, representations from knowledge compilation and measures on proofs
and representations, respectively.

References

1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separa-
tion between regular and general resolution. Theory Comput. 3(1), 81–102 (2007).
https://doi.org/10.4086/toc.2007.v003a005

2. Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and tseitin tautolo-
gies. Comput. Complex. 20(4), 649–678 (2011). https://doi.org/10.1007/s00037-
011-0033-1

3. Atserias, A., Bonacina, I., de Rezende, S.F., Lauria, M., Nordström, J., Razborov,
A.A.: Clique is hard on average for regular resolution. In: Diakonikolas, I., Kempe,
D., Henzinger, M. (eds.) Proceedings of the 50th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, 25–29 June,
2018. pp. 866–877. ACM (2018). https://doi.org/10.1145/3188745.3188856

4. Beame, P., Beck, C., Impagliazzo, R.: Time-space tradeoffs in resolution: super-
polynomial lower bounds for superlinear space. In: Karloff, H.J., Pitassi, T. (eds.)
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, 19–22 May, 2012, pp. 213–232. ACM (2012). https://
doi.org/10.1145/2213977.2213999

5. Beck, C., Impagliazzo, R.: Strong ETH holds for regular resolution. In: Boneh,
D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing
Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June, 2013. pp. 487–494. ACM
(2013). https://doi.org/10.1145/2488608.2488669

6. Ben-Sasson, E.: Hard examples for the bounded depth frege proof system. Comput.
Complex. 11(3-4), 109–136 (2002). https://doi.org/10.1007/s00037-002-0172-5

7. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discret. Math.
306(3), 337–350 (2006). https://doi.org/10.1016/j.disc.2005.12.017

8. Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: Knowledge compilation meets com-
munication complexity. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9–15 July 2016, pp. 1008–1014. IJCAI/AAAI Press (2016). http://www.
ijcai.org/Abstract/16/147

https://doi.org/10.4086/toc.2007.v003a005
https://doi.org/10.1007/s00037-011-0033-1
https://doi.org/10.1007/s00037-011-0033-1
https://doi.org/10.1145/3188745.3188856
https://doi.org/10.1145/2213977.2213999
https://doi.org/10.1145/2213977.2213999
https://doi.org/10.1145/2488608.2488669
https://doi.org/10.1007/s00037-002-0172-5
https://doi.org/10.1016/j.disc.2005.12.017
http://www.ijcai.org/Abstract/16/147
http://www.ijcai.org/Abstract/16/147

132 A. de Colnet and S. Mengel

9. Buss, S., Nordström, J.: Proof complexity and sat solving. Chapter to appear in
the 2nd edition of Handbook of Satisfiability, Draft version available at https://
www.math.ucsd.edu/∼sbuss/ResearchWeb/ProofComplexitySAT (2019)

10. Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001).
https://doi.org/10.1145/502090.502091

11. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002). https://doi.org/10.1613/jair.989

12. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.
368557

13. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

14. Galesi, N., Itsykson, D., Riazanov, A., Sofronova, A.: Bounded-depth frege com-
plexity of tseitin formulas for all graphs. In: Rossmanith, P., Heggernes, P., Katoen,
J. (eds.) 44th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2019, August 26–30, 2019, Aachen, Germany. LIPIcs, vol. 138, pp.
49:1–49:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.
org/10.4230/LIPIcs.MFCS.2019.49

15. Galesi, N., Talebanfard, N., Torán, J.: Cops-robber games and the resolution of
tseitin formulas. ACM Trans. Comput. Theory 12(2), 9:1–9:22 (2020). https://doi.
org/10.1145/3378667

16. Glinskih, L., Itsykson, D.: Satisfiable tseitin formulas are hard for nondeterminis-
tic read-once branching programs. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.
(eds.) 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, August 21–25, 2017 - Aalborg, Denmark. LIPIcs, vol. 83, pp.
26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.
org/10.4230/LIPIcs.MFCS.2017.26

17. Goerdt, A.: Regular resolution versus unrestricted resolution. SIAM J. Comput.
22(4), 661–683 (1993). https://doi.org/10.1137/0222044

18. Harvey, D.J., Wood, D.R.: Parameters tied to treewidth. J. Graph Theory 84(4),
364–385 (2017). https://doi.org/10.1002/jgt.22030

19. Itsykson, D., Oparin, V.: Graph expansion, tseitin formulas and resolution proofs
for CSP. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp.
162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38536-
0 14

20. Itsykson, D., Riazanov, A., Sagunov, D., Smirnov, P.: Almost tight lower bounds
on regular resolution refutations of tseitin formulas for all constant-degree graphs.
Electron. Colloquium Comput. Complex. 26, 178 (2019). https://eccc.weizmann.
ac.il/report/2019/178

21. Lovász, L., Naor, M., Newman, I., Wigderson, A.: Search problems in the decision
tree model. SIAM J. Discret. Math. 8(1), 119–132 (1995). https://doi.org/10.1137/
S0895480192233867

22. Nordström, J.: On the interplay between proof complexity and SAT solving. ACM
SIGLOG News 2(3), 19–44 (2015). https://dl.acm.org/citation.cfm?id=2815497

23. Razgon, I.: On the read-once property of branching programs and cnfs of bounded
treewidth. Algorithmica 75(2), 277–294 (2016). https://doi.org/10.1007/s00453-
015-0059-x

24. Tseitin, G.: On the complexity of derivation in propositional calculus. Stud. Con-
structive Math. Math. Logic Part 2, 115–125 (1968)

25. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987).
https://doi.org/10.1145/7531.8928

https://www.math.ucsd.edu/~sbuss/ResearchWeb/ProofComplexitySAT
https://www.math.ucsd.edu/~sbuss/ResearchWeb/ProofComplexitySAT
https://doi.org/10.1145/502090.502091
https://doi.org/10.1613/jair.989
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.4230/LIPIcs.MFCS.2019.49
https://doi.org/10.4230/LIPIcs.MFCS.2019.49
https://doi.org/10.1145/3378667
https://doi.org/10.1145/3378667
https://doi.org/10.4230/LIPIcs.MFCS.2017.26
https://doi.org/10.4230/LIPIcs.MFCS.2017.26
https://doi.org/10.1137/0222044
https://doi.org/10.1002/jgt.22030
https://doi.org/10.1007/978-3-642-38536-0_14
https://doi.org/10.1007/978-3-642-38536-0_14
https://eccc.weizmann.ac.il/report/2019/178
https://eccc.weizmann.ac.il/report/2019/178
https://doi.org/10.1137/S0895480192233867
https://doi.org/10.1137/S0895480192233867
https://dl.acm.org/citation.cfm?id=2815497
https://doi.org/10.1007/s00453-015-0059-x
https://doi.org/10.1007/s00453-015-0059-x
https://doi.org/10.1145/7531.8928

Characterizing Tseitin-Formulas with Short Regular Resolution Refutations 133

26. Urquhart, A.: A near-optimal separation of regular and general resolution. SIAM
J. Comput. 40(1), 107–121 (2011). https://doi.org/10.1137/090772897

27. Vinyals, M., Elffers, J., Johannsen, J., Nordström, J.: Simplified and improved sep-
arations between regular and general resolution by lifting. In: Pulina, L., Seidl, M.
(eds.) SAT 2020. LNCS, vol. 12178, pp. 182–200. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-51825-7 14

https://doi.org/10.1137/090772897
https://doi.org/10.1007/978-3-030-51825-7_14
https://doi.org/10.1007/978-3-030-51825-7_14

Weighted Model Counting Without
Parameter Variables

Paulius Dilkas1(B) and Vaishak Belle1,2

1 University of Edinburgh, Edinburgh, UK
p.dilkas@sms.ed.ac.uk, vaishak@ed.ac.uk

2 Alan Turing Institute, London, UK

Abstract. Weighted model counting (WMC) is a powerful computa-
tional technique for a variety of problems, especially commonly used for
probabilistic inference. However, the standard definition of WMC that
puts weights on literals often necessitates WMC encodings to include
additional variables and clauses just so each weight can be attached to
a literal. This paper complements previous work by considering WMC
instances in their full generality and using recent state-of-the-art WMC
techniques based on pseudo-Boolean function manipulation, competitive
with the more traditional WMC algorithms based on knowledge compi-
lation and backtracking search. We present an algorithm that transforms
WMC instances into a format based on pseudo-Boolean functions while
eliminating around 43% of variables on average across various Bayesian
network encodings. Moreover, we identify sufficient conditions for such
a variable removal to be possible. Our experiments show significant
improvement in WMC-based Bayesian network inference, outperform-
ing the current state of the art.

Keywords: Weighted model counting · Probabilistic inference ·
Bayesian networks

1 Introduction

Weighted model counting (WMC), i.e., a generalisation of propositional model
counting that assigns weights to literals and computes the total weight of all
models of a propositional formula [11], has emerged as a powerful computa-
tional framework for problems in many domains, e.g., probabilistic graphical
models such as Bayesian networks and Markov networks [3,8,9,15,32], neuro-
symbolic artificial intelligence [37], probabilistic programs [26], and probabilis-
tic logic programs [21]. It has been extended to support continuous variables
[6], infinite domains [4], first-order logic [24,36], and arbitrary semirings [5,27].
However, as the definition of WMC puts weights on literals, additional variables
often need to be added for the sole purpose of holding a weight [3,8,9,15,32].
This can be particularly detrimental to WMC algorithms that rely on variable
ordering heuristics.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 134–151, 2021.
https://doi.org/10.1007/978-3-030-80223-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_10

Weighted Model Counting Without Parameter Variables 135

One approach to this problem considers weighted clauses and probabilistic
semantics based on Markov networks [22]. However, with a new representation
comes the need to invent new encodings and inference algorithms. Our work is
similar in spirit in that it introduces a new representation for computational
problems but can reuse recent WMC algorithms based on pseudo-Boolean func-
tion manipulation, namely, ADDMC [19] and DPMC [20]. Furthermore, we iden-
tify sufficient conditions for transforming a WMC instance into our new format.
As many WMC inference algorithms [16,29] work by compilation to tractable
representations such as arithmetic circuits, deterministic, decomposable nega-
tion normal form [14], and sentential decision diagrams (SDDs) [17], another
way to avoid parameter variables could be via direct compilation to a more con-
venient representation. Direct compilation of Bayesian networks to SDDs has
been investigated [13]. However, SDDs only support weights on literals, and so
are not expressive enough to avoid the issue. To the best of the authors’ knowl-
edge, neither approach [13,22] has a publicly available implementation.

In this work, we introduce a way to transform WMC problems into a new
format based on pseudo-Boolean functions—pseudo-Boolean projection (PBP).
We formally show that every WMC problem instance has a corresponding PBP
instance and identify conditions under which this transformation can remove
parameter variables. Four out of the five known WMC encodings for Bayesian
networks [3,8,9,15,32] can indeed be simplified in this manner. We are able to
eliminate 43 % of variables on average and up to 99 % on some instances. This
transformation enables two encodings that were previously incompatible with
most WMC algorithms (due to using a different definition of WMC [8,9]) to
be run with ADDMC and DPMC and results in a significant performance boost
for one other encoding, making it about three times faster than the state of the
art. Finally, our theoretical contributions result in a convenient algebraic way
of reasoning about two-valued pseudo-Boolean functions and position WMC
encodings on common ground, identifying their key properties and assumptions.

2 Weighted Model Counting

We begin with an overview of some notation and terminology. We use ∧, ∨, ¬, ⇒,
and ⇔ to denote conjunction, disjunction, negation, material implication, and
material biconditional, respectively. Throughout the paper, we use set-theoretic
notation for many concepts in logic. A clause is a set of literals that are part of
an implicit disjunction. Similarly, a formula in CNF is a set of clauses that are
part of an implicit conjunction. We identify a model with a set of variables that
correspond to the positive literals in the model (and all other variables are the
negative literals of the model). We can then define the cardinality of a model as
the cardinality of this set. For example, let φ = (¬a ∨ b) ∧ a be a propositional
formula over variables a and b. Then an equivalent set-theoretic representation
of φ is {{¬a, b}, {a}}. Any subset of {a, b} is an interpretation of φ, e.g., {a, b} is
a model of φ (written {a, b} |= φ) of cardinality two, while ∅ is an interpretation
but not a model. We can now formally define WMC.

136 P. Dilkas and V. Belle

Definition 1 (WMC). A WMC instance is a tuple (φ,XI ,XP , w), where XI

is the set of indicator variables, XP is the set of parameter variables (with
XI ∩XP = ∅), φ is a propositional formula in CNF over XI ∪XP , and w : XI ∪
XP ∪{¬x | x ∈ XI ∪XP } → R is a weight function such that w(x) = w(¬x) = 1
for all x ∈ XI . The answer of the instance is

∑
Y |=φ

∏
Y |=l w(l).

That is, the answer to a WMC instance is the sum of the weights of all models
of φ, where the weight of a model is defined as the product of the weights of all
(positive and negative) literals in it. Our definition of WMC is largely based on
the standard definition [11], but explicitly partitions variables into indicator and
parameter variables. In practice, we identify this partition in one of two ways. If
an encoding is generated by Ace1, then variable types are explicitly identified in
a file generated alongside the encoding. Otherwise, we take XI to be the set of
all variables x such that w(x) = w(¬x) = 1. Next, we formally define a variation
of the WMC problem used by some of the Bayesian network encodings [8,9].

Definition 2. Let φ be a formula over a set of variables X. Then Y ⊆ X is a
minimum-cardinality model of φ if Y |= φ and |Y | ≤ |Z| for all Z |= φ.

Definition 3 (Minimum-Cardinality WMC). A minimum-cardinality
WMC instance consists of the same tuple as a WMC instance, but its answer is
defined to be

∑
Y |=φ, |Y |=k

∏
Y |=l w(l) (where k = minY |=φ |Y |) if φ is satisfiable,

and zero otherwise.

Example 1. Let φ = (x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ p) ∧ (¬y ∨ q) ∧ x, XI = {x, y},
XP = {p, q}, w(p) = 0.2, w(q) = 0.8, and w(¬p) = w(¬q) = 1. Then φ has two
models: {x, p} and {x, p, q} with weights 0.2 and 0.2 × 0.8 = 0.16, respectively.
The WMC answer is then 0.2+0.16 = 0.36, and the minimum-cardinality WMC
answer is 0.2.

2.1 Bayesian Network Encodings

A Bayesian network is a directed acyclic graph with random variables as ver-
tices and edges as conditional dependencies. As is common in related literature
[15,32], we assume that each variable has a finite number of values. We call a
Bayesian network binary if every variable has two values. If all variables have
finite numbers of values, the probability function associated with each variable
v can be represented as a conditional probability table (CPT), i.e., a table with a
row for each combination of values that v and its parent vertices can take. Each
row then also has a probability, i.e., a number in [0, 1].

WMC is a well-established technique for Bayesian network inference, partic-
ularly effective on networks where most variables have only a few possible values
[15]. Many ways of encoding a Bayesian network into a WMC instance have
been proposed. We will refer to them based on the initials of the authors and

1 Ace [11] implements most of the Bayesian network encodings and can also be used
for compilation (and thus inference). It is available at http://reasoning.cs.ucla.edu/
ace/.

http://reasoning.cs.ucla.edu/ace/
http://reasoning.cs.ucla.edu/ace/

Weighted Model Counting Without Parameter Variables 137

the year of publication. Darwiche was the first to suggest the d02 [15] encod-
ing that, in many ways, remains the foundation behind most other encodings.
He also introduced the distinction between indicator and parameter variables;
the former represent variable-value pairs in the Bayesian network, while the lat-
ter are associated with probabilities in the CPTs. The encoding sbk05 [32] is
the only encoding that deviates from this arrangement: for each variable in the
Bayesian network, one indicator variable acts simultaneously as a parameter
variable. Chavira and Darwiche propose cd05 [8] where they shift from WMC
to minimum-cardinality WMC because that allows the encoding to have fewer
variables and clauses. In particular, they propose a way to use the same param-
eter variable to represent all probabilities in a CPT that are equal and keep only
clauses that ‘imply’ parameter variables (i.e., omit clauses where a parameter
variable implies indicator variables).2 In their next encoding, cd06 [9], the same
authors optimise the aforementioned implication clauses, choosing the smallest
sufficient selection of indicator variables. A decade later, Bart et al. present
bklm16 [3] that improves upon cd06 in two ways. First, they optimise the num-
ber of indicator variables used per Bayesian network variable from a linear to
a logarithmic amount. Second, they introduce a scaling factor that can ‘absorb’
one probability per Bayesian network variable. However, for this work, we choose
to disable the latter improvement since this scaling factor is often small enough
to be indistinguishable from zero without the use of arbitrary precision arith-
metic, making it completely unusable on realistic instances. Indeed, the reader
is free to check that even a small Bayesian network with seven mutually inde-
pendent binary variables, 0.1 and 0.9 probabilities each, is already big enough
for the scaling factor to be exactly equal to zero (as produced by the bklm16
encoder3). We suspect that this issue was not identified during the original set
of experiments because the authors never looked at numerical answers.

Example 2. Let B be a Bayesian network with one variable X which has two
values x1 and x2 with probabilities Pr(X = x1) = 0.2 and Pr(X = x2) = 0.8.
Let x, y be indicator variables, and p, q be parameter variables. Then Example
1 is both the cd05 and the cd06 encoding of B. The bklm16 encoding is (x ⇒
p) ∧ (¬x ⇒ q) ∧ x with w(p) = w(¬q) = 0.2, and w(¬p) = w(q) = 0.8. And the
d02 encoding is (¬x ⇒ p) ∧ (p ⇒ ¬x) ∧ (x ⇒ q) ∧ (q ⇒ x) ∧ ¬x with w(p) = 0.2,
w(q) = 0.8, and w(¬p) = w(¬q) = 1. Note how all other encodings have fewer
clauses than d02. While cd05 and cd06 require minimum-cardinality WMC to
make this work, bklm16 achieves the same thing by adjusting weights.4

3 Pseudo-Boolean Functions

In this work, we propose a more expressive representation for WMC based on
pseudo-Boolean functions. A pseudo-Boolean function is a function of the form
2 Example 2 demonstrates what we mean by implication clauses.
3 http://www.cril.univ-artois.fr/kc/bn2cnf.html.
4 Note that since cd05 and cd06 are minimum-cardinality WMC encodings, they are

not supported by most WMC algorithms.

http://www.cril.univ-artois.fr/kc/bn2cnf.html

138 P. Dilkas and V. Belle

{0, 1}n → R [7]. Equivalently, let X denote a set with n elements (we will refer to
them as variables), and 2X denote its powerset. Then a pseudo-Boolean function
can have 2X as its domain (then it is also known as a set function).

Pseudo-Boolean functions, most commonly represented as algebraic decision
diagrams (ADDs) [2] (although a tensor-based approach has also been suggested
[18,20]), have seen extensive use in value iteration for Markov decision pro-
cesses [25], both exact and approximate Bayesian network inference [10,23], and
sum-product network [30] to Bayesian network conversion [38]. ADDs have been
extended to compactly represent additive and multiplicative structure [35], sen-
tences in first-order logic [33], and continuous variables [34], the last of which
was also applied to weighted model integration, i.e., the WMC extension for
continuous variables [6,28].

Since two-valued pseudo-Boolean functions will be used extensively hence-
forth, we introduce some new notation. For any propositional formula φ over X
and p, q ∈ R, let [φ]pq : 2X → R be the pseudo-Boolean function defined as

[φ]pq(Y) :=

{
p if Y |= φ

q otherwise

for any Y ⊆ X. Next, we define some useful operations on pseudo-Boolean
functions. The definitions of multiplication and projection are equivalent to those
in previous work [19,20].

Definition 4 (Operations). Let f, g : 2X → R be pseudo-Boolean functions,
x, y ∈ X, Y = {yi}n

i=1 ⊆ X, and r ∈ R. Operations such as addition and
multiplication are defined pointwise, i.e., (f +g)(Y) := f(Y)+g(Y), and likewise
for multiplication. Note that properties such as associativity and commutativity
are inherited from R. By regarding a real number as a constant pseudo-Boolean
function, we can reuse the same definitions to define scalar operations as (r +
f)(Y) = r + f(Y), and (r · f)(Y) = r · f(Y).

Restrictions f |x=0, f |x=1 : 2X → R of f are defined as f |x=0(Y) := f(Y \
{x}), and f |x=1(Y) := f(Y ∪ {x}) for all Y ⊆ X.

Projection ∃x is an endomorphism ∃x : R2X → R
2X defined as ∃xf := f |x=1+

f |x=0. Since projection is commutative (i.e., ∃x∃yf = ∃y∃xf) [19,20], we can
define ∃Y : R2X → R

2X as ∃Y := ∃y1∃y2 . . . ∃yn
. Throughout the paper, projection

is assumed to have the lowest precedence (e.g., ∃xfg = ∃x(fg)).

Below we list some properties of the operations on pseudo-Boolean functions
discussed in this section that can be conveniently represented using our syntax.
The proofs of all these properties follow directly from the definitions.

Proposition 1 (Basic Properties). For any propositional formulas φ and ψ,
and a, b, c, d ∈ R,

– [φ]ab = [¬φ]ba;
– c + [φ]ab = [φ]a+c

b+c ;
– c · [φ]ab = [φ]ac

bc ;

Weighted Model Counting Without Parameter Variables 139

– [φ]ab · [φ]cd = [φ]ac
bd;

– [φ]10 · [ψ]10 = [φ ∧ ψ]10.

And for any pair of pseudo-Boolean functions f, g : 2X → R and x ∈ X,
(fg)|x=i = f |x=i · g|x=i for i = 0, 1.

Remark 1. Note that our definitions of binary operations assumed equal
domains. For convenience, we can assume domains to shrink whenever a func-
tion is independent of some of the variables (i.e., f |x=0 = f |x=1) and expand for
binary operations to make the domains of both functions equal. For instance,
let [x]10, [¬x]10 : 2{x} → R and [y]10 : 2{y} → R be pseudo-Boolean functions. Then
[x]10 · [¬x]10 has 2∅ as its domain. To multiply [x]10 and [y]10, we expand [x]10
into

(
[x]10
)′ : 2{x,y} → R which is defined as

(
[x]10
)′ (Z) := [x]10(Z ∩ {x}) for all

Z ⊆ {x, y} (and equivalently for [y]10).

4 Pseudo-Boolean Projection

We introduce a new type of computational problem called pseudo-Boolean pro-
jection based on two-valued pseudo-Boolean functions. While the same computa-
tional framework can handle any pseudo-Boolean functions, two-valued functions
are particularly convenient because DPMC can be easily adapted to use them
as input. Since we will only encounter functions of the form [φ]ab , where φ is a
conjunction of literals, we can represent it in text as w 〈φ〉 a b where 〈φ〉 is a
representation of φ analogous to the representation of a clause in the DIMACS
CNF format.

Definition 5 (PBP Instance). A PBP instance is a tuple (F,X, ω), where
X is the set of variables, F is a set of two-valued pseudo-Boolean functions
2X → R, and ω ∈ R is the scaling factor.5 Its answer is ω ·

(
∃X

∏
f∈F f

)
(∅).

4.1 From WMC to PBP

In this section, we describe an algorithm for transforming WMC instances to
the PBP format while removing all parameter variables. We chose to transform
existing encodings instead of creating a new one to reuse already-existing tech-
niques for encoding each CPT to its minimal logical representation such as prime
implicants and limited forms of resolution [3,8,9]. The transformation algorithm
works on four out of the five Bayesian network encodings: bklm16 [3], cd05 [8],
cd06 [9], and d02 [15]. There is no obvious way to adjust it to work with sbk05
because the roles of indicator and parameter variables overlap [32].
5 Adding scaling factor ω to the definition allows us to remove clauses that consist

entirely of a single parameter variable. The idea of extracting some of the structure
of the WMC instance into an external multiplicative factor was loosely inspired by
the bklm16 encoding, where it is used to subsume the most commonly occurring
probability of each CPT [3].

140 P. Dilkas and V. Belle

Algorithm 1: WMC to PBP transformation
Data: WMC (or minimum-cardinality WMC) instance (φ, XI , XP , w)
Result: PBP instance (F, XI , ω)

1 F ← ∅;
2 ω ← 1;
3 foreach clause c ∈ φ do
4 if c ∩ XP = {p} for some p and w(p) �= 1 then
5 if |c| = 1 then
6 ω ← ω × w(p);
7 else

8 F ← F ∪
{[∧

l∈c\{p} ¬l
]w(p)

1

}
;

9 else if {p | ¬p ∈ c} ∩ XP = ∅ then
10 F ← F ∪ {[c]10};

11 foreach v ∈ XI such that {[v]p1, [¬v]q1} ⊆ F for some p and q do
12 F ← F \ {[v]p1, [¬v]q1} ∪ {[v]pq};

The algorithm is based on several observations that will be made more pre-
cise in Sect. 4.2. First, all weights except for {w(p) | p ∈ XP } are redundant
as they either duplicate an already-defined weight or are equal to one. Second,
each clause has at most one parameter variable. Third, if the parameter vari-
able is negated, we can ignore the clause (this idea first appears in the cd05
paper [8]). Note that while we formulate our algorithm as a sequel to the WMC
encoding procedure primarily because the implementations of Bayesian network
WMC encodings are all closed-source, as all transformations in the algorithm
are local, it can be efficiently incorporated into a WMC encoding algorithm with
no slowdown.

The algorithm is listed as Algorithm 1. The main part of the algorithms is
the first loop that iterates over clauses. If a clause consists of a single parameter
variable, we incorporate it into ω. If a clause is of the form α ⇒ p, where p ∈ XP ,
and α is a conjunction of literals over XI , we transform it into a pseudo-Boolean
function [α]w(p)

1 . If a clause c ∈ φ has no parameter variables, we reformulate
it into a pseudo-Boolean function [c]10. Finally, clauses with negative parameter
literals are omitted.

As all ‘weighted’ pseudo-Boolean functions produced by the first loop are
of the form [α]p1 (for some p ∈ R and formula α), the second loop merges two
functions into one whenever α is a literal. Note that taking into account the
order in which clauses are typically generated by encoding algorithms allows us
to do this in linear time (i.e., the two mergeable functions will be generated one
after the other).

4.2 Correctness Proofs

In this section, we outline key conditions that a (WMC or minimum-cardinality
WMC) encoding has to satisfy for Algorithm 1 to output an equivalent PBP

Weighted Model Counting Without Parameter Variables 141

instance. We divide the correctness proof into two theorems: Theorem 2 for
WMC encodings (i.e., bklm16 and d02) and Theorem 3 for minimum-cardinality
WMC encodings (i.e., cd05 and cd06). We begin by listing some properties
of pseudo-Boolean functions and establishing a canonical transformation from
WMC to PBP.

Theorem 1 (Early Projection [19,20]). Let X and Y be sets of variables.
For all pseudo-Boolean functions f : 2X → R and g : 2Y → R, if x ∈ X \Y , then
∃x(f · g) = (∃xf) · g.

Lemma 1. For any pseudo-Boolean function f : 2X → R, we have that
(∃Xf)(∅) =

∑
Y ⊆X f(Y).

Proof. If X = {x}, then (∃xf)(∅) = (f |x=1 + f |x=0)(∅) = f |x=1(∅) + f |x=0(∅) =∑
Y ⊆{x} f(Y). This easily extends to |X| > 1 by the definition of projection on

sets of variables.

Proposition 2. Let (φ,XI ,XP , w) be a WMC instance. Then
({

[c]10
∣
∣ c ∈ φ

} ∪
{

[x]w(x)
w(¬x)

∣
∣
∣ x ∈ XI ∪ XP

}
,XI ∪ XP , 1

)
(1)

is a PBP instance with the same answer (as defined in Definitions 1 and 5).

Proof. Let f =
∏

c∈φ[c]10, and g =
∏

x∈XI∪XP
[x]w(x)

w(¬x). Then the WMC answer
of (1) is (∃XI∪XP

fg)(∅) =
∑

Y ⊆XI∪XP
(fg)(Y) =

∑
Y ⊆XI∪XP

f(Y)g(Y) by
Lemma 1. Note that

f(Y) =

{
1 if Y |= φ,

0 otherwise,
and g(Y) =

∏

Y |=l

w(l),

which means that
∑

Y ⊆XI∪XP
f(Y)g(Y) =

∑
Y |=φ

∏
Y |=l w(l) as required.

Theorem 2 (Correctness for WMC). Algorithm 1, when given a WMC
instance (φ,XI ,XP , w), returns a PBP instance with the same answer (as
defined in Definitions 1 and 5), provided either of the two conditions is sat-
isfied:

1. for all p ∈ XP , there is a non-empty family of literals (li)n
i=1 such that

(a) w(¬p) = 1,
(b) li ∈ XI or ¬li ∈ XI for all i = 1, . . . , n,
(c) and {c ∈ φ | p ∈ c or ¬p ∈ c} = {p ∨∨n

i=1 ¬li} ∪ {li ∨ ¬p | i = 1, . . . , n};
2. or for all p ∈ XP ,

(a) w(p) + w(¬p) = 1,
(b) for any clause c ∈ φ, |c ∩ XP | ≤ 1,
(c) there is no clause c ∈ φ such that ¬p ∈ c,
(d) if {p} ∈ φ, then there is no clause c ∈ φ such that c �= {p} and p ∈ c,
(e) and for any c, d ∈ φ such that c �= d, p ∈ c and p ∈ d,

∧
l∈c\{p} ¬l ∧

∧
l∈d\{p} ¬l is false.

142 P. Dilkas and V. Belle

Condition 1 (for d02) simply states that each parameter variable is equiv-
alent to a conjunction of indicator literals. Condition 2 is for encodings that
have implications rather than equivalences associated with parameter variables
(which, in this case, is bklm16). It ensures that each clause has at most one pos-
itive parameter literal and no negative ones, and that at most one implication
clause per any parameter variable p ∈ XP can ‘force p to be positive’.

Proof. By Proposition 2,
({

[c]10
∣
∣ c ∈ φ

} ∪
{

[x]w(x)
w(¬x)

∣
∣
∣ x ∈ XI ∪ XP

}
,XI ∪ XP , 1

)
(2)

is a PBP instance with the same answer as the given WMC instance. By Defini-
tion 5, its answer is

(
∃XI∪XP

(∏
c∈φ[c]10

)∏
x∈XI∪XP

[x]w(x)
w(¬x)

)
(∅). Since both

Conditions 1 and 2 ensure that each clause in φ has at most one parame-
ter variable, we can partition φ into φ∗ := {c ∈ φ | Vars(c) ∩ XP = ∅}
and φp := {c ∈ φ | Vars(c) ∩ XP = {p}} for all p ∈ XP . We can then

use Theorem 1 to reorder the answer into
(
∃XI

(∏
x∈XI

[x]w(x)
w(¬x)

)(∏
c∈φ∗ [c]10

)

∏
p∈XP

∃p[p]w(p)
w(¬p)

∏
c∈φp

[c]10
)

(∅).
Let us first consider how the unfinished WMC instance (F,XI , ω) after the

loop on Lines 3 to 10 differs from (2). Note that Algorithm 1 leaves each c ∈ φ∗
unchanged, i.e., adds [c]10 to F . We can then fix an arbitrary p ∈ XP and let Fp

be the set of functions added to F as a replacement of φp. It is sufficient to show
that

ω
∏

f∈Fp

f = ∃p[p]w(p)
w(¬p)

∏

c∈φp

[c]10. (3)

Note that under Condition 1,
∧

c∈φp
c ≡ p ⇔ ∧n

i=1 li for some family of indicator

variable literals (li)n
i=1. Thus, ∃p[p]w(p)

w(¬p)

∏
c∈φp

[c]10 = ∃p[p]w(p)
1 [p ⇔ ∧n

i=1 li]
1

0. If
w(p) = 1, then

∃p[p]w(p)
1

[

p ⇔
n∧

i=1

li

]1

0

=

[

p ⇔
n∧

i=1

li

]1

0

∣
∣
∣
∣
∣
∣
p=1

+

[

p ⇔
n∧

i=1

li

]1

0

∣
∣
∣
∣
∣
∣
p=0

. (4)

Since for any input,
∧n

i=1 li is either true or false, exactly one of the two sum-
mands in Eq. (4) will be equal to one, and the other will be equal to zero, and so
[p ⇔ ∧n

i=1 li]
1

0

∣
∣
∣
p=1

+ [p ⇔ ∧n
i=1 li]

1

0

∣
∣
∣
p=0

= 1, where 1 is a pseudo-Boolean func-

tion that always returns one. On the other side of Eq. (3), since Fp = ∅, and ω is
unchanged, we get ω

∏
f∈Fp

f = 1, and so Eq. (3) is satisfied under Condition 1
when w(p) = 1.

If w(p) �= 1, then Fp =
{

[
∧n

i=1 li]
w(p)

1

}
, and ω = 1, and so we want to show

that [
∧n

i=1 li]
w(p)

1 = ∃p[p]w(p)
1 [p ⇔ ∧n

i=1 li]
1

0. Indeed, ∃p[p]w(p)
1 [p ⇔ ∧n

i=1 li]
1

0 =

w(p) · [∧n
i=1 li]

1

0 +[
∧n

i=1 li]
0

1 = [
∧n

i=1 li]
w(p)

1 . This finishes the proof of the correct-
ness of the first loop under Condition 1.

Weighted Model Counting Without Parameter Variables 143

Now let us assume Condition 2. We still want to prove Eq. (3). If w(p) = 1,
then Fp = ∅, and ω = 1, and so the left-hand side of Eq. (3) is equal to one. Then

the right-hand side is ∃p[p]10
∏

c∈φp
[c]10 = ∃p

[
p ∧∧c∈φp

c
]1

0
= ∃p[p]10 = 0 + 1 = 1

since p ∈ c for every clause c ∈ φp.
If w(p) �= 1, and {p} ∈ φp, then, by Condition 2d, φp = {{p}}, and Algo-

rithm 1 produces Fp = ∅, and ω = w(p), and so ∃p[p]w(p)
w(¬p)[p]10 = ∃p[p]w(p)

0 =
w(p) = ω

∏
f∈Fp

f . The only remaining case is when w(p) �= 1 and {p} �∈ φp.

Then ω = 1, and Fp =
{[∧

l∈c\{p} ¬l
]w(p)

1

∣
∣
∣
∣ c ∈ φp

}

, so we need to show that

∏
c∈φp

[∧
l∈c\{p} ¬l

]w(p)

1
= ∃p[p]w(p)

1−w(p)

∏
c∈φp

[c]10. We can rearrange the right-
hand side as

∃p[p]w(p)
1−w(p)

∏

c∈φp

[c]10 = ∃p[p]w(p)
1−w(p)

⎡

⎣p ∨
∧

c∈φp

c \ {p}
⎤

⎦

1

0

= w(p) + (1 − w(p))

⎡

⎣
∧

c∈φp

c \ {p}
⎤

⎦

1

0

=

⎡

⎣
∧

c∈φp

c \ {p}
⎤

⎦

1

w(p)

=

⎡

⎣
∨

c∈φp

∧

l∈c\{p}
¬l

⎤

⎦

w(p)

1

.

By Condition 2e,
∧

l∈c\{p} ¬l can be true for at most one c ∈ φp, and so
[∨

c∈φp

∧
l∈c\{p} ¬l

]w(p)

1
=
∏

c∈φp

[∧
l∈c\{p} ¬l

]w(p)

1
which is exactly what we

needed to show. This ends the proof that the first loop of Algorithm 1 preserves
the answer under both Condition 1 and Condition 2. Finally, the loop on Lines 11
to 12 of Algorithm 1 replaces [v]p1[¬v]q1 with [v]pq (for some v ∈ XI and p, q ∈ R),
but, of course, [v]p1[¬v]q1 = [v]p1[v]1q = [v]pq , i.e., the answer is unchanged.

Theorem 3 (Minimum-Cardinality Correctness). Let (φ,XI ,XP , w) be
a minimum-cardinality WMC instance that satisfies Condition 2b to 2e of
Theorem 2 as well as the following:

1. for all parameter variables p ∈ XP , w(¬p) = 1.
2. all models of {c∈ φ | c∩XP = ∅} (as subsets of XI) have the same cardinality;
3. minZ⊆XP

|Z| such that Y ∪Z |= φ is the same for all Y |= {c∈ φ | c∩XP = ∅}.
Then Algorithm 1, when applied to (φ,XI ,XP , w), outputs a PBP instance with
the same answer (as defined in Definitions 3 and 5).

In this case, we have to add some assumptions about the cardinality of mod-
els. Condition 2 states that all models of the indicator-only part of the formula
have the same cardinality. Bayesian network encodings such as cd05 and cd06

144 P. Dilkas and V. Belle

satisfy this condition by assigning an indicator variable to each possible variable-
value pair and requiring each random variable to be paired with exactly one
value. Condition 3 then says that the smallest number of parameter variables
needed to turn an indicator-only model into a full model is the same for all
indicator-only models. As some ideas duplicate between the proofs of Theorems
2 and 3, the following proof is slightly less explicit and assumes that ω = 1.

Proof. Let (F,XI , ω) be the tuple returned by Algorithm 1 and note that F =
{
[c]10 | c ∈ φ, c ∩ XP = ∅} ∪

{[∧
l∈c\{p} ¬l

]w(p)

1

∣
∣
∣
∣ p ∈ XP , p ∈ c ∈ φ, c �= {p}

}

.

We split the proof into two parts. In the first part, we show that there is a
bijection between minimum-cardinality models of φ and Y ⊆ XI such that(∏

f∈F f
)

(Y) �= 0.6 Let Y ⊆ XI and Z ⊆ XI ∪XP be related via this bijection.
Then in the second part we will show that

∏

Z|=l

w(l) =

⎛

⎝
∏

f∈F

f

⎞

⎠ (Y). (5)

On the one hand, if Z ⊆ XI ∪ XP is a minimum-cardinality model of φ,
then

(∏
f∈F

)
(Z ∩ XI) �= 0 under the given assumptions. On the other hand,

if Y ⊆ XI is such that
(∏

f∈F

)
(Y) �= 0, then Y |= {c ∈ φ | c ∩ XP = ∅}. Let

Y ⊆ Z ⊆ XI ∪ XP be the smallest superset of Y such that Z |= φ (it exists by
Condition 2c of Theorem 2). We need to show that Z has minimum cardinality.
Let Y ′ and Z ′ be defined equivalently to Y and Z. We will show that |Z| = |Z ′|.
Note that |Y | = |Y ′| by Condition 2, and |Z \ Y | = |Z ′ \ Y ′| by Condition 3.
Combining that with the general property that |Z| = |Y | + |Z \ Y | finishes the
first part of the proof.

For the second part, let us consider the multiplicative influence of a single
parameter variable p ∈ XP on Eq. (5). If the left-hand side is multiplied by w(p)
(i.e., p ∈ Z), then there must be some clause c ∈ φ such that Z \ {p} �|= c. But
then Y |= ∧l∈c\{p} ¬l, and so the right-hand side is multiplied by w(p) as well
(exactly once because of Condition 2e of Theorem 2). This argument works in
the other direction as well.

5 Experimental Evaluation

We run a set of experiments, comparing all five original Bayesian network encod-
ings (bklm16, cd05, cd06, d02, sbk05) as well as the first four with Algorithm 1
applied afterwards.7 For each encoding e, we write e++ to denote the combi-
nation of encoding a Bayesian network as a WMC instance using e and trans-
forming it into a PBP instance using Algorithm 1. Along with DPMC8, we also
6 For convenience and without loss of generality we assume that w(p) �= 0 for all

p ∈ XP .
7 Recall that cd05 and cd06 are incompatible with DPMC.
8 https://github.com/vardigroup/DPMC.

https://github.com/vardigroup/DPMC

Weighted Model Counting Without Parameter Variables 145

include WMC algorithms used in the papers that introduce each encoding: Ace
for cd05, cd06, and d02; Cachet9 [31] for sbk05; and c2d10 [16] with query-dnnf11

for bklm16. Ace is also used to encode Bayesian networks into WMC instances
for all encodings except for bklm16 which uses another encoder mentioned pre-
viously. We focus on the following questions:

– Can parameter variable elimination improve inference speed?
– How does DPMC combined with encodings without (and with) parameter

variables compare with other WMC algorithms and other encodings?
– Which instances is our approach particularly successful on (compared to other

algorithms and encodings and to the same encoding before our transforma-
tion)?

– What proportion of variables is typically eliminated?
– Do some encodings benefit from this transformation more than others?

5.1 Setup

DPMC is run with tree decomposition-based planning and ADD-based
execution—the best-performing combination in the original set of experiments
[20]. We use a single iteration of htd [1] to generate approximately optimal tree
decompositions—we found that this configuration is efficient enough to handle
huge instances, and yet the width of the returned decomposition is unlikely to
differ from optimal by more than one or two. We also enabled DPMC’s greedy
mode. This mode (which was not part of the original paper [20]) optimises the
order in which ADDs are multiplied by prioritising those with small representa-
tions.

For experimental data, we use Bayesian networks available with Ace and
Cachet. We split them into the following groups: – DQMR (390 instances) and
– Grid networks (450 instances) as described by Sang et al. [32]; – Mastermind
(144 instances) and – Random Blocks (256 instances) by Chavira et al. [12]; –
other binary Bayesian networks (50 instances) including Plan Recognition [32],
Friends and Smokers, Students and Professors [12], and tcc4f; – non-binary clas-
sic networks (176 instances): alarm, diabetes, hailfinder, mildew, munin1–4,
pathfinder, pigs, and water.

To perform Bayesian network inference with DPMC (or with any other WMC
algorithm not based on compilation such as Cachet), one needs to select a prob-
ability to compute [20,31]. If a network comes with an evidence file, we compute
the probability of this evidence. Otherwise, let X be the variable last mentioned
in the Bayesian network file. If true is one of the values of X, then we compute
Pr(X = true), otherwise we choose the first-mentioned value of X.

The experiments were run on a computing cluster with Intel Xeon E5-2630,
Intel Xeon E7-4820, and Intel Xeon Gold 6138 processors with a 1000 s timeout
separately on both encoding and inference, and a 32 GiB memory limit.12

9 https://cs.rochester.edu/u/kautz/Cachet/.
10 http://reasoning.cs.ucla.edu/c2d/.
11 http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html.
12 Each instance was run on the same processor across all algorithms and encodings.

https://cs.rochester.edu/u/kautz/Cachet/
http://reasoning.cs.ucla.edu/c2d/
http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html

146 P. Dilkas and V. Belle

5.2 Results

0.1

1

10

100

1000

0 500 1000 1500
Instances solved

T
im

e
(s
)

Algorithm

DPMC other

Encoding

bklm16

bklm16++

cd05

cd05++

cd06

cd06++

d02

d02++

sbk05

Fig. 1. Cactus plot of all algorithm-encoding pairs. The dotted line denotes the total
number of instances used.

Figure 1 shows DPMC+bklm16++ to be the best-performing combination across
all time limits up to 1000 s with Ace+cd06 and DPMC+bklm16 not far behind.
Overall, DPMC + bklm16++ is 3.35 times faster than DPMC + bklm16 and 2.96
times faster than Ace + cd06. Table 1 further shows that DPMC + bklm16++
solves almost a hundred more instances than any other combination, and is the
fastest in 69.1 s of them.

The scatter plots in Fig. 2 show that how DPMC + bklm16++ (and perhaps
DPMC more generally) compares to Ace + cd06 depends significantly on the
data set: the former is a clear winner on DQMR and Grid instances, while the
latter performs well on Mastermind and Random Blocks. Perhaps because the
underlying WMC algorithm remains the same, the difference between DPMC +
bklm16 with and without applying Algorithm 1 is quite noisy, i.e., with most
instances scattered around the line of equality. However, our transformation does
enable DPMC to solve many instances that were previously beyond its reach.

We also record numbers of variables in each encoding before and after apply-
ing Algorithm 1. Figure 3 shows a significant reduction in the number of vari-
ables. For instance, the median number of variables in instances encoded with
bklm16 was reduced four times: from 1499 to 376. While bklm16++ results in the
overall lowest number of variables, the difference between bklm16++ and d02++
seems small. Indeed, the numbers of variables in these two encodings are equal
for binary Bayesian networks (i.e., most of our data). Nonetheless, bklm16++ is
still much faster than d02++ when run with DPMC.

It is also worth noting that there was no observable difference in the width
of the project-join tree used by DPMC (which is equivalent to the treewidth of
the primal/Gaifman graph of the input formula [20]) before and after applying

Weighted Model Counting Without Parameter Variables 147

0.1

10

1000

0.1 10 1000
Ace + cd06 time (s)

D
P
M
C
+

b
k
l
m
1
6
+
+
ti
m
e
(s
)

0.1

10

1000

0.1 10 1000
DPMC + bklm16 time (s)

D
P
M
C
+

b
k
l
m
1
6
+
+
ti
m
e
(s
)

DQMR

Grid

Mastermind

Non-binary

Other binary

Random Blocks

Fig. 2. An instance-by-instance comparison between DPMC+bklm16++ (the best com-
bination according to Fig. 1) and the second and third best-performing combinations:
Ace + cd06 and DPMC + bklm16.

0

2000

4000

bklm16cd05 cd06 d02 sbk05

V
ar
ia
bl
es

before after

Fig. 3. Box plots of the numbers of vari-
ables in each encoding across all benchmark
instances before and after applying Algo-
rithm 1. Outliers and the top parts of some
whiskers are omitted.

Table 1. The numbers of instances (out
of 1466) that each algorithm and encod-
ing combination solved faster than any
other combination and in total.

Combination Fastest Solved

Ace + cd05 27 1247

Ace + cd06 135 1340

Ace + d02 56 1060

DPMC + bklm16 241 1327

DPMC + bklm16++ 992 1435

DPMC + cd05++ 0 867

DPMC + cd06++ 0 932

DPMC + d02 1 1267

DPMC + d02++ 7 1272

DPMC + sbk05 31 1308

c2d + bklm16 0 997

Cachet + sbk05 49 983

148 P. Dilkas and V. Belle

Algorithm 1—the observed performance improvement is more likely related to
the variable ordering heuristic used by ADDs.13

Overall, transforming WMC instances to the PBP format allows us to sig-
nificantly simplify each instance. This transformation is particularly effective
on bklm16, allowing it to surpass cd06 and become the new state of the art.
While there is a similarly significant reduction in the number of variables for
d02, the performance of DPMC + d02 is virtually unaffected. Finally, while our
transformation makes it possible to use cd05 and cd06 with DPMC, the two
combinations remain inefficient.

6 Conclusion

In this paper, we showed how the number of variables in a WMC instance can
be significantly reduced by transforming it into a representation based on two-
valued pseudo-Boolean functions. In some cases, this led to significant improve-
ments in inference speed, allowing DPMC+ bklm16++ to overtake Ace+ cd06 as
the new state of the art WMC technique for Bayesian network inference. More-
over, we identified key properties of Bayesian network encodings that allow for
parameter variable removal. However, these properties were rather different for
each encoding, and so an interesting question for future work is whether they
can be unified into a more abstract and coherent list of conditions.

Bayesian network inference was chosen as the example application of WMC
because it is the first and the most studied one [3,8,9,15,32]. While the distinction
between indicator and parameter variables is often not explicitly described in other
WMC encodings [21,26,37], perhaps in some cases variables could still be parti-
tioned in this way, allowing for not just faster inference with DPMC or ADDMC
but also for well-established WMC encoding and inference techniques (such as in
the cd05 and cd06 papers [8,9]) to be transferred to other application domains.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
The first author was supported by the EPSRC Centre for Doctoral Training in Robotics
and Autonomous Systems, funded by the UK Engineering and Physical Sciences
Research Council (grant EP/L016834/1). The second author was supported by a Royal
Society University Research Fellowship. This work has made use of the resources provided
by the Edinburgh Compute and Data Facility (ECDF) (http://www.ecdf.ed.ac.uk/).

References

1. Abseher, M., Musliu, N., Woltran, S.: htd – a free, open-source framework for (cus-
tomized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 376–386. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59776-8 30

2. Bahar, R.I., et al.: Algebraic decision diagrams and their applications. For-
mal Methods Syst. Des. 10(2/3), 171–206 (1997). https://doi.org/10.1023/A:
1008699807402

13 The data on this (along with the implementation of Algorithm 1) is available at
https://github.com/dilkas/wmc-without-parameters.

http://www.ecdf.ed.ac.uk/
https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1023/A:1008699807402
https://github.com/dilkas/wmc-without-parameters

Weighted Model Counting Without Parameter Variables 149

3. Bart, A., Koriche, F., Lagniez, J., Marquis, P.: An improved CNF encoding scheme
for probabilistic inference. In: Kaminka, G.A., ET AL. (eds.) ECAI 2016–22nd
European Conference on Artificial Intelligence, 29 August-2 September 2016, The
Hague, The Netherlands - Including Prestigious Applications of Artificial Intelli-
gence (PAIS 2016). Frontiers in Artificial Intelligence and Applications, vol. 285,
pp. 613–621. IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-613

4. Belle, V.: Open-universe weighted model counting. In: Singh, S.P., Markovitch, S.
(eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
San Francisco, California, USA, 4–9 February 2017, pp. 3701–3708. AAAI Press
(2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15008

5. Belle, V., De Raedt, L.: Semiring programming: a semantic framework for general-
ized sum product problems. Int. J. Approx. Reason. 126, 181–201 (2020). https://
doi.org/10.1016/j.ijar.2020.08.001

6. Belle, V., Passerini, A., Van den Broeck, G.: Probabilistic inference in hybrid
domains by weighted model integration. In: Yang, Q., Wooldridge, M.J. (eds.) Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015. pp. 2770–2776.
AAAI Press (2015). http://ijcai.org/Abstract/15/392

7. Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discret. Appl. Math.
123(1–3), 155–225 (2002). https://doi.org/10.1016/S0166-218X(01)00341-9

8. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure.
In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK,
30 July–5 August 2005, pp. 1306–1312. Professional Book Center (2005). http://
ijcai.org/Proceedings/05/Papers/0931.pdf

9. Chavira, M., Darwiche, A.: Encoding CNFs to empower component analysis. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 61–74. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814948 9

10. Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimina-
tion. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007,
pp. 2443–2449 (2007). http://ijcai.org/Proceedings/07/Papers/393.pdf

11. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6–7), 772–799 (2008). https://doi.org/10.1016/j.artint.2007.11.
002

12. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian networks for
exact inference. Int. J. Approx. Reason. 42(1–2), 4–20 (2006). https://doi.org/10.
1016/j.ijar.2005.10.001

13. Choi, A., Kisa, D., Darwiche, A.: Compiling probabilistic graphical models using
sentential decision diagrams. In: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS
(LNAI), vol. 7958, pp. 121–132. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39091-3 11

14. Darwiche, A.: On the tractable counting of theory models and its application to
truth maintenance and belief revision. J. Appl. Non Class. Logics 11(1–2), 11–34
(2001). https://doi.org/10.3166/jancl.11.11-34

15. Darwiche, A.: A logical approach to factoring belief networks. In: Fensel, D.,
Giunchiglia, F., McGuinness, D.L., Williams, M. (eds.) Proceedings of the Eights
International Conference on Principles and Knowledge Representation and Reason-
ing (KR-02), Toulouse, France, 22–25 April 2002, pp. 409–420. Morgan Kaufmann
(2002)

https://doi.org/10.3233/978-1-61499-672-9-613
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15008
https://doi.org/10.1016/j.ijar.2020.08.001
https://doi.org/10.1016/j.ijar.2020.08.001
http://ijcai.org/Abstract/15/392
https://doi.org/10.1016/S0166-218X(01)00341-9
http://ijcai.org/Proceedings/05/Papers/0931.pdf
http://ijcai.org/Proceedings/05/Papers/0931.pdf
https://doi.org/10.1007/11814948_9
http://ijcai.org/Proceedings/07/Papers/393.pdf
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1016/j.ijar.2005.10.001
https://doi.org/10.1016/j.ijar.2005.10.001
https://doi.org/10.1007/978-3-642-39091-3_11
https://doi.org/10.1007/978-3-642-39091-3_11
https://doi.org/10.3166/jancl.11.11-34

150 P. Dilkas and V. Belle

16. Darwiche, A.: New advances in compiling CNF into decomposable negation normal
form. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants
of Intelligent Systems, PAIS 2004, Valencia, Spain, 22–27 August 2004, pp. 328–
332. IOS Press (2004)

17. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16–22 July 2011,
pp. 819–826. IJCAI/AAAI (2011). https://doi.org/10.5591/978-1-57735-516-8/
IJCAI11-143

18. Dudek, J.M., Dueñas-Osorio, L., Vardi, M.Y.: Efficient contraction of large tensor
networks for weighted model counting through graph decompositions (2019). CoRR
abs/1908.04381

19. Dudek, J.M., Phan, V., Vardi, M.Y.: ADDMC: weighted model counting with
algebraic decision diagrams. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February
2020, pp. 1468–1476. AAAI Press (2020). https://aaai.org/ojs/index.php/AAAI/
article/view/5505

20. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: DPMC: weighted model counting by
dynamic programming on project-join trees. In: Simonis, H. (ed.) CP 2020. LNCS,
vol. 12333, pp. 211–230. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58475-7 13

21. Fierens, D., et al.: Inference and learning in probabilistic logic programs using
weighted Boolean formulas. Theory Pract. Log. Program. 15(3), 358–401 (2015).
https://doi.org/10.1017/S1471068414000076

22. Gogate, V., Domingos, P.M.: Formula-based probabilistic inference. In: Grünwald,
P., Spirtes, P. (eds.) UAI 2010, Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, 8–11 July 2010,
pp. 210–219. AUAI Press (2010)

23. Gogate, V., Domingos, P.M.: Approximation by quantization. In: Cozman, F.G.,
Pfeffer, A. (eds.) UAI 2011, Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artificial Intelligence, Barcelona, Spain, 14–17 July 2011, pp. 247–
255. AUAI Press (2011)

24. Gogate, V., Domingos, P.M.: Probabilistic theorem proving. Commun. ACM 59(7),
107–115 (2016). https://doi.org/10.1145/2936726

25. Hoey, J., St-Aubin, R., Hu, A.J., Boutilier, C.: SPUDD: stochastic planning using
decision diagrams. In: Laskey, K.B., Prade, H. (eds.) UAI ’99: Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden,
30 July–1 August 1999, pp. 279–288. Morgan Kaufmann (1999)

26. Holtzen, S., Van den Broeck, G., Millstein, T.D.: Scaling exact inference for discrete
probabilistic programs. Proc. ACM Program. Lang. 4(OOPSLA), 140:1-140:31
(2020). https://doi.org/10.1145/3428208

27. Kimmig, A., Van den Broeck, G., De Raedt, L.: Algebraic model counting. J. Appl.
Log. 22, 46–62 (2017). https://doi.org/10.1016/j.jal.2016.11.031

28. Kolb, S., Mladenov, M., Sanner, S., Belle, V., Kersting, K.: Efficient symbolic inte-
gration for probabilistic inference. In: Lang, J. (ed.) Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
Stockholm, Sweden, 13–19 July 2018, pp. 5031–5037. ijcai.org (2018). https://
doi.org/10.24963/ijcai.2018/698

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://aaai.org/ojs/index.php/AAAI/article/view/5505
https://aaai.org/ojs/index.php/AAAI/article/view/5505
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1017/S1471068414000076
https://doi.org/10.1145/2936726
https://doi.org/10.1145/3428208
https://doi.org/10.1016/j.jal.2016.11.031
https://doi.org/10.24963/ijcai.2018/698
https://doi.org/10.24963/ijcai.2018/698

Weighted Model Counting Without Parameter Variables 151

29. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In:
Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
25–31 July 2015, pp. 3141–3148. AAAI Press (2015). http://ijcai.org/Abstract/
15/443

30. Poon, H., Domingos, P.M.: Sum-product networks: a new deep architecture. In:
Cozman, F.G., Pfeffer, A. (eds.) UAI 2011, Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, 14–17 July
2011, pp. 337–346. AUAI Press (2011)

31. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: SAT 2004 - The Sev-
enth International Conference on Theory and Applications of Satisfiability Testing,
Vancouver, BC, Canada, 10–13 May 2004, Online Proceedings (2004). http://www.
satisfiability.org/SAT04/programme/21.pdf

32. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted
model counting. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, The Twen-
tieth National Conference on Artificial Intelligence and the Seventeenth Innovative
Applications of Artificial Intelligence Conference, Pittsburgh, Pennsylvania, USA,
9–13 July 2005, pp. 475–482. AAAI Press/The MIT Press (2005). http://www.
aaai.org/Library/AAAI/2005/aaai05-075.php

33. Sanner, S., Boutilier, C.: Practical solution techniques for first-order MDPs. Artif.
Intell. 173(5–6), 748–788 (2009). https://doi.org/10.1016/j.artint.2008.11.003

34. Sanner, S., Delgado, K.V., de Barros, L.N.: Symbolic dynamic programming for
discrete and continuous state MDPs. In: Cozman, F.G., Pfeffer, A. (eds.) UAI
2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, Barcelona, Spain, 14–17 July 2011, pp. 643–652. AUAI Press (2011)

35. Sanner, S., McAllester, D.A.: Affine algebraic decision diagrams (AADDs) and
their application to structured probabilistic inference. In: Kaelbling, L.P., Saf-
fiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International Joint Con-
ference on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July–5 August 2005,
pp. 1384–1390. Professional Book Center (2005). http://ijcai.org/Proceedings/05/
Papers/1439.pdf

36. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted prob-
abilistic inference by first-order knowledge compilation. In: Walsh, T. (ed.) IJCAI
2011, Proceedings of the 22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, 16–22 July 2011, pp. 2178–2185. IJCAI/AAAI
(2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-363

37. Xu, J., Zhang, Z., Friedman, T., Liang, Y., Van den Broeck, G.: A semantic
loss function for deep learning with symbolic knowledge. In: Dy, J.G., Krause,
A. (eds.) Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018. Proceed-
ings of Machine Learning Research, vol. 80, pp. 5498–5507. PMLR (2018). http://
proceedings.mlr.press/v80/xu18h.html

38. Zhao, H., Melibari, M., Poupart, P.: On the relationship between sum-product
networks and Bayesian networks. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6–11 July 2015. JMLR Workshop and Conference Proceedings, vol. 37, pp. 116–
124. JMLR.org (2015). http://proceedings.mlr.press/v37/zhaoc15.html

http://ijcai.org/Abstract/15/443
http://ijcai.org/Abstract/15/443
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
https://doi.org/10.1016/j.artint.2008.11.003
http://ijcai.org/Proceedings/05/Papers/1439.pdf
http://ijcai.org/Proceedings/05/Papers/1439.pdf
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-363
http://proceedings.mlr.press/v80/xu18h.html
http://proceedings.mlr.press/v80/xu18h.html
http://proceedings.mlr.press/v37/zhaoc15.html

ProCount: Weighted Projected Model
Counting with Graded Project-Join Trees

Jeffrey M. Dudek, Vu H. N. Phan(B), and Moshe Y. Vardi

Rice University, Houston, TX, USA
{jmd11,vhp1,vardi}@rice.edu

Abstract. Recent work in weighted model counting proposed a unify-
ing framework for dynamic-programming algorithms. The core of this
framework is a project-join tree: an execution plan that specifies how
Boolean variables are eliminated. We adapt this framework to compute
exact literal-weighted projected model counts of propositional formu-
las in conjunctive normal form. Our key conceptual contribution is to
define gradedness on project-join trees, a novel condition requiring irrel-
evant variables to be eliminated before relevant variables. We prove that
building graded project-join trees can be reduced to building standard
project-join trees and that graded project-join trees can be used to com-
pute projected model counts. The resulting tool ProCount is competitive
with the state-of-the-art tools D4P, projMC, and reSSAT, achieving the
shortest solving time on 131 benchmarks of 390 benchmarks solved by
at least one tool, from 849 benchmarks in total.

1 Introduction

Weighted projected model counting is a fundamental problem in artificial intelli-
gence, with applications in planning [4], formal verification [34], and reliability
estimation [20]. Counting is also closely connected to sampling [32], a problem of
major interest in probabilistic reasoning [33]. The input is a set of constraints,
whose variables are divided into relevant variables X and irrelevant variables
Y . The goal is to compute the weighted number of assignments to X that, with
some assignment to Y , satisfy the constraints. This problem is complete for
the complexity class #PNP[1] [63]. There are recent tools for weighted projected
model counting [37,38].

Dynamic programming is a powerful technique that has been applied across
computer science [7]. The key idea is to solve a large problem by solving
many smaller subproblems then combining partial solutions into the final result.
Dynamic programming is a natural framework to solve problems defined on

Work supported in part by NSF grants CCF-1704883, DMS-1547433, IIS-1527668, and
IIS-1830549, DoD MURI grant N00014-20-1-2787, and an award from the Maryland
Procurement Office.
Authors sorted alphabetically by surnames.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 152–170, 2021.
https://doi.org/10.1007/978-3-030-80223-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_11

ProCount: Projected Model Counting with Graded Project-Join Trees 153

sets of constraints, as subproblems can be formed by partitioning the con-
straints. This framework has been instantiated into algorithms for database-
query optimization [41], SAT solving [3,45,59], QBF evaluation [10], model
counting [5,17,25,31,49], and projected model counting [22,29].

Recently, a unifying framework based on project-join trees for dynamic-
programming algorithms was proposed [17]. The key idea is to consider project-
join trees as execution plans and decompose dynamic-programming algorithms
into two phases: a planning phase, where a project-join tree is constructed from
an input problem instance, and an execution phase, where the project-join tree is
used to compute the result. The project-join-tree-based model counter DPMC [17]
was found to be competitive with state-of-the-art exact weighted model counters
[12,36,44,50]. Notably, DPMC subsumes ADDMC [18], which tied with D4 [36] for
first place in the weighted track of the 2020 Model Counting Competition [23].

We adapt this framework for weighted projected model counting. The central
challenge is that there are two kinds of variables: relevant and irrelevant. This
contrasts with model counting, where all variables are relevant and can be treated
similarly. This challenge also occurs for other problems. For example, in Boolean
functional synthesis [56], some variables are free and must not be projected out.
Our solution is to model multiple types of variables by requiring the project-join
tree to be graded, meaning that irrelevant variables must be projected before
relevant variables. Our main theoretical contribution is a novel algorithm to
construct graded project-join trees from standard project-join trees. This has
two primary advantages.

The first advantage is that graded project-join trees can be constructed using
existing tools for standard project-join trees [17] in a black-box way. Tools exist
to construct standard project-join trees with tree decompositions [48] or with
constraint-satisfaction heuristics [8,13,14,35,58]. We can thus easily leverage all
current and future work in tree-decomposition solvers [2,28,57] and constraint-
satisfaction heuristics to produce graded project-join trees. This is crucial for
the practical success of our tool.

The second advantage of our approach is in the simplicity of the algorithm.
Given a project-join tree, its gradedness can be easily verified. Moreover, the
algorithm to compute the projected model count from a graded project-join tree
is straightforward. This gives us confidence in the correctness of our implemen-
tation. During our experimental evaluation, we found correctness errors in D4P
[37], projMC [37], and reSSAT [38]. We reported these issues to the authors, who
then fixed the tools. We believe that this work is a step towards certificates for
the verification of projected model counters, similar to certificates produced by
SAT solvers [60].

The primary contribution of this work is a dynamic-programming framework
for weighted projected model counting based on project-join trees. In particular:

1. We show that graded project-join trees can be used to compute weighted
projected model counts.

2. We prove that building graded project-join trees and project-join trees with
free variables can be reduced to building standard project-join trees.

154 J. M. Dudek et al.

3. We find that project-join-tree-based algorithms make a significant contribu-
tion to the portfolio of exact weighted projected model counters (D4P, projMC,
and reSSAT). Our tool, ProCount, achieves the shortest solving time on 131
benchmarks of 390 benchmarks solved by at least one tool, from 849 bench-
marks in total.

2 Preliminaries

Pseudo-Boolean Functions and Projections. A pseudo-Boolean function
over a set X of variables is a function f : 2X → R, where 2X denotes the power
set of X. A Boolean formula ϕ over variables X represents a pseudo-Boolean
function over X, denoted [ϕ] : 2X → R, where for all τ ∈ 2X , if τ satisfies ϕ
then [ϕ](τ) ≡ 1 else [ϕ](τ) ≡ 0. Operations on pseudo-Boolean functions include
product and projections. We define product as follows.

Definition 1 (Product). Let X and Y be sets of Boolean variables. The prod-
uct of functions f : 2X → R and g : 2Y → R is the function f · g : 2X∪Y → R

defined for all τ ∈ 2X∪Y by (f · g)(τ) ≡ f(τ ∩ X) · g(τ ∩ Y).

Product generalizes conjunction: if ϕ and ψ are propositional formulas, then
[ϕ] · [ψ] = [ϕ ∧ ψ].

Definition 2 (Projections). Let X be a set of Boolean variables, x be a
variable in X, and f : 2X → R be a pseudo-Boolean function.

– The Σ-projection of f w.r.t. x is the function Σxf : 2X\{x} → R defined for
all τ ∈ 2X\{x} by (Σxf) (τ) ≡ f(τ) + f(τ ∪ {x}).

– The ∃-projection of f w.r.t. x is the function ∃xf : 2X\{x} → R defined for
all τ ∈ 2X\{x} by (∃xf) (τ) ≡ max (f(τ), f(τ ∪ {x})).

Σ-projection is also called additive projection or marginalization. ∃-projection
is also called disjunctive projection and generalizes existential quantification: if
ϕ is a Boolean formula and x ∈ Vars(ϕ), then ∃x[ϕ] = [∃x.ϕ].

Σ-projection and ∃-projection are each independently commutative. For-
mally, for all x, y ∈ X and f : 2X → R, we assert that ΣxΣyf = ΣyΣxf and
∃x∃yf = ∃y∃xf . For all sets X = {x1, . . . , xn}, we define ΣXf ≡ Σx1 . . . Σxn

f
and ∃Xf ≡ ∃x1 . . . ∃xn

f . We also take the convention that Σ∅f ≡ f and
∃∅f ≡ f .

In general, Σ-projection does not commute with ∃-projection. For example,
if f(x, y) = x ⊕ y (XOR), then Σx∃yf
= ∃yΣxf .

Weighted Projected Model Counting. We compute the total weight, subject
to a given weight function and a set of irrelevant variables, of all models of an
input Boolean formula. A formal definition follows.

Definition 3. Let ϕ be a Boolean formula, {X,Y } be a partition of Vars(ϕ),
and W : 2X → R be a pseudo-Boolean function. We say that (X,Y, ϕ,W) is an
instance of weighted projected model counting. The W -weighted Y -projected
model count of ϕ is WPMC(ϕ,W, Y) ≡ ∑

τ∈2X (W (τ) · maxα∈2Y [ϕ](τ ∪ α)).

ProCount: Projected Model Counting with Graded Project-Join Trees 155

Variables in X are called relevant or additive, and variables in Y are called
irrelevant or disjunctive. For the special case of unprojected model counting, all
variables are relevant, and the W -weighted model count is WPMC(ϕ,W, ∅).

Weights are usually given by a literal-weight function W ≡ ∏
x∈X Wx, where

the factors are functions Wx : 2{x} → R. In detail, a positive literal x has weight
Wx({x}), and a negative literal ¬x has weight Wx(∅).

Graphs. A graph G has a set V(G) of vertices, a set E(G) of undirected edges,
a function δG : V(G) → 2E(G) that gives the set of edges incident to each vertex,
and a function εG : E(G) → 2V(G) that gives the set of vertices incident to each
edge. Each edge must be incident to exactly two vertices. A tree is a simple,
connected, and acyclic graph. We often refer to a vertex of a tree as a node.

A rooted tree is a tree T together with a distinguished node r ∈ V(T) called
the root. In a rooted tree (T, r), each node n ∈ V(T) has a (possibly empty) set
of children, denoted CT,r(n), which contains all nodes n′ adjacent to n such that
all paths from n′ to r contain n. A leaf of a rooted tree T is a non-root node of
degree one. We use L(T) to denote the set of leaves of T .

3 Using Project-Join Trees for Projected Model Counting

We first describe an existing framework for performing unprojected model count-
ing [17]. We then adapt this framework for projected model counting.

3.1 Project-Join Trees for Model Counting

This framework leverages Boolean formulas given in a factored representation,
conjunctive normal form (CNF). A clause is a non-empty disjunction of literals,
and a CNF formula is a non-empty set (conjunction) of clauses. The key idea is
to represent the computation as a rooted tree, called a project-join tree, where
leaves correspond to clauses, and internal nodes correspond to Σ-projections [17].

Definition 4 (Project-Join Tree). Let ϕ be a CNF formula. A project-join
tree of ϕ is a tuple T = (T, r, γ, π) where

– T is a tree with root r ∈ V(T),
– γ : L(T) → ϕ is a bijection from the leaves of T to the clauses of ϕ, and
– π : V(T) \ L(T) → 2Vars(ϕ) is a labeling function on internal nodes.

Moreover, T must satisfy the following two properties.

1. The set {π(n) : n ∈ V(T) \ L(T)} is a partition of Vars(ϕ).
2. Let n ∈ V(T) be an internal node, x be a variable in π(n), and c be a clause

of ϕ. If x ∈ Vars(c), then the leaf node γ−1(c) is a descendant of n.

A project-join tree of a CNF formula ϕ can be used to compute the weighted
model count of ϕ. The algorithm traverses the project-join tree from leaves to
root, multiplying clauses according to the tree structure and additively project-
ing out variables according to π. This is formalized with the following definition.

156 J. M. Dudek et al.

Definition 5. Let T = (T, r, γ, π) be a project-join tree and W be a literal-
weight function over X. The W -valuation of a node n, denoted fW

n , is

fW
n ≡

⎧
⎪⎪⎨

⎪⎪⎩

[γ(n)] if n ∈ L(T)

∑

π(n)

⎛

⎝
∏

o∈CT,r(n)

fW
o ·

∏

x∈π(n)

Wx

⎞

⎠ if n ∈ V(T) \ L(T)

where [γ(n)] is the pseudo-Boolean function represented by the clause γ(n) ∈ ϕ.

This leads to a two-phase algorithm for computing the weighted model
count of a CNF formula ϕ. First, the planning phase builds a project-join tree
(T, r, γ, π) of ϕ. Second, the execution phase computes fW

r according to Defini-
tion 5. The following theorem asserts that fW

r is the weighted model count of
ϕ.

Theorem 1 ([17]). Let ϕ be a CNF formula, T = (T, r, γ, π) be a project-join
tree of ϕ, and W be a literal-weight function over Vars(ϕ). Then fW

r (∅) is the
W -weighted model count of ϕ.

When computing a W -valuation, the number of variables appearing in
the intermediate pseudo-Boolean functions significantly influences the runtime.
These variables are actually independent of W . For a node n ∈ V(T), define
Vars(n) as follows.

Vars(n) ≡

⎧
⎪⎪⎨

⎪⎪⎩

Vars(γ(n)) if n ∈ L(T)⎛

⎝
⋃

o∈CT,r(n)

Vars(o)

⎞

⎠ \ π(n) if n ∈ V(T) \ L(T)

The W -valuation of a node n is then a pseudo-Boolean function over variables
Vars(n). If N ⊆ V(T), for convenience, we define Vars(N) ≡ ⋃

n∈N Vars(n).
The difficulty of valuation scales with the maximum number of variables

needed to compute each pseudo-Boolean function. The size of a node n, size(n),
is defined as |Vars(n)| for leaf nodes and |Vars(n) ∪ π(n)| for internal nodes. The
width of a project-join tree T = (T, r, γ, π) is width(T) ≡ maxn∈V(T) size(n).

Two algorithms have been proposed to construct project-join trees [17]. The
first, LG, uses tree decompositions [48], following similar work in join-query opti-
mization [11,41]. The second, HTB, uses bucket elimination [13] and Bouquet’s
Method [8] with various constraint-satisfaction heuristics: maximum-cardinality
search [58], lexicographic search for perfect/minimal orders [35], and min-fill [14].

3.2 Adaptations for Projected Model Counting

In order to adapt this framework for weighted projected model counting, we aim
to modify the valuation of project-join trees to incorporate disjunctive as well
as additive projections. In particular, we must perform ∃-projections with all
disjunctive variables and Σ-projections with all additive variables.

ProCount: Projected Model Counting with Graded Project-Join Trees 157

n10
π

∅

n8
π

z1}
n6

π
z2, z4} n1

γ
z2 ∨ ¬z4

n7
π {z6} n2

γ
z1 ∨ z6

n3
γ

z1

n9
π {z3, z5} n4

γ
z3 ∨ z5

n5
γ

z3 ∨ ¬z5

Fig. 1. A graded project-join tree T = (T, n10, γ, π) of a CNF formula ϕ with relevant
variables X = {z1, z3, z5} and irrelevant variables Y = {z2, z4, z6}. Each leaf node
corresponds to a clause of ϕ under γ. Each internal node is labeled by π with a set of
variables of ϕ. Note that T is graded with grades IX = {n8, n9, n10} and IY = {n6, n7}.

The challenge is that Σ-projections do not commute with ∃-projections. Since
the ∃-projections appear on the inside of the expression for projected counting,
we must ensure that all ∃-projections occur before all Σ-projections while travers-
ing the project-join tree. We formalize this by requiring the project-join tree to
be graded.

Definition 6 (Graded Project-Join Tree). Let ϕ be a CNF formula with
project-join tree T = (T, r, γ, π), and let {X,Y } be a partition of Vars(ϕ). We
say that T is (X,Y)-graded if there exist IX , IY ⊆ V(T), called grades, that
satisfy the following properties.

1. The set {IX , IY } is a partition of V(T) \ L(T).
2. If nX ∈ IX , then π(nX) ⊆ X.
3. If nY ∈ IY , then π(nY) ⊆ Y .
4. If nX ∈ IX and nY ∈ IY , then nX is not a descendant of nY in the rooted

tree (T, r).

Intuitively, a project-join tree is (X,Y)-graded if all X variables are projected
(according to π) closer to the root than all Y variables in the tree. Figure 1
illustrates an exemplary graded project-join tree.

We now define a new valuation on graded project-join trees, which uses Σ-
projections at nodes in IX and ∃-projections at nodes in IY .

Definition 7 (Projected Valuation). Let (X,Y, ϕ,W) be a weighted pro-
jected model counting instance, and let T = (T, r, γ, π) be an (X,Y)-graded
project-join tree of ϕ with grades IX and IY . The W -projected-valuation of
each node n ∈ V(T), denoted gW

n , is defined by

gW
n ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[γ(n)] if n ∈ L(T)

∑

π(n)

⎛

⎝
∏

o∈CT,r(n)

gW
o ·

∏

x∈π(n)

Wx

⎞

⎠ if n ∈ IX

∃
π(n)

⎛

⎝
∏

o∈CT,r(n)

gW
o

⎞

⎠ if n ∈ IY

158 J. M. Dudek et al.

where [γ(n)] is the pseudo-Boolean function represented by the clause γ(n) ∈ ϕ.

If the project-join tree is graded, then the projected valuation of the root
node is the weighted projected model count.

Theorem 2. Let (X,Y, ϕ,W) be an instance of weighted projected model count-
ing, and let T be a project-join tree of ϕ with root r. If T is (X,Y)-graded, then
gW

r (∅) = WPMC(ϕ,W, Y).

In the next section, we show how to build graded project-join trees.

4 Building Graded Project-Join Trees

We now show how building graded project-join trees can be reduced to build-
ing ungraded project-join trees. This allows us to use prior work on ungraded
project-join trees [17] to compute graded project-join trees.

As a building block, we first show how constructing project-join trees with
free variables can be reduced to constructing ungraded project-join trees. This
both illustrates the key ideas of our approach and appears as a subroutine in
the larger graded reduction.

4.1 Reducing Free Project-Join Trees to Ungraded Project-Join
Trees

Project-join trees project out every variable in the set of corresponding clauses.
This is desirable for applications where all variables are processed in the same
way, e.g., model counting. In many other applications, however, it is desirable
to process a set of clauses while leaving specified free variables untouched.

We model free variables by ensuring that they are projected in the project-
join tree as late as possible, at the root node. Thus free variables must be “kept
alive” throughout the entire tree.

Definition 8. Let F be a set of variables, and let T = (T, r, γ, π) be a project-
join tree. We say that T is F -free if F = π(r).

Note that Definition 8 is a much stronger restriction than Definition 6. In
particular, if a project-join tree T of a CNF formula ϕ is F -free, then T is also
(F, Vars(ϕ) \ F)-graded.

We now reduce the problem of building F -free project-join trees to building
ungraded project-join trees. One approach is to build a project-join tree while
ignoring all variables in F , then insert the variables in F as projections at the
root. However, building minimal-width project-join trees while ignoring variables
may not produce minimal-width F -free project-join trees for the full formula.

Instead, we adapt a similar reduction in the context of tensor networks [16]
for the context of project-join trees. The key idea is to add to ϕ a virtual clause
that contains all variables in F . For a set Z of variables, let virtual(Z) denote
a fresh clause with variables Z. Project-join trees of ϕ∪{virtual(F)} can then

ProCount: Projected Model Counting with Graded Project-Join Trees 159

Algorithm 1: Building an F -free project-join tree of a CNF formula
Input: ϕ: a CNF formula
Input: F : a subset of Vars(ϕ)
Input: T = (T, r, γ, π): a project-join tree of ϕ ∪ {CF }, where

CF = virtual(F) is a fresh clause with variables F
Output: an F -free project-join tree of ϕ

1 s ← γ−1(CF) // s will be the root node of the returned project-join tree
2 π′ ← a mapping where π′(n) = ∅ for all n ∈ V(T) \ L(T) // π′ will be the

labeling function of the returned project-join tree
3 for y ∈ Vars(ϕ) \ F
4 ϕy = {C ∈ ϕ : y ∈ Vars(C)}
5 i ← lowest common ancestor of

{
γ−1(C) : C ∈ ϕy

}
in the rooted tree (T, s)

6 π′(i) ← π′(i) ∪ {y} // project out y at the lowest allowable node

7 π′(s) ← F // project out variables in F at the new root s
8 γ′ ← γ \ {s �→ CF } // γ′ is the bijection γ without the pair (s, CF)
9 return (T, s, γ′, π′)

be used to find F -free project-join trees of ϕ. This virtual clause can be viewed
as a goal atom in DataLog [39].

This reduction is presented as Algorithm 1. The input T is a project-join
tree of ϕ∪{CF }, where CF is a virtual clause with variables F . On lines 2-6, we
rotate T so that the leaf node s corresponding to CF becomes the root node.
This rotation does not increase the width. Projecting F at the new root s still
does not increase the width. Thus we obtain an F -free project-join tree of ϕ.

We state the correctness of Algorithm 1 in the following theorem. In partic-
ular, the width of the output F -free project-join tree is no worse than the width
of the unrestricted input tree.

Theorem 3. Let ϕ be a CNF formula, and let F ⊆ Vars(ϕ). If T is a project-
join tree of ϕ ∪ {virtual(F)}, then Algorithm 1 returns an F -free project-join
tree of ϕ of width at most width(T).

We also prove that Algorithm 1 is optimal. That is, a minimal-width project-
join tree for ϕ ∪ {CF } produces a minimal-width F -free project-join tree for ϕ.

Theorem 4. Let ϕ be a CNF formula, F be a subset of Vars(ϕ), and w be a
positive integer. If there is an F -free project-join tree of ϕ of width w, then there
is a project-join tree of ϕ ∪ {virtual(F)} of width w.

4.2 Reducing Graded Project-Join Trees to Free Project-Join Trees

In this section, we use free project-join trees as a building block to construct
graded project-join trees. We present this framework as Algorithm 2. The key
idea is to create a graded project-join tree by combining many free project-join
trees for subformulas. We first combine clauses to remove Y variables, then we
combine project-join-tree components to remove X variables.

160 J. M. Dudek et al.

Algorithm 2: Building a graded project-join tree of a CNF formula
Input: X: a set of Σ-variables
Input: Y : a set of ∃-variables where X ∩ Y = ∅

Input: ϕ: a CNF formula where Vars(ϕ) = X ∪ Y
Output: T : an (X, Y)-graded project-join tree of ϕ

1 partition ← GroupBy(ϕ, Y) // group clauses that share Y variables
2 for N ∈ partition
3 TN ← BuildComponent(N, Vars(N) ∩ X) // build a (Vars(N) ∩ X)-free

project-join tree of N
4 TN ← TN with all projections at the root of TN removed
5 CN ← virtual(Vars(N) ∩ X)

6 T ← BuildComponent ({CN : N ∈ partition} , ∅) // build a project-join tree
from virtual clauses CN

7 for N ∈ partition
8 �N ← leaf of T corresponding to CN

9 T ← T with �N replaced by TN

10 return T

In detail, on line 1, we partition the clauses of ϕ into blocks that share Y
variables. On line 3, we find a project-join tree TN for each block N . This tree
must keep all X variables free, i.e., must be (Vars(N)∩X)-free. The trees {TN}
collectively project out all Y variables. On line 6, we construct a project-join
tree T that will guide the combination of all trees in {TN} while projecting out
all X variables, where each TN is represented by the corresponding virtual clause
CN . On lines 7-9, we hook the trees in {TN} together as indicated by T .

The function GroupBy(ϕ, Y) in Algorithm 2 partitions the clauses of ϕ so
that every pair of clauses that share a variable from Y appear together in the
same block of the partition. A formal definition follows.

Definition 9. Let ϕ be a set of clauses and Y be a subset of Vars(ϕ). Define
∼Y ⊆ ϕ × ϕ to be the relation such that, for clauses c, c′ ∈ ϕ, we have c ∼Y c′

if and only if Vars(c) ∩ Vars(c′) ∩ Y
= ∅. Then GroupBy(ϕ, Y) is the set of
equivalence classes of the reflexive transitive closure of ∼Y .

The intuition is that two clauses in the same block in GroupBy(ϕ, Y) must
be combined to project out all variables in Y . Conversely, clauses that appear in
separate blocks need not be combined in order to project out all variables in Y .

In Algorithm 2, each function call BuildComponent(α, F) returns an F -
free project-join tree of α, where α is a set of clauses and F ⊆ Vars(α).
BuildComponent can be implemented by implementing Algorithm 1 on top of an
algorithm for building ungraded project-join trees. For example, in Sect. 5, we
consider two implementations of Algorithm 2 built on top of the two algorithms
to construct standard project-join trees [17] discussed at the end of Sect. 3.1.

We next state the correctness of Algorithm 2 and show that the width of the
output graded project-join tree is no worse than the widths of the trees used for
the components.

ProCount: Projected Model Counting with Graded Project-Join Trees 161

Theorem 5. Let ϕ be a CNF formula, {X,Y } be a partition of Vars(ϕ), and
w be a positive integer. Assume each call to BuildComponent(α, F) returns an
F -free project-join tree for α of width at most w. Then Algorithm 2 returns an
(X,Y)-graded project-join tree for ϕ of width at most w.

Although Algorithm 2 constructs a sequence of small ungraded project-join
trees, it is sufficient to compute a single ungraded project-join tree from which all
smaller trees can be extracted. This is demonstrated by the following theorem.

Theorem 6. Let ϕ be a CNF formula, {X,Y } be a partition of Vars(ϕ), and
ψ be the CNF formula ϕ ∪ {virtual(Vars(N) ∩ X) : N ∈ GroupBy(ϕ, Y)}. For
every positive integer w, if there is a project-join tree T ′ for ψ of width w, then
there is an (X,Y)-graded project-join tree for ϕ of width at most w.

The key idea of the proof is to answer every BuildComponent call in Algorithm 2
by extracting a subtree of T ′ and applying Theorem 3.

We show in the following theorem that this approach is optimal. Thus (X,Y)-
graded project-join trees of ϕ are equivalent to project-join trees of ψ.

Theorem 7. Let ϕ be a CNF formula, {X,Y } be a partition of Vars(ϕ), and
ψ be the CNF formula ϕ ∪ {virtual(Vars(N) ∩ X) : N ∈ GroupBy(ϕ, Y)}. For
every positive integer w, if there is an (X,Y)-graded project-join tree for ϕ of
width w, then there is a project-join tree for ψ of width w.

Note that requiring the project-join tree to be graded may significantly
increase the width of available project-join trees. Theorems 5 and 7 indicate that
our algorithm for constructing a graded project-join tree pays no additional cost
in width beyond what is required by gradedness.

5 Experimental Evaluation

To implement our projected model counter ProCount, we modify the unprojected
model counter DPMC, which is based on ungraded project-join trees [17]. The DPMC
framework includes: (1) the LG planner that uses tree-decomposition techniques,
(2) the HTB planner that uses constraint-satisfaction heuristics, and (3) the DMC
executor that uses algebraic decision diagrams (ADDs). We generalize these three
components to support graded project-join trees and projected model counting.

We conduct three experiments to address the following research questions.

(RQ1) In the planning phase (for constructing project-join trees), how do tree-
decomposition techniques compare to constraint-satisfaction heuristics?

(RQ2) In the execution phase, how do different ADD variable orders compare?
(RQ3) How does ProCount compare to other exact weighted projected counters?

To answer RQ1, in Experiment 1, we compare the planner LG (which uses
tree decompositions) and the planner HTB (which uses constraint-satisfaction
heuristics). LG uses the tree decomposers FlowCutter [28], htd [2], and Tamaki
[57]. HTB implements four heuristics for variable ordering: maximal-cardinality

162 J. M. Dudek et al.

10−3 10−2 10−1 100 101 102

Longest solving time (seconds)

0

100

200

300

400
B
en

ch
m
ar
k
s
so
lv
ed LG(FlowCutter)

LG(htd)

LG(Tamaki)

HTB(MCS, BE)

HTB(MCS, BM)

Fig. 2. Experiment 1 compares the tree-decomposition-based planner LG to the
constraint-satisfaction-based planner HTB. A planner “solves” a benchmark when it
finds a project-join tree of width 30 or lower. For HTB, we only show the variable-
ordering heuristic MCS; the LP, LM, and MF curves are qualitatively similar.

search (MCS) [58], lexicographic search for perfect/minimal orders (LP/LM) [35],
and min-fill (MF) [14]. HTB also implements two clause-ordering heuristics: bucket
elimination (BE) [13] and Bouquet’s Method (BM) [8].

To answer RQ2, in Experiment 2, we compare variable-ordering heuristics
for the ADD-based executor DMC. An ADD [6] is a directed acyclic graph that
compactly represents a pseudo-Boolean function. An ADD requires a variable
order, which strongly influences the compactness of the ADD. DMC implements
four aforementioned variable-ordering heuristics: MCS, LP, LM, and MF. Note that
we use ADDs throughout the entire execution for consistency, although binary
decision diagrams [9] or SAT solvers would suffice to valuate existential nodes.

To answer RQ3, in Experiment 3, we compare ProCount to state-of-the-art
exact weighted projected model counters D4P [37], projMC [37], and reSSAT [38].

We use 849 CNF benchmarks gathered from two families. The first family
contains 90 formulas and was used for weighted projected sampling [27]. For
each benchmark in this family, a positive literal x has weight 0 < Wx({x}) < 1,
and a negative literal ¬x has weight W (∅) = 1 − Wx({x}). The second family
contains 759 formulas and was used for unweighted projected model counting
[52]. We add weights to this family by randomly assigning Wx({x}) = 0.4 and
Wx(∅) = 0.6 or vice versa to each variable x. All 849 benchmarks are satisfiable,
as verified by the SAT solver CryptoMiniSat [53]. We run all experiments on
single CPU cores of a Linux cluster with Intel Xeon E5-2650v2 processors (2.60-
GHz) and 30 GB of RAM. All code and data are available (https://github.com/
vardigroup/DPMC).

5.1 Experiment 1: Comparing Planners

In this experiment, we run all configurations of the planners LG and HTB on each
CNF benchmark with a timeout of 100 s. We present results in Fig. 2. Each point
(x, y) on a plotted curve indicates that: within x seconds, on each of y bench-
marks, the first graded project-join tree produced by the corresponding planner

https://github.com/vardigroup/DPMC
https://github.com/vardigroup/DPMC

ProCount: Projected Model Counting with Graded Project-Join Trees 163

10−3 10−2 10−1 100 101 102

Longest solving time (seconds)

0

100

200

300

400
B
en

ch
m
ar
k
s
so
lv
ed DMC(MCS)

DMC(LP)

DMC(LM)

DMC(MF)

Fig. 3. Experiment 2 compares variable-ordering heuristics (MCS, LP, LM, and MF) for
the ADD-based executor DMC. MCS and LP are significantly faster than LM and MF.

has width at most 30. We choose 30 because previous work shows that execu-
tors do not handle larger project-join trees well [16,17]. While LG is an anytime
tool that produces several trees (of decreasing widths) for each benchmark, we
only use the first tree. The tree-decomposition-based planner LG produces more
low-width trees than the constraint-satisfaction-based planner HTB. Moreover,
for LG, the tree decomposer FlowCutter is faster than htd and Tamaki. Thus we
use LG with FlowCutter in ProCount for later experiments.

5.2 Experiment 2: Comparing Execution Heuristics

In this experiment, we take all 346 graded project-join trees produced by LG with
FlowCutter in Experiment 1 and run DMC for 100 s with each ADD variable-
ordering heuristic. We present the execution time of each heuristic (excluding
planning time) in Fig. 3. We observe that MCS and LP outperform LM and MF. We
use DMC with MCS in ProCount for Experiment 3.

5.3 Experiment 3: Comparing Weighted Projected Model Counters

Informed by Experiments 1 and 2, we choose LG with FlowCutter as the plan-
ner and DMC with MCS as the executor for our framework ProCount. We com-
pare ProCount with the weighted projected model counters D4P, projMC, and
reSSAT. Since all benchmarks are satisfiable with positive literal weights, the
model counts must be positive. Thus, for all tools, we exclude outputs that are
zero (possible floating-point underflow). We are confident that the remaining
results are correct. Differences in model counts among tools are less than 10−6.

Figure 4 shows the performance of ProCount, D4P, projMC, and reSSAT with
a 1000-s timeout. Additional statistics are given in Table 1. Of 849 benchmarks,
390 are solved by at least one of four tools. ProCount achieves the shortest solving
time on 131 benchmarks, including 44 solved by none of the other three tools.
Between the two virtual best solvers in Fig. 4, VBS1 (all four tools) is significantly
faster than VBS0 (three existing tools, without ProCount).

164 J. M. Dudek et al.

10−3 10−2 10−1 100 101 102 103

Longest solving time (seconds)

0

100

200

300

400
B
en

ch
m
ar
k
s
so
lv
ed

ProCount

D4P

projMC

reSSAT

VBS0

VBS1

Fig. 4. Experiment 3 compares our framework ProCount to the state-of-the-art exact
weighted projected model counters D4P, projMC, and reSSAT. VBS0 is the virtual best
solver of the three existing tools, excluding ProCount. VBS1 includes all four tools.
Adding ProCount significantly improves the portfolio of projected model counters.

Project-Join Tree Width and Computation Time. To identify which
type of benchmarks can be solved efficiently by ProCount, we study how the
performance of each projected model counter varies with the widths of graded
project-join trees. In particular, for each benchmark, we consider the width of
the first graded project-join tree produced by the planner LG (with FlowCutter)
in Experiment 1. Figure 5 shows how these widths relate to mean PAR-2 scores
of projected model counters. ProCount seems to be the fastest solver on instances
for which there exist graded project-join trees of widths between 50 and 100.

6 Related Work

There are a number of recent tools for projected model counting. For example,
D4P uses decision decomposable negation normal form [37], projMC leverages
disjunctive decomposition [37], and reSSAT combines counting with SAT tech-
niques [38]. While our focus in this work is on (deterministic) exact weighted
projected model counting, it is worth mentioning that various relaxations have
also been studied, e.g., probabilistic [51], approximate [21,26,52], or unweighted
[4,29,42,63] projected model counting.

A recent framework for projected counting is nestHDB [29], a hybrid solver.
Similar to our framework, nestHDB includes a planning phase (using the tree-
decomposition tool htd [2]) and an execution phase (using the database engine
Postgres [55] and the projected counter projMC [37], alongside other tools).
We predict that nestHDB may benefit from switching the projected-counting
component to ProCount, which was often faster than projMC in Experiment 3.
While we were unable to run a full experimental comparison1 with nestHDB,
1 nestHDB is an unweighted tool, but the benchmarks in Sect. 5 are weighted. Moreover,

the cluster used in Sect. 5 does not support database management systems.

ProCount: Projected Model Counting with Graded Project-Join Trees 165

Table 1. Experiment 3 compares our framework ProCount to the state-of-the-art exact
weighted projected model counters D4P, projMC, and reSSAT. There are 390 benchmarks
solved by at least one of four tools. By including ProCount, the portfolio of tools
solves 44 more benchmarks and achieves shorter solving time on 87 other benchmarks.
For each tool-benchmark pair, the PAR-2 score is the runtime if the tool solves the
benchmark (within time and space limits) or twice the 1000-s timeout otherwise.

Solver Number of benchmarks solved (of 849) Mean PAR-2
score

Uniquely (solved
by no other)

In shortest time In total

ProCount 44 131 283 1341

D4P 50 235 345 1203

projMC 0 8 275 1362

reSSAT 1 16 154 1659

VBS0 NA NA 346 1199

VBS1 NA NA 390 1099

we evaluated nestHDB against ProCount on 90 benchmarks [27] (with weights
removed) using a single CPU core of an Intel i7-7700HQ processor (2.80-GHz)
with 30 GB of RAM. ProCount and nestHDB respectively solved 69 and 59
benchmarks, with a 100-s timeout. The mean PAR-2 scores for ProCount and
nestHDB were 47 and 87. Further comparison is needed in future work.

Our proposed graded project-join trees can be seen as a specialization of
structure trees [54] to the case of projected model counting. Sterns and Hunt [54]
suggest constructing structure trees by manually modifying tree decomposers to
consider only structure trees respecting the variable quantification order (i.e., to
consider gradedness directly). In this work, we take a different approach by using
existing tools for standard project-join trees (in particular, tree decomposers) in
a black-box way. This is crucial for the practical success of our tool, as we can
leverage continual progress in tree decomposition.

Projected model counting is also a special case of functional aggregate queries
(FAQs) [1]. Our graded project-join trees can be seen as a specialization of
FAQ variable orders. Theorem 7.5 of [1] gives an algorithm for constructing
an FAQ variable order from a sequence of tree decompositions, which, in the
context of projected model counting, is equivalent to the technique we discussed
in Sect. 4.1 of ignoring relevant variables while planning to project irrelevant
variables. In contrast, our approach may find lower-width graded project-join
trees by incorporating relevant variables even when planning to project irrelevant
variables. This improvement may be lifted to the FAQ framework in future work.

It is worth comparing our theoretical results to a different algorithm for pro-
jected counting [24], which runs on a formula ϕ in time 22

O(k) · p(ϕ), where k is
the primal treewidth [49] of ϕ, and p scales polynomially in the size of ϕ. Assum-
ing the Exponential-Time Hypothesis [30], all FPT algorithms parameterized by

166 J. M. Dudek et al.

10 20 30 40 50 60 70 80 90

Mean of 10 project-join tree widths

0

500

1000

1500

2000
M
ea
n
P
A
R
-2

sc
or
e
o
f
1
0
w
id
th
s

ProCount

D4P

projMC

reSSAT

Fig. 5. We plot mean PAR-2 scores (in seconds) against mean project-join tree widths.
Each projected counter in Experiment 3 corresponds to a plotted curve, on which a
point (x, y) indicates that: x is the central moving average of 10 consecutive project-
join tree widths 1 ≤ w1 < w2 < . . . < w10 ≤ 99, and y is the average PAR-2 score of
the benchmarks whose project-join trees have widths w s.t. w1 ≤ w ≤ w10. We observe
that the performance of ProCount degrades as the project-join tree width increases.
However, ProCount tends to be the fastest solver on benchmarks whose graded project-
join trees have widths roughly between 50 and 100.

primal treewidth must be double-exponential [24]. On the other hand, by Theo-
rem 5 in [17] and Theorem 6 here, our algorithm, based on graded project-join
trees, runs in time 2O(k′), where k′ is the primal treewidth of ψ (which we call
the {X,Y }-graded treewidth of ϕ). While k′ is larger than k, we can see that k′

is significantly smaller than 2k on many benchmarks.
In some sense, projected model counting on Boolean formulas is a dual prob-

lem of maximum a posteriori (MAP) inference [40,43,62] on Bayesian networks
[47]: a projected model count has the form

∑
X maxY f(X,Y), while a MAP

probability has the form maxY

∑
X f(X,Y). Both problems can be solved using

variable elimination, but an elimination order may not freely interleave X vari-
ables with Y variables. A valid variable order induces an evaluation tree (similar
to a project-join tree) [46]. As mentioned in [46], exact MAP algorithms construct
evaluation trees using constraint-satisfaction heuristics (similar to our planner
HTB). Our work goes further by constructing low-width graded project-join trees
using tree-decomposition techniques (with our planner LG) and by performing
efficient computations using compact ADDs (with our executor DMC).

7 Discussion

We adapted an existing dynamic-programming framework [17] to perform pro-
jected model counting by requiring project-join trees to be graded. This frame-
work decomposes projected model counting into two phases. First, the planning
phase produces a graded project-join tree from a CNF formula. Second, the

ProCount: Projected Model Counting with Graded Project-Join Trees 167

execution phase uses the this tree to guide the computation of the projected
model count of the formula w.r.t. a literal-weight function. We proved that algo-
rithms for building project-join trees can be used to build graded project-join
trees. Our framework ProCount is competitive with the exact weighted projected
model counters D4P [37], projMC [37], and reSSAT [38]. ProCount considerably
improves the virtual best solver and thus is a valuable addition to the portfolio.

In future work, ProCount can be generalized for maximum model counting
[26] and functional aggregate queries [1]. Another research direction is multicore
programming. The planning tool LG can be improved to run tree decomposers in
parallel [19] in a portfolio approach [61]. One can also make the execution tool
DMC support multicore ADD packages (e.g., Sylvan [15]).

References

1. Abo Khamis, M., Ngo, H.Q., Rudra, A.: FAQ: questions asked frequently. In:
PODS, pp. 13–28 (2016)

2. Abseher, M., Musliu, N., Woltran, S.: htd-a free, open-source framework for (cus-
tomized) tree decompositions and beyond. In: CPAIOR, pp. 376–386 (2017).
https://doi.org/10.1007/978-3-319-59776-8 30

3. Aguirre, A.S.M., Vardi, M.: Random 3-SAT and BDDs: the plot thickens further.
In: CP, pp. 121–136 (2001). https://doi.org/10.1007/3-540-45578-7 9

4. Aziz, R.A., Chu, G., Muise, C., Stuckey, P.: Projected model counting. In: SAT,
pp. 121–137 (2015)

5. Bacchus, F., Dalmao, S., Pitassi, T.: Solving #SAT and Bayesian inference with
backtracking search. JAIR 34, 391–442 (2009). https://doi.org/10.1613/jair.2648

6. Bahar, R.I., et al.: Algebraic decision diagrams and their applications.
Form. Method Syst. Des. 10(2–3), 171–206 (1997). https://doi.org/10.1023/A:
1008699807402

7. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966). https://
doi.org/10.1126/science.153.3731.34

8. Bouquet, F.: Gestion de la dynamicité et énumération d’impliquants premiers:
une approche fondée sur les Diagrammes de Décision Binaire. Ph.D. thesis, Aix-
Marseille 1 (1999). https://www.theses.fr/1999AIX11011

9. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
TC 100(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

10. Charwat, G., Woltran, S.: BDD-based dynamic programming on tree decomposi-
tions. Technical report, Technische Universität Wien, Institut für Informationssys-
teme (2016). https://dbai.tuwien.ac.at/research/report/dbai-tr-2016-95.pdf

11. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded
treewidth, and finite-variable logics. In: CP, pp. 310–326 (2002). https://doi.org/
10.1007/3-540-46135-3 21

12. Darwiche, A.: New advances in compiling CNF to decomposable negation nor-
mal form. In: ECAI, pp. 318–322 (2004). https://dl.acm.org/doi/10.5555/3000001.
3000069

13. Dechter, R.: Bucket elimination: a unifying framework for reasoning. AIJ 113(1–2),
41–85 (1999). https://doi.org/10.1016/S0004-3702(99)00059-4

14. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003). https://doi.org/10.
1016/B978-1-55860-890-0.X5000-2

https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1007/3-540-45578-7_9
https://doi.org/10.1613/jair.2648
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1126/science.153.3731.34
https://www.theses.fr/1999AIX11011
https://doi.org/10.1109/TC.1986.1676819
https://dbai.tuwien.ac.at/research/report/dbai-tr-2016-95.pdf
https://doi.org/10.1007/3-540-46135-3_21
https://doi.org/10.1007/3-540-46135-3_21
https://dl.acm.org/doi/10.5555/3000001.3000069
https://dl.acm.org/doi/10.5555/3000001.3000069
https://doi.org/10.1016/S0004-3702(99)00059-4
https://doi.org/10.1016/B978-1-55860-890-0.X5000-2
https://doi.org/10.1016/B978-1-55860-890-0.X5000-2

168 J. M. Dudek et al.

15. van Dijk, T., van de Pol, J.: Sylvan: multi-core decision diagrams. In: TACAS, pp.
677–691 (2015). https://doi.org/10.1007/978-3-662-46681-0 60

16. Dudek, J.M., Dueñas-Osorio, L., Vardi, M.Y.: Efficient contraction of large tensor
networks for weighted model counting through graph decompositions (2019). arXiv
preprint arXiv:1908.04381

17. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: DPMC: weighted model counting
by dynamic programming on project-join trees. In: CP, pp. 211–230 (2020).
arxiv.org/abs/2008.08748

18. Dudek, J.M., Phan, V.H., Vardi, M.Y.: ADDMC: weighted model counting with
algebraic decision diagrams. AAAI 34, 1468–1476 (2020). https://doi.org/10.1609/
aaai.v34i02.5505

19. Dudek, J.M., Vardi, M.Y.: Parallel weighted model counting with tensor networks.
In: MCW (2020). https://mccompetition.org/assets/files/2020/MCW 2020 paper
1.pdf

20. Duenas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability
estimation for power-transmission grids. In: AAAI. pp. 4488–4494 (2017)

21. Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Taming the curse of dimen-
sionality: discrete integration by hashing and optimization. In: ICML, pp. 334–342
(2013)

22. Fichte, J.K., Hecher, M.: Counting with bounded treewidth: meta algorithm and
runtime guarantees. In: NMR, pp. 9–18 (2020)

23. Fichte, J.K., Hecher, M., Hamiti, F.: The Model Counting Competition 2020
(2020). arXiv preprint arXiv:2012.01323

24. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Exploiting treewidth for pro-
jected model counting and its limits. In: SAT, pp. 165–184 (2018)

25. Fichte, J.K., Hecher, M., Thier, P., Woltran, S.: Exploiting database management
systems and treewidth for counting. In: PADL, pp. 151–167 (2020). https://doi.
org/10.1007/978-3-030-39197-3 10

26. Fremont, D.J., Rabe, M.N., Seshia, S.A.: Maximum model counting. In: AAAI,
pp. 3885–3892 (2017)

27. Gupta, R., Sharma, S., Roy, S., Meel, K.S.: WAPS: weighted and projected sam-
pling. In: TACAS, pp. 59–76 (2019)

28. Hamann, M., Strasser, B.: Graph bisection with pareto optimization. JEA 23, 1–34
(2018)

29. Hecher, M., Thier, P., Woltran, S.: Taming high treewidth with abstraction, nested
dynamic programming, and database technology. In: SAT, pp. 343–360 (2020)

30. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? JCSS 63(4), 512–530 (2001)

31. Jégou, P., Kanso, H., Terrioux, C.: Improving exact solution counting for decom-
position methods. In: ICTAI, pp. 327–334 (2016). https://doi.org/10.1109/ICTAI.
2016.0057

32. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)

33. Kelly, C., Sarkhel, S., Venugopal, D.: Adaptive Rao-Blackwellisation in Gibbs sam-
pling for probabilistic graphical models. In: AISTATS, pp. 2907–2915 (2019)

34. Klebanov, V., Manthey, N., Muise, C.: SAT-based analysis and quantification of
information flow in programs. In: QEST, pp. 177–192 (2013). https://doi.org/10.
1007/978-3-642-40196-1 16

35. Koster, A.M., Bodlaender, H.L., Van Hoesel, S.P.: Treewidth: computational exper-
iments. Electron. Notes Disc. Math. 8, 54–57 (2001). https://doi.org/10.1016/
S1571-0653(05)80078-2

https://doi.org/10.1007/978-3-662-46681-0_60
http://arxiv.org/abs/1908.04381
http://arxiv.org/abs/org/abs/2008.08748
https://doi.org/10.1609/aaai.v34i02.5505
https://doi.org/10.1609/aaai.v34i02.5505
https://mccompetition.org/assets/files/2020/MCW_2020_paper_1.pdf
https://mccompetition.org/assets/files/2020/MCW_2020_paper_1.pdf
http://arxiv.org/abs/2012.01323
https://doi.org/10.1007/978-3-030-39197-3_10
https://doi.org/10.1007/978-3-030-39197-3_10
https://doi.org/10.1109/ICTAI.2016.0057
https://doi.org/10.1109/ICTAI.2016.0057
https://doi.org/10.1007/978-3-642-40196-1_16
https://doi.org/10.1007/978-3-642-40196-1_16
https://doi.org/10.1016/S1571-0653(05)80078-2
https://doi.org/10.1016/S1571-0653(05)80078-2

ProCount: Projected Model Counting with Graded Project-Join Trees 169

36. Lagniez, J.M., Marquis, P.: An improved decision-DNNF compiler. In: IJCAI, pp.
667–673 (2017). https://doi.org/10.24963/ijcai.2017/93

37. Lagniez, J.M., Marquis, P.: A recursive algorithm for projected model counting.
AAAI 33, 1536–1543 (2019)

38. Lee, N.Z., Wang, Y.S., Jiang, J.H.R.: Solving stochastic Boolean satisfiability under
random-exist quantification. In: IJCAI, pp. 688–694 (2017)

39. Lloyd, J.W.: Foundations of Logic Programming. Springer, Cham (2012). https://
doi.org/10.1007/978-3-642-96826-6

40. Maua, D.D., de Campos, C.P., Cozman, F.G.: The complexity of MAP inference
in Bayesian networks specified through logical languages. In: IJCAI, pp. 889–895
(2015)

41. McMahan, B.J., Pan, G., Porter, P., Vardi, M.Y.: Projection pushing revisited. In:
EDBT, pp. 441–458 (2004). https://doi.org/10.1007/978-3-540-24741-8 26

42. Möhle, S., Biere, A.: Dualizing projected model counting. In: ICTAI, pp. 702–709
(2018)

43. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT press, Cam-
bridge (2012)

44. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In:
IJCAI, pp. 3141–3148 (2015). https://dl.acm.org/doi/10.5555/2832581.2832687

45. Pan, G., Vardi, M.Y.: Symbolic techniques in satisfiability solving. J. Autom. Reas.
35(1–3), 25–50 (2005). https://doi.org/10.1007/s10817-005-9009-7

46. Park, J.D., Darwiche, A.: Complexity results and approximation strategies for
MAP explanations. JAIR 21, 101–133 (2004)

47. Pearl, J.: Bayesian networks: a model cf self-activated memory for evidential rea-
soning. In: Proceedings of the 7th Conference of the Cognitive Science Society,
University of California, Irvine, CA, USA, pp. 15–17 (1985)

48. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theory B 52(2), 153–190 (1991). https://doi.org/10.
1016/0095-8956(91)90061-N

49. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Disc. Algor.
8(1), 50–64 (2010). https://doi.org/10.1007/978-3-540-75560-9 35

50. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. SAT 4, 20–28 (2004).
http://www.satisfiability.org/SAT04/accepted/65.html

51. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: a scalable probabilistic exact
model counter. In: IJCAI, pp. 1169–1176 (2019)

52. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and its
applications to approximate model counting. AAAI 33, 1592–1599 (2019)

53. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: SAT, pp. 244–257 (2009)

54. Stearns, R.E., Hunt, H.B., III.: Exploiting structure in quantified formulas. J.
Algor. 43(2), 220–263 (2002)

55. Stonebraker, M., Rowe, L.A.: The design of Postgres. ACM Sigmod Rec. 15(2),
340–355 (1986)

56. Tabajara, L.M., Vardi, M.Y.: Factored Boolean functional synthesis. In: FMCAD,
pp. 124–131 (2017). https://dl.acm.org/doi/10.5555/3168451.3168480

57. Tamaki, H.: Positive-instance-driven dynamic programming for treewidth. J.
Comb. Optim. 37(4), 1283–1311 (2019). https://doi.org/10.1007/s10878-018-
0353-z

https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.1007/978-3-642-96826-6
https://doi.org/10.1007/978-3-642-96826-6
https://doi.org/10.1007/978-3-540-24741-8_26
https://dl.acm.org/doi/10.5555/2832581.2832687
https://doi.org/10.1007/s10817-005-9009-7
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1007/978-3-540-75560-9_35
http://www.satisfiability.org/SAT04/accepted/65.html
https://dl.acm.org/doi/10.5555/3168451.3168480
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1007/s10878-018-0353-z

170 J. M. Dudek et al.

58. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SICOMP 13(3), 566–579 (1984). https://doi.org/10.1137/0213035

59. Uribe, T.E., Stickel, M.E.: Ordered binary decision diagrams and the Davis-
Putnam procedure. In: CCL, pp. 34–49 (1994). https://doi.org/10.1007/
BFb0016843

60. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3 31

61. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. JAIR 32, 565–606 (2008)

62. Xue, Y., Li, Z., Ermon, S., Gomes, C.P., Selman, B.: Solving marginal MAP prob-
lems with NP oracles and parity constraints. In: NIPS, pp. 1127–1135 (2016)

63. Zawadzki, E.P., Platzer, A., Gordon, G.J.: A generalization of SAT and #SAT for
robust policy evaluation. In: IJCAI, pp. 2583–2589 (2013)

https://doi.org/10.1137/0213035
https://doi.org/10.1007/BFb0016843
https://doi.org/10.1007/BFb0016843
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31

Efficient All-UIP Learned Clause
Minimization

Mathias Fleury(B) and Armin Biere

Johannes Kepler University Linz, Linz, Austria
{mathias.fleury,armin.biere}@jku.at

Abstract. In 2020 Feng & Bacchus revisited variants of the all-UIP
learning strategy, which considerably improved performance of their ver-
sion of CaDiCaL submitted to the SAT Competition 2020, particularly
on large planning instances. We improve on their algorithm by tightly
integrating this idea with learned clause minimization. This yields a clean
shrinking algorithm with complexity linear in the size of the implica-
tion graph. It is fast enough to unconditionally shrink learned clauses
until completion. We further define trail redundancy and show that our
version of shrinking removes all redundant literals. Independent experi-
ments with the three SAT solvers CaDiCaL, Kissat, and Satch confirm
the effectiveness of our approach.

1 Introduction

Learned clause minimization [18] is a standard feature in modern SAT solvers.
It allows to learn shorter clauses which not only reduces memory usage but
arguably also helps to prune the search space. However, completeness of mini-
mization was never formalized nor proven. Using Horn SAT [9] we define trail
redundancy through entailment with respect to the reasons in the trail and
show that the standard minimization algorithm removes all redundant literals
(Sect. 2).

Minimization, in its original form [18], only removes literals from the ini-
tial deduced clause during conflict analysis, i.e., the 1st-unique-implication-point
clause [21]. In 2020 Feng & Bacchus [11] revisited the all-UIP heuristics with
the goal to reduce the size of the deduced clause even further by allowing to
add new literals. In this paper we call such advanced minimization techniques
shrinking. In order to avoid spending too much time in such shrinking proce-
dures the authors of [11] had to limit its effectiveness. They also described and
implemented several variants in the SAT solver CaDiCaL [2]. One variant was
winning the planning track of the SAT Competition 2020. The benchmarks in
this track require to learn clauses with many literals on each decision level.

As Feng & Bacchus [11] consider minimization and all-UIP shrinking sepa-
rately, they apply minimization first, then all-UIP shrinking, and finally again
minimization (depending on the deployed strategy/variant), while we integrate
both techniques into one simple algorithm. In contrast, their variants process
c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 171–187, 2021.
https://doi.org/10.1007/978-3-030-80223-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_12&domain=pdf
http://orcid.org/0000-0002-1705-3083
http://orcid.org/0000-0001-7170-9242
https://doi.org/10.1007/978-3-030-80223-3_12

172 M. Fleury and A. Biere

literals of the deduced clause from highest to lowest decision level and eagerly
introduce literals on lower levels. Thus their approach has to be guarded against
actually producing larger clauses and can not be run unconditionally (Sect. 3).

We integrate minimization and shrinking in one procedure with linear com-
plexity in the size of the implication graph (Sect. 4). Processing literals of the
deduced clause from lowest to highest level allows us to reuse the minimization
cache, without compromising on completeness, thus making it possible to run
the shrinking algorithm unconditionally until completion. On the theoretical side
we prove that our form of shrinking fulfills the trail redundancy criteria.

Experiments with our SAT solvers Kissat, CaDiCaL, and Satch show
the effectiveness of our approach and all-UIP shrinking in general. Shrinking
decreases the number of learned literals, particularly on the recent planning
track. We also study the amount of time used by the different parts of the
transformation from a conflicting clause to the shrunken learned clause (Sect. 5).

Regarding related work we refer to the Handbook of Satisfiability [7], particu-
larly for an introduction to CDCL [17], the main algorithm used by state-of-the-
art SAT solvers. This work is based on the classical minimization algorithm [18],
which Van Gelder [19] improved by making it linear (in the number of literals)
in the implication graph without changing the resulting minimized clause. The
original all-UIP scheme [21] was never considered to be efficient enough to be
part of SAT solvers, until the work by Feng & Bacchus [11]. We refer to their work
for a detailed discussion on all-UIPs. Note that, Feng & Bacchus [11] consider
their algorithm to be independent of minimization, more like a post-processing
step, while we combine shrinking and minimization for improved efficiency. The
technical report with the proofs of all theorems is available [13].

2 Minimization

We first present a formalization of what minimization actually achieves through
the notion of “trail redundancy”. Then the classical deduced clause minimization
algorithm is revisited. It identifies literals that are removable and others literals
called poison that are not. The algorithm uses a syntactic criterion, but removes
exactly the trail redundant literals. We present five existing criteria to detect
(ir)redundancy earlier and prove their correctness.

When a SAT solver identifies a conflicting clause, i.e., a clause in which
all literals are assigned to false, it analyzes the clause and first deduces a 1st-
unique-implication-point clause [17,21]. This deduced clause is the starting point
for minimization and shrinking. The goal is to reduce the size of this clause
by removing as many literals as possible. The following redundancy criterion
specifies if a literal is removable from the deduced clause.

Definition 1 (Semantic Trail Redundancy). Given the formula FM com-
posed only of the reason annotating propagated literals in the trail M and the
conflicting clause D such that M � ¬D. The literal L ∈ ¬M is called redundant
iff FM � ¬L ∨ (D \ {L}).

Efficient All-UIP Learned Clause Minimization 173

For this definition we only consider redundancy with respect to the reasons in
the trail (ignoring other clauses in the formula). Note that, most SAT solvers only
use the first clause in the watch lists to propagate, even though “better” clauses
might trigger the same propagation. For instance PrecoSAT scans watch lists
to find such cases [3]. However, due to potential cyclic dependencies, deducing
the shortest learned clause is difficult [20].

Theorem 2 (Redundant Literals are Removable). If L∨D is the deduced
clause and L is redundant, then D is conflicting and entailed.

Our next theorem states that the order of removal does not impact the out-
come and that it is possible to cache whether a literal is (ir)redundant.

Theorem 3. Literals stay (ir)redundant after removal of redundant literals.

The reason L ∨ C annotates the propagation literal LL∨C in the trail. Min-
imizing the deduced clause consists in recursively resolving with the reasons: If
the clause becomes smaller, it is used. Duplicate literals are removed from the
clause. Algorithm 1 shows a recursive implementation that resolve away the lit-
eral L without addition of literals. The minimization algorithm applies to every
conflicting clause but is only applied to the deduced clause [21], namely the
deduced clause after the first unique implication point was derived.

The minimization algorithm is standard in SAT solvers with several improve-
ments. First, they use efficient data structures to efficiently check if a literal
is in the deduced clause. Second, they use caching: if a literal was deemed
(un)removable before, the same outcome is used again. Caching successes and
failures [19] make the algorithm linear in the size of the implication graph. Lit-
erals that can not be removed are called poison.

Our definition of trail redundancy is semantic, while the minimization algo-
rithm uses relies on syntactic criteria to determine if a literal is removable or not.
We show that both criteria are equivalent by using a result of Horn satisfiability.

Definition 4 (Transition System by Dowling and Gallier [9]). Consider
the following rewriting system defined for Horn formulas, starting from the start
symbol I

1. For every clause L ∨ ¬L1 ∨ · · · ∨ ¬Ln, we consider the associated rewrite rule
¬L → ¬L1 · · · ¬Ln (where n can be zero).

2. For every clause ¬L1 ∨ · · · ∨ ¬Ln, we consider the rewrite rule I →
¬L1 · · · ¬Ln.

In Definition 4, given our SAT context the step ¬L1 · · · ¬Ln, represents the
entailed clause ¬L1 ∨ · · · ∨ ¬Ln. One rewriting step is a resolution step.

Theorem 5 (Dowling and Gallier [9]). Given a satisfiable Horn formula, a
literal is true iff it can be rewritten to ⊥.

The transition system from Definition 4 is not linear. As far we are aware,
this is the first description of minimization algorithm in terms of Horn SAT.

174 M. Fleury and A. Biere

Function IsLiteralRedundant(L, d, C)

Input: Literal L assigned to true, recursion depth d, deduced clause C
Output: Whether L can be removed

if L is a decision then
return false

D ∨ L ←− reason(L);
foreach literal K ∈ D do

if ¬IsLiteralRedundant(¬K, d + 1, C) then
return false

return true

Function MinimizeSlice(B, C)

Input: A clause C (passed by reference) and a subset B of C to minimize
Output: The minimized clause with redundant literals in B removed

foreach K ∈ B do
R ←− ∅
if IsLiteralRedundant(¬K, 0, C) then

R ←− R ∪ {K}
C ←− C\R

Algorithm 1: Basic recursive minimization algorithm similar to [18].

Theorem 6. Algorithm 1 is the same as the transition system from Definition 4.

Theorem 7 (Equivalence Syntactic and Semantic Redundancy). Both
notions of redundancy are equivalent. In particular, every redundant literal is
also removable.

In our formalization of learned clause minimization for our verified SAT solver
IsaSAT [12], we use a different definition of redundancy, namely FM � ¬L ∨
D<ML where D<ML are all the literals of D that appear before L in the trail
M . This definition is equivalent but it makes more explicit that only literals
that appear before L are relevant. We have not formalized completeness while
working on IsaSAT since we only cared about correctness.

Theorem 8. A literal L is redundant iff FM � ¬L ∨ D<ML.

Our implementation relies on the alternative definition: It sorts the literals in the
clause by its position on the trail. Each literal, starting from the lowest position,
is checked. If it is not redundant, it is marked as present in the deduced clause
for efficient checking. This reduces the number of flags (like testing if a literal
is present in the deduced clause) to reset. Instead we could use d: When d = 0,
the condition “L is in the deduced clause” does not apply.

Thanks to caching both successes and failures, the complexity is linear in the
number of literals of the trail. Compared to our simple break conditions, more
advanced criteria are possible.

Efficient All-UIP Learned Clause Minimization 175

Function IsLiteralRedundantEfficient(L, d, C)

Input: Literal L assigned to true, recursion depth d, deduced clause C
Output: Whether L can be removed

if status of L is cached in minimization cache then
return cached value

if any advanced poison criterion from Theorem 9 applies (uses d) then
return false

if L is root-level assigned (unit) or ¬L ∈ C then
return true

if L is a decision then
return false

D ∨ L ←− reason(L)
foreach K ∈ D do

if ¬IsLiteralRedundantEfficient(¬K, d + 1, C) then

Cache false for L
return false

Cache true for L
return true

Algorithm 2: Advanced minimization algorithm equivalent to Algorithm 1.

Theorem 9 (Poison Criteria).

1. If a literal appears on the trail before any other literal of the deduced clause
on a decision level, then it is not redundant.

2. Literals with a decision level not in the deduced clause are not redundant.
3. Literals that are alone on a given decision level are not redundant (Knuth).

The proof relies on the fact that the SAT solver propagates literals eagerly. This
is not the case globally if the SAT solver uses chronological backtracking [15,16]
but remains correct for the reason clauses. The second and third point are widely
used (e.g., in MiniSAT and Glucose), whereas the first one is a novelty of
CaDiCaL and is not described so far. Root-level assigned false literals can also
appear in deduced clauses and be removed without recursing over their reasons.

Theorem 10. Literals at level 0 are redundant.

Algorithm 2 combines the two ideas that are described here, the caching and
the advanced poison criteria. The ideas 1. and 3. from Theorem 9 require data
structures that are not present in every SAT solver, namely the position τ of
each literal in the trail. Doing so was not necessary until now, but it is required
for shrinking. In our solvers, we also use the depth to limit the number of the
recursive calls and avoid stack overflows. The implementation in MiniSAT [10]
(and all derived solvers like Glucose [1]) uses a non-recursive version, but it
requires two functions, one for depth zero and another for the recursive case.

176 M. Fleury and A. Biere

3 Shrinking

After detecting conflicting clauses, the SAT solver analyzes them and deduces
the first unique-implication point or 1-UIP [7], where only one literal remains
on the current (largest) decision level. This is the first point where the clause is
propagating, fixing the current search direction. The idea of 1-UIP can be applied
on every level in order to produce shorter clauses. We call this process shrinking.
It differs from minimization because it adds new literals to the deduced clause.

If fully applied, shrinking derives a subset of the decision-only clause. There-
fore, it is limited. Feng & Bacchus [11] (abbreviated F&B from now on) have used
various heuristics like not adding literals of low importance, without a clear win-
ner across all implementations. We focus on their min-alluip variant. It applies
the 1-UIP on every level. For each literal in the clause, the solver resolves with
its reason unless a literals from a new level is added, thus making sure that the
LBD or “glue” [1] is not increased, an important metric, which seems to relate
well to the “quality” of learned clauses. In their implementation, if the clause
becomes longer, the minimized clause would be used instead.

Algorithm 3 shows the implementation of min-alluip. It considers the set of
all literals of the deduced clause on the same level, or slice (same as a block if
no chronological backtracking [15,16] is allowed). Each slice is shrunken starting
from the highest level. It resolves each literal of the slice with its reason or fails

Function MinAllUIPShrinkSlice(B, C)

Input: Slice B of literals of the deduced clause C on the (slice) level
Output: B unchanged or shrunken if min-alluip is successful

E ←− ∅
while |B| > 1 do

Remove from B last assigned literal ¬L
D ∨ L ←− reason(L)
if ∃K ∈ D\C assigned at lower level not already in C then

E ←− E ∪ {L}
else

B ←− B ∪ {K ∈ D | K assigned on slice level}
Replace in deduced clause C original B with B ∪ E

Function MinAllUipShrinking(C)

Input: The deduced clause C (passed by reference)
Output: The shrunken clause using the min-alluip strategy

C′ ←− C
foreach Level i of literals in the deduced clause – highest to lowest do

B ←− {L ∈ C | L assigned at level i}
MinAllUIPShrinkSlice(B, C)

Replace C with saved original deduced clause C′ unless |C| < |C′|

Algorithm 3: Shrinking algorithm min-alluip from Feng&Bacchus [11].

Efficient All-UIP Learned Clause Minimization 177

A†
2 B2 C2

A†
3 B3 C3

A†
4 B4 C4

A†
5

Fig. 1. Conflict example

when adding new literals on lower levels. Because SAT solvers propagate eagerly,
|B| ≥ 1 is an invariant of the while loop (and L cannot be a decision literal).

The key difference between shrinking and minimization is that reaching the
UIP is a global property, namely of all literals on a level, and not of a single
literal. This means that testing redundancy is a depth-first search algorithm
while shrinking is a breadth-first search algorithm on the implication graph.

Example 11. Consider the implication graph from Fig. 1. The algorithm starts
with the highest level, namely with B4 and A4. The level is reduced to A4

introducing the already present B3. On the next level, C3 cannot be removed
because it would import level 2. The resulting clause ¬A5∨¬A4∨¬A3 is smaller
and is used instead of the original clause.

F&B unfortunately do not provide source code nor binaries used in their
experiments. Therefore we focus on their version of CaDiCaL submitted [14] to
the SAT Competition 2020. It implements only one of their strategies, which, as
far we can tell, matches the variant min-alluip [11] described above, while code
for the other variants is incomplete or missing.

4 Minimizing and Shrinking

In contrast to F&B our algorithm minimizes literal slices of the deduced clause
assigned on a certain level starting from the lowest to highest level. This enables
us to remove all redundant literals on-the-fly. After presenting our algorithm we
study its complexity and then discuss its implementation in our SAT solvers
CaDiCaL, Kissat, and Satch.

The main loop of our Algorithm 4 interleaves shrinking and (if shrinking
failed) minimization. For each slice of literals in the deduced clauses assigned
on a certain level we then attempt to reach the 1-UIP, similarly to Algorithm 3.
If this fails, we minimize the slice. This also allows to lift some restriction on
shrinking: only non-redundant literals interrupt the search for the 1-UIP. We
start from the lowest level to keep completeness of minimization.

178 M. Fleury and A. Biere

Function ShrinkingSlice(B, C)

Input: Slice B of literals of the deduced clause C on a single (slice) level
Output: B unchanged or shrunken to UIP if our new method is successful

while |B| > 1 do

Remove from B last assigned literal ¬L
D ∨ L ←− reason(L)
if ∃K ∈ D\C at lower level and ¬IsLiteralRedundant(¬K, 1, C)

then

return with failure (keep original B in C)
else

B ←− B ∪ {K ∈ D | K on slice level}
Replace in deduced clause C original B with the remaining UIP in B

Function Shrinking(C)

Input: The deduced clause C (passed by reference)
Output: The shrunken and minimized clause using our new strategy

foreach Level i of literals in the deduced clause – lowest to highest do

B ←− {L ∈ C | L assigned at level i}
ShrinkingSlice(B, C)

if shrinking the slice failed then MinimizeSlice(B, C);

Algorithm 4: Our new method for integrated shrinking with minimization.

Example 12. Consider the implication graph from Fig. 1. The algorithm starts
with the slice of literals on the lowest decision level, namely with B3 and C3. No
UIP can be found because it would import level 2. Level 1 is shrunken to A4.
The shrunken clause is ¬A5 ∨ ¬A4 ∨ ¬B3 ∨ C3.

As mentioned before, for efficiency a cache is maintained during minimization
to know whether a literal is redundant or not.

Theorem 13 (Shrinking and Redundancy). Redundant literals remain
redundant during shrinking.

Theorem 13 ignores irredundant literals because new literals are added to
the deduced clause, allowing for more removable literals. This explains why F&B
propose (in one variant of shrinking) to minimize again after shrinking. For the
same reason we do not check if literals are redundant on the current level, since
added literals (e.g., new 1st UIPs) invalidate the literals marked as “poisoned”.
Instead, we check for redundancy of literals on lower levels and on current level
only after shrinking them, when the literals on the slice level are fixed.

Example 14 (Minimization during shrinking). Consider the following trail

A†
1B

B1∨¬A1
1 A†

2B
B2∨¬B1∨¬A2
2 A†

3

where † marks a decision and the deduced clause is ¬A1 ∨¬B2 ∨¬A3. Shrinking
cannot remove B2 because it would introduce the new literal B1 on lower levels,
unless it is determined to actually be redundant (A1 is in the deduced clause).

Efficient All-UIP Learned Clause Minimization 179

To keep the complexity linear, when interleaving minimization with shrinking
as shown in Algorithm 4, we maintain a global shared minimization cache, not
reset between minimizing different slices. A more complicated solution consists
in minimizing up-front (as in the implementation of F&B in [14]), followed by
shrinking, and if shrinking succeeds, reset the poison literals on the current level.

Resetting only literals on the current level is important for reducing the run-
time complexity from quadratic to linear in the size of the implication graph. As
we are shrinking “in order” (from lowest to highest decision level) we can keep
cached poisoned (and removable) literals from previous levels, thus matching the
overall linear complexity of (advanced) minimization.

Our solution also avoids updating the minimization cache more than once
during shrinking. When a slice is successfully reduced to a single literal, all
shrunken literals are marked as redundant in the minimization cache. The pro-
cess is complete in the sense that no redundant literals remain.

Theorem 15 (Completeness). All redundant literals are removed.

This result relies on the fact that during the outer loop no literal on a lower
level is added to the deduced clause. If this would be allowed (as in Algorithm 3),
the poisoned flag has to be reset and minimization redone, yielding a quadratic
algorithm. However, the theorem says nothing about minimality of the shrunken
clause if we allow to add new literals, as in the following example.

Example 16 (Smaller Deduced Clause). Consider the trail

A†
1B

B1∨¬A1
1 CC1∨¬B1

1 A†
2B

B2∨¬A2
2 CC2∨¬B2∨¬B1

2 A†
3

and the deduced clause ¬C1 ∨¬B2 ∨¬C2 ∨¬A3. The clause is neither minimized
nor shrunken by our algorithm, but can be shrunken to the smaller ¬B1 ∨¬B2 ∨
¬A3.

In Algorithm 4, on the one hand, shrinking could use a priority queue (imple-
mented as binary heap) to determine the last assigned literal in B. Then for each
slice, we have a complexity of O(nb log nb) for shrinking where nb is the number
of literals at the slice level in the implication graph. On the other hand, min-
imization of all slices is linear in the size of the implication graph. Overall the
complexity is O(glue · n log n) where the “glue” is the number of different slices
(and a number that SAT solvers try to reduce heuristically) and n the maximum
of the nb. However, note that, bumping heuristics require sorting of the involved
literals anyhow either implicitly or explicitly [6].

Instead of representing the slice B as a priority queue, implemented as
binary heap, to iterate over its literals, it is also possible to iterate over
the trail directly as it is common in conflict analysis to deduce the 1st-
UIP clause. Without chronological backtracking, the slices on the trail are
disjoint and iterating over the trail is efficient and gives linear complexity
O(|glue|×|max trail slice length|), i.e., linear in the size of the implication graph.

With chronological backtracking slices on the trail are not guaranteed to be
disjoint. Therefore, in the worst case, iterating over a slice along the trail might

180 M. Fleury and A. Biere

require to iterate over the complete trail. In principle, this could give a quadratic
complexity for chronological backtracking without using a priority queue for B.
In our experiments both variants produced almost identical run-times and thus
we argue that the simpler variant of going over the trail should be preferred.

We have implemented the algorithm from the previous section in our SAT
solvers CaDiCaL [5], Kissat [5], and Satch [4]. The implementation is part
of our latest release in the file shrink.c (shrink.cpp for CaDiCaL).1 Note
that, Satch is a simple implementation of the CDCL loop with restarts and
was written to explain CDCL. It does not feature any in- nor preprocessing yet.

We either traverse the trail directly or use a radix heap [8] as priority queue.
Unlike the implementation by F&B, our priority queue contains only the literals
from the current slice until either shrinking fails or the 1-UIP is found. It allows
for efficient popping and pushing trail positions. Note that, radix heaps require
popped elements to be strictly decreasing, and as the analysis follows reverse trail
order, we first compute the maximum trail position of literals in the considered
slice and then index literals by their offsets on the tail from this maximum trail
position. The literal position in the trail is not cached in every SAT solver, but
was already maintained in Kissat and CaDiCaL.

5 Experiments

We have implemented our algorithm in the SAT solvers CaDiCaL, Kissat
(the winner of the SAT Competition 2020), and Satch and evaluated them on
benchmark instances from the SAT Competition 2020 on an 8-core Intel Xeon
E5-2620 v4 CPUs running at 2.10 GHz (turbo-mode disabled). For both tracks
we used a memory limit of 128 GB (as in the SAT Competition 2020). We tested
3 configurations, shrink (shrinking and minimizing), minimize, and no-minimize
(neither shrinking nor minimizing). Due to space constraint we only give graphs
for some solvers but findings are consistent across all of them.

Tables 1 for Kissat and Satch show that minimization is more important
than shrinking, but the latter still improves performance for Kissat. In the plan-
ning track, running time decreases significantly, whereas the impact on the main
track is smaller. Compared to the main track, the planning problems require
much more memory and memory usage drops substantially with shrinking. For
Satch, we observe a slight performance decrease. Figures 2 and 3 show that
even if shrinking solves only a few more problems, the speedup is significant.

In all our SAT solvers we distinguish between focused mode (many restarts)
and stable mode (few restarts). Note that CaDiCaL uses the number of conflicts
to switch between these modes which is rather imprecise: in stable mode decision
frequency is lower while the conflicts frequency is higher compared to focused
mode and accordingly the fraction of running time spent in conflict analysis and
thus minimization and shrinking increases in stable mode compared to focused
mode. To improve precision both Kissat and Satch measure the time by esti-
mating the number of possible cache misses instead, called “ticks” [5]. By default
1 Source code and log files are available at http://fmv.jku.at/sat shrinking.

http://fmv.jku.at/sat_shrinking

Efficient All-UIP Learned Clause Minimization 181

Table 1. Results for new solvers on the SAT Competition 2020 benchmarks

Solver Track Configuration Solved PAR-2 Average clause size

Kissat Main track

(400 problems)

Shrink 270 1561735 46

Minimize 267 1566688 110

No-minimize 235 1891872 183

Planning track

(200 problems)

Shrink 85 1197799 5398

Minimize 83 1222535 13076

No-minimize 74 1325957 16637

Satch Main track

(400 problems)

Shrink 196 2271119 46

Minimize 203 2240351 144

No-minimize 159 2621070 370

Planning track

(200 problems)

Shrink 85 1212977 5043

Minimize 80 1250861 11854

No-minimize 72 1338592 15474

CaDiCaL 1.4.0 Main Track

(400 problems)

Shrink 240 1870484 90

Minimize 233 1939998 121

No-minimize 194 2280897 153

Planning track

(200 problems)

Shrink 73 1334718 4885

Minimize 64 1454186 7799

No-minimize 42 1615676 11767

Kissat also counts the number of such ticks during shrinking and minimization.
To avoid the bias introduced by this technique in terms of influencing mode
switching we deactivated this feature in our experiments (only for Kissat).

We analyzed the results on the main track in more details over all instances
(i.e., until timeout or memory out), not only over solved instances. The amount
of time (in percentage of the total) more than doubles when activating shrinking:
it goes from 6.3 % to 14.3 % of the total amount of time (Fig. 5). However, the
size of the clauses is reduced with a similar ratio (Fig. 4): It drops from 110 to
46 (183 without minimization). On the planning track, it drops from 13 076 to
5 398 literals on average (16 637 without minimization).

To compare our method to the min-alluip implementation, which is based on
CaDiCaL 1.2.1, we backported our shrinking algorithm to CaDiCaL 1.2.1 too.
The results are in Table. 2. The only difference is the shrinking algorithm, hence
there are not differences for the minimize and no-minimize configuration. The
F&B version performs slightly better than our version. An interesting observa-
tion is that CaDiCaL 1.2.1 learns much larger clauses than Kissat and Satch
but also larger than the latest CaDiCaL version. The effect can be partially
explained by the stable mode that is much longer than on the other solvers. We
have also experimented with minimizing separately from shrinking instead of
combining them. As long as the cache is shared there is very little performance
difference. Figure 7 shows the CDF for the main track.

Figure 6 shows percentages of removable literals on the planning track.
Shrinking removes more literals than the subsequent minimization (and more
than minimization alone).

182 M. Fleury and A. Biere

0 1000 2000 3000 4000 5000

0
20

40
60

80

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●● ●●
● ● ● ●●

●● ● ● ● ● ● ●

● kissat−shrink
kissat−minimize
kissat−no−minimize

Fig. 2. Kissat solving time on the planning track.

0 1000 2000 3000 4000 5000

0
20

40
60

80

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●

●●
●●●

●●
●●
●●

●●
● ● ● ●●● ● ●●

● ● ● ● ●

● Satch−shrink
Satch−minimize
Satch−no−minimize

Fig. 3. Satch solving time on the planning track.

We have mentioned the complexity difference between using a radix heap
and iterating over the trail. We have implemented both versions in our three
SAT solvers. We compare both version but could not observe any significant
difference. We believe that this is due to the fact that finding the next literal is

Efficient All-UIP Learned Clause Minimization 183

Fig. 4. Absolute sizes of learned clauses of Kissat on main track.

Fig. 5. Amount of time in percent spent during shrinking and minimization of Kissat.

184 M. Fleury and A. Biere

Fig. 6. Percentage removed literals in learned clauses for CaDiCaL in planning track.

Fig. 7. Comparison between CaDiCaL-1.2.1 with shrinking (this paper) and the F&B
version on the main track.

actually very efficient: it is in the trail (that is in cache anyways) and we check
a single flag. We attempted to force the worst case by enforcing chronological
backtracking, but performance remained similar.

Efficient All-UIP Learned Clause Minimization 185

Table 2. Results for solvers based on CaDiCaL 1.2.1 on the SAT Competition 2020
benchmarks with a memory limit of 128 GB, following the SAT Competition

Solver Track Configuration Solved PAR-2 Average
clause size

shrinking
(this paper)

Main track
(400 problems)

Shrink 235 1897387 92

Minimize 230 1972949 135

No-minimize 208 2184920 187

Planning track
(200 problems)

Shrink 73 1351542 5373

Minimize 63 1454871 6433

No-minimize 39 1643665 9874

min-alluip
[11,14]

Main track Shrink 237 1904745 104

Planning track Shrink 81 1271930 3261

6 Conclusion

We presented a simple linear algorithm which integrates minimization and
shrinking and is guaranteed to remove all redundant literals. In practice it can
be run to completion unconditionally. Our implementation and evaluation with
several SAT solvers show the benefit of our approach and confirm effectiveness
of shrinking in general.

An open question is how to extend our notion of trail redundancy to capture
that new literals can be added in order to reduce size. This would allow to
formulate completeness of shrinking in the same way as we did for minimization.

Acknowledgment. This work is supported by Austrian Science Fund (FWF), NFN
S11408-N23 (RiSE), and the LIT AI Lab funded by the State of Upper Austria. We also
thank Sibylle Möhle and the anonymous reviewers for suggesting textual improvements.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI, pp. 399–404 (2009), http://ijcai.org/Proceedings/09/Papers/074.pdf

2. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the
SAT Competition 2018. In: Heule, M., Järvisalo, M., Suda, M. (eds.) Proceedings
of of SAT Competition 2018 - Solver and Benchmark Descriptions. Department of
Computer Science Series of Publications B, vol. B-2018-1, pp. 13–14. University of
Helsinki (2018)

3. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Tech-
nical Report, FMV Reports Series, Institute for Formal Models and Verification,
Johannes Kepler University (August 2021)

4. Biere, A.: The SAT solver Satch. Git repository (2021). https://github.com/
arminbiere/satch Accessed 03 2021

http://ijcai.org/Proceedings/09/Papers/074.pdf
https://github.com/arminbiere/satch
https://github.com/arminbiere/satch

186 M. Fleury and A. Biere

5. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT
Competition 2020 - Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

6. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Heule, M.,
Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 405–422. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24318-4 29

7. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

8. Cherkassky, B.V., Goldberg, A.V., Silverstein, C.: Buckets, heaps, lists, and mono-
tone priority queues. SIAM J. Comput. 28(4), 1326–1346 (1999). https://doi.org/
10.1137/S0097539796313490

9. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. J. Log. Program. 1(3), 267–284 (1984). https://
doi.org/10.1016/0743-1066(84)90014-1

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

11. Feng, N., Bacchus, F.: Clause size reduction with all-UIP learning. In: Pulina, L.,
Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 28–45. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51825-7 3

12. Fleury, M.: Formalization of logical calculi in Isabelle/HOL. Ph.D. thesis, Saar-
land University, Saarbrücken, Germany (2020). https://tel.archives-ouvertes.fr/
tel-02963301

13. Fleury, M., Biere, A.: Efficient all-UIP learned clause minimization (extended ver-
sion). Technical Report. 21/3, Johannes Kepler University Linz, FMV Reports
Series, Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria (2021). https://doi.org/10.350/fmvtr.2021-
3

14. Hickey, R., Feng, N., Bacchus, F.: Cadical-trail, Cadical-alluip, Cadical-alluip-trail
and maple-LCM-dist-alluip-trail at the SAT competition. In: Balyo, T., Froleyks,
N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Compe-
tition 2020 - Solver and Benchmark Descriptions. Department of Computer Science
Report Series B, vol. B-2020-1, p. 10. University of Helsinki (2020)

15. Möhle, S., Biere, A.: Backing backtracking. In: Janota, M., Lynce, I. (eds.) SAT
2019. LNCS, vol. 11628, pp. 250–266. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24258-9 18

16. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8 7

17. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153. IOS
Press (2009). https://doi.org/10.3233/978-1-58603-929-5-131

18. Sörensson, N., Biere, A.: Minimizing learned clauses. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 237–243. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02777-2 23

https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1137/S0097539796313490
https://doi.org/10.1137/S0097539796313490
https://doi.org/10.1016/0743-1066(84)90014-1
https://doi.org/10.1016/0743-1066(84)90014-1
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-030-51825-7_3
https://tel.archives-ouvertes.fr/tel-02963301
https://tel.archives-ouvertes.fr/tel-02963301
https://doi.org/10.350/fmvtr.2021-3
https://doi.org/10.350/fmvtr.2021-3
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.1007/978-3-642-02777-2_23
https://doi.org/10.1007/978-3-642-02777-2_23

Efficient All-UIP Learned Clause Minimization 187

19. Gelder, A.: Improved conflict-clause minimization leads to improved propositional
proof traces. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 141–146.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 15

20. Gelder, A.: Generalized conflict-clause strengthening for satisfiability solvers. In:
Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 329–342. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0 26

21. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in Boolean satisfiability solver. In: ICCAD, pp. 279–285. IEEE Computer
Society (2001). https://doi.org/10.1109/ICCAD.2001.968634

https://doi.org/10.1007/978-3-642-02777-2_15
https://doi.org/10.1007/978-3-642-21581-0_26
https://doi.org/10.1109/ICCAD.2001.968634

Solving Non-uniform Planted and
Filtered Random SAT Formulas Greedily

Tobias Friedrich1 , Frank Neumann2 , Ralf Rothenberger1 ,
and Andrew M. Sutton3(B)

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{tobias.friedrich,ralf.rothenberger}@hpi.de
2 The University of Adelaide, Adelaide, Australia

frank.neumann@adelaide.edu.au
3 University of Minnesota Duluth, Duluth, USA

amsutton@d.umn.edu

Abstract. Recently, there has been an interest in studying non-uniform
random k-satisfiability (k-SAT) models in order to address the non-
uniformity of formulas arising from real-world applications. While uni-
form random k-SAT has been extensively studied from both a theoretical
and experimental perspective, understanding the algorithmic complexity
of heterogeneous distributions is still an open challenge. When a suffi-
ciently dense formula is guaranteed to be satisfiable by conditioning or a
planted assignment, it is well-known that uniform random k-SAT is easy
on average. We generalize this result to the broad class of non-uniform
random k-SAT models that are characterized only by an ensemble of dis-
tributions over variables with a mild balancing condition. This balancing
condition rules out extremely skewed distributions in which nearly half
the variables occur less frequently than a small constant fraction of the
most frequent variables, but generalizes recently studied non-uniform k-
SAT distributions such as power-law and geometric formulas. We show
that for all formulas generated from this model of at least logarithmic
densities, a simple greedy algorithm can find a solution with high prob-
ability.

As a side result we show that the total variation distance between
planted and filtered (conditioned on satisfiability) models is o(1) once
the planted model produces formulas with a unique solution with prob-
ability 1−o(1). This holds for all random k-SAT models where the signs
of variables are drawn uniformly and independently at random.

Keywords: Random k-SAT · Planted k-SAT · Non-uniform variable
distribution · Greedy algorithm · Local search

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– 416061626.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 188–206, 2021.
https://doi.org/10.1007/978-3-030-80223-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_13&domain=pdf
http://orcid.org/0000-0003-0076-6308
http://orcid.org/0000-0002-2721-3618
http://orcid.org/0000-0002-4133-2437
http://orcid.org/0000-0003-1295-6715
https://doi.org/10.1007/978-3-030-80223-3_13

Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 189

1 Introduction

Propositional satisfiability is one of the most intensively studied topics in the-
oretical computer science and artificial intelligence. Motivated by the desire to
understand the hardness of typical propositional formulas, random satisfiability
models were developed [23]. The archetype of these random structures is uni-
form random k-SAT: a family of distributions over formulas, parameterized by
length, in conjunctive normal form with k literals in each clause. A vast number
of compelling algorithmic hardness results both theoretical [13–16] and experi-
mental [32,35] has developed from this field.

Despite bringing our understanding of the working principles of SAT solvers
into sharper focus, a major drawback of the uniform random model is that it does
not typically produce formulas that are similar to ones that come from applica-
tions. Thus it is not always clear how hardness results on the uniform random
model might translate to other distributions. Recently, an effort has emerged
to bridge this gap between the homogeneity of uniform random formulas and
heterogeneous models of random satisfiability [2,9,10,17,34]. Moreover, specific
properties of industrial instances have been identified, and non-uniform distri-
butions have been subsequently introduced to produce such structures. Notable
examples include the community attachment model [27] to address modularity,
and the popularity-similarity model [28] to address locality.

Ansótegui et al. [5] studied the constraint graphs of industrial propositional
formulas, and found that many reveal a power law degree distribution, while the
variable degrees of formulas drawn from the uniform random k-SAT model are
distributed binomially. To address this, they introduced a non-uniform random
power law model that induces power law degree distributions. Other researcher
have also noted that real-world formulas (especially those derived from bounded
model checking) exhibit such heavy-tailed degree distributions [9]. Moreover,
empirical results suggest that solvers specialized for industrial instances tend
to perform better on formulas drawn from a power law model than on formu-
las drawn from a uniform model [3–6,8]. Non-uniform random k-SAT models
for which the degree distribution follows a geometric law have also been intro-
duced [6].

It is often difficult to understand how algorithmic results on uniform distri-
butions translate to non-uniform models. We use a general variable distribution
framework: random k-SAT models are described by an arbitrary ensemble of vari-
able distributions (�pn)n∈N and the clauses are constructed by drawing variables
from �pn. This framework has recently gained interest in the SAT community. For
example, it was shown that under some mild conditions on �pn, the well-known
sharpness result of Friedgut [24] generalizes to the non-planted version of this
framework [26]. This line of work can help us understand if k-SAT instances with
non-uniform variable distributions are easier to solve. If so, which distributions
make them easier and why? If not, which other features of industrial instances
are important to make them easily solvable?

190 T. Friedrich et al.

Results. In this paper, we show that a result for uniform planted SAT models, in
which a satisfying assignment is hidden, generalizes to a planted version of the
non-uniform framework described earlier. In particular, we generalize an early
result of Koutsoupias and Papadimitriou [30] to non-uniform planted SAT dis-
tributions. We also improve their lower bound on the density threshold by an
n/ log n factor. Distributions for which our results hold include recently intro-
duced non-uniform random satisfiability models such as those with power law
degree distributions and geometric degree distributions [6]. For those two models
in particular only Ω (n log n) clauses suffice to find a satisfying assignment with
a simple greedy algorithm with high probability.

Furthermore, we investigate the relation between planted and filtered mod-
els. Here, filtered means any random SAT model, where we condition on the
generated formulas to be satisfiable. We show a result for all k-SAT models in
which the signs of variables are chosen uniformly and independently at ran-
dom for each clause. This result states that, if the planted model asymptotically
almost surely1 generates formulas with a unique solution (the planted solution)
at some constraint density m/n, then the total variation distance between the
planted and the filtered model at that density is o(1). This means, our results
for non-uniform planted SAT transfer to the corresponding filtered models.

1.1 Planted k-SAT

Planted distributions are a common modification to average-case problem dis-
tributions for combinatorial problems in which instances are generated together
with a solution. A motivation for studying planted distributions is that if no
efficient algorithms exist for solving an instance, then the instance-solution pairs
comprise a one-way function [22], which has important implications for cryptog-
raphy.

The planted 3-SAT model has been studied in the context of the warning
propagation algorithm, and noted for its similarity to low-density parity check
codes [19]. The authors show that warning propagation can solve planted 3-SAT
formulas with constant constraint density. Berthet [7] considers the problem of
detecting whether a formula is drawn from the uniform or the planted distribu-
tion in the context of hypothesis testing.

Achlioptas, Jia, and Moore [1] analyze a 2-planted model, where two sat-
isfying assignments are hidden at maximum distance from each other. They
experimentally show that in their setting the runtime of local search algorithms
is comparable to the runtime on completely random instances. Hu, Luo, and
Wang introduce a planted version of community attachement [29] and study it
experimentally. Feldman, Perkins, and Vempala [20] study planted k-SAT with
different distributions on the signs of clauses.

We consider the greedy algorithm (Algorithm 1) originally introduced by
Koutsoupias and Papadimitriou [30] who proved its success on uniform planted

1 We say that an event E holds asymptotically almost surely (a. a. s.) if, over a sequence
of sets, Pr (E) = 1. In the context of this paper, this means Pr (E) = 1 − o(1).

Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 191

formulas with at least linear constraint density, i.e., the ratio of clauses to vari-
ables is Ω(n). Bulatov and Skvortsov [11] proved a phase transition in the uni-
form model for this algorithm. In particular, for constraint densities above 7

6 ln n,
Algorithm 1 succeeds with high probability. On the other hand, the algorithm
fails w.h.p. on formulas with uniformly positive constraint densities below this
threshold. More sophisticated algorithms based on spectral techniques have been
shown to be successful down to constant densities with high probability [21] and
in expected polynomial time [31] on the uniform planted model.

Algorithm 1: Greedy algorithm [30]
1 α ← an assignment chosen uniformly at random;

2 while ∃ i ∈ [n] such that changing αi increases the number of satisfied clauses do

3 α[i] ← 1 − α[i];

4 return α

2 Non-uniform Planted k-SAT

In this section we will introduce our model and relevant notation formally. We
denote the Boolean variables by x1, . . . , xn. A k-clause is a disjunction of k
literals �1 ∨ . . . ∨ �k, where each literal is a variable or its negation. For a literal
�i let |�i| denote the index of its variable. A formula Φ in conjunctive normal
form is a conjunction of clauses C1 ∧ . . . ∧ Cm. We interpret a clause C both as
a Boolean formula and as a set of literals. We say that Φ is satisfiable if there
exists an assignment of its variables such that the formula evaluates to 1.

Definition 1 (Non-Uniform Random k-SAT). Let (�pn)n∈N be a set of prob-
ability distributions where �pn = (p1, p2, . . . , pn) is a probability distribution over
n Boolean variables with Pr(X = xi) = pi. The random model D(n,m, �pn, k)
can be described as follows.

1. for j ← 1 to m:
(a) Sample k variables from the distribution �pn without repetition.
(b) Choose one of the 2k negation patterns uniformly at random.

Definition 2 (Non-Uniform Planted k-SAT). Let (�pn)n∈N be a set of prob-
ability distributions where �pn = (p1, p2, . . . , pn) is a probability distribution
over n Boolean variables with Pr(X = xi) = pi. The random planted model
F(n,m, �pn, k) can be described as follows.

1. Select a planted assignment α� ∈ {0, 1}n uniformly at random
2. for j ← 1 to m:

(a) Sample k variables from the distribution �pn without repetition.
(b) Choose one of the 2k − 1 negation patterns that force the resulting j-th

clause to evaluate to true under α� uniformly at random.

192 T. Friedrich et al.

We will show in Sect. 3 that the greedy algorithm is successful on non-uniform
planted k-SAT if the clause-variable ratio is high enough and if the variable
probability distribution is well-behaved in some sense. Moreover, we will relate
the two models in Sect. 4, which allows us to conclude that the greedy algorithm
also succeeds on satisfiable instances of non-uniform random k-SAT. Our results
in Sect. 4 hold for more general versions of those models, which are defined as
follows.

Definition 3 (Random k-SAT with Independent Signs). Let N denote
any random k-SAT model where m clauses are drawn and the signs of variables
for each clause are drawn independently and uniformly at random among the 2k

possibilities. Let F ∼ N denote a random formula F drawn in the model N .
This means the probability to draw a certain k-CNF f is

Pr
F∼N

(F = f) = pf · 2−k·m,

where pf denotes the probability to draw the sets of variables that the clauses of
f consist of. We call such a model a random k-SAT model with independent
signs.

Definition 4 (Corresponding Planted Model). Let N be a random k SAT
model with independent signs. Now let P be the following planted model: First
draw a planted assignment with probability 2−n, then we draw m clauses in the
same way as in N , and draw the signs of variables for each clause indepen-
dently and uniformly at random among the 2k − 1 possibilities that make the
planted assignment satisfy the clause. If X(f) denotes the number of satisfying
assignments of a k-CNF f , then the probability to draw f is

Pr
F∼P

(F = f) = pf · X(f)
2n

·
(

1
2k − 1

)m

.

We call P the corresponding planted model of N .

Note that the definition of a random k-SAT model with independent signs
is very general. It encompasses random k-SAT models where formulas with m
clauses over n variables are drawn according to any distribution, as long as the
sign of each literal is drawn independently at random with probability 1/2. This
includes the community attachment model by Giráldez-Cru and Levy [27] and
the approach with given variable degrees of Omelchenko and Bulatov [33] and
Levy [12]. Furthermore, it is easy to see that non-uniform random k-SAT is
a random k-SAT model with independent signs and that non-uniform planted
k-SAT is its corresponding planted model.

Throughout the paper, we will assume that k ≥ 3 is a constant. Note that
according to our models clauses can be drawn repeatedly. Furthermore, to sim-
plify the proofs, we assume the variables are sampled with replacement. However,
we remark that for k constant and pn bounded away from 1 by a constant, this
changes the clause probabilities by at most a constant factor (see, e.g., [25]).

Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 193

In this setting, the probability to draw a legal clause C = (�1 ∨ . . . ∨ �k) is
k!

2k−1
· ∏k

j=1 p|�j |.
We denote [n] := [1, n] ∩ N. For a discrete probability distribution �p =

(p1, . . . , pn) we assume p1 ≤ p2 ≤ · · · ≤ pn. For a particular F(n,m, �pn, k),
we define the parameter γ(ε) := Pr(i ≤ (1/2 − ε) · n − (k − 1)). Here, i is a
random variable with Pr(i = j) = pj for j ∈ [n]. We will denote the Hamming
distance between two assignments α, β ∈ {0, 1}n by d(α, β) and simply refer to
it as the “distance”.

3 The Greedy Algorithm on Non-uniform Planted k-SAT

In this section, we will show that for sufficiently high constraint densities Algo-
rithm 1 asymptotically almost surely finds a satisfying assignment of non-
uniform planted k-SAT if a condition on the probability distribution of the model
is fulfilled. The condition that has to be satisfied is that there are constants
ε ∈ (0, 1/2) and ε′ ∈ (0, ε) such that

Pr (i ≤ (1/2 − ε′) · n − (k − 1)) > c + Pr (i > (1/2 + ε) · n) (1)

for some c = Ω
((

n · p1 · γ(ε)3(k−1)/ ln n
)1/2k

)
. If a probability distribution

�p satisfies this condition, we call it “well-behaved”. Formally, we show the
following.

Theorem 11. For a formula F drawn from F(m,n, �p, k) with a well-behaved
probability distribution �p with parameters ε and ε′, and m ≥ C lnn

γ(ε)3(k−1)p1
, where

k ≥ 3 is a constant and C > 0 is some sufficiently large constant, Algorithm 1
succeeds with high probability.

Note that the choice of ε in the well-behavedness condition influences the
value of γ(ε) in the number of clauses necessary for the algorithm to succeed. It
generally holds that the more uniform the probability distribution is, the smaller
we can choose ε and a smaller ε results in a smaller lower bound on the number
of clauses.

We call an assignment α ∈ {0, 1}n good if it satisfies all clauses or if there
is an assignment β with |{i : αi
= βi}| = 1 and β satisfies strictly more clauses
than α. We will show that a. a. s. all assignments that Algorithm 1 finds are
good. Thus, the assignment it returns must be satisfying. To this end we consider
assignments at distances (1/2+ε′)·n and (1/2+ε)·n from the planted assignment
α�. Here, ε′ and ε are the parameters of the well-behavedness condition with
0 < ε′ < ε < 1/2. There are five ingredients to the proof: (1) two technical
lemmas, Lemmas 6 and 7, (2) Lemma 8, which states that all assignments within
distance (1/2+ε) ·n of α� are good, (3) Lemma 9, which states that the random
starting assignment is at distance at most (1/2 + ε′) · n from α�, (4) Lemma 10,
which states that any assignment at distance (1/2 + ε′) · n from α� satisfies at
least as many clauses as any assignment at distance (1/2 + ε) · n from α�, and
(5) Theorem 11, which puts these ingredients together.

194 T. Friedrich et al.

Fig. 1. Sketch of the assignment space with the planted assignment α� and the prop-
erties we show. (2) Lemma 8: All assignments within distance (1/2 + ε) · n of α� are
good, (3) Lemma 9: The random starting assignment is at distance at most (1/2+ε′)·n
from α�, (4) Lemma 10: any assignment at distance (1/2 + ε′) · n from α� satisfies at
least as many clauses as any assignment at distance (1/2 + ε) · n from α�

The argument now works as follows. Since the local search algorithm always
picks an assignment that strictly increases the number of satisfied clauses, (4)
implies that from an assignment at distance (1/2 + ε′) · n, it will never reach
one at distance (1/2+ ε) ·n. Due to (3) the algorithm starts with an assignment
within distance (1/2+ε′) ·n of α�. Thus, all assignments found by the algorithm
must remain within distance (1/2+ε) ·n of α�. Since all assignments within that
distance to α� are good due to (2), all assignments found by the algorithm are
good and the final assignment must be satisfying. Figure 1 visualizes the idea of
the proof. Furthermore, Corollary 12 shows that some natural probability dis-
tributions are well-behaved for certain constants ε, ε′, which result in a constant
γ(ε). For instances of non-uniform planted k-SAT with these input distributions
Algorithm 1 already works for logarithmic densities.

The efficiency of the greedy algorithm depends on the probability of sampling
clauses over certain subsets of variables. We capture the probability of sampling
a certain subset of variables in the following definition.

Definition 5. Given any index set I ⊆ [n], let Pl(I) = {J ⊆ I : |J | = l}
denote the cardinality-l elements of the power set of I and define Ql(I) :=∑

J∈Pl(I)

∏
j∈J pj to be the probability of selecting l elements of I over �p.

Ql(I) is the probability of choosing l variables with indices only from I. Note
that Ql(I) ≥ Ql′(I) for l ≤ l′. We want to lower-bound the probability Ql(I) for
|I| ≥ (1/2−ε) ·n. In the uniform planted model a lower bound would be roughly
(1/2 − ε)l, where 0 < ε < 1/2 is a constant. However, in our setting, where
variable probabilities are non-uniform, Ql(I) depends on the total probability
mass of the (1/2 − ε) · n − (l − 1) least probable variables. We underestimate
and capture this probability mass in the parameter γ(ε) = Pr(i ≤ (1/2 − ε) ·
n− (k − 1)). The following lemma now provides us with a lower bound on Ql(I)
depending on γ(ε).

Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 195

Lemma 6. If γ(ε) > 0 for some constant 0 < ε < 1/2, then for any index set I

with |I| ≥ (1/2 − ε) · n and any natural number l ≤ k, we have Ql(I) ≥ γ(ε)l

l! .

Proof. We can express Ql(I) as the following nested sum

Ql(I) =
1
l!

∑
i1∈I

∑
i2∈I\{i1}

. . .
∑

il∈I\{i1,...,il−1}

l∏
j=1

pij

=
1
l!

∑
i1∈I

pi1

∑
i2∈I\{i1}

pi2 . . .
∑

il∈I\{i1,...,il−1}
pil

.

This sum essentially captures the choices of elements we have for each term
in Ql(I), where ij is the j-th chosen element. Since we only forbid repetitions
of elements, the j-th element can be anything from I \ {i1, i2, . . . , ij−1}. Since
|I| ≥ (1/2− ε) ·n, we can always choose from at least (1/2− ε) ·n− (l −1) many
elements. It holds that

Ql(I) ≥ 1
l!

⎛
⎝(1/2−ε)·n−(l−1)∑

i=1

pi

⎞
⎠

l

=
1
l!

Pr(i ≤ (1/2 − ε) · n − (l − 1))l ≥ γ(ε)l

l!
.

as we assume the pi to be in ascending order. �

The following technical lemma bounds the probability of making a random

clause satisfied or unsatisfied by decreasing the Hamming distance to the planted
solution. These bounds especially hold if the distance is decreased by only one,
i. e. we flip the assignment of a single variable. The statements of this lemma
will be used in order to show that assignments close to the planted solution are
good.

Lemma 7. Fix an assignment α ∈ {0, 1}n at Hamming distance d(α, α�) <
(1/2+ε)·n from the planted solution. For any assignment β with {i : αi = α�

i } ⊆
{i : βi = α�

i }, denote παβ as the probability over F(n,m, �p, k) that a clause is
false under α and true under β. Analogously, we let πβα denote the probability
that a clause is false under β and true under α. With I = {i : αi
= βi ∧βi = α�

i }
it holds that

1. πβα ≤ (1 − γ(ε)k−1

(k−1)!) · παβ, and

2. παβ ≥ k·γ(ε)k−1·|I|·p1
2k−1

.

Proof. In addition to I, we will denote the set J := {i : αi = α�
i }. Note that

|I| = d(α, β) ≤ d(α, α�) and that d(α, α�) = n−|J |. A clause changes from false
to true between α and β if it (1) contains any variable indexed in I, and (2) the
literals in the clause are set such that it evaluates to false under x. Note that the
first condition implies α
= β and α
= α�. This is necessary in order for a clause

196 T. Friedrich et al.

to evaluate to false under α and to evaluate differently under β. The probability
for these events to occur is

παβ =
k!

2k − 1

k∑
�=1

Q�(I) · Qk−�([n] \ I)

We have the same for πβα. Again, the clause must contain a variable from
I for α and β to be different and this time the literals must evaluate to false
under β. Additionally, we must take care that clauses that are false under α�

are not allowed. In particular, if a clause contains only variables from I ∪ J , i. e.
only variables where β and α� do not differ, then the clause cannot evaluate to
false under β. Thus, we must exclude such clauses from the probability mass. In
particular,

πβα =
k!

2k − 1

k∑
�=1

Q�(I) · (Qk−�([n] \ I) − Qk−�(J))

≤ k!
2k − 1

k∑
�=1

Q�(I)Qk−�([n] \ I) − k!
2k − 1

k∑
�=1

Q�(I)Qk−�([n] \ I)Qk−�(J)

≤
(

1 − γk−1

(k − 1)!

)
παβ .

The final inequality comes from Lemma 6 and the fact that |J | = n−d(α, α�) ≥
(1/2 − ε) · n, which allows us to bound Qk−�(J) ≥ Qk−1(J) ≥ γ(ε)k−1

(k−1)! .
The second statement holds since

παβ ≥ k!
2k − 1

Q1(I) · Qk−1([n] \ I) =
k!

2k − 1

∑
i∈I

pi · Qk−1([n] \ I)

≥ k! · |I| · p1
2k − 1

· Qk−1([n] \ I) ≥ k · γ(ε)k−1 · |I| · p1
2k − 1

.

The final inequality comes from Lemma 6 and the fact that |[n] \ I| = n −
d(α, β) ≥ (1/2 − ε) · n. �

We will now show that w. h. p. assignments close to the planted assignment
α� are good. This is the second ingredient of our argument. Remember that we
call an assignment α ∈ {0, 1}n good if it satisfies all clauses or if there is an
assignment β at distance one which satisfies strictly more clauses.

Lemma 8. Let F be a formula drawn from F(m,n, �p, k), let ε ∈ (0, 1/2) be a
constant, and let m ≥ C lnn

γ(ε)3(k−1)p1
, where k ≥ 3 is a constant and C > 0 is some

sufficiently large constant. Then all assignments α within distance (1/2 + ε) · n
of the planted assignment α� are good with high probability.

Proof. Fix an assignment α with d(α, α�) < (1/2 + ε) · n. Denote the random
variable Xij that indicates that the j-th clause is false under α, but becomes

Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 197

true by flipping the i-th variable. Similarly, denote as Yij the random variable
that indicates that the j-th clause is true under α but becomes false by flipping
the i-th variable. Define X =

∑
i:αi �=α�

i

∑m
j=1 Xij and Y =

∑
i:αi �=α�

i

∑m
j=1 Yij .

By Lemma 7, E[Xij] = παβ and E[Yij] = πβα, where α and β differ only on
I = {i}. Thus, E[Y] ≤ (1 − γ(ε)k−1

(k−1)!)E[X].
We want to use Chernoff bounds to show that the values of X and Y are

concentrated around their expected values. First, we argue why Chernoff bounds
can be applied. X and Y only consider assignments β that differ from α in one
variable and are closer to α�. Let Xj =

∑
i : αi �=α�

i
Xij and Yj =

∑
i : αi �=α�

i
Yij .

Xj denotes the number of those assignments, which make a clause true that
is false under α, while Yj denotes the number of those assignments that make
a clause false that is true under α. It holds that Yj ≤ 1. If a clause is false
under one assignment β, it must be true under all assignments that differ on
that clause’s variables. We know that the clause is true under α and since all
other assignments β′
= β we consider differ from α in exactly one variable,
as soon as they differ from α on one of the clause’s variables, they must also
differ from β on the clause’s variables. Thus, the clause must be satisfiable on
all assignments β
= β′ we consider. Yj ≤ 1 implies that we can use a Chernoff
bound on Y =

∑m
j=1 Yj , since the Yj are independent random variables with

values in [0, 1]. Similarly, Xj ≤ k, because if a clause is false under α, then
all assignments that differ on that clause’s variables will make the clause true.
Thus, this holds for all assignments β that differ on one of the clause’s variables.
However, since we only consider those assignments β that differ from α by at
most one variable, there are at most k such assignments, one for each variable of
the k-clause. Xj ≤ k implies that we can use a Chernoff bound after resizing the
variables Xj with a factor of 1/k. This yields random variables whose values are
independently distributed in [0, 1]. However, it means that the expected value
in the exponent also has to be multiplied with 1/k.

Applying the Chernoff bounds as stated, for any δ ∈ (0, 1), we have Pr(X ≤
(1 − δ)E[X]) ≤ e−δ2E[X]/(2·k). For Y we choose δ′ such that (1 + δ′)E[Y] =
(1 + δ)(1 − γ(ε)k−1

(k−1)!)E[X]. Then, δ′ ≥ δ and δ′ · E[Y] ≥ δ · (1 − γ(ε)k−1

(k−1)!)E[X]. We
can now apply a Chernoff bound to get

Pr (Y ≥ (1 + δ′)E[Y]) ≤ e−δ′2E[Y]/(2+δ′) ≤ e−δ2(1− γ(ε)k−1

(k−1)!)E[X]/(2+δ).

Taking a union bound, the probability of event {X ≤ (1 − δ)E[X]} ∪ {Y ≥
(1+δ)

(
1 − γ(ε)k−1

(k−1)!

)
E[X]} is at most exp(−δ2

(
1 − γ(ε)k−1

(k−1)!

)
E[X]/(k ·((2+δ))+

ln 2). Setting δ = κ/(2 − κ) with κ = γ(ε)k−1

(k−1)! , the event {X > Y } occurs with
probability at least

1 − exp
(

− (1 − κ) · κ2

k · (2 − κ)(4 − κ)
E[X] + ln 2

)
. (2)

Remember that X only considers assignments which differ from α in one vari-
able αi
= α�

i . Hence, |I| = 1 for α and any such assignment β. Thus, according
to Lemma 7,

198 T. Friedrich et al.

E[X] ≥ m · d(α, α�) · k · γ(ε)k−1 · p1
2k − 1

= m · d(α, α�) · k! · κ · p1
2k − 1

.

Substituting this into Eq. (2) and using 0 ≤ κ = γ(ε)k−1

(k−1)! ≤ 1
(k−1)! we get

(1−κ)·κ3

(2−κ)(4−κ) ≥ (1− 1/(k − 1)!) ·γ(ε)3k−3/(2 · (k − 1)!)3 = Ω(γ(ε)3(k−1)). Thus, the
event {X > Y } occurs for assignment α with probability at least

1 − exp
(
−Ω

(
γ(ε)3(k−1) · p1 · d(α, α�) · m

))
.

This means the average count of clauses that go from false to true minus the
count that go from true to false by flipping assignments in {i : αi
= α�

i } is
positive, and we can conclude that there exists at least one such flip that increases
the total count of satisfied clauses. Hence, α is good with the above probability.

Taking a simple union bound over all
(
n
d

) ≤ nd assignments α at distance
d = d(α, α�), all assignments at this distance are good with probability at least

1 − nd exp
(
−Ω

(
γ(ε)3(k−1) · p1 · d · m

))
≥ 1 − exp(−Ω(d log n)) = 1 − n−C′d

for some constant C ′ by choosing m ≥ C·lnn
γ(ε)3(k−1)·p1

with constant C large enough.
A subsequent union bound over all such radius-d spheres yields that all assign-
ments within distance (1/2+ε)·n of the planted solution are good with probabil-
ity at least 1−∑�(1/2+ε)n�

d=1 n−C′d ≥ 1− 1/
(
nC′ − 1

)
, i. e. with high probability.

�

Now we are going to show the third ingredient of our argument, i. e. that

the random starting assignment is close to the planted assignment with high
probability.

Lemma 9. For any constant ε′ ∈ (0, 1/2) the random starting assignment is
within distance at most (1/2 + ε′) · n of the planted assignment α� with high
probability.

Proof. Since the starting assignment α = (α1, α2, . . . , αn) is generated uniformly
at random, each αi differs from α�

i with probability 1/2 independently at random.
Let Xi denote the random variable indicating that αi
= α�

i and let X =
∑n

i=1 Xi.
We can see that d(α, α�) = X. It holds that E[X] = n/2 and

Pr(d(α, α�) > (1/2 + ε′) · n) = Pr(X > (1 + 2 · ε′) · E[X]) ≤ e− 2·ε′2·n
2+2·ε′

due to a Chernoff bound. �

The last ingredient of our argument is to show that any assignment β at

distance (1/2+ε′) ·n from α� satisfies at least as many clauses as any assignment
α at distance (1/2 + ε) · n from α�. In order to show this result, we require the
variable probability distribution of our random model to be well-behaved. For β

Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 199

and α well-behavedness essentially states that it is more probable to randomly
sample a variable on which α� and β agree than it is to sample a variable on
which α� and α agree. For a uniform probability distribution this is trivially
true, since the number of those variables is much larger in β than it is in α due
to β’s smaller Hamming distance to α�. However, for a non-uniform probability
distribution, the property must be ensured. We will later see in Corollary 12
that uniform, power-law and geometric distributions are well-behaved.

Lemma 10. Let k ≥ 3 be a constant and let �p be a probability distribution
that is well-behaved for constants ε ∈ (0, 1/2) and ε′ ∈ (0, ε). Further, let m ≥

C lnn
γ(ε)3(k−1)p1

for a sufficiently large constant C > 0, and let F be a formula drawn
from F(m,n, �p, k). Then with high probability any assignment α with d(α, α�) =
(1/2 + ε) · n satisfies at most as many clauses of F as any assignment β with
d(β, α�) = (1/2 + ε′) · n.

Proof Sketch. The idea of the proof is to lower-bound the difference παβ − πβα,
where παβ is the probability that a random clause is not satisfied by α and
satisfied by β. This difference depends on the probabilites of variables in I,
the set of variables on which α and β differ. More precisely, it depends on the
difference between the probability of sampling a variable from I for which α
and α� disagree and the probability of sampling a variable from I for which α
and α� agree. In the worst case the prior set of variables are those of minimal
probabilities, while the latter are those of maximal probabilities according to
the probability distribution �p. If we pessimistically assume this, the difference is
minimized if I is of maximum size. Then, there are (1/2 − ε′) · n variables in I
on which α and α� disagree and (1/2− ε) ·n variables on which the assignments
agree. However, the difference of the probabilites to sample those variables is
lower bounded by c = Ω

((
n · p1 · γ(ε)3(k−1)/ ln n

)1/2k
)

by the well-behavedness
of �p (Eq. 1).

By using a Chernoff bound, we can now show that the probability that α
satisfies at least as many clauses as β is upper bounded by ∼ exp(−m · c2k) ∼
2−Ω(n). Via a union bound we get that the probability is still exponentially small
in n for all pairs of assignments α and β if C is sufficiently large. �

We can now put the ingredients of our argument together to get our main
theorem.

Theorem 11. For a formula F drawn from F(m,n, �p, k) with a well-behaved
probability distribution �p with parameters ε and ε′, and m ≥ C lnn

γ(ε)3(k−1)p1
, where

k ≥ 3 is a constant and C > 0 is some sufficiently large constant, Algorithm 1
succeeds with high probability.

Proof. All statements in the proof hold with high probability. Lemma 9 tells us
that the random starting assignment is within distance (1/2+ε′)·n of the planted
assignment α�. The local search algorithm now considers assignments within
Hamming distance one of the currently best assignment found. Furthermore,

200 T. Friedrich et al.

the algorithm only accepts a new best assignment if it satisfies strictly more
clauses than the previous best assignment. Thus, to reach an assignment α at
distance (1/2 + ε) · n from α�, it first has to accept an assignment β at distance
(1/2+ ε′) ·n from α� and α has to satisfy strictly more clauses than β. However,
Lemma 10 tells us that this is not possible. Therefore, any assignment found by
the algorithm has to be within distance (1/2 + ε) · n of α�. Lemma 8 states that
all those assignments are good. Thus, all assignments found by the algorithm
are good and the final assignment must be satisfying. �

The γ(ε) term in our proofs is a penalty incurred from having a potentially
pathologically “light” tail in the variable distribution. If γ(ε) = o(1), this means
that most of the probability mass is concentrated around the (1/2 + ε) · n most
frequent variables, and the tail vanishes very quickly. In some sense, if the tail
is at least as heavy as the uniform distribution, then γ = Θ(1). This is the case
for most proposed classes of non-uniform variable distributions, as we formalize
in Corollary 12.

The well-behavedness of the variable distribution intuitively states something
similar. It also requires that not too much probability mass is concentrated
around the most frequent variables. Note that ε denotes the same value in both
requirements. We can see that increasing ε and decreasing ε′ makes it easier to
satisfy this prerequisite. However, increasing ε decreases γ(ε) and thus increases
the lower bound on the clause-variable ratio for which our main theorem holds.

Theorem 11 implies that the greedy algorithm already works at some log-
arithmic density if the variables of the planted model follow three well-known
probability distributions: uniform, power-law, or geometric. We show this in the
following corollary.

Corollary 12. The greedy algorithm is successful over a 1 − o(1) fraction of
planted
1. uniform random k-SAT formulas,
2. power-law random k-SAT formulas with power-law exponent β > 2,
3. geometric random k-SAT formulas2 with a base b > 1,

with m
n ≥ C ln n, for constant k ≥ 3 and a sufficiently large constant C.

Proof. The statement follows by application of Theorem 11, so it suffices to verify
the minimum variable probability p1, the γ term, and the well-behavedness of
the distribution for each of the stated models.

1. Uniform: In the uniform k-SAT distribution, p1 = pi = 1/n for all i ∈ [n].
Therefore, γ(ε) = (1/2 − ε) − (k − 1)/n = Θ(1) and

Pr (i ≤ (1/2 − ε′) · n − (k − 1)) = (1/2 − ε′) − (k − 1)/n

≥ c + (1/2 − ε) = c + Pr (i > (1/2 + ε) · n)

for c = ε− ε′ − (k − 1)/n. Thus, Algorithm 1 succeeds w. h. p. for clause-variable
ratios m

n ≥ C · lnn
n·γ(ε)3(k−1)·p1

= C · ln n for some sufficiently large constant C > 0.

2 We refer to the geometric degree-distribution model introduced by Ansótegui et
al. [6].

Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 201

2. Power law: For the power-law distribution, p1 = (1/
∑n

i=1

(
n
i

) 1
β−1) = Ω(1/n)

and pn = Θ(n−(β−2)/(β−1)). Thus, γ(ε) = Pr(i ≤ (1/2 − ε) · n − (k − 1)) = Θ(1),
since Pr(i ≤ (1/2 − ε) · n − (k − 1)) ≥ (1/2 − ε) · n · p1 − (k − 1) · pn = Ω(1).
In order to validate the well-behavedness of the distribution, we can estimate
Pr(i > (1/2 + ε) · n) ≤ (1/2 − ε)(β−2)/(β−1) and, equivalently

Pr(i ≤ (1/2 − ε′) · n − (k − 1)) = 1 − Pr(i > (1/2 − ε′) · n − (k − 1))

≥ 1 − (1/2 + ε′ + (k − 1)/n)(β−2)/(β−1).

Thus, for any ε′ ∈ (0, 1/2) we can choose ε > max (ε′, ε0), where ε0 is the solution
of

1 − (1/2 + ε′ + (k − 1)/n)(β−2)/(β−1) = (1/2 − ε)(β−2)/(β−1).

Note that this lower bound on ε is always in (0, 1/2) and thus satisfies our
requirements. As in the uniform case, this results in a lower bound of m

n ≥ C ·ln n
for some sufficiently large constant C > 0 in order for Algorithm 1 to succeed
with high probability.

3. Geometric: In geometric random k-SAT, pi = 1−b−1/n

b−1 ·bi/n. It now holds that∑(1/2−ε)n
i=1 pi = b1/2−ε−1

b−1 and thus γ(ε) = b1/2−ε−(k−1)/n−1
b−1 = Θ(1). Furthermore,

p1 =
b1/n − 1

b − 1
=

eln(b)/n − 1
b − 1

≥ 1 + ln(b)/n − 1
b − 1

=
ln(b)
b − 1

· 1
n

.

For the requirement from Eq. 1, we get

Pr(i > (1/2 + ε) · n) = 1 − Pr(i ≤ (1/2 + ε) · n) = 1 − b1/2+ε − 1
b − 1

.

This means, we need to ensure b1/2−ε′−(k−1)/n−1
b−1 > 1 − b1/2+ε−1

b−1 or, equivalently,
b1/2+ε > b+1− b1/2−ε′−(k−1)/n. Note that b1/2−ε′−(k−1)/n > 1. Thus, the right-
hand side is a constant smaller than b. If we make ε ∈ (0, 1/2) sufficiently large,
we can make the left-hand side by a constant bigger than the right-hand side.
This is sufficient for the requirement from inequality 1. Again, we get that the
greedy algorithm succeeds w. h. p. for m

n ≥ C · ln n and C > 0 sufficiently large.
�

4 Relationship Between Planted and Filtered Instances

One interesting question is if the behavior of the greedy algorithm is an artifact
of the instances being planted or if the same behavior emerges for satisfiable
instances of the corresponding non-planted model. Thus, we now look at random
k-SAT models with independent signs and their corresponding planted models.
We show the following theorem, which is a generalization of a result by Doerr,
Neumann, and Sutton [18].

202 T. Friedrich et al.

Theorem 13. Let P = F(n,m, �pn, k) be a non-uniform planted k-SAT model
and let N be a non-uniform random k-SAT model on the same input parameters.
Then for m ≥ (1+ε)·(2k−1)

p1
· ln n with any constant ε > 0 and for any event E it

holds that PrF∼N (E | X(F) ≥ 1) = PrF∼P (E) ± o(1).

Proof Sketch. The proof follows the same lines as the one in [18]. We first show
that for a random k-SAT model with independent signs and its planted equiva-
lent the conditional probability to sample a certain formula is the same in both
models if we condition on there being exactly one satisfying assignment. Then,
we show that the probability to have exactly one satisfying assignment in the
filtered model (conditioned on formulas being satisfiable) is at least as high as
in the planted model. These two statements already imply a total variation dis-
tance that tends to zero as soon as the probability to have a unique satisfying
assignment tends to one in the planted model. The last step of the proof consists
of finding a number of clauses m for which formulas generated with non-uniform
planted k-SAT a. a. s. only have one satisfying assignment. A first oder bound
shows that this is case if m ≥ (1+ε)·(2k−1)

p1
· ln n for any constant ε > 0. �

Theorem 13 asserts that Theorem 11 also holds for the filtered non-uniform
random k-SAT model. That means, for satisfiable formulas drawn from the non-
uniform random k-SAT model the greedy algorithm also succeeds with proba-
bility 1 − o(1).

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

m/n

Fr
ac

tio
n
so

lv
ed

n = 100
n = 200
n = 500

10 11 12 13 14 15 16 17 18

0.5
0.6
0.7
0.8
0.9
1

(5/2) lnn

Fig. 2. Fraction of formulas solved by Algorithm 1 on the planted uniform 3-SAT
distribution as a function of constraint density m/n for various n.

5 Experiments

We performed a number of experiments for the example distributions we consider
in Corollary 12 to argue that the logarithmic lower bound in constraint density

Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 203

for Algorithm 1 is likely to be tight asymptotically, and that the leading con-
stants are small. For the uniform planted 3-SAT model, we sampled formulas at
n ∈ {100, 200, 500} with densities 1 ≤ m/n ≤ n2/2. For each n and m, we sam-
pled 100 formulas and determined whether they could be solved by the greedy
algorithm. We report the results as the fraction of formulas solved depending on
the constraint density in Fig. 2.

As expected, above constraint densities of roughly Θ(log n), the proportion
of formulas solved by Algorithm 1 quickly goes to one. We see success rates of
70–90% already at (5/2) ln n for each n, but a more detailed analysis would be
needed to get an accurate estimate for the true leading constant.

Non-uniform distributions typically have more parameters, and we are inter-
ested in the influence of these parameters on the success of the greedy algorithm.
In particular, other than the minimum variable probability p1, and the γ term for
tail lightness, no other distribution parameter appears in our bound. To quantify
the effect of constraint density and distribution parameter on geometric random
3-SAT and power-law random 3-SAT, we sampled 100 formulas for each value
of the parameters across a range. We measured the proportion of these formulas
that were solved by the greedy algorithm, and display the results in heat maps
in Fig. 3. On the left, the fraction solved is shown as a function of density and
base parameter b for the geometric distribution. On the right, the fraction solved
is shown as a function of density and power law exponent β for power-law for-
mulas. As reflected in our theoretical bounds, for the most part there is little
influence of the distribution parameters b and β on the constraint density above
which Algorithm 1 is successful. In the power law model, there appears to be
a regime of the power law exponent β near 2 that seems to be influencing the
lower bound. This might be due to hidden constant factors which depend on the
power law exponent β. However, it is not clear how or whether this effect scales
with n, and this is an avenue for future work. Of course, we cannot claim that
our lower bound on the constraint density is tight for all possible well-behaved
distributions. As we stated before, our lower bound only considers the smallest

e lnn

50

2

4

m/n

b

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n
so

lv
ed

e lnn

50

2

4

m/n

β

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n
so

lv
ed

Fig. 3. Fraction of formulas solved by Algorithm 1 on geometric 3-SAT distribution as
a function of constraint density m/n and base parameter b (left) and power law 3-SAT
distribution as a function of constraint density m/n and power law exponent β (right)
for n = 200 variables.

204 T. Friedrich et al.

variable probability p1, and the γ term, whereas the actual bound might have a
more intricate relation to other distribution parameters.

6 Conclusions

Non-uniform k-SAT models have gained increased attention in recent years. With
this paper, we contribute to the theoretical understanding of SAT problems with
such non-uniform distributions by studying a greedy local search algorithm. We
have shown that this algorithm is highly effective on planted SAT formulas drawn
from k-SAT models realized by choosing variables from an arbitrary variable
distribution, provided that the clauses are generated independently and that
the variable distribution is not too skewed. Models with these properties include
geometric and power-law random k-SAT [6].

Our experimental results reveal that for geometric and power-law distribu-
tions the exact parameters of the variable degree distribution have little influ-
ence on the success of the local search algorithm, at least in the planted setting.
Moreover, our rigorous lower bounds on the clause-variable ratio necessary for
the algorithm to succeed with high probability are asymptotically the same as for
uniform planted k-SAT. This is somewhat surprising, as for state-of-the-art SAT
solvers it is typically assumed that the non-uniform distributions we consider
make instances easier to solve [5].

We also show that there is a correspondence between non-uniform planted k-
SAT distributions and their filtered analogues, i.e., the non-planted distribution
conditioned on satisfiability. We show that for large enough clause-variable ratios
the total variation distance for events in filtered and their corresponding planted
models vanishes in the limit. This result actually holds for all random k-SAT
models, where the signs of literals are chosen independently at random without
bias. It allows us to transfer our results for the greedy local search algorithm to
filtered non-uniform models.

References

1. Achlioptas, D., Jia, H., Moore, C.: Hiding satisfying assignments: two are better
than one. J. Art. Int. Res. 24 (2005). https://doi.org/10.1613/jair.1681

2. Achlioptas, D., Kirousis, L.M., Kranakis, E., Krizanc, D.: Rigorous results for
random (2+p)-sat. Theor. Comput. Sci. 265(1–2), 109–129 (2001)

3. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: The fractal dimension of
SAT formulas. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS
(LNAI), vol. 8562, pp. 107–121. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08587-6 8

4. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: On the classification of
industrial SAT families. In: Armengol, E., Boixader, D., Grimaldo, F. (eds.) 18th
International Conference Catalan Association for Artificial Intelligence. Frontiers
in Artificial Intelligence and Applications, vol. 277, pp. 163–172. IOS Press (2015).
https://doi.org/10.3233/978-1-61499-578-4-163

https://doi.org/10.1613/jair.1681
https://doi.org/10.1007/978-3-319-08587-6_8
https://doi.org/10.1007/978-3-319-08587-6_8
https://doi.org/10.3233/978-1-61499-578-4-163

Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily 205

5. Ansótegui, C., Bonet, M.L., Levy, J.: On the structure of industrial SAT instances.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 127–141. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04244-7 13

6. Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT
instances. In: Boutilier, C. (ed.) 21st International Joint Conference Artificial Intel-
ligence (IJCAI), pp. 387–392 (2009). http://ijcai.org/Proceedings/09/Papers/072.
pdf

7. Berthet, Q.: Optimal testing for planted satisfiability problems. CoRR
abs/1401.2205http://arxiv.org/abs/1401.2205 (2014)

8. Bläsius, T., Friedrich, T., Sutton, A.M.: On the empirical time complexity of scale-
free 3-SAT at the phase transition. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 117–134. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 7

9. Boufkhad, Y., Dubois, O., Interian, Y., Selman, B.: Regular random k-sat: Prop-
erties of balanced formulas. J. Autom. Reasoning 35(1–3), 181–200 (2005)

10. Bradonjic, M., Perkins, W.: On sharp thresholds in random geometric graphs.
In: Jansen, K., Rolim, J.D.P., Devanur, N.R., Moore, C. (eds.) Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2014. LIPIcs, vol. 28, pp. 500–514. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2014). https://doi.org/10.4230/
LIPIcs.APPROX-RANDOM.2014.500

11. Bulatov, A.A., Skvortsov, E.S.: Phase transition for local search on planted SAT.
In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9235, pp. 175–186. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48054-0 15

12. Ansótegui, C., Maria Luisa Bonet, J.L.: Scale-free random SAT instances. CoRR
abs/1708.06805http://arxiv.org/abs/1708.06805 (2017)

13. Chao, M., Franco, J.V.: Probabilistic analysis of two heuristics for the 3-
satisfiability problem. SIAM J. Comput. 15(4), 1106–1118 (1986)

14. Chao, M., Franco, J.V.: Probabilistic analysis of a generalization of the unit-clause
literal selection heuristics for the k satisfiability problem. Inf. Sci. 51(3), 289–314
(1990)

15. Chvátal, V., Reed, B.A.: Mick gets some (the odds are on his side). In: 33rd Sym-
posium Foundations of Computer Science (FOCS), pp. 620–627. IEEE Computer
Society (1992). https://doi.org/10.1109/SFCS.1992.267789

16. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4),
759–768 (1988)

17. Coja-Oghlan, A., Wormald, N.: The number of satisfying assignments of random
regular k-SAT formulas. Comb. Prob. Comput. 27(4), 496–530 (2018)

18. Doerr, B., Neumann, F., Sutton, A.M.: Time complexity analysis of evolutionary
algorithms on random satisfiable k-CNF formulas. Algorithmica 78(2), 561–586
(2017)

19. Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of message passing
algorithms for some satisfiability problems. Theor. Comput. 9, 617–651 (2013)

20. Feldman, V., Perkins, W., Vempala, S.S.: On the complexity of random satisfiabil-
ity problems with planted solutions. SIAM J. Comput. 47(4), 1294–1338 (2018)

21. Flaxman, A.: A spectral technique for random satisfiable 3CNF formulas. Random
Struct. Algorithms 32(4), 519–534 (2008)

22. Flaxman, A.D.: Average-case analysis for combinatorial problems. Ph.D. thesis,
Carnegie Mellon University (May 2006)

https://doi.org/10.1007/978-3-642-04244-7_13
http://ijcai.org/Proceedings/09/Papers/072.pdf
http://ijcai.org/Proceedings/09/Papers/072.pdf
http://arxiv.org/abs/1401.2205
https://doi.org/10.1007/978-3-030-17462-0_7
https://doi.org/10.1007/978-3-030-17462-0_7
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.500
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.500
https://doi.org/10.1007/978-3-662-48054-0_15
https://doi.org/10.1007/978-3-662-48054-0_15
http://arxiv.org/abs/1708.06805
https://doi.org/10.1109/SFCS.1992.267789

206 T. Friedrich et al.

23. Franco, J., Paull, M.C.: Probabilistic analysis of the davis putnam procedure for
solving the satisfiability problem. Discrete Appl. Math. 5(1), 77–87 (1983)

24. Friedgut, E.: Sharp thresholds of graph properties, and the k-SAT problem. J.
Amer. Math. Soc. 12(4), 1017–1054 (1999)

25. Friedrich, T., Krohmer, A., Rothenberger, R., Sauerwald, T., Sutton, A.M.: Bounds
on the satisfiability threshold for power law distributed random SAT. In: Pruhs,
K., Sohler, C. (eds.) 25th European Symposium on Algorithms (ESA). LIPIcs, vol.
87, pp. 37:1–37:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017).
https://doi.org/10.4230/LIPIcs.ESA.2017.37

26. Friedrich, T., Rothenberger, R.: Sharpness of the satisfiability threshold for non-
uniform random k-SAT. In: Kraus, S. (ed.) 28th International Joint Conference
Artificial Intelligence (IJCAI), pp. 6151–6155. ijcai.org (2019). https://doi.org/10.
24963/ijcai.2019/853

27. Giráldez-Cru, J., Levy, J.: Generating SAT instances with community structure.
Artif. Intell. 238, 119–134 (2016)

28. Giráldez-Cru, J., Levy, J.: Locality in random SAT instances. In: Sierra, C. (ed.)
26th International Joint Conference Artificial Intelligence (IJCAI), pp. 638–644.
ijcai.org (2017). https://doi.org/10.24963/ijcai.2017/89

29. Hu, Y., Luo, W., Wang, J.: Community-based 3-sat formulas with a predefined
solution. CoRR abs/1902.09706, http://arxiv.org/abs/1902.09706 (2019)

30. Koutsoupias, E., Papadimitriou, C.H.: On the greedy algorithm for satisfiability.
Inf. Process. Lett. 43(1), 53–55 (1992)

31. Krivelevich, M., Vilenchik, D.: Solving random satisfiable 3CNF formulas in
expected polynomial time. In: 17th Symposium Discrete Algorithms (SODA), pp.
454–463. ACM Press (2006). http://dl.acm.org/citation.cfm?id=1109557.1109608

32. Mitchell, D.G., Selman, B., Levesque, H.J.: Hard and easy distributions of SAT
problems. In: Swartout, W.R. (ed.) 10th Conference Artificial Intelligence (AAAI),
pp. 459–465. AAAI Press/The MIT Press (1992). http://www.aaai.org/Library/
AAAI/1992/aaai92-071.php

33. Omelchenko, O., Bulatov, A.A.: Satisfiability threshold for power law random 2-
SAT in configuration model. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS,
vol. 11628, pp. 53–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
24258-9 4

34. Rathi, V., Aurell, E., Rasmussen, L., Skoglund, M.: Bounds on threshold of regular
random k -SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp.
264–277. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-
7 22

35. Selman, B., Kirkpatrick, S.: Critical behavior in the computational cost of satisfi-
ability testing. Artif. Intell. 81(1–2), 273–295 (1996)

https://doi.org/10.4230/LIPIcs.ESA.2017.37
https://doi.org/10.24963/ijcai.2019/853
https://doi.org/10.24963/ijcai.2019/853
https://doi.org/10.24963/ijcai.2017/89
http://arxiv.org/abs/1902.09706
http://dl.acm.org/citation.cfm?id=1109557.1109608
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
https://doi.org/10.1007/978-3-030-24258-9_4
https://doi.org/10.1007/978-3-030-24258-9_4
https://doi.org/10.1007/978-3-642-14186-7_22
https://doi.org/10.1007/978-3-642-14186-7_22

MCP: Capturing Big Data by
Satisfiability (Tool Description)

Miki Hermann1 and Gernot Salzer2(B)

1 LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris,
91120 Palaiseau, France

hermann@lix.polytechnique.fr
2 Technische Universität Wien, Vienna, Austria

gernot.salzer@tuwien.ac.at

Abstract. Experimental data is often given as bit vectors, with vec-
tors corresponding to observations, and coordinates to attributes, with a
bit being true if the corresponding attribute was observed. Observations
are usually grouped, e.g. into positive and negative samples. Among the
essential tasks on such data, we have compression, the construction of
classifiers for assigning new data, and information extraction.

Our system, MCP, approaches these tasks by propositional logic. For
each group of observations, MCP constructs a (usually small) conjunc-
tive formula that is true for the observations of the group, and false
for the others. Depending on the settings, the formula consists of Horn,
dual-Horn, bijunctive or general clauses. To reduce its size, only relevant
subsets of the attributes are considered. The formula is a (lossy) represen-
tation of the original data and generalizes the observations, as it is usually
satisfied by more bit vectors than just the observations. It thus may serve
as a classifier for new data. Moreover, (dual-)Horn clauses, when read as
if-then rules, make dependencies between attributes explicit. They can
be regarded as an explanation for classification decisions.

Keywords: Data classification · Bit vectors · Information extraction ·
Explainable AI · Machine learning

1 Introduction and Related Work

Since several years, computer science applications are challenged by very large
amounts of data, commonly referred to as Big Data, that must be understood,
captured, treated, and transformed. There exist several approaches to cope with
this challenge, mainly from the field of Artificial Intelligence. One of these
approaches is Logical Analysis of Data. This document presents a tool called
MCP, performing logical analysis of big data, producing a propositional for-
mula. The basic idea behind this tool programmed in C++ is to describe a very
large data set by a propositional formula.

Partially developed within the ACCA Project.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 207–215, 2021.
https://doi.org/10.1007/978-3-030-80223-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_14

208 M. Hermann and G. Salzer

Logical Analysis of Data is a part of Machine Learning, which has been
developed by Hammer and his colleagues [5,9]. There also exists another app-
roach through mechanized hypothesis formation, the GUHA Project developed
in Prague by Hájek and his colleagues [12,14].

2 Preliminaries

We recall the main structures of Boolean algebra. A literal is either a variable,
called positive literal, or its negation, called negative literal. A clause is a dis-
junction of literals. A formula in conjunctive normal form is a conjunction of
clauses. A Horn clause is a clause with at most one positive literal. A dual Horn
clause is a clause with at most one negative literal. A bijunctive clause is a clause
consisting of at most two literals. An affine clause is a linear equation of the form
x1 + · · · + xk = b, where xi are variables, + is the exclusive-or operator, and
b ∈ {0, 1} is a Boolean value. A Horn, dual Horn, bijunctive, or affine formula is
a conjunction of only Horn, dual Horn, bijunctive, or affine clauses, respectively.

We will work with vectors, also called tuples, of finite arity over a domain D.
This domain is either Boolean, i.e., D = {0, 1}, or finite, i.e., |D| = n for some
natural number n ≥ 2. Vectors (a1, . . . , ak) of arity k will be shortened to a1 · · · ak

when the elements ai are clear.
Let a = a1 · · · ak, b = b1 · · · bk, and c = c1 · · · ck be Boolean vectors of the

same arity k. There exist different closures of these Boolean vectors.

– Horn closure of a and b is the vector d = d1 · · · dk, such that di = ai ∧ bi;
– Dual Horn closure of a and b is the vector d = d1 · · · dk, such that di = ai∨bi;
– Bijunctive closure of a, b, and c is the vector d = d1 · · · dk, such that ci =

maj(ai, bi, ci), where maj is the associative-commutative majority operator;
– Affine closure of a, b, and c is the vector d = d1 · · · dk, such that di =

ai + bi + ci,where + is the exclusive-or operator in the Boolean ring Z2;

all for each i = 1, . . . , k. Given a set of Boolean vectors S of arity k, we denote
by 〈S〉C the C-closure of S for C being Horn, dual Horn, bijunctive, or affine.
A basic result from universal algebra states that for an arbitrary set of Boolean
vectors S of the same arity k, the C-closure is the set of satisfying assignments
for some C-formula ϕ [3,4].

3 Core of the MCP System

MCP has a modular architecture. It is composed of several modules, which
perform designated tasks. The core of the system is composed of different variants
of the module generating a propositional formula from sets of binary tuples. The
main task of the MCP system, solved by its core modules, is defined as follows:

Problem 1 (MCP Problem). Given two sets of Boolean vectors (tuples) of arity k
over the Boolean domain D = {0, 1}k, representing positive examples T ⊆ D and
negative examples F ⊆ D, compute a Horn, dual Horn, bijunctive, or general
CNF formula ϕ, respectively, such that (1) T |= ϕ and (2) for each f ∈ F , f 	|= ϕ.

MCP: Capturing Big Data by Satisfiability (Tool Description) 209

There are several reasons why we focus on the aforementioned four subcases
of propositional formulas. Horn, dual Horn, bijunctive, and affine formulas are
the four families of Boolean formulas, whose satisfiability problem can be decided
in polynomial time. Horn formulas represent a theoretical background of Prolog
programs. Horn clauses (implications of the form antecedent → consequent)
represent a natural explanation pattern—easy to explain also to a non-expert in
computer science or logic. The posed problem is an instance of PAC-learning.

There are several caveats for this problem we must deal with, namely what
to do if (1) T ∩ F 	= ∅, (2) 〈T 〉C ∩ F 	= ∅, (3) {0, 1}k

� (〈T 〉C ∪ F) 	= ∅. There is
no solution for the first two cases, since we cannot satisfy the basic requirements
of the MCP Problem. The third caveat is solved by means of strategy.

3.1 Strategies for Computing the Closure

Depending on how we want to treat the vectors absent from 〈T 〉C ∪ F , we have
two available strategies, depending on whether we consider the largest or the
smallest closure of the set of positive examples T .

The large strategy, which is the default, computes the largest C-closure
containing T that does not intersect with F . The computed formula ϕ satisfies
the condition f 	|= ϕ for each f ∈ F . The exact strategy computes the smallest
C-closure containing T . It satisfies the conditions 〈T 〉C |= ϕ and f 	|= ϕ for each
f ∈ {0, 1}k

� 〈T 〉C .

3.2 Minimal Section

We want to keep the sets 〈T 〉C and F disjunct on the smallest number of coor-
dinates, to keep the number of variables of the produced formula as small as
possible. Given the sets of vectors 〈T 〉C and F or T and F as binary codes,
composed of codewords over Boolean domain, we want to compute their mini-
mal section, i.e. their restriction to a maximal set of coordinates A, such that
〈T 〉C |A∩F |A = ∅ or T |A∩F |A = ∅. Computing the optimal minimal section is an
NP-complete problem. Therefore we adopt several approximation approaches by
means of direction, always skipping coordinates whose removal would render
the problem unsolvable. Following directions are available:

begin: Prefer coordinates to the left (at the begin) of the codewords by removing
coordinates from the right. This direction is the default.

end: Prefer coordinates to the right (at the end) of the codewords by removing
coordinates from the left.

lowcard: Prefer coordinates with a lower Hamming weight, by removing coor-
dinates with high Hamming weight.

highcard: Prefer coordinates with a higher Hamming weight, by removing coor-
dinates with small Hamming weight.

random: Removing coordinates in random order.

There also exists the nosect option, where no minimal section is computed and
all coordinates considered.

210 M. Hermann and G. Salzer

3.3 Effective Learning of Formulas

The MCP system learns Horn formulas by the following procedure. For each
f ∈ F it determines if f ∈ 〈T 〉Horn efficiently, without computing the Horn
closure. Then it computes the minimal section of 〈T 〉Horn and F , followed by
the computation of the corresponding Horn formula according to the chosen
direction and strategy on the (approximate) minimal section of 〈T 〉Horn and F .
It uses different algorithms for the strategies: that of Angluin et al. [1] for the
large strategy and another of Hébrard and Zanuttini [13] for the exact strategy.

Learning of dual Horn formulas is done very easily. MCP system first swaps
the polarity of the Boolean vectors in T and F , producing the new sets T ′ and F ′,
respectively. Then it computes the Horn formula ϕ′ for T ′ and F ′, followed by
swapping the polarity of literals in ϕ′, producing the dual Horn formula ϕ.

There is no known possibility to determine if f ∈ 〈T 〉bijunctive for each f ∈ F
without computing the bijunctive closure 〈T 〉bijunctive. Moreover, the bijunctive
closure 〈T 〉bijunctive can be (and usually also is) very much time and space con-
suming. We adopted the following solution to produce bijunctive formulas by
MCP system: It computes the minimal section using an intersection test, fol-
lowed by application of the Baker-Pixley Theorem [2] (projection on every pair
of coordinates), which implicitly guarantees the bijunctive closure.

Learning a general CNF formula presents several challenges. Its advantage
is that We get a propositional formula in any case, provided that T ∩ F = ∅.
Its drawback is that the produced formula is usually very big. We adopted two
different approaches in the MCP system, depending on the applied strategy. In
case of large strategy, for each false element f ∈ F the MCP system produces
the unique clause cf which falsifies f . The resulting formula ϕ is the conjunction
of all falsification clauses cf . In case of exact strategy, the MCP system uses an
algorithm producing a CNF formula in time O(|T | k2), where k is the arity of
vectors in T , using a Boolean restriction of a larger algorithm from [11].

Learning affine formulas reveals more from linear computer algebra than
from logic, therefore we did not implement it in the MCP system for the time
being. We may implement it in a further version if there is demand.

3.4 First Postprocessing: Redundancy Elimination

The inferred formula ϕ can contain redundant literals and clauses, which can
and must be eliminated to produce the smallest possible formula. There are
several stages, which can be applied for redundancy elimination, called cooking
inside the MCP system, with the following options: raw performs no redundancy
elimination, bleu performs unit resolution, medium performs unit resolution
and clause subsumption, and finally well done, which is the default, performs
unit resolution, clause subsumption, and implied clause removal. Moreover, the
exact strategy includes a primality step, reducing the clauses by elimination of
unnecessary literals, using an algorithm from [11].

MCP: Capturing Big Data by Satisfiability (Tool Description) 211

3.5 Second Postprocessing: Set Cover

In case of the large strategy, we are mainly interested in producing a formula ϕ
falsified by each tuple f ∈ F . However, the inferred formula ϕ may contain
more clauses than necessary, even after full redundancy elimination. Our task
is to keep the smallest number of clauses in ϕ which are necessary to guarantee
falsification by all tuples f ∈ F . For this purpose in the MCP system, we use
Set Cover where a clause c ∈ ϕ covers a vector f ∈ F if f falsifies c. Set Cover is
a well-known NP-complete problem, therefore we use Johnson’s approximation
algorithm (see e.g. [10]), where the measure of a clause is the number of covered
tuples. Of course, this approach is inapplicable for the exact strategy.

3.6 Input Format and Action Possibilities

The input file of the MCP system core, is a Boolean matrix, one Boolean vector
per row. Each vector is prefixed by a string g, identifying a group to which
the vector belongs. The MCP system core collects first the vectors from the
input matrix and distributes them into the identified groups. Each input file
starts with an indication line, containing two boolean values. If both values
are equal to 0, the following lines are the rows of the Boolean matrix with
leading group indicators. If the first value is equal to 1, the following line contains
the variable names ordered by coordinates. If the second value is equal to 1,
there is one more line of supplementary information before the matrix. However,
this supplementary information is unused by the MCP system, but it is still
maintained for compatibility reasons with data sets used in [7,8].

Let G be the set of identified groups. The actual computation is determined
by the action, which determines how the sets of positive examples T and nega-
tive examples F are constituted. The are two options, one and all.

The option one consecutively selects two groups g, g′ ∈ G, determines the
vectors belonging to the group g as the positive examples T and the vectors
belonging to the group g′ as the negative examples F , then starts the computa-
tion of the corresponding formula with minimal section. If there are n groups in
the set G, this action proceeds with the computation of n(n − 1) formulas.

The option all, which is the default, consecutively selects a group g ∈ G,
determines the vectors belonging to the group g as the positive examples T and
all vectors belonging to any group from G�{g} as the negative examples F , then
starts the computation of the corresponding formula with minimal section. For n
groups in the set G, this action proceeds with the computation of n formulas.

3.7 Parallelization

For a set of n groups, the MCP system computes either n or n(n − 1) formu-
las. These computations are independent, therefore they can be performed in
parallel. This is called outer parallelism in the MCP core.

In case of Horn closure of the positive examples T , the MCP core needs to
determine if a given vector f ∈ F from negative examples belongs to 〈T 〉Horn,

212 M. Hermann and G. Salzer

without computing the closure itself. This procedure is quite time consuming
when the set T is quite large. It can be computed in parallel, each time taking
only a determined chunk of T . This is called inner parallelism in the MCP core.

We adopted three types of parallelization within the MCP core: the Mes-
sage Passing Interface (MPI) [15], the POSIX threads (pthreads) [6], and
a hybrid version combining both. These parallelizations are effective only on
very large input data sets. The MPI version is applied only for outer parallelism,
the pthreads version to both, and in the hybrid version MPI is applied for outer
parallelism and pthreads for inner parallelism.

3.8 Invocation

MCP core is called by one of the following commands and options:

sequential version: mcp-seq
MPI version: mcp-mpi
POSIX threads version: mcp-pthread
hybrid version: mcp-hybrid

⎫
⎪⎪⎬

⎪⎪⎭

-i input-file -o output-file
-l formula-prefix -c closure
-d direction -s strategy
--cook cooking --setcover y/n

Each of these core modules produces files formula-prefix g.log containing the
learned formula for each group g inside input-file. Consult the manual pages for
more detailed information.

4 Prequel and Sequel Modules

4.1 Data Binarization

The core of the MCP system accepts only Boolean vectors. However, data
are usually spanning much larger domains: finite, or infinite but countable, or
uncountable. In the latter two cases, every very large finite data set contains
only a finite subset of the domain, but it can be intractable due to the amount
of data to be treated. The MCP system copes with this situation by binarization.

Binarization is the process of transforming data of any domain into binary
vectors to make classifier algorithms, in our case the MCP system core, more
efficient. Its advantage is that we obtain the possibility to treat any data by
propositional formulas. Its drawback is a possible exponential explosion. Bina-
rization concerns both, particular values, especially for finite domains, as well as
intervals, usually used for infinite ones. MCP system adopts both approaches.

Binarization in the MCP system is a two-step procedure. The first step con-
sists of scanning of the CSV file and generating a meta-file template. This step
is performed by the command

mcp-guess -i csv-file -o meta-template

where it is implicitly assumed that the csv-file contains one data vector per line,
the vector elements are separated by commas or semicolons or space or tabs,
vector element can be quoted, missing elements are denoted by a question mark.

MCP: Capturing Big Data by Satisfiability (Tool Description) 213

The template generated by mcp-guess cannot be used directly by the next mod-
ule, but it must be manually adapted to a proper meta-file. This command just
creates indications if the values of a given coordinate are Boolean, enumerated
strings, enumerated integers, integers in a range, or floats in a range.

The second step of the binarization process is performed by the command

mcp-trans -i data-file -m meta-file -o binarized-file

which generates a binarized-file, ready to be treated by the MCP system core,
from the original data-file using a meta-file. This meta file consists of transfor-
mation commands. Each transformation command has the following format:

identifier = coordinate : indicator ; {# comment}
where # starts an optional comment stretching until end of line, the symbols =
and : and ; are syntactic sugar, identifier will become the name of the variable
for the given coordinate and the indicator has one of the following forms:

ident group identifier
bool [elem0 elem1] boolean 2-element set
enum [elem0 . . . elem�] enumerated set of � + 1 elements
up [elem0 . . . elem�] enumerated set of increasing � + 1 elements
down [elem0 . . . elem�] enumerated set of decreasing � + 1 elements
int min max integers in the range between min and max
dj n min max interval [min, max) cut in n disjoint chunks
over n min max � [min, max) cut in n chunks with overlaps of length �
span � min max [min, max) cut in disjoint chunks, each of length �
warp �0 min max �1 [min, max) cut in chunks of length �0, overlaps of �1

4.2 Formula Evaluation

If we are interested only in the produced formula, then the output file generated
by the MCP core contains the satisfied formulas for each group of Boolean vec-
tors. However, if we want to evaluate the accuracy of the produced formula, we
must proceed further. The first prerequisite for a possibility to check the accu-
racy of a formula, is to have two sets of vectors: one for learning the formula, the
other for checking its accuracy. Either we have these two sets of vectors already
from the beginning or we need to split the original set of Boolean vectors into
the learning part and the checking part before running the MCP core on the
learning part. The latter is performed by the command

mcp-split -i input-file -l learn-file -c check-file -r ratio

that splits uniformly at random the input-file into a learn-file and check-file,
where ratio is the percentage of vectors from the input-file populating the check-
file. If the options -l or -c are not explicitly stated, the software deduces the
file identifiers from the base name of the input-file and adding the suffix .lrn
or .chk to it, respectively. The ratio default is 10.

The accuracy of the formula for a given group g is checked by the command

214 M. Hermann and G. Salzer

mcp-check -i check-file -l formula-file -o output-file

where formula-file is the file formula-prefix g.log produced by the MCP core.
Its output-file reproduces the formula and reports the following statistical enti-
ties, measured on the vectors from check-file: true positives (tp), true negatives
(tn), false positives (fp), false negatives (fn), sensitivity (tp/(tp + fn)), miss rate
(fn/(fn+tp)), specificity (tn/(tn+fp)), and precision (tp/(tp+fp)). The optimal
situation would be to have neither false positives nor false negatives. If, however,
these values are non-zero, it can be either due to an insufficient cardinality of
learning data, or a wrong binarization, or else the data itself are not precise.

5 System Distribution and Examples

The MCP system is available at the github.com/miki-hermann/mcp. Follow the
instructions in README.md file at the root. It is indispensable to run the instal-
lation instructions described in that file to be able to run the MCP system
properly.

The overall performance of the MCP system is very competitive, both in
terms of time, as well as in terms of quality of the produced formulas. The
performance of the system has been measured on a DELL computer with an
Intel CoreTM i7-9700 CPU @ 3.00 GHz × 8 with 16 GB of memory, running
under Linux Fedora 33. All examples from [7,8] run under one second.

We have been testing the MCP system on several examples from the UCI
Machine Learning Repository (archive.ics.uci.edu/ml). All examples in the sub-
directories are equipped by a Makefile simplifying the application of the MCP
system on them. The directory uci contains the following treated examples:
abalone identifying abalone with 27 rings, balance-scale identifying psychologi-
cal experiments balancing a scale, balloons—a toy example, where specific for-
mulas are required to be produced, breast-cancer-wisconsin identifying benign
and malignant breast cancer cases in Wisconsin, car identifying very good cars,
forest-fire predicting forest fires in July, August, and September, iris identifying
three types of iris flowers, mushroom identifying edible and poisonous mush-
rooms, and vote identifying democrats and republicans in the House of Repre-
sentatives according to the 1984 US Congressional Voting Records.

We would especially drive the readers attention to the mushroom example,
which identifies the edible and poisonous mushrooms always with 100% accuracy.
This illustrates very well the strength of the MCP system.

6 Concluding Remarks

The MCP system consists of more than 7000 lines of C++ code, using only the
standard library. Parallel execution requires installation of the MPI software.
Future versions of MCP will include a web GUI to enhance usability, as well as
support for finite domains [11] to obviate the need for data binarization.

github.com/miki-hermann/mcp
https://github.com/miki-hermann/mcp
archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/

MCP: Capturing Big Data by Satisfiability (Tool Description) 215

References

1. Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of Horn clauses. Mach.
Learn. 9(2–3), 147–164 (1992)

2. Baker, K.A., Pixley, A.F.: Polynomial interpolation and the Chinese remainder
theorem for algebraic systems. Mathematische Zeitschrift 143(2), 165–174 (1975)

3. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part
I: post’s lattice with applications to complexity theory. SIGACT News 34(4), 38–52
(2003)

4. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part
II: constraint satisfaction problems. SIGACT News 35(1), 22–35 (2004)

5. Boros, E., Crama, Y., Hammer, P.L., Ibaraki, T., Kogan, A., Makino, K.: Logical
analysis of data: classification with justification. Ann. Oper. Res. 188(1), 33–61
(2011)

6. Butenhof, D.R.: Programming with POSIX threads. Addison-Wesley, Boston
(1997)

7. Chambon, A., Boureau, T., Lardeux, F., Saubion, F.: Logical characterization of
groups of data: a comparative study. Appl. Intell. 48(8), 2284–2303 (2017). https://
doi.org/10.1007/s10489-017-1080-3

8. Chambon, A., Lardeux, F., Saubion, F., Boureau, T.: Computing sets of patterns
for logical analysis of data. Technical Report, Université d’Angers (2017)

9. Crama, Y., Hammer, P.L.: Boolean Functions - Theory, Algorithms, and Appli-
cations, Encyclopedia of Mathematics and its Applications, vol. 142. Cambridge
University Press, Cambridge (2011)

10. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. W.H, Freeman and Co (1979)

11. Gil, A., Hermann, M., Salzer, G., Zanuttini, B.: Efficient algorithms for constraint
description problems over finite totally ordered domains. SIAM J. Comput. 38(3),
922–945 (2008)

12. Hájek, P., Holena, M., Rauch, J.: The GUHA method and its meaning for data
mining. J. Comput. Syst. Sci. 76(1), 34–48 (2010)

13. Hébrard, J.J., Zanuttini, B.: An efficient algorithm for horn description. Inf. Proc.
Lett. 88(4), 177–182 (2003)

14. Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation. Springer, Berlin
(1978) https://doi.org/10.1007/978-3-642-66943-9

15. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI: The
Complete Reference. MIT Press, Cambridge (1995)

https://doi.org/10.1007/s10489-017-1080-3
https://doi.org/10.1007/s10489-017-1080-3
https://doi.org/10.1007/978-3-642-66943-9

Chinese Remainder Encoding for
Hamiltonian Cycles

Marijn J. H. Heule(B)

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, United
States

marijn@cmu.edu

Abstract. The Hamiltonian Cycle Problem (HCP) consists of two con-
straints: i) each vertex contributes exactly two edges to the cycle; and
ii) there is exactly one cycle. The former can be encoded naturally and
compactly, while the encodings of the latter either lack arc consistency
or require an exponential number of clauses. We present a new, small
encoding for HCP based on the Chinese remainder theorem. We demon-
strate the effectiveness of the encoding on challenging HCP instances.

1 Introduction

Satisfiability (SAT) solvers have become very powerful tools to solve many hard
combinatorial problems in a broad range of applications. However, the quality of
the encoding can have a significant impact on the effectiveness of a SAT solver,
in particular for problems with complicated constraints.

One problem class for which the encoding plays a crucial role in solver per-
formance is the Hamiltonian Cycle Problem (HCP) [14], an NP-complete prob-
lem that has been studied from theoretical and practical viewpoints [2,3,6,13].
Given a graph, HCP asks whether there exists a cycle that visits all vertices of
the graph exactly once. One graph with and one without a Hamiltonian cycle
are shown in Figure 1. On a high level, HCP requires two constraints: a degree
constraint stating that each vertex contributes exactly two edges to the cycle and
an exactly-one-cycle constraint. The degree constraint can be compactly encoded
with arc consistency [4], a property that is important for efficient solving.

Effectively dealing with the exactly-one-cycle constraint is more challeng-
ing. Several encodings have been proposed use Θ(|V |3) clauses. Determining the
existence of a Hamiltonian cycle is easy for small graphs (< 100 vertices). For
larger graphs, Θ(|V |3)-sized encodings result in a huge formula that are hard to
solve [9–11]. The challenge is to come up with a compact encoding that can also
be solved efficiently. Our encoding will be quasilinear in the number of edges.

One way to avoid the costliness of the exactly-one-cycle constraint is to use
incremental SAT [1,12]. In this setting, the initial formula only consists of the
degree constraint. If the SAT solver produces a solution that represents multiple
cycles, then a clause is added that blocks the shortest cycle. This is repeated

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 216–224, 2021.
https://doi.org/10.1007/978-3-030-80223-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_15&domain=pdf
http://orcid.org/0000-0002-5587-8801
https://doi.org/10.1007/978-3-030-80223-3_15

Chinese Remainder Encoding for Hamiltonian Cycles 217

until either a Hamiltonian cycle is found or if the formula becomes unsatisfiable,
showing that no such cycle exists.

Recently two new HCP encodings have been proposed. Both encodings assign
a binary index to each vertex using k = �log2 |V |� variables per vertex. The first
one is based on linear-feedback shift registers (LFSR) [5,8]. LFSR loops through
the numbers {1, . . . , 2k − 1} by shifting a binary number by one position to the
left and puts the parity of some bits in the vacated position. This facilitates a
compact SAT encoding. The second encoding uses a binary adder that loops
through the numbers {0, . . . , 2k − 1} in ascending order and returns to 0 after
2k −1 [14]. The binary adder encoding requires auxiliary variables, more clauses,
and/or longer clauses compared to LFSR. Yet, the binary adder is more effective
as it facilitates quick refutation of some subcycles, e.g., cycles of odd length.

In this paper, we present the Chinese remainder encoding that aims to com-
bine the best of the incremental SAT, binary adder, and LFSR approaches. From
the incremental approach, we borrow the observation that only some subcycles
need to be blocked. From the binary adder approach we borrow techniques to
easily refute some subcycles. Finally, from the LFSR approach we borrow the
compact encoding with short clauses without auxiliary variables.

We implemented the binary adder, LSFR, and the Chinese remainder encod-
ings (and corresponding decoding tools), and evaluated their effectiveness on
graphs from the Flinders HCP challenge [7]. This is a suite of 1001 graphs with
HCP instances of varying difficulty. The experimental results show that the Chi-
nese remainder encoding beats the other two on most large graphs.

Fig. 1. The left graph has a Hamiltonian cycle (bold), while the right one does not.

2 Preliminaries

Boolean Satisfiability: We consider formulas in conjunctive normal form
(CNF), defined as follows. A literal is either a variable x or the negation x
of a variable x. For a literal l, var(l) denotes the variable of l. A clause is a
disjunction of literals and a formula is a conjunction of clauses. An assignment
is a function from a set of variables to the truth values 1 (true) and 0 (false). A
formula is satisfiable if there exists an assignment that satisfies it and is unsat-
isfiable otherwise.

218 M. J. H. Heule

A unit clause is a clause that contains only one literal. The result of applying
the unit-clause rule to a formula F is the formula F without all clauses containing
the unit literal and without all occurrences of the negated unit literal. The
iterated application of the unit-clause rule to a formula, until no unit clauses are
left, is called unit propagation. If unit propagation on a formula F yields the
empty clause, we say that it derived a conflict on F .

Linear-Feedback Shift Register: An LFSR [5] is a register that in each step
shifts all bits by one position to the left and replaces the vacated position by
the result of an XOR operation of some of the bits. Given the right XOR, an
LFSR visits all bit-vectors of a given length except the all-zero bit-vector. The
shift and the XOR operations can be compactly encoded using clauses.

Example 1. An example 16-bit LFSR fills the vacant bit by x11⊕x13⊕x14⊕x16,
resulting in 216 − 1 = 65, 535 states. The figure below illustrates this LFSR with
state 10010111001011001. The next state is 00101110010110011.

1

1

16

0 0

14

1

13

0 1

11

1 1 0 0 1 0 1 1 0 0 1

1

3 Encodings

In this section, we focus on encodings that have been reasonably effective for
HCP in the past. This excludes unary-based encodings [14]. We first discuss an
encoding for the degree constraint and afterwards two encodings for the exactly-
one-cycle constraint. To improve readability, we show the constraints using the
logical connectives ∧ (and), ∨ (or), → (implies), ↔ (equivalence), and 	↔ (xor).

3.1 Degree Constraint

All of the encodings share the same variables and clauses to enforce that exactly
two edges from each vertex are in the cycle, thereby ensuring that each vertex
is in exactly one cycle. Given an undirected graph G = (V,E), we introduce two
variables ei,j and ej,i for each edge (i, j) ∈ E. In the case that G is a directed
graph, only ei,j is used for arcs from i to j and only ej,i is used for arcs from j to i.
The degree constraint is encoded by enforcing that for each vertex v ∈ V exactly
one of the literals ei,v is true (one incoming edge) and exactly one of the literals
ev,j is true (one outgoing edge). Each ExactlyOne constraint is partitioned into
an AtLeastOne constraint (i.e., a clause) and an AtMostOne constraint.

HCP is typically only hard for graphs with low degree. For graphs with
high degree, we expect dedicated heuristics to outperform SAT solving. The

Chinese Remainder Encoding for Hamiltonian Cycles 219

constraint AtMostOne(x1, . . . , xn) can therefore simply be encoded using the
pairwise encoding (xi ∨ xj) for 1 ≤ i < j ≤ n. However, some graphs in the
Flinders HCP challenge set are dense. To avoid a blow-up in size due to the
pairwise encoding, we only use the pairwise encoding for AtMostOne constraints
of 4 or less inputs. Larger AtMostOne constraints are split recursively as follows:

AtMostOne(x1, . . . , xn) := AtMostOne(x1, x2, x3, y) ∧ AtMostOne(y, x4, . . . , xn)

3.2 Binary Adder

Given a graph G = (V,E), the binary adder encoding assigns a unique index
from the range {0, 1, . . . , |V | − 1} to each vertex in the graph. Each vertex has
two neighbors, of which one is the successor (+1 (mod |V |)), while the other is
its predecessor (−1 (mod |V |)). If edge variable eu,v is true, then the successor
property is enforced, i.e., u is assigned i and v is assigned i + 1 (mod |V |). The
clauses that enforce the successor property also enforce the predecessor property.

We will use parts of the binary encoding in the Chinese remainder encoding.
For consistency we therefore use the naming of the bit-vectors. The ith bit of the
bit-vector of vertex v is denoted by the Boolean variable v2i with i ∈ {1, . . . , k}.

Example 2. Consider a graph with 7 vertices, thus k = �log2 7� = 3. For vertex
v, the variables v2, v4, and v8 denote the least, middle, and most significant
bit, respectively. For an edge variable eu,v, we add the clauses represented by:

eu,v → (u2 	↔ v2)
(eu,v ∧ u2) → (u4 ↔ v4)
(eu,v ∧ u2) → (u4 	↔ v4)

(eu,v ∧ u2) → (u8 ↔ v8)
(eu,v ∧ u4) → (u8 ↔ v8)

(eu,v ∧ u2 ∧ u4) → (u8 	↔ v8)

No auxiliary variables are introduced in our implementation, resulting in
O(k2) clauses per edge variable. Using auxiliary variables can reduce the number
of clauses to O(k) per edge variables, but this is only effective for large k.

It is important to observe that this encoding is able to quickly refute certain
subcycles. For example, if an assignment to the edge variables forms a subcycle
of odd length, then assigning v2 (of any vertex v in that cycle) to true or false
results in a conflict by unit propagation. Thus with two conflicts the cycle can
be refuted. In a similar way, one can additionally refute all cycles of length 2
(mod 4) by the four assignments to the variables v2 and v4. This is the key
property that will be used in the Chinese remainder encoding.

3.3 Linear-Feedback Shift Register

Haythorpe and Johnson propose to use LFSR to enforce the exactly-one-cycle
constraint in HCP [8]. This encoding has several aspects that are similar to the
binary adder encoding. It uses bit-vectors of length k = �log2(|V | + 1)� for each
vertex. One vertex is assigned the bit-vector with all-zeros except for the least
significant bit. The bit-vectors of adjacent vertices are forced to be the next and
previous state of a k-bit LFSR.

220 M. J. H. Heule

We use the following variable naming: Given a k-bit LFSR, let n = 2k − 1.
For each i ∈ {1, . . . , k}, position i in the bit-vector of vertex v is denoted by vn,i.
We block the all-zero bit-vector, by adding (vn,1 ∨ · · · ∨ vn,k) for each v ∈ V .

Example 3. Consider a 7-vertex graph, thus k = �log2(7+1)� = 3. A 3-bit LFSR
filling the vacant bit by x2 ⊕ x3 has 7 states. The bit-vector variables of vertex
v are v7,1, v7,2, and v7,3. For an edge variable eu,v, we add the clauses:

eu,v → (v7,1 ↔ (u7,2 	↔ u7,3)
eu,v → (v7,2 ↔ u7,1)
eu,v → (v7,3 ↔ u7,2)

For most small k, there exists a k-bit LFSR of 2k − 1 states that uses just a
single XOR of 2 bits. For such an LFSR, the encoding uses 2k−2 ternary clauses
and 4 clauses of length 4, as in the above example. An encoding based on LFSR
is thus compact with short clauses and without auxiliary variables. We will use
this property in the Chinese remainder encoding.

In contrast to the binary adder encoding, the LFSR encoding cannot quickly
refute some subcycles. If an assignment to the edge variables forms a subcycle,
then one needs 2k − 1 conflicts (i.e., all states of a k-bit LFSR) to refute it. This
helps explain why the LFSR encoding is less effective in practice.

4 Chinese Remainder Encoding

The challenge in coming up with an effective SAT encoding for HCP lies in
enabling the solver to quickly refute an assignment for which the edge variables
represent a subcycle. The encodings described in the previous section may require
many conflict clauses to a refute a subcycle. Our encoding tries to reduce that
number, while keeping the encoding compact. We aim to get the best of three
worlds (incremental SAT, binary adder, and LFSR).

From the incremental SAT approach, we borrow the partial encoding of the
exactly-one-cycle constraint. One vertex is special in the encoding and indicates
where the Hamiltonian cycle “starts”. This vertex is denoted by s. The encod-
ing picks the first vertex (based on its index) of smallest degree as s, because
reasoning from a vertex with a small degree is considered effective to find a
Hamiltonian cycle. Recall that the degree constraint ensures that every vertex
is in exactly one cycle. We use a parameter m and additionally enforce that any
cycle that does not include s must have length 0 (mod m). Moreover, the cycle
that includes s must have length |V | (mod m). The expectation is that one can
frequently use m < |V |, while still managing to find a Hamiltonian cycle with
high probability as it will be difficult to satisfy the constraints for multiple cycles
if m is large. Using m < |V | reduces the size of the encoding, which improves
solver performance.

Next, we combine ideas of the binary adder and the LFSR encodings. Instead
of enforcing cycle lengths to be 0 (mod m) or |V | (mod m), we factorize m into
m = m1 × m2 × · · · × mq such that mi = pi

ki with prime pi and positive
integer ki. Furthermore the mi are pairwise coprime, i.e., for each pair mi and

Chinese Remainder Encoding for Hamiltonian Cycles 221

mj holds that pi 	= pj . We enforce that each subcycle has length 0 (mod mi).
By the Chinese remainder theorem, we know that the cycles will be of length 0
(mod m) or |V | (mod m), respectively. In case ki > 1 for some mi, the Chinese
remainder encoding constructs a pi-ary counter (but with LFSRs for pi > 2).
This is shown in Example 2 for m = 8, thus p = 2 and k = 3.

For the prime factors of 2 in m, we use the binary adder encoding, while for
the primes of the form 2k − 1, such as 3 and 7, we use LFSR. This, of course,
excludes several primes. For such a prime p, we use a scheme similar to the
binary adder, but having 0 as the successor of p − 1. Furthermore, we block all
assignments representing indices p to 2k − 1 with k = �log2 p�.
Example 4. For the prime 5, we can encode the cycle 0 → 1 → 2 → 3 → 4 → 0
using three variables for each vertex. For a specific vertex v, they are denoted by
v5,1, v5,2, and v5,3. We prevent that variables are assigned to values corresponding
to 5, 6, or 7 by adding the binary clauses (v5,1 ∨ v5,3) ∧ (v5,2 ∨ v5,3) for v ∈ V .
For an edge variable eu,v, we add the ten clauses represented by:

eu,v → (v5,1 ↔ (u5,1 ∧ u5,3))
eu,v → (v5,2 ↔ (u5,1 	↔ u5,2))
eu,v → (v5,3 ↔ (u5,1 ∧ u5,2))

The main constraint in this encoding enforces that if an edge variable eu,v
is true, then v is the successor of u based on the binary adder or LFSR. This is
enforced for all edge variables apart from the ones of the form eu,s, i.e., the final
edge that creates the cycle starting with s. Instead, if an edge variable eu,s is
true, then all variables upi,j of u must be assigned in such a way that it enforces
|V | − 1 (mod pi). Note that for the primes that are encoded using LFSR, the
assignment would be the |V |th (mod pi) state of the LFSR with the bit-vector
1 being the first state.

Finally, we apply the following symmetry-breaking clauses: (es,u ∨ ev,s) for
u > v for some total ordering of the vertices. We use the vertex number in the
input file. This ensures that every Hamiltonian cycle is represented by a unique
assignment to the variables.

5 Results

We implemented an encoding tool, called HCP-encode1, that takes as input a
graph and an integer m. Using the techniques described in the earlier sections, it
enforces that all cycles, apart from the one that includes the initial vertex, must
have length 0 (mod m). We solved all resulting formulas with the default settings
of CaDiCaL SAT solver, version 1.4. We selected two subsets of the Flinders
HCP challenge: 1) graphs that were used in the 2019 XCSP competition; and 2)
some larger graphs that resulted in rather high runtimes during our experiments.

Table 1 shows statistics of the graphs in our benchmark suite and the run-
times for the binary adder encoding and the LSFR encoding. The graphs used
1 The encoding and decoding tools together with the graphs are available on GitHub

at https://github.com/marijnheule/ChineseRemainderEncoding.

https://github.com/marijnheule/ChineseRemainderEncoding

222 M. J. H. Heule

in the 2019 XCSP competition are shown on top, the larger ones below them.
The results confirm earlier work that the binary adder encoding is more effective
compared to LSFR on these challenge graphs [14]: only once did LSFR outper-
form the binary adder. However, we observed shorter runtime in our experi-
ments with the binary adder encoding and LSFR compared to recent work [14].
These experiments differ in two ways. First, we use a more recent and possibly
a stronger SAT solver for these instances. Second, our implementation does not
include preprocessing techniques. It is not clear whether preprocessing helps or
hurts performance on these instances. Note that the binary adder and LFSR
encodings timed out after an hour for some of the larger graphs.

Table 2 shows the results of our Chinese remainder encoding for various values
of the cycle length. We selected cycle lengths that have only small primes in their
factorization. The largest cycle length used in the experiments is 420, a number
that is divisible by 4, 5, 6, and 7. The table shows the runtime and whether the
solution produced by the solver represented a single cycle. The shortest runtime
resulting in a single cycle are shown in bold. In general, the larger the cycle,
the longer the runtime and the more likely that the result is a single cycle. In
particular, for all graphs a cycle length of 0 (mod 2) resulted in multiple cycles,
while a cycle length of 0 (mod 420) resulted in a single cycle, i.e., a Hamiltonian
cycle. In some cases, a smaller cycle length resulted in a single cycle, while a
larger cycle length resulted in multiple cycles (see graphs #237 and #526).

Table 1. Statistics of the selected Flinders HCP challenge graphs and the CaDiCaL
runtime in seconds on the binary adder encoding and the LFSR encoding.

graph # |V | |E| adder (2k) LSFR (2k − 1)

48 338 776 47.22 > 3600

162 909 206571 171.23 180.24

171 996 1495 10.12 20.05

197 1188 1783 10.89 84.75

223 1386 2268 272.46 80.01

237 1476 2215 13.65 22.45

249 1558 2338 19.69 150.70

252 1572 2359 13.71 86.07

254 1582 2374 36.31 127.35

255 1584 2799 48.98 40.60

424 2466 4240 > 3600 > 3600

446 2557 4368 > 3600 > 3600

470 2740 4509 2500.61 > 3600

491 2844 4267 173.46 245.92

506 2964 4447 78.29 244.48

522 3060 4591 84.51 611.46

526 3108 4663 160.73 544.97

529 3132 4699 69.69 275.13

Chinese Remainder Encoding for Hamiltonian Cycles 223

Table 2. Runtime statistics in seconds of the selected Flinders HCP challenge graphs
using CaDiCaL and various values for the cycle length. The symbols ✓ and ✗ denote
whether the satisfying assignment represents a single or multiple cycles, respectively.

graph # 2 6 12 60 105 420

48 0.10 ✗ 6.14 ✗ 10.02 ✗ 45.20 ✗ 84.33 ✓ 73.63 ✓

162 53.62 ✗ 34.96 ✓ 32.12 ✓ 39.43 ✓ 35.75 ✓ 40.11 ✓

171 0.01 ✗ 2.37 ✗ 2.92 ✓ 12.76 ✓ 4.89 ✓ 5.86 ✓

197 0.02 ✗ 0.83 ✗ 7.16 ✓ 6.77 ✓ 8.87 ✓ 14.62 ✓

223 0.02 ✗ 1.77 ✗ 11.65 ✗ 22.14 ✓ 15.93 ✓ 70.67 ✓

237 0.04 ✗ 2.19 ✗ 7.81 ✓ 12.64 ✓ 6.90 ✗ 16.80 ✓

249 0.19 ✗ 0.81 ✓ 4.52 ✓ 4.36 ✓ 3.01 ✓ 7.29 ✓

252 0.02 ✗ 1.76 ✗ 25.33 ✓ 14.62 ✓ 9.66 ✓ 32.73 ✓

254 0.33 ✗ 2.95 ✓ 0.76 ✓ 3.11 ✓ 2.42 ✓ 4.09 ✓

255 1.27 ✗ 2.56 ✗ 5.17 ✗ 14.31 ✗ 8.36 ✗ 9.03 ✓

424 9.81 ✗ 665.18 ✗ 340.11 ✗ 307.71 ✗ 494.11 ✓ 488.70 ✓

446 13.24 ✗ 334.62 ✗ 169.52 ✗ 380.47 ✗ 573.38 ✓ 722.23 ✓

470 17.08 ✗ 166.16 ✗ 152.31 ✗ 933.36 ✗ 501.91 ✗ 840.89 ✓

491 0.06 ✗ 22.04 ✗ 7.47 ✓ 34.45 ✓ 123.36 ✓ 135.22 ✓

506 0.11 ✗ 31.75 ✗ 19.24 ✓ 33.48 ✓ 28.73 ✓ 63.20 ✓

522 0.63 ✗ 5.66 ✗ 32.95 ✓ 133.40 ✓ 30.40 ✓ 67.03 ✓

526 0.05 ✗ 24.16 ✗ 71.67 ✓ 34.37 ✓ 34.69 ✗ 158.69 ✓

529 0.40 ✗ 17.90 ✗ 60.19 ✓ 48.09 ✓ 42.33 ✓ 365.58 ✓

The Chinese remainder encoding with cycle length 420 outperformed the
binary adder encoding for most graphs. Also, none of the experiments with
cycle length 420 timed out. Using a smaller cycle length can frequently reduce
the runtime, although that increases the probability of multiple cycles. In prac-
tice one could run the Chinese remainder encoding for various cycle lengths in
parallel.

6 Conclusions

We presented the Chinese remainder encoding for HCP, which combines ele-
ments from the incremental SAT, binary adder, and LFSR approaches. Experi-
mental results on graphs from the Flinders HCP challenge show that the Chinese
remainder encoding generally outperforms the alternatives when using a cycle
length that can be factored into multiple small primes. In the experiments we
used a cycle length of 420 = 22 × 3 × 5 × 7. The Chinese remainder encoding
is equivalent to the binary adder encoding when the cycle length is the smallest
power of 2 that is larger than the number of vertices, so it can be seen as a
generalization of the binary adder.

We only experimented with a single SAT call for each encoding. The effec-
tiveness of a small cycle length, in particular m = 12, indicates that an incremen-

224 M. J. H. Heule

tal SAT approach using that encoding could be effective. Recent work showed
that the pure incremental SAT approach is not effective for large graphs [14],
but blocking some cycles with our encoding could be helpful. Also, we plan to
explore the best combination of cycle lengths in a parallel solving approach.

Acknowledgements. Supported by the NFS under grant CCF-2006363.
We thank Emre Yolcu and Neng-Fa Zhou for comments on an earlier draft.

References

1. Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B., Schaub, T.: Answer set
programming modulo acyclicity. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.)
Logic Programming and Nonmonotonic Reasoning. pp. 143–150. Springer Interna-
tional Publishing (2015)

2. Buratti, M., Del Fra, A.: Cyclic Hamiltonian cycle systems of the complete graph.
Discrete Mathematics 279(1), 107–119 (2004), in Honour of Zhu Lie

3. Chiba, N., Nishizeki, T.: The Hamiltonian cycle problem is linear-time solvable for
4-connected planar graphs. Journal of Algorithms 10(2), 187–211 (1989)

4. Gent, I.P.: Arc consistency in SAT. In: Proceedings of the 15th European Confer-
ence on Artificial Intelligence. p. 121–125. ECAI’02, IOS Press, NLD (2002)

5. Golomb, S.W.: Shift Register Sequences. Aegean Park Press (1982)
6. Grebinski, V., Kucherov, G.: Reconstructing a Hamiltonian cycle by querying

the graph: Application to DNA physical mapping. Discrete Applied Mathemat-
ics 88(1), 147–165 (1998), computational Molecular Biology DAM - CMB Series

7. Haythorpe, M.: FHCP challenge set: The first set of structurally difficult instances
of the Hamiltonian cycle problem (2019), https://arxiv.org/abs/1902.10352v1

8. Haythorpe, M., Johnson, A.: Change ringing and Hamiltonian cycles: The search
for Erin and Stedman triples. EJGTA 7, 61–75 (2019)

9. Hertel, Alexander, Hertel, Philipp, Urquhart, Alasdair: Formalizing Dangerous
SAT Encodings. In: Marques-Silva, João., Sakallah, Karem A. (eds.) SAT 2007.
LNCS, vol. 4501, pp. 159–172. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72788-0 18

10. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal
logic programs to propositional logic. In: Proceedings of the 18th International
Joint Conference on Artificial Intelligence. p. 853–858. IJCAI’03, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (2003)

11. Prestwich, S.: SAT problems with chains of dependent variables. Discrete Appl.
Math. 130(2), 329–350 (2003)

12. Soh, T., Le Berre, D., Roussel, S., Banbara, M., Tamura, N.: Incremental SAT-
based method with native boolean cardinality handling for the Hamiltonian cycle
problem. In: Fermé, E., Leite, J. (eds.) Logics in Artificial Intelligence. pp. 684–693.
Springer International Publishing (2014)

13. Velev, M.N., Gao, P.: Efficient SAT techniques for absolute encoding of permuta-
tion problems: Application to hamiltonian cycles. In: Bulitko, V., Beck, J.C. (eds.)
Eighth Symposium on Abstraction, Reformulation, and Approximation, SARA
2009, Lake Arrowhead, California, USA, 8–10 August 2009. AAAI (2009)

14. Zhou, N.F.: In pursuit of an efficient SAT encoding for the Hamiltonian cycle
problem. In: Simonis, H. (ed.) Principles and Practice of Constraint Programming,
pp. 585–602. Springer International Publishing, Cham (2020)

https://arxiv.org/abs/1902.10352v1
https://doi.org/10.1007/978-3-540-72788-0_18
https://doi.org/10.1007/978-3-540-72788-0_18

Efficient SAT-Based Minimal Model
Generation Methods for Modal Logic S5

Pei Huang1,3, Rundong Li1,3, Minghao Liu1,3, Feifei Ma1,2,3(B),
and Jian Zhang1,3(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
{huangpei,lird,liumh,maff,zj}@ios.ac.cn

2 Laboratory of Parallel Software and Computational Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Modal logic S5 is useful in various applications of artificial
intelligence. In recent years, the advance in solving the satisfiability prob-
lem of S5 has allowed many large S5 formulas to be solved within a few
minutes. In this context, a new challenge arises: how to generate a min-
imal S5 Kripke model efficiently? The minimal model generation can be
useful for tasks such as model checking and debugging of logical specifica-
tions. This paper presents several efficient SAT-based methods and pro-
vides a symmetry-breaking technique for the minimal model generation
problem of S5. Extensive experiments demonstrate that our methods are
good at tackling many large instances and achieve state-of-the-art per-
formances. We find that a minimal model of a large S5 formula is usually
very small, and we analyze this phenomenon via a graph model. Due to
this characteristic, our incremental method performs best in most cases,
and we believe that it is more suitable for minimal S5 Kripke model
generation.

Keywords: SAT · MaxSAT · Modal logic S5 · Minimal model ·
Symmetry breaking

1 Introduction

Modal logics provide a theoretical framework for applications in various areas
of artificial intelligence. In the past two decades, modal logics have been used in
game theory [12], knowledge compilation [5], contingent planning [20] and formal
verification [2,18]. Moreover, they also have potential in database theory [10] and
distributed computing [13].

S5 is one of the five oldest systems of modal logic. It is suitable for repre-
senting and reasoning about the knowledge of a single agent [8,24] and has been
used in knowledge compilation [5], contingent planning [20] and epistemic plan-
ner [25]. The huge application potential promotes us to improve the practical
automated reasoning technique for S5.
c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 225–241, 2021.
https://doi.org/10.1007/978-3-030-80223-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_16

226 P. Huang et al.

In this paper, we focus on how to efficiently find a minimal S5 Kripke model
(MinS5-SAT). In Hardware Verification and Model Checking (e.g. safety prop-
erty), the model is in fact an explanation of the bug found in the design. A
smaller model is easier to understand; it can be more meaningful and helpful
to the user for checking or locating the bug precisely. Since the 1990s, a few
theoretical works (considering soundness and completeness) about minimal Her-
brand model generation were given for modal logic S5 [21,22], but very little
work focuses on MinS5-SAT. As for practical algorithms (or solvers), they were
designed to decide the satisfiability of modal formulas but rarely considered
generating a minimal S5 Kripke model.

The significant improvements of SAT-based S5 solvers in recent years [6,14]
pave the way for well handling the MinS5-SAT problem. In 2018, Jean-Marie
Lagniez et al. proposed an SAT-based method to solve the MinS5-SAT problem
[17], but the translation method can cause the space explosion in many cases
which greatly wears out the efficiency of the back-end SAT/MaxSAT solver. For
some complex input S5 formulas, it consumes more than 60G of memory.

We provide several practical and efficient SAT-based methods for the MinS5-
SAT problem. Compared with the previous works, our methods can make good
use of the structural and semantic information to reduce memory usage and elim-
inate a lot of symmetric (isomorphic) search spaces. A more compact encoding
can make the most of the performance of the SAT engine. Experimental results
show that our SAT-based methods are efficient in tackling the MinS5-SAT prob-
lem, and the method which queries an SAT oracle incrementally is the most
efficient one. We noticed that a minimal Kripke model is usually very small.
So, we propose a graph model to analyze the reason and find out that “a small
model is a high probability event”. It also explains why the method based on the
incremental framework performs better in both time and memory consumption
compared with other methods.

2 Preliminaries

This section briefly reviews the syntax, the semantics and some concepts of
modal logic S5.

2.1 Syntax and Semantics

The set of formulas φ of S5 is a language L which extends the propositional lan-
guage with the modal connectives (or modal operators) � and ♦. The language
L is defined by the grammar:

φ ::= ⊥ | � | p | ¬φ | φ ∧ φ | φ ∨ φ | �φ | ♦φ

where p ∈ P and P denotes a countably infinite non-empty set of propositional
variables. Logical connectives ‘→’ and ‘↔’ are omitted here.

Standard Kripke semantics for modal logic defines a frame, which consists of
a non-empty set W of possible worlds, and a binary relation R. The relation

Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5 227

R, also known as the accessibility relation, is defined between the possible
worlds in W . The axioms K, T , B and 4 restrict that the relation R in S5
is reflexive, symmetric and transitive. So the possible world semantics for
S5 can be simplified as a simple version without accessibility relation [9]. The
satisfiability relation � for formulas in L is recursively defined as follows:

(W, I,w) � �
(W, I,w) � p iff I(w, p) = 1
(W, I,w) � ¬φ iff (W, I,w) � φ
(W, I,w) � φ ∧ ϕ iff (W, I,w) � φ and (W, I,w) � ϕ
(W, I,w) � φ ∨ ϕ iff (W, I,w) � φ or (W, I,w) � ϕ
(W, I,w) � �φ iff ∀w′ ∈ W, (W, I,w′) � φ
(W, I,w) � ♦φ iff ∃w′ ∈ W, (W, I,w′) � φ

2.2 Satisfiability

There are three types of satisfiability problems for S5.

• [S5-Satisfiability (S5-SAT)] Determining if there exists a model (W, I,w)
that satisfies a given S5 formula θ.

• [S5-K-Satisfiability (S5-K-SAT)] Determining if there exists a model
(W, I,w) where |W | = K that satisfies a given S5 formula θ.

• [Minimal S5-Satisfiability (MinS5-SAT)] Finding a model (W, I,w) that
satisfies a given S5 formula θ and it has no model (W ′, I ′, w′) such that
|W ′| < |W |.

S5-SAT and S5-K-SAT are decision problems and both are NP-complete. MinS5-
SAT is NP-hard and can be seen as an optimization problem.

2.3 The Number of Possible Worlds

In 1977, Ladner gave the upper bound of the number of possible worlds to
decide the satisfiability of an S5 formula [16]. He proved that if an S5 formula
with m modal operators is satisfiable, then there exists an S5-model satisfying
the formula with at most m + 1 worlds. In 2017, a new upper-bound dd(θ) + 1
was found where dd(θ) is called diamond degree [6] and it is recursively defined
as:

dd(θ) = dd′(nnf(θ))
dd′(�) = dd′(¬�) = dd′(p) = dd′(¬p) = 0
dd′(φ ∧ ϕ) = dd′(φ) + dd′(ϕ)
dd′(φ ∨ ϕ) = max(dd′(φ), dd′(ϕ))
dd′(�φ) = dd′(φ)
dd′(♦φ) = 1 + dd′(φ)

In 2019, a more compact upper bound, χ+1 was given by Huang et al. [14]. For
most cases, we have:

χ ≤ dd(θ) ≤ m (1)

The upper-bound χ+1 is reasoned from the relationship among diamond
subformulas via a polynomial-time approximation graph coloring algorithm.

228 P. Huang et al.

2.4 S5-NF

Every S5 formula can be converted into an equivalent one that is in S5-NF. S5-
NF is helpful for improving efficiency and saving memory when solving the S5
satisfiability problems. Identifying structural information and semantic informa-
tion of an S5-NF formula is relatively easy. The definition of S5-NF is in [14]. We
only briefly review it here. S5-NF is a kind of CNF-like first degree normal form
but with some textural difference. The basic unit that makes it up is S5-literal:

Propositional literal: p
B-literal: �(p ∨ q ∨ ... ∨ r)
D-literal: ♦(p ∧ q ∧ ... ∧ r)

where p, q, r are propositional literals.
The disjunction of S5-literals is called S5-clause and the conjunction of

S5-clauses is called S5-NF.

Example 1. An S5 formula θ and its S5-NF φ with three S5-clauses.

θ = ♦�((r → p ∧ q) ∧ (♦(¬r → ¬p ∧ q))) ∧ (¬p → ¬�(q ∧ r))

φ = �(p ∨ q ∨ ¬r)
︸ ︷︷ ︸

C1

∧{♦(¬p ∧ q) ∨ ♦r}
︸ ︷︷ ︸

C2

∧{p ∨ ♦(¬q ∧ ¬r)}
︸ ︷︷ ︸

C3

2.5 Complexity Analysis

The MinS5-SAT is in PSAT (or FPSAT).

Assuming that MS5-K-SAT is an oracle Turing machine that has the capa-
bility to query an oracle for S5-K-SAT. For a given S5 formula, the upper
bound μ of possible worlds can be computed in polynomial time, and
it is less than the length (n) of input formula. As the Turing machine
MS5-K-SAT can find a minimal model via querying S5-K-SAT at most
polynomial (μ) times, MinS5-SAT is in PS5-K-SAT . We know that S5-K-
SAT is in NPC, so MinS5-SAT ∈ PSAT .

It reveals that MinS5-SAT can be solved via iteratively calling an SAT engine at
most O(n) times. On the other hand, the MinS5-SAT problem can be reduced
to the MaxSAT problem.

In addition to SAT-based approaches, tableau, FOL-based and resolution-
based methods can also tackle MinS5-SAT in theory. However, their practical
execution efficiency is far less than SAT-based methods.

3 Methodology

In this section, we present the basic SAT-based methods. The encoding process
is premised on S5-NF.

Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5 229

3.1 Querying SAT Iteratively

First, we will give the method via querying SAT iteratively. We use propositional
variable pj to denote the truth value of p in the possible world wj . Then the
S5-K-SAT can be encoded as SAT.

Definition 1. Translation function tr−
SAT (φ,K) can produce a propositional

formula for an input S5-NF φ with K possible worlds:

1. � ⇒ � ⊥ ⇒ ⊥
2. For all propositional literals p in φ: p ⇒ p0
3. For all B-literals in φ:

�(p ∨ q ∨ · · · ∨ s) ⇒
∧K−1

j=0 (pj ∨ qj ∨ · · · ∨ sj)
4. For all D-literals in φ:

♦(p ∧ q ∧ · · · ∧ r) ⇒
∨K−1

j=0 (pj ∧ qj ∧ · · · ∧ rj)

If tr−
SAT (φ,K) is satisfiable then we can conclude that the formula φ has a

model with K possible worlds. So, the MinS5-SAT problem can be seen as an
optimization problem:

minimize K s.t. tr−
SAT (φ,K) is satisfiable. (2)

One can iterate the value of K between 0 and upper bound μ in an increasing
(or decreasing, binary search, etc.) way to find a minimal K that can satisfy
tr−

SAT (φ,K). The advantage of this method is that it can make full use of the
efficiency of the SAT engine.

3.2 Partial MaxSAT Model

If there is a D-literal ♦ψ and (W, I,w) � ψ, we say that the possible world w
is assigned to ♦ψ or w realizes ♦ψ. The key to find a minimal Kripke model
for an S5-NF is how to assign the possible worlds to D-literals. For example,
suppose that the upper bound for the formula in Example 1 is calculated to be
3 by some method. Then, we can construct a Kripke model M1 in Fig. 1. The
world w1 is assigned to ♦r in C2 and w2 is assigned to ♦(¬q ∧ ¬r). Now, if we
want to save a possible world, we can try to assign w0 to ♦(¬q ∧ ¬r) as shown
in M2. In this context, w2 can be removed from the model because no diamond
formula needs it. Based on this insight, some switch variables can be added for
the D-literals. For each possible world wj , we use a Boolean variable vj to open
or close it. When vj is falsified, the possible world wj will be closed. So, we can
encode the MinS5-SAT as a partial MaxSAT (PMS) problem [7].

Definition 2. Translation function tr−
PMS(φ, μ) can produce a partial MaxSAT

formula for an input S5-NF φ with at most μ (upper bound) possible worlds:

1. � ⇒ � ⊥ ⇒ ⊥
2. For all propositional literals: p ⇒ p0

230 P. Huang et al.

Fig. 1. Two Kripke models of the S5-NF in Example 1.

3. For all B-literals:
�(p ∨ q ∨ · · · ∨ s) ⇒

∧μ−1
j=0 (pj ∨ qj ∨ · · · ∨ sj)

4. For all D-literals:
♦(p ∧ q ∧ · · · ∧ r) ⇒

∨μ−1
j=0 (vj ∧ pj ∧ qj ∧ · · · ∧ rj)

5. Add a unit clause: v0
6. Add unit soft clauses:

∧μ−1
j=1 (¬vj)

Except for the clauses generated by rule 6, all other clauses are hard. The
possible world w0 must exist, so we add a hard unit clause v0. The idea behind
this partial MaxSAT formula is to close as many worlds as possible. Since the
possible worlds do not need to be really removed, we just apply switch variables
to diamond formulas. The number of satisfied switch variables is the size of a
minimal model.

Example 2. If the upper bound μ for the S5-NF φ in Example 1 is 3, then the
tr−

PMS(φ, 3) is :

2
∧

j=0

(pj ∨ qj ∨ ¬rj) ∧ {
2

∨

j=0

(vj ∧ ¬pj ∧ qj) ∨
2

∨

j=0

(vj ∧ rj)}

∧{p0 ∨
2

∨

j=0

(vj ∧ ¬qj ∧ ¬rj)} ∧ v0 ∧ ¬v1
︸︷︷︸

Soft

∧ ¬v2
︸︷︷︸

Soft

The advantage of the MaxSAT-based method is that UNSAT core and heuris-
tics for optimization can be well used in finding a minimal model.

4 Improved Methods

Finding a minimal model for an S5-NF can be seen as searching for an optimal
assignment of possible worlds for satisfied D-literals. In the basic model, the
realization of D-literals will be tested in all possible worlds {w0, w1, ..., wμ−1},

Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5 231

so there are a lot of symmetric (or isomorphic) situations. Suppose the process
of finding kripke model is considered in order, clause by clause. Like Example 1,
when we are considering how to realize the D-literals in C2, and w2, w3 have not
been considered for other D-literals now, actually, there is no difference trying
to realize the D-literals in C2 via w2 or w3.

4.1 SIF Strategy

We design a static symmetry breaking technique called Smallest Index First
(SIF) strategy. Assuming that tr−

SAT (φ,K) and tr−
PMS(φ, μ) translate the S5-

NF φ from left to right, the index set of possible worlds {0, 1, ..., μ − 1} (or
{0, 1, ...,K − 1}) can be divided into two parts: Ω1 = {l ∈ N|0 ≤ l ≤ L − 1}
and Ω2 = {l ∈ N|L ≤ l ≤ μ − 1}(or {l ∈ N|L ≤ l ≤ K − 1}). The index in Ω1

marks the possible worlds which have been used to test the realization of some
D-literals. Ω2 represents the possible worlds which have not been considered.
If the S5-clause currently under consideration has D-literals, we only need to
consider one more possible world at most. There is no difference for any one in
Ω2, because we can always find a permutation to rename the worlds in Ω2. So
we can add the wL with the smallest index to Ω1.

4.2 Improved S5-K-SAT Model

For S5-K-SAT encoding, initially L = 1, Ω1 = {0}, Ω2 = {1, ...,K−1}. Whenever
the translation procedure encounters an S5-clause which has D-lierals, update L
to Min(L + 1,K − 1).

Definition 3. Translation function trSAT (φ,K) is the improved version of
tr−

SAT (φ,K) with the SIF strategy:

When the procedure is translating S5-clause Ci, update L, iff Ci has D-literals.
For all D-literals in Ci:
♦(p ∧ q ∧ · · · ∧ r) ⇒

∨

j∈Ω1
(pj ∧ qj ∧ · · · ∧ rj)

Example 3. Assume that φ is the formula in Example 1 and K = 3, then the
procedure of trSAT (φ, 3) can be like this:

– Step 1. Translating C1. L = 1, Ω1 = {0}, Ω2 = {1, 2}.
�(p ∨ q ∨ ¬r) ⇒

∧2
j=0(pj ∨ qj ∨ ¬rj)

– Step 2. Translating C2. L = L + 1, Ω1 = {0, 1}, Ω2 = {2}.
♦(¬p ∧ q) ∨ ♦r ⇒

∨1
j=0(¬pj ∧ qj) ∨

∨1
j=0 rj

– Step 3. Translating C3. L = L + 1, Ω1 = {0, 1, 2}, Ω2 = {}.
p ∨ ♦(¬q ∧ ¬r) ⇒ p0 ∨

∨2
j=0(¬qj ∧ ¬rj)

In the second step, we only consider that whether ♦(¬p ∧ q) and ♦r can be
realized via possible worlds w0 and w1. We do not need to consider the possible
worlds in Ω2 for it.

232 P. Huang et al.

4.3 Improved PMS Model

For PMS encoding, initially L = 1, Ω1 = {0} and Ω2 = {1, ..., μ}. Whenever
the translation procedure encounters an S5-clause which has diamond formula,
update L to Min(L + 1, μ − 1).

Translation function trPMS(φ, μ) is the improved version of tr−
PMS(φ, μ) with

the SIF strategy:

(i) Add :
∧μ−2

j=0 (vj+1 → vj)
When the procedure is translating S5-clause Ci, update L, iff Ci has D-
literals.

(ii) For all D-literals in Ci:
♦(p ∧ q ∧ · · · ∧ r) ⇒

∨

j∈Ω1
(vj ∧ pj ∧ qj ∧ · · · ∧ rj)

The effect of (ii) is the same as the previous one. The added clauses (i) restrict
that the indexes of the possible worlds in a minimal model are contiguous. This
is a specific symmetry breaking for the MaxSAT encoding.

4.4 The Benefit of SIF

If we ignore the box subformulas and propositional literals, a minimal S5 model
finding procedure for an S5-NF can be simply abstracted as a tree search process.
It tests various assignments for D-literals and finds the one that uses the least
number of possible worlds. Similarly, S5-K-SAT are searching for an assignment
for these D-literals using just K possible worlds. The basic encoding of D-literals
can be seen as testing possible assignments to realize it. In this perspective, the
comparison of the basic methods with the improved methods is shown in Fig. 2.
In the basic methods, all the possible assignments for D-literals will be tested.
In the improved methods, fewer assignments will be tested for the D-literals at
a high level of the tree. The D-literals in the first S5-clause only test {w0, w1},
and the D-literals in the second S5-clause only test {w0, w1, w2}, and so on. So
the search tree of the improved methods can be much “thinner” and a lot of
symmetric situations are eliminated. When the upper bound μ is big, the search
space reduced by the SIF strategy is considerable.

Fig. 2. The search spaces of the basic and improved methods.

Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5 233

5 Comparison

The state-of-the-art MinS5-SAT solver S52SAT 2.0 also uses a SAT based
method [17]. The input formula θ will be translated to a MaxSAT formula.
The main translation procedure trs(θ, μ) is recursively defined as:

trs(θ, μ) = tr′
s(θ, 0, μ − 1)

tr′
s(p, i, μ − 1) = pi tr′

s(¬p, i, μ − 1) = ¬pi

tr′
s((ϕ ∧ δ), i, μ − 1) = tr′

s(ϕ, i, μ − 1) ∧ tr′
s(δ, i, μ − 1)

tr′
s((ϕ ∨ δ), i, μ − 1) = tr′

s(ϕ, i, μ − 1) ∨ tr′
s(δ, i, μ − 1)

tr′
s(�ϕ, i, μ − 1) =

∧μ−1
j=0 (sj → tr′

s(ϕ, j, μ − 1))
tr′

s(♦ϕ, i, μ − 1) =
∨μ−1

j=0 (sj ∧ tr′
s(ϕ, j, μ − 1))

Add:
∧μ−2

j=0 (sj+1 → sj)

Variables si are added to enable or disable worlds wi.
In general, the input formula θ can be in a very complex form, which has

nested modal operators and arbitrary combinations of logical connectives. This
translation method can produce a large SAT formula with redundancies. Besides,
there are a lot of symmetric situations in trs(θ, μ). Compared with it, our transla-
tion method has three advantages: First, the input formula θ will be transformed
to an equivalent S5-NF and the nested modal operators are eliminated. It makes
our methods produce a relatively small formula in the translation phase. And
our method will not add variables for box formulas. Second, the structural infor-
mation of the formula can be used to eliminate a lot of isomorphic models and
improve the efficiency in the search phase. Third, the reasoning can be relatively
efficient in possible worlds except for w0. The diamond formulas only have “∧”.
When the process tests whether some D-literals can be realized by a certain
world, the unit propagation can be activated.

6 Experimental Evaluation

Based on the approaches presented in this article, we implemented the MinS5-
SAT solver S5cheetah 2.0 1. The upper bound used in S5cheetah 2.0 is χ + 1.
The Glucose 4.0 [3] is used as the back-end SAT solver and RC2 [15] is used as
the back-end MaxSAT solver which has the best performance in the MaxSAT
competition 20192.

First, we clarify some notations in the experimental part:
[Inc.] It denotes the method which queries the satisfiability of trSAT (φ,K)

with increasing values of K from 1 to the upper bound χ + 1.
[Dec.] It denotes the method which queries the satisfiability of trSAT (φ,K)

with decreasing values of K from the upper bound χ + 1 to 1.
[Bs.] It denotes the method which queries the satisfiability of trSAT (φ,K)

using binary search for the optimal K between 1 and the upper bound χ + 1.
1 S5cheetah and benchmarks: http://www.square16.org/tools/s5cheetah/.
2 https://maxsat-evaluations.github.io/2019/rankings.html.

http://www.square16.org/tools/s5cheetah/
https://maxsat-evaluations.github.io/2019/rankings.html

234 P. Huang et al.

[PMS.] It denotes our MaxSAT method.
[S52SAT 2.0] It is a state-of-the-art MinS5-SAT solver3.
[S52SAT 1.0] It is an S5-SAT solver and used as a reference in our experi-

ment. In general, the MinS5-SAT problem is harder than the S5-SAT problem.
So, the time and memory consumption of S52SAT 1.0 can be regarded as the
lower bound of the time and memory consumption of S52SAT 2.0. Based on the
reports in paper [17], S52SAT 1.0 uses a similar translation method like trs()
but without selector si and consumes less time than S52SAT 2.0.

[Lck.] It denotes the S5-SAT solver LCKS5TabProver [1]. It is the state-of-
the-art tableau method solver for S5 and used as a reference. The advantage
of SAT-based methods can be seen from the comparison of LCK with other
SAT-based methods.

We cannot directly compare S5cheetah 2.0 with other MinS5-SAT solvers,
but we can infer the strength of our methods from the experimental results. The
correctness of S5cheetah 2.0 is cross-validated by our different methods.

6.1 Benchmarks

The well-established modal logic benchmarks include QMLTP 4, 3CNF [23],
3CNFmu QS5 1, QS5 2, MQBFK [19], and LWBK,KT,S4 [4]. QMLTP is
designed for testing automated theorem proving (ATP) systems for first-order
modal logics. It contains 177 propositional benchmarks for S5 from different
domains (e.g. planning, querying databases, natural language processing, gen-
eral algebra). All the benchmarks in QS5 1 and QS5 2 are satisfiable and large,
they are generated based on hard combinatorial designs about quasigroups.
Most benchmarks in 3CNF are unsatisfiable, so we generate 3CNFmu based on
3CNF . All the instances in 3CNFmu, which are generated from small mutations
of all the unsatisfiable instances in 3CNF , are satisfiable. Note that MQBFK

and LWBK,KT,S4 are not designed for S5. However, the results on those bench-
marks are still valuable. They share the same grammar and S5-SAT entails K,
KT and S4-SAT. Furthermore, the size of a minimal S5 Kripke model can be seen
as an upper bound for K, KT and S4. All the benchmarks can be downloaded
from the link (See footnote 1).

6.2 Environment

The experiments are performed on a server with Intel(R) Xeon (R) CPU (2.40
GHz), Ubuntu 16.04 and 64G RAM. The time bound is set to 300 s for each
instance. The experiments were performed on all SATISFIABLE instances.

3 S52SAT 2.0. is not available at moment. So, we compare with S52SAT 1.0 as refer-
ence. http://www.cril.univ-artois.fr/%7emontmirail/s52SAT/v2/index.html.

4 http://www.iltp.de/qmltp/.

http://www.cril.univ-artois.fr/%7emontmirail/s52SAT/v2/index.html
http://www.iltp.de/qmltp/

Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5 235

6.3 Experimental Results

Table 1 shows the comparison of efficiency on each instance family. For each
solver on each instance family, we report the number of instances where the
solver uses the least time among all solvers in the table, denoted by “#Win”
and the average time (Tavg(ms)) for tackling each instance family. The unsolved
instances are counted with the time bound. The sum of “#Win” of all solvers
is not necessarily equal to “#total”, since all solvers may fail. “#Mem” records
the maximum memory usage.

– [Lck vs. Other solvers] Lck failed in tackling many instances compared
with SAT-based methods. Even on some small examples, it is much slower
than other SAT-based methods.

– [PMS vs. S52SAT 1.0] Our PMS method consumes less time and memory
than S52SAT 1.0. We infer that PMS performs better than S52SAT 2.0.

– [PMS vs. Dec and Bs] The time consumption of Dec and Bs is close to
that of PMS, but PMS consumes more memory than the methods which are
based on querying S5-K-SAT iteratively.

– [Inc vs. Dec, Bs and PMS] For most instances, the incremental method
performs best in terms of memory usage and efficiency. Figure 3 shows the
comparison of running time on some hard families (3CNF and QS5). We find
that minimal Kripke models are usually small. So, the incremental method
has the best performance in solving the MinS5-SAT problem.

– [SIF vs. No SIF] SIF is a symmetry-breaking strategy that hardly intro-
duces extra computation cost. It really can help us solve more instances and
improve the efficiency of our methods. For 3CNFmu, it can help Inc solve 5
more instances (943 vs. 938), help Dec solve 67 more instances (401 vs. 334),
help Bs solve 53 more instances (401 vs. 334) and help PMS solve 180 more
instances (409 vs. 229). For QS5 2, it cannot help Inc solve more instances
(154 vs 154) but can help Dec solve 43 more instances (154 vs. 111), help Bs
solve 2 more instances (127 vs. 125) and help PMS solve 6 more instances
(116 vs 110). For other benchmarks, all the instances can be solved by all
methods (with or without SIF) but the methods with SIF consume less time.
Figure 4 shows the comparison of running time of the methods with SIF and
without SIF on 3CNFmu and QS5 2. Sometimes the method using SIF will
take a little longer time because of the fluctuation of the CPU and random-
ized strategy of the SAT solver. SIF has more obvious advantages when the
instance is more difficult and the minimum model is larger.

Table 2 shows the average size of minimal models (MinW) with the estimated
upper bounds (χ + 1) and (dd(θ) + 1). We can see that a minimal model is very
small and sometimes the theoretical upper bound is much larger than the size
of the number of minimal possible worlds.

7 Why Is a Minimal Model Small?

Although basic modal logics have small model property, the concept is equivalent
to the finite model property [11]. Sometimes this theoretical “small” model can

236 P. Huang et al.

Table 1. The comparison of efficiency on all benchmarks. “-” means no instance can
be solved within the time bound.

Ins (#Total) Inc. Dec. Bs. PMS. S52SAT1.0 Lck.

#Win Tavg Mem #Win Tavg Mem #Win Tavg Mem #Win Tavg Mem Tavg Mem Tavg Mem

QMLTP (41) 41 0.5 0.8M 0 1.3 1.0M 0 0.91 0.9M 0 1.1 20.1M 78.90 25.0M 43910.9 21G

QS5 1(252) 248 1995.6 4.8G 0 29745.3 5.5G 0 6800.64 5.3G 4 5846.4 6.6G 107378.2 64G – –

QS5 2(240) 149 129303.9 3.1G 0 189785.7 8.5G 0 164857.9 6.2G 5 181272.8 8.8G 290205.8 64G – –

3CNF (55) 54 19476.2 62.8M 0 223919.6 109.7M 0 40669.2 76.1M 0 238946.2 250.1M 126804.3 2.35G – –

3CNFmu(945) 939 7776.2 59.9M 0 207520.2 100.7M 0 48329.9 55.5M 0 187422.1 174.0M 290205.9 64G – –

LWB k (42) 42 154.5 46.8M 0 180.6 51.5M 0 166.7 48.8M 0 176.4 59.4M 81326.9 64G 147467.9 64G

LWB kt (105) 105 7.8 48.1M 0 15.6 55.1M 0 14.2 55.9M 0 18.4 62.8M 30916.2 64G 61103.1 58G

LWB s4(105) 105 40.4 6.8M 0 47.6 7.1M 0 46.5 7.1M 0 51.8 7.7M 38299.4 24.5G 57393.4 62G

qbfS (177) 177 1.59 3.0M 0 5.78 4.8M 0 3.19 3.0M 0 3.24 12.4M 591.44 84.0M – –

Fig. 3. The comparison of running time on 3CNF and QS5.(The x-axis corresponds
to the time used by incremental method and the y-axis corresponds to the time used
by other methods. The axes are in logarithmic scale. The point above the line y=x
means that the incremental method consumes less time on this instance.)

be very large. To our best knowledge, there is no literature about the minimal
number of possible worlds of modal logics. So, we try to figure out whether a
minimal S5 Kripke model is so small frequently.

Suppose the input formula φ is an S5-NF, and there are m S5-clauses con-
taining at least one D-literal. Based on the definition of diamond degree, we
know that dd(φ)=m. So the satisfiability of φ can be decided with at most m+1

Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5 237

Fig. 4. The comparison of running time on 3CNFmu and QS5 2.(The x-axis corre-
sponds to the time used by methods with SIF and the y-axis corresponds to the time
used by methods without SIF. The axes are on a logarithmic scale. The point above
the line y=x means the method with SIF consumes less time on this instance.)

Table 2. The minimal number of possible worlds VS. estimated upper bounds.

Ins MinW χ + 1 dd(θ) + 1 m + 1

QMLTP 1.31 1.75 6.87 242.73

QS5 1 1.00 16.05 2826.70 8333.36

QS5 2 1.92 40.93 1329.41 35095.44

3CNF 7.03 125.45 152.82 427.85

3CNFmu 6.89 233.47 316.50 797.16

LWB k 1.50 3.47 440.92 1049.48

LWB kt 1.40 4.00 217.89 1035.52

LWB s4 1.20 2.57 236.22 1130.41

qbfS 2.00 3.00 45.07 1637.87

possible worlds. If φ is satisfiable then at least one S5-literal in each S5-clause
must be true in its minimal model and we call that S5-literal as the “key S5-
literal”. Actually, the number of possible worlds is decided by all key D-literals.
We can build a graph G for these “key D-literals”. The vertices set are key
D-literals and the edges are used to denote whether there is a conflict (they
cannot be realized by the same world) between two key D-literals. Figure 5 is a
schematic. We assume that Pk is the probability of that the key S5-literal is a
D-literal in an S5-clause or whether a vertex appears in the graph. We use Pc

to denote the probability of the appearance of a conflicting edge between two
key D-literals. In this context, if the minimal chromatic number of the graph
coloring problem of G is χ(G), then the minimal size of the model is either χ(G)
or χ(G)+1. According to literature [24], the chromatic number upper bound is

238 P. Huang et al.

Fig. 5. The conflict graph of four key D-literals.

χ(G) ≤ δ = maxi∈V min(di + 1, i), where di denotes the degree of vertex i and
d1 ≥ d2 ≥ ... ≥ d|V |. Then the probability that the chromatic number less than
some constant H is:

P (δ ≤ H) = P (|{di|di ≥ H}| ≤ H)

We simplify the model and use independent random variable Xij(i, j ∈
{1, 2, ...,m}) to denote the appearance of edge between two vertexes i and j.
Xij = 1 means that vertex i appears in graph otherwise, Xij = 0.

P (di ≥ H) = P (
m

∑

j=1

Xij ≥ H) = P (

∑m
j=1 Xij − mp2kpc

√

mp2kpc(1 − p2kpc)
≥ H − mp2kpc

√

mp2kpc(1 − p2kpc)
)

Based on central limit theorem, we have:

Z =

∑m
j=1 Xij − mp2kpc

√

mp2kpc(1 − p2kpc)
∼ N(0, 1)

So, P (di ≥ H) = Φ(1 − H−mp2
kpc√

mp2
kpc(1−p2

kpc)
) where Φ is the cumulative distribution

function (CDF) of normal distribution N(0, 1).
We simply use independent random variable Yi to denote whether di ≥ H

and P (Yi = 1) = P (di ≥ H) = pd. Then we have:

P (|{di|di ≥ H}| ≤ H) = P (
m

∑

i=1

Yi ≤ H) = P (
∑m

i=1 Yi − mpd
√

pd(1 − pd)
≤ H − mpd

√

pd(1 − pd)
)

Reuse the central limit theorem, we have:

P (δ ≤ H) = P (|{di|di ≥ H}| ≤ H) = Φ(
H − mpd

√

pd(1 − pd)
)

If m = 200, Pk = 1
3 (There are 3 types of S5-literals in an S5-clause and they

are chosen as key S5-literal with equal probability.) and Pc = 1
2 (Simply assuming

that the existence of an edge follows the uniform distribution.), then P (δ ≤ m
10 =

Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5 239

20) = 99.99%. If m = 300, P (δ ≤ m
10) ≈ 100%. In practice, m is much smaller

than |φ|. Besides, the minimal chromatic number can be much smaller than the
estimated upper bound δ. The upper bound χ+1 is estimated from conflicting
relationship among D-literals, but one cannot know which D-literals are key D-
literals and get the accurate conflicting relationships in advance. So the upper
bound χ+1 can also be much larger than χ(G)+1. So the minimal number of
possible worlds can be many times smaller than estimated upper bound with
a high probability. This also shows that there is room for improvement in the
upper bound.

Intuitively, Pk is inversely proportional to the average number of S5-literals
in each S5-clause. Pc is proportional to the length of the D-literal. In general,
the key D-literal is not too long for a satisfiable formula, because its conjunctive
structure determines that if it is too long, it will make the assignment of a
certain world very demanding, which is easy to make the whole formula to be
unsatisfiable. As Pk and Pc get smaller in some larger formulas, δ will be smaller
than a smaller constant H with a higher probability. To some extent, this model
can help us figure out why a minimal model can be so small and the incremental
method is more efficient.

8 Conclusion

In this paper, we propose some efficient SAT-based methods with a symmetry-
breaking technique to generate minimal Kripke models for modal logic S5 for-
mulas. Extensive experiments show that our methods achieve state-of-the-art
performances and the incremental method is more efficient and consumes less
memory compared with other methods. We notice that the minimal S5 Kripke
model is usually very small. So, we analyze the reason with a graph model and
find that “a small Kripke S5 model is a high probability event”. It explains why
querying an SAT oracle incrementally performs best in most cases. In the future,
we would like to migrate these methods to other modal logics such as S4 and
KD45 which are similar to S5.

Acknowledgements. This work has been supported by the National Natural Science
Foundation of China (NSFC) under grant No.61972384 and the Key Research Program
of Frontier Sciences, Chinese Academy of Sciences under grant number QYZDJ-SSW-
JSC036. Feifei Ma is also supported by the Youth Innovation Promotion Association
CAS under grant No. Y202034. The authors would like to thank the anonymous review-
ers for their comments and suggestions.

References

1. Abate, P., Goré, R., Widmann, F.: Cut-free single-pass tableaux for the logic of
common knowledge. In: Workshop on Agents and Deduction at TABLEAUX. vol.
2007. Citeseer (2007)

240 P. Huang et al.

2. Aguilera, J.P., Fernández-Duque, D.: Verification logic: an arithmetical interpreta-
tion for negative introspection. In: Advances in Modal Logic 11, proceedings of the
11th conference on Advances in Modal Logic, held in Budapest, Hungary, August
30 - September 2, 2016. pp. 1–20 (2016)

3. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, 11–17 July 2009, pp. 399–404 (2009)

4. Balsiger, P., Heuerding, A., Schwendimann, S.: A benchmark method for the propo-
sitional modal logics k, kt, S4. J. Autom. Reason. 24(3), 297–317 (2000)

5. Bienvenu, M., Fargier, H., Marquis, P.: Knowledge compilation in the modal logic
S5. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2010, Atlanta, Georgia, USA, July 11–15, 2010 (2010)

6. Caridroit, T., Lagniez, J., Berre, D.L., de Lima, T., Montmirail, V.: A SAT-based
approach for solving the modal logic S5-satisfiability problem. In: Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017,
San Francisco, California, USA. pp. 3864–3870 (2017)

7. Chu, Y., Luo, C., Cai, S., You, H.: Empirical investigation of stochastic local search
for maximum satisfiability. Frontiers Comput. Sci. 13(1), 86–98 (2019). https://
doi.org/10.1007/s11704-018-7107-z

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning about knowledge. MIT
press, Cambridge (2004)

9. Fitting, M.: A simple propositional S5 tableau system. Ann. Pure Appl. Log. 96(1–
3), 107–115 (1999)

10. Fitting, M.: Modality and databases. In: Dyckhoff, R. (ed.) TABLEAUX 2000.
LNCS (LNAI), vol. 1847, pp. 19–39. Springer, Heidelberg (2000). https://doi.org/
10.1007/10722086 2

11. Goranko, V., Otto, M.: Model theory of modal logic. In: Handbook of Modal Logic,
pp. 249–329 (2007)

12. Grossi, D., Rey, S.: Credulous acceptability, poison games and modal logic. In:
Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2019, Montreal, QC, Canada, 13–17 May 2019, pp.
1994–1996 (2019)

13. Hella, L., et al.: Weak models of distributed computing, with connections to modal
logic. Distrib. Comput. 28(1), 31–53 (2013). https://doi.org/10.1007/s00446-013-
0202-3

14. Huang, P., Liu, M., Wang, P., Zhang, W., Ma, F., Zhang, J.: Solving the satis-
fiability problem of modal logic S5 guided by graph coloring. In: Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, 10–16 August 2019. pp. 1093–1100 (2019)

15. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient maxsat solver. J.
Satisf. Boolean Model. Comput. 11(1), 53–64 (2019)

16. Ladner, R.E.: The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

17. Lagniez, J.-M., Le Berre, D., de Lima, T., Montmirail, V.: An assumption-based
approach for solving the minimal S5-satisfiability problem. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 1–
18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 1

18. Leuştean, I., Moangă, N., Şerbănuţă, T.F.: Operational semantics and program
verification using many-sorted hybrid modal logic. In: Cerrito, S., Popescu, A.
(eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 446–476. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29026-9 25

https://doi.org/10.1007/s11704-018-7107-z
https://doi.org/10.1007/s11704-018-7107-z
https://doi.org/10.1007/10722086_2
https://doi.org/10.1007/10722086_2
https://doi.org/10.1007/s00446-013-0202-3
https://doi.org/10.1007/s00446-013-0202-3
https://doi.org/10.1007/978-3-319-94205-6_1
https://doi.org/10.1007/978-3-030-29026-9_25

Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5 241

19. Massacci, F.: Design and results of the tableaux-99 non-classical (Modal) systems
comparison. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617,
pp. 14–18. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48754-9 2

20. Niveau, A., Zanuttini, B.: Efficient representations for the modal logic S5. In:
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intel-
ligence, IJCAI 2016, New York, 9–15 July 2016. pp. 1223–1229 (2016)

21. Papacchini, F., Schmidt, R.A.: A tableau calculus for minimal modal model gen-
eration. Electron. Notes Theor. Comput. Sci. 278, 159–172 (2011)

22. Papacchini, F., Schmidt, R.A.: Terminating minimal model generation procedures
for propositional modal logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.)
IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 381–395. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08587-6 30

23. Patel-Schneider, P.F., Sebastiani, R.: A new general method to generate random
modal formulae for testing decision procedures. J. Artif. Intell. Res. 18, 351–389
(2003)

24. Soto, M., Rossi, A., Sevaux, M.: Three new upper bounds on the chromatic number.
Discret. Appl. Math. 159(18), 2281–2289 (2011)

25. Wan, H., Yang, R., Fang, L., Liu, Y., Xu, H.: A complete epistemic planner with-
out the epistemic closed world assumption. In: Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, 25–31 July 2015. pp. 3257–3263 (2015)

https://doi.org/10.1007/3-540-48754-9_2
https://doi.org/10.1007/978-3-319-08587-6_30

DiMo – Discrete Modelling Using
Propositional Logic

Norbert Hundeshagen, Martin Lange(B), and Georg Siebert

Theoretical Computer Science/Formal Methods, University of Kassel,
Kassel, Germany

martin.lange@uni-kassel.de

Abstract. We present a learning tool that addresses competences in
using propositional logic for modelling purposes. It provides a language
for specifying parametrised propositional formula schemes, a backend
tool using an incremental SAT solver to exemplify instances of such a
scheme to a user learning how to write correct propositional formulas,
and a web-based frontend for easy access.

1 Propositional Logic in Formal Modelling

Propositional Logic (PL) constitutes one of the foundations of computer sci-
ence as a simple, yet broadly applicable modelling language. It is used in a wide
range of areas, from the description of computational process in Boolean circuits
on the hardware level to high-level applications in planning [8], computer-aided
verification [2], cryptanalysis [10], etc. Typical problems in these areas can be
reduced to a few fundamental and tightly linked decision and computation prob-
lems on propositional formulas, most of all satisfiability checking (SAT) but also
equivalence checking, (counter-)model generation, etc.

Moreover, there is a steady and impressive advancement in SAT solving tech-
nology as witnessed regularly for instance by results of the SAT solvers compe-
titions [6]. These industrial-strength tools open up the possibilities for practi-
cal solutions in areas whose decision/computation problems can be (efficiently)
encoded in propositional logic, provided that users are able to correctly model
their problems in SAT. This is one good reason for propositional logic being
part of any standard computer science/engineering curriculum. It is in fact rec-
ommended to be taught in the the contexts of digital design, mathematical
foundations and intelligent systems [7].

The syntactic and semantic simplicity of propositional logic does not neces-
sarily make it an easy topic for students, especially not in times of an apparent
decrease in mathematical abilities to grasp and apply abstract concepts, of which
propositional logic is one. Students typically have no problem understanding the
mechanism of evaluating a propositional formula, including the mechanics of
Boolean operators like conjunction, negation etc. They also do not normally
struggle with solving simple satisfiability tasks like

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 242–250, 2021.
https://doi.org/10.1007/978-3-030-80223-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_17

DiMo – Discrete Modelling Using Propositional Logic 243

Fig. 1. Typical erroneous use of propositional logic in modelling.

(a) Find a satisfying assignment for (¬A ∨ B ∨ C) ∧ (A ∨ ¬B) ∧ (A ∨ ¬C).

Such tasks, however, merely address the issues arising with the celebrated use of
propositional logic in application domains as recalled above, namely modelling
problems in the language of propositional logic. Such a task would rather be
something like

(b) Construct a propositional formula Φ(R,n) which is satisfiable iff there
is a way for the robot to traverse through room R in order to reach the
target area in at most n steps.

Task (b) addresses an entirely different level of required analytical competences
as task (a): he/she needs to transpose the simple planning problem into the
language of propositional logic, in other words model it in SAT. By doing so, the
student shows the ability to leverage the power of generic black-box solutions
(here: SAT solvers) to solve problems from a specific application domain, and this
addresses exactly one of the core competences that computer science students
should acquire.

Hence, in order to proficiently use propositional logic as a modelling tool, it
does not suffice to be able to read and write propositional formulas ϕ(A1, . . . , An)
but instead one needs to deal with formula schemes ϕp1,...,pk

(�A) in which the
propositional variables �A and also the junctors may depend on external param-
eters p1, . . . , pk of some domain.

Didactical Considerations. In a programming-language perspective, the key
difference between the two tasks stated above can be described as computing
the result of a given program (a) versus writing a program for a given problem
(b). To meet task (b) students typically have to master two levels:

(i) On the syntactic level they need to be able to write down well-formed
formula schemes. The biggest pitfall is typically the separation of parameter
and propositional variables, and to strictly stay within propositional logic over
a given set of variables. Figure 1 shows some wild but not atypical attempts at
writing a formula ϕG which is satisfiable if the graph G has an Euler tour, using
propositional variables Xe

i stating “the i-th edge on the tour is e.”

244 N. Hundeshagen et al.

Learning can easily be supported on this level by tools which reject malformed
input with immediate feedback like error messages (cf. [1]) or syntax highlight-
ing. Note that this is standard in compilers and IDEs, which also explains why
students rarely consider writing a (syntactically) correct program to be as prob-
lematic and difficult as writing a formula.

(ii) On the semantic level, students need to be able to construct formula
schemes which correctly model the underlying domain-specific problem. It typ-
ically requires a deeper understanding of the interaction between syntax and
semantics of the modelling language, or more precisely, the way how syntacti-
cal change influences semantical change. Modelling in propositional logic can be
compared to writing programs in a high-level language like Prolog, both syn-
tactically – see the proposal of the DiMo language below – and semantically
through the common use of logical principles.

The issues of understanding and correctly using Prolog and therefore to some
extent, the process of modelling in propositional logic, are well explained by the
theory of Cognitive Dimension of Notations [4], that is, “Prolog [...] allows many
different program structures to be built by combining a very small number of
notational elements in different ways”, cf. [5]. Hence, there is also a (generic) way
to support learning on this level, namely by visualising the effect of a program or,
in terms of this paper’s main focus, a candidate formula (scheme). We take this to
mean, for instance, displaying the set of propositional models of the instantiated
formula scheme for a suitably large set of parameter values. Provided the student
has understood the problem to be modelled, seeing the propositional models for
some problem instances is typically sufficient to judge whether the formula “does
the right thing or not.”

In the following we describe the DiMo language and tool. It supports learning
efforts in the area of discrete modelling using propositional logic by implementing
the principles described here and thus addresses both the syntactic and semantic
level for this task.

2 The DiMo Language and Tool

DiMo Programs. Input to the DiMo Tool is given in a language used to
specify parametrised propositional formulas and what to do with them. A DiMo
program consists of the specification of . . .

– a decision/computation problem. Currently supported are (i) satisfiability
checking and (ii) model enumeration, as well as generalisations of (iii) valid-
ity and (iv) equivalence checking of/between propositional formula schemes.

– formal parameters to the formula scheme as well as their (possibly infinite)
ranges. Currently, the only supported parameter type is that of integers.
Ranges can be any finite or linear subset of Z.

DiMo – Discrete Modelling Using Propositional Logic 245

– (optionally) a family of propositions. These are the “main” ones in the sense
that others are regarded as auxiliary ones. Those whose values are deter-
mined by others can thus be excluded from output and from model compar-
isons for instance. (Ex.: the auxiliary variables introduced in the well-known
Tseitin transformation [11].)

– one or two formula schemes, possibly with abbreviated subformula schemes
in order to enhance readability. These are the ones to be checked for satisfi-
ability, equivalence, etc.

A formal specification of the DiMo language can be found in the DiMo manual
[9]. It follows standard context-free syntax principles of logics and programming
languages and also explains in detail the possibilities to perform arithmetic oper-
ations on integer parameters in order to achieve higher expressiveness. Here we
present one example of a DiMo program to introduce the main features available
in this formal modelling language.

Example 1. Consider the task of writing a formula ExactlyMofN(n,m) over
propositions A1, . . . , An which is true under some evaluation ϑ iff ϑ maps exactly
m of these n propositions to true. The DiMo program

1 EQUIVALENT ExactlyMofN_with_aux(n,m)

2 TO ExactlyMofN_rec(n,m)

3 PROPOSITIONS A

4 PARAMETERS n: {1,..}, m: NAT WITH m <= n

5 FORMULAS

6

7 ExactlyMofN_with_aux(n,m) =

8 AtLeastMChosen(n,m) & AtMostMChosen(n,m)

9

10 AtLeastMChosen(n,m) =

11 B(n,m) & BsWellBehaved(n,m) & BsEndOk(m)

12 BsWellBehaved(n,m) =

13 FORALL i : {1,..,n}.

14 FORALL j: {1,..,m}.

15 B(i,j) -> ((A(i) & B(i-1,j-1)) | B(i-1,j))

16 BsEndOk(m) = FORALL j : {1,..,m}. -B(0,j)

17

18 AtMostMChosen(n,m) = AtLeastNminusMNotChosen (n,n-m)

19 AtLeastNminusMNotChosen (n,m) =

20 N(n,m) & NsWellBehaved(n,m) & NsEndOk(m)

21 NsWellBehaved(n,m) =

22 FORALL i : {1,..,n}.

23 FORALL j: {1,..,m}.

24 N(i,j) -> ((-A(i) & N(i-1,j-1)) | N(i-1,j))

25 NsEndOk(m) = FORALL j : {1,..,m}. -N(0,j)

26

27 ExactlyMofN_rec(n,m) = Choose(m,0,n)

28 Choose(0,l,n) = FORALL i:{l+1,..,n}. -A(i)

29 Choose(m,l,n) =

246 N. Hundeshagen et al.

30 FORSOME i:{l+1,..,n-m+1}. A(i) &

31 (FORALL j:{l+1,..,i-1}. -A(j)) & Choose(m-1,i,n)

asks for two formalisations of this property to be compared. The first one in lines
7–25 uses auxiliary variables B(i, j) and N(i, j) in order to abbreviate statements
like “exactly j amongst A1, . . . , Ai are true” in order to achieve an encoding of
length O(n · m). The second one in lines 27–31 defines this predicate recursively
which basically amounts to enumerating all subsets of A1, . . . , An having m
elements.

Even though both formulas schemes represent correct solutions to the task
at hand, they are not semantically equivalent as propositional formulas due to
the use of auxiliary variables. They are equivalent in the sense that for each
m,n ∈ N, the Π2-sentence

(∀ �A ∃ �B ∃ �N. ExactlyMofN with aux(m,n) → ExactlyMofN rec(m,n)
) ∧

(∀ �A ∃ �B ∃ �N. ExactlyMofN rec(m,n) → ExactlyMofN with aux(m,n)
)

is true. For formulas without auxiliary variables, this notion of Π2-truth boils
down to ordinary propositional equivalence. Hence, DiMo’s equivalence mode
can also be used to test students’ solutions against a standard solution.

The Backend. The DiMo tool consists of two parts: front- and backend. The
latter runs DiMo programs in the style of a semi-decision procedure. It combines

– an enumerator for the parameter spaces,
– an instantiator which turns a formula scheme and concrete parameter values

into a propositional formula, and
– an engine which translates the DiMo problem into a (series of) satisfiability

problems of formulas in conjunctive normal form and calls an incremental
SAT solver in order to solve the satisfiability, model enumeration or the
aforementioned generalisations of validity and equivalence problem for the
current instance of the formula schemes. This uses the standard technique
of incrementally adding clauses to exclude previously found models.

Remember that DiMo’s primary purpose is the training of modelling compe-
tences using propositional logic, in particular the design of parametrised for-
mula schemes adhering to some specification. It should be clear that correctness
of formula schemes with integer parameters, with addition and multiplication
available, is undecidable. However, for learning purposes, the feedback given by
analysing each instance of a formula scheme is much more valuable anyway, as
it provides the user with an understanding of what the formula scheme written
down as a DiMo program expresses.

Example 2. Suppose the header of the DiMo program of Example 1 in lines
1–4 is changed to the following code.

DiMo – Discrete Modelling Using Propositional Logic 247

1 MODELS ExactlyMofN_with_aux(n,m)

2 PROPOSITIONS A

3 PARAMETERS n: {1,..}, m: NAT WITH m <= n

This now asks for all models (restricted to the propositional variables A(i)) of
any instantiation of this scheme with n,m ∈ N, n ≥ 1,m ≤ n to be shown.
Running DiMo on that program results in the following output.

1 Instance m=0, n=1

2 Found model -A(1)

3 1 model found.

4 Instance m=0, n=2

5 Found model -A(1), -A(2)

6 1 model found.

7 Instance m=1, n=1

8 Found model A(1)

9 1 model found.

10 Instance m=0, n=3

11 Found model -A(1), -A(2), -A(3)

12 1 model found.

13 Instance m=1, n=2

14 Found model A(1), -A(2)

15 Found model -A(1), A(2)

16 2 models found.

17 Instance m=0, n=4

18 Found model -A(1), -A(2), -A(3), -A(4)

19 1 model found.

20 Instance m=1, n=3

21 Found model A(1), -A(2), -A(3)

22 Found model -A(1), A(2), -A(3)

23 Found model -A(1), -A(2), A(3)

24 3 models found.

25 Instance m=2, n=2

26 Found model A(1), A(2)

27 1 model found.

From this one can quickly see that the formula scheme correctly formalises this
property. Note that the output has been truncated for obvious reasons; in fact,
DiMo reports models for larger parameters with no notable delay: within 10 s,
instances up to m = 5 and n = 16 are handled on a standard MacBook, showing
all 4368 =

(
16
5

)
models.

The output generated by the backend supports the user to master the seman-
tic level of learning how to correctly use propositional logic in discrete modelling.
The syntactic level is mainly addressed by the frontend described below. The
DiMo backend is implemented in OCaml for reasons of speed and high-level
programming constructs. It is openly available under the BSD-3-license.1 It con-
nects to an incremental SAT solver through the ocaml-sat-solvers interface

1 https://github.com/muldvarp/DiMo.

https://github.com/muldvarp/DiMo

248 N. Hundeshagen et al.

Fig. 2. The frontend with editor (left), formula view (right) and output (below).

which currently supports MiniSAT. Extending it to others is merely a matter
of implementation, but MiniSAT also works very well for these purposes.

The backend can also be run as a stand-alone application reading input from
files and producing console output. This is recommended for advanced usage,
for instance when long output needs to be generated beyond the limitations of
the frontend or the hosting webserver.

The Frontend is a web-based user interface that allows students to write and
run DiMo programs in order to learn how to correctly use propositional logic
as a modelling tool. It is inspired by modern IDEs with features like syntax and
error highlighting, code completion, and basic text editor functions.

This functionality helps to prevent syntax errors at the time of writing for-
mula schemes and thus supports the user in mastering the first, syntactic level in
this learning exercise. It is additionally supported and reinforced by the display-
ing of formula schemes in a mathematical style which students are probably more
familiar with from lecture slides. The correspondence between the computer-
readable DiMo syntax and the mathematical style is basically one-to-one which
makes it easy to learn the former from the latter.

Figure 2 shows a screenshot of the frontend with the DiMo program from
Example 1. The main view of the frontend consists of three components:

– The left pane contains the editor in which DiMo programs can be created.
Some syntax highlighting can be seen in Fig. 2 for instance the distinction

DiMo – Discrete Modelling Using Propositional Logic 249

between DiMo keywords, parameter variables, propositions and Boolean
operators. Potential errors would be marked using squiggly red underlining.

– The right pane shows the output of an on-the-fly typesetting of the formula
scheme using LaTeX.

– The pane at the bottom contains output taken from a run of the backend
on this program.

The frontend is hosted on a server so that users do not need to undergo a
potentially laborious setup of a development environment. A (modern) web-
browser suffices for access, hence the system is platform independent, easy and
uncomplicated to start, and the user can focus on the task of learning how to
model problems in propositional logic.

The foundation of the frontend is written in Typescript2 with Angular (See
footnote 2) as a web application framework. The editing functionality is provided
by the Monaco Editor (See footnote 2), a web-based port of the Visual Studio
Code editor. It offers interfaces for syntax highlighting and visual support for
code completion and error highlighting. For this reason, a parser was created
with ANTLR (See footnote 2) to check the program for syntax errors and extract
positional information of the syntax constructs. The information from the parser
is then further processed and subsequently inserted in the Monaco Editor. With
regex operations, the DiMo program is converted into LaTeX source code and
displayed using a Katex (See footnote 2) environment.

The backend does not include an interface for HTTP requests; it is wrapped
by a Node.js (See footnote 2) server, written in Typescript as well. It uses
Express.js (See footnote 2) as a web framework. Nearly all functions of the
backend can be accessed by HTTP using the server’s API. To provide an easy
way to set up the DiMo tool a Docker (See footnote 2) script is available in the
public repository.3 Alternatively, the latest version is usable on a website hosted
at the University of Kassel4. The associated wiki provides further support.

3 Conclusion

We have presented a framework for learning how to correctly use propositional
logic as a modelling tool. The tool itself makes extensive use of an incremen-
tal SAT solver in order to visualise the result of a student’s effort to create a
parametrised formula according to some requirements. This targets the mod-
elling aspect directly, and this is what also distinguishes DiMo from other logic
learning tools like Iltis [3] for instance which is more general-purpose and rather
focuses on tasks like the one named (a) in the introduction.

There is room for further work on the DiMo tool and in particular the DiMo
language. Next steps will include the extension by further data types, for instance
2 https://www.typescriptlang.org, https://angular.io, https://www.docker.com,
https://microsoft.github.io/monaco-editor, https://www.antlr.org, https://katex.
org, https://nodejs.org, https://expressjs.com.

3 https://syre.fm.cs.uni-kassel.de/Georg/dimotoolweb.
4 https://dumbarton.fm.cs.uni-kassel.de.

https://www.typescriptlang.org
https://angular.io
https://www.docker.com
https://microsoft.github.io/monaco-editor
https://www.antlr.org
https://katex.org
https://katex.org
https://nodejs.org
https://expressjs.com
https://syre.fm.cs.uni-kassel.de/Georg/dimotoolweb
https://dumbarton.fm.cs.uni-kassel.de

250 N. Hundeshagen et al.

strings or finite graphs. These will allow DiMo to be used in order to train further
modelling tasks, including fundamental problems like 3-colourability or longest
common subsequence. There is also need for tool support in learning how to use
richer languages in modelling, for instance QBF or first-order logic. Both, and
the latter in particular, raise questions though about the right presentation of
models for users to see how to correct faulty tries.

References

1. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors:
lessons learned. J. Learn. Sci. 4(2), 167–207 (1995)

2. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)

3. Geck, G., Ljulin, A., Peter, S., Schmidt, J., Vehlken, F., Zeume, T.: Introduc-
tion to Iltis: an interactive, web-based system for teaching logic. In: Proceedings
23rd Annual ACM Conference on Innovation and Technology in Computer Science
Education, ITiCSE 2018, pp. 141–146. ACM (2018)

4. Green, T.R.G.: Cognitive dimensions of notations. In: People and Computers V,
pp. 443–460. University Press (1989)

5. Green, T.R.G.: Instructions and descriptions: some cognitive aspects of program-
ming and similar activities. In: Proceedings of Working Conference on Advanced
Visual Interfaces, AVI 2000, pp. 21–28. ACM (2000)

6. Järvisalo, M., Berre, D.L., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Mag. 33(1), 89–92 (2012)

7. Joint Task Force on Computing Curricula, ACM and IEEE Computer Soci-
ety. Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science. ACM (2013)

8. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of 10th Euro-
pean Conference on Artificial Intelligence, ECAI 1992, pp. 359–363 (1992)

9. Lange, M.: DiMo - a tool for discrete modelling using propositional logic (version
0.2.2) (2021). https://github.com/muldvarp/DiMo/blob/master/doc/dimo.pdf

10. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Autom.
Reasoning 24(1/2), 165–203 (2000)

11. Tseytin, G.S.: On the complexity of derivation in propositional calculus. In: Stud-
ies in Constructive Mathematics and Mathematical Logic II, volume 8 of Zapiski
Nauchnykh Seminarov LOMI, pp. 235–259. Nauka (1968). (In Russian)

https://github.com/muldvarp/DiMo/blob/master/doc/dimo.pdf

SAT-Based Rigorous Explanations
for Decision Lists

Alexey Ignatiev1(B) and Joao Marques-Silva2

1 Monash University, Melbourne, Australia
alexey.ignatiev@monash.edu

2 IRIT, CNRS, Toulouse, France
joao.marques-silva@irit.fr

Abstract. Decision lists (DLs) find a wide range of uses for classifica-
tion problems in Machine Learning (ML), being implemented in anumber
of ML frameworks. DLs are often perceived as interpretable. However,
building on recent results for decision trees (DTs), we argue that inter-
pretability is an elusive goal for some DLs. As a result, for some uses
of DLs, it will be important to compute (rigorous) explanations. Unfor-
tunately, and in clear contrast with the case of DTs, this paper shows
that computing explanations for DLs is computationally hard. Motivated
by this result, the paper proposes propositional encodings for comput-
ing abductive explanations (AXps) and contrastive explanations (CXps)
of DLs. Furthermore, the paper investigates the practical efficiency of a
MARCO-like approach for enumerating explanations. The experimental
results demonstrate that, for DLs used in practical settings, the use of
SAT oracles offers a very efficient solution, and that complete enumera-
tion of explanations is most often feasible.

1 Introduction

Decision lists (DLs) [64] find a wide range of uses for classification problems in
Machine Learning (ML) [1,2,12,15–18,65,71–73], being implemented in a num-
ber of ML frameworks (e.g. [10,22]). DLs can be viewed as ordered rules, and
so are often perceived as interpretable1. This explains in part the recent interest
in DLs [1,2,12,65,71–73], most of which is premised on the interpretability of
DLs. However, building on recent results for decision trees (DTs) [37], which
demonstrate the possible non-interpretability of DTs when representing specific
1 Interpretability is a subjective concept, for which no rigorous accepted definition

exists [46]. As clarified later in the paper, for a given pair ML model and instance,
we equate interpretability with how succinct is the justification for the model’s pre-
diction.

This work was supported by the AI Interdisciplinary Institute ANITI, funded by the
French program “Investing for the Future – PIA3” under Grant agreement no. ANR-
19-PI3A-0004, and by the H2020-ICT38 project COALA “Cognitive Assisted agile
manufacturing for a Labor force supported by trustworthy Artificial intelligence”.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 251–269, 2021.
https://doi.org/10.1007/978-3-030-80223-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_18

252 A. Ignatiev and J. Marques-Silva

functions, we show that interpretability can also be an elusive goal for some
DLs. As a result, and for some concrete applications of DLs, it is important to
compute (rigorous) explanations.

Explanations can be broadly categorized into heuristic [47,62,63] and non-
heuristic [32,66]. Recent work has provided extensive evidence regarding the
lack of quality of heuristic explanation approaches [11,25,34,40,57,68]. Non-
heuristic (or rigorous) approaches for computing explanations can be organized
into abductive (AXp) [19,32,33,66] and contrastive (CXp) [31,54]. (Abductive
explanations are also referred to as PI-explanations [66] (i.e. prime implicant
explanations), since these represent subset-minimal sets of feature value pairs
that are sufficient for a prediction.) Most work on rigorous explanations either
exploits knowledge compilation approaches [3,19,66,67], or approaches based on
iterative calls to some oracle for NP (e.g. SAT, SMT, MILP, etc.) [31–33]. As a
result, improvements to automated reasoning tools, can have a profound impact
on the deployment of rigorous explanation approaches.

Furthermore, recent work proposed polynomial time algorithms for finding
explanations of a number of ML models, including DTs [37], naive-Bayes clas-
sifiers [49], and also different knowledge representation languages [3]. Unfortu-
nately, and in contrast with these recent tractability results, this paper proves
that finding one PI-explanation for a DL is NP-hard.

Motivated by the NP-hardness of finding explanations of DLs, the paper
proposes propositional encodings for computing abductive and contrastive expla-
nations of DLs. Furthermore, the paper investigates the practical efficiency of
a MARCO-like [43] approach for enumerating explanations. The experimental
results demonstrate that, for DLs used in practical settings, the use of SAT
oracles offers a very efficient solution, and that complete enumeration of expla-
nations is most often feasible.

The paper is organized as follows. The notation and definitions used through-
out the paper are introduced in Sect. 2. Section 3 proves the NP-hardness of find-
ing rigorous explanations for DLs. In addition, this section develops a proposi-
tional encoding for finding one AXp or one CXp, and briefly overviews the
online enumeration of explanations. Section 4 presents the experimental results.
The paper concludes in Sect. 5.

2 Preliminaries

2.1 Propositional Satisfiability

Definitions standard in propositional satisfiability (SAT) and maximum satis-
fiability (MaxSAT) solving are assumed [8]. In what follows, we will assume
formulas to be propositional. A conjunction of literals is referred to as term
while a disjunction of literals is referred to as clause; also note that a literal
is either a Boolean variable or its negation. Whenever convenient, terms and
clauses are treated as sets of literals. A formula is said to be in conjunctive or
disjunctive normal form (CNF or DNF, respectively) if it is a conjunction of

SAT-Based Rigorous Explanations for Decision Lists 253

clauses or disjunction of terms, respectively. Set theory notation will be also
used with respect to CNF and DNF formulas when necessary.

A truth assignment μ is a mapping from the set of variables to {0, 1}. An
assignment is said to satisfy a literal l (¬l, resp.) if it maps variable l to 1 (to 0,
resp.). A clause is said to be satisfied by assignment μ if μ satisfies at least one
of its literals. If for a CNF formula φ there exists an assignment μ that satisfies
all clauses of φ, formula φ is referred to as satisfiable and μ is its satisfying
assignment (or model). In addition, we use the notation � to denote entailment,
i.e. φ1 � φ2 if any model of φ1 is also a model of φ2.

One of the central concepts in rigorous explainable AI (XAI) [32,66] is of
prime implicants as defined below.

Definition 1. A term π is an implicant of formula φ if π � φ. An implicant π
of φ is called prime if none of the proper subsets π′ � π is an implicant of φ.

In the context of unsatisfiable formulas, the maximum satisfiability
(MaxSAT) problem is to find a truth assignment that maximizes the number of
satisfied clauses. A number of variants of MaxSAT exist [8, Chapters 23 and 24].
Hereinafter, we are mostly interested in Partial (Unweighted) MaxSAT, which
can be formulated as follows. The formula φ is represented as a conjunction of
hard clauses H, which must be satisfied, and soft clauses S, which represent a
preference to satisfy those clauses, i.e. φ = H∧S. Therefore, the Partial MaxSAT
problem consists in finding an assignment that satisfies all the hard clauses and
maximizes the total number of satisfied soft clauses. In the following, the con-
cepts of minimal unsatisfiable subsets (MUSes) and minimal correction subsets
(MCSes) taking into account the hard clauses H will also be helpful. Concretely,
consider unsatisfiable CNF formula φ = H ∧ S with H and S defined as the set
of hard and soft clauses, respectively.

Definition 2. A subset of soft clauses M ⊆ S is a Minimal Unsatisfiable Subset
(MUS) iff H ∪ M is unsatisfiable and ∀M′�M, H ∪ M′ is satisfiable.

Definition 3. A subset of soft clauses C ⊆ S is a Minimal Correction Subset
(MCS) iff H ∪ F \ C is satisfiable and ∀C′�C , H ∪ F \ C′ is unsatisfiable.

MUSes and MCSes of a CNF formula are known to be related through the
minimal hitting set (MHS) duality [5,9,45,61], which has been recently exploited
in a number of practical settings [21,27,30,36,45] including XAI [31].

2.2 Classification Problems, Decision Lists, and Explanations

This section introduces definitions and notation related with classification prob-
lems in ML, but also formal definitions of explanations proposed in recent
work [32,66].

Classification Problems. We consider a classification problem, characterized
by a set of (categorical) features F = {1, . . . , m}, and by a set of classes K =
{c1, . . . , cK}. Each feature j ∈ F is characterized by a domain Di. As a result,

254 A. Ignatiev and J. Marques-Silva

τ(x) =

⎧⎨
⎩

⊕ if [2x1 − x2 > 1]

� if [2x1 − x2 ≤ 1]

(a) Example linear classifier

R0: IF x1 THEN ⊕
R1: ELSE IF x2 THEN ⊕
Rdef: ELSE THEN �

(b) Example decision list

R0: IF x1 THEN ⊕
R1: IF x2 THEN ⊕
R2: IF ¬x1 ∧ ¬x2 THEN �

(c) Example decision set

Fig. 1. Example classifiers

feature space is defined as F = D1 × D2 × . . . × Dm. A specific point in feature
space is represented by v = (v1, . . . , vm). A point v in feature space denotes
an instance (or an example). Moreover, we use x = (x1, . . . , xm) to denote an
arbitrary point in feature space. In general, when referring to the value of a
feature j ∈ F , we will use a variable xj , with xj taking values from Dj . (To keep
the notation simple, we opt not to introduce an assignment function, mapping
each feature j to some value in Dj .) For simplicity, throughout this paper we will
restrict K to two classes, i.e. K = {⊕,�}. However, most of the ideas described
in this document also apply in the more general case of K with more than two
elements; the general case of non-binary classification is also considered in the
experimental results presented in Sect. 4. (In settings where K = {⊕,�}, we will
also equate ⊕ with 1, and � with 0.)

A classifier implements a total classification function τ : F → K. In some
settings, e.g. when computing explanations, it will be convenient to represent
the classification function as a decision predicate τc : F → {0, 1}, parametrized
by some fixed class c ∈ K, and such that ∀(x ∈ F).τc(x) ↔ (τ(x) = c).

Example 1. To illustrate the definitions above, we consider a very simple linear
classifier, defined as follows. Let F = {1, 2}, with D1 = D2 = {0, 1, 2}, and
let K = {�,⊕}. As a result, feature space is given by F = {0, 1, 2} × {0, 1, 2}.
Furthermore, the classification function associated with the classifier is shown
in Fig. 1a. Concretely, the prediction is ⊕ if 2x1 − x2 > 1, and it is � otherwise.

��

Decision Lists (DLs) & Decision Sets (DSs). A rule is of the form
“IF antecedent THEN prediction”, where the antecedent is of the form

∧
feature-

literals. The interpretation of a rule is that if the antecedent is consistent (i.e. all
the literals are true), then the rule fires and the prediction is the one associated
with the rule. A decision list (DL) [64] is an ordered list of rules, whereas a
decision set (DS) [14,39] is an unordered list of rules.

Throughout the paper, we will consider ordered sets of rule indices R =
{1, . . . , R}, such that for i ∈ R, we will use c, l and o to denote, respectively,
the class associated with rule i, the set of literals associated with rule i and the
order of rule i.

Example 2. Consider another classifier. Let F = {1, 2}, with D1 = D2 = {0, 1},
and so F = {0, 1} × {0, 1}. The decision list for the classifier is shown in Fig. 1b

SAT-Based Rigorous Explanations for Decision Lists 255

while an equivalent decision set is shown in Fig. 1c. The classification function
for the DL can be represented as follows:

τ(x) =
{⊕ if [(x1) ∨ (¬x1 ∧ x2)]

� if [(¬x1 ∧ ¬x2)]

(Note how the lack of order in DS rules results in a simpler classifier representa-
tion τ(x) for class ⊕, e.g. it can be explicitly represented as x1 ∨ x2 since rules
R0 and R1 are unordered in the decision set of Fig. 1c.) ��

Note that following the standard convention, we will always assume that DLs
have a default rule, with no literals, that fires when for all the preceding rules,
the conjunction of literals associated with that rule is inconsistent. An example
default rule for the DL shown in Example 2 is marked as Rdef.

Interpretability and Explanations. Interpretability is generally accepted to
be a subjective concept, without a formal definition [46]. In this paper we mea-
sure interpretability in terms of the overall succinctness of the information pro-
vided by an ML model to justify a given prediction. We say that a model is not
interpretable if for some instance, the justification of a prediction is arbitrarily
larger (on the number of features) than a rigorous explanation (which we define
next). Moreover, and building on earlier work, we equate explanations with the
so-called PI-explanations [3,19,32,66], i.e. subset-minimal sets of feature-value
pairs that are sufficient for the prediction. More formally, given an instance
v ∈ F, with prediction c ∈ K, i.e. τ(v) = c, a PI-explanation is a minimal subset
X ⊆ F such that,

∀(x ∈ F).
∧

j∈X (xj = vj) → (τ(x) = c) (1)

Another name for a PI-explanation is (a minimal/minimum) abductive explana-
tion (AXp) [31,32]. For simplicity, and depending on the context, we will use
PI-explanation and the acronym AXp interchangeably.

In a similar vein, we consider contrastive explanations (CXps) [31,54]. Con-
trastive explanation can be defined as a (subset-)minimal set of feature-value
pairs (Y ⊆ F) that suffice to changing the prediction if they are allowed to take
some arbitrary value from their domain. Formally and as suggested in [31], a
CXp is defined as a minimal subset Y ⊆ F such that,

∃(x ∈ F).
∧

j �∈Y(xj = vj) ∧ (τ(x) �= c) (2)

(It is possible and simple to adapt the definition to target a specific class c′ �= c.)
Moreover, building on the seminal work of Reiter [61], recent work demonstrated
a minimal hitting set relationship between AXps and CXps [31], namely each
AXp is a minimal hitting set (MHS) of the set of CXps and vice-versa.

For computing both kinds of explanations (AXps and CXps), we will work
with sets of features, aiming at finding minimal subsets. It will also be helpful to
describe explanations (concretely AXps) as sets of literals. As a result, starting

256 A. Ignatiev and J. Marques-Silva

from an instance v, we create a set of literals Iv = {(xj , vj)|j ∈ F}. When clear
from the context, we will just use I to denote the literals of an instance.

An AXp X ⊆ F can also be viewed as a conjunction ρ of a subset of the liter-
als Iv induced by the instance v that is sufficient for the prediction. Moreover,
given a conjunction of literals ρ, we will associate a predicate ρ : F → {0, 1}
(with the symbol duplication deliberately aiming at simplifying the notation)
to represent the values taken by the conjunction of literals for each point x in
feature space. As a result, we use ρ � τc to denote that ρ is sufficient for the
prediction, i.e.

∀(x ∈ F).ρ(x) → τc(x) (3)

We can also associate a conjunction of literals η with each CXp, such that
the literals in η are not the literals specified by the CXp, and such that the
following condition holds,

∃(x ∈ F).η(x) ∧ ¬τc(x) (4)

It should be noted that since a CXp is a minimal set of features, each η is a
maximal set of literals such that there exists at least one point in feature space
such that the ML model predicts a class other than c.

Example 3. For the linear classifier of Example 1, let v = (2, 0), with prediction
⊕. In this case, the (only) AXp is X = {1}, indicating that, as long as x1 = 2,
the value of the prediction is ⊕, independently of the value of x2. Moreover, the
AXp can also be represented by ρ � (x1 = 2). For this very simple example,
Y = {1} is also a CXp. Indeed, if we allow feature 1 to take a value other than
2, then the assignment v′ = (0, 0) will change the prediction. (More complex
examples of CXps are studied later in the paper.) ��
Example 4. For the decision list of Example 2, let v = (0, 1), with prediction ⊕.
In this case, the (only) AXp is X = {2}, indicating that, as long as x2 = 1, the
value of the prediction is ⊕, independently of the value of x1. Moreover, the AXp
can also be represented by ρ � (x2 = 1). In this case, a CXp is also Y = {2}.
For example, the point in feature space v = (0, 0) will cause the prediction to
change to �. ��
Example 5. To illustrate the hitting set duality relationship between AXps and
CXps established in [31], we consider a simple classifier represented as a decision
list (DL) of three rules (including the default rule). Let F = {1, 2, 3, 4, 5}, Di =
{0, 1, 2}, with i = 1, . . . , 5, and K = {�,⊕}. Let the decision list be:

R0: IF x1 = 1 ∧ x2 = 1 THEN �
R1: ELSE IF x3 �= 1 THEN ⊕
Rdef: ELSE THEN �

We consider the instance v = (1, 1, 1, 1, 1), which results in prediction �. It is
straightforward to see that, as long as x1 = x2 = 1, then the prediction is �.

SAT-Based Rigorous Explanations for Decision Lists 257

Also, it is less trivial (but still observable) that, as long as x3 = 1, the prediction
is guaranteed to be � as well. Moreover, it suffices to change the value of feature
3 and the value of either feature 1 or feature 2 to change the prediction to ⊕,
e.g. set x3 = x1 = 0 or set x3 = x2 = 2. As a result, we can conclude that the
set of AXps is: X = {{1, 2}, {3}}, and the set of CXps is: Y = {{1, 3}, {2, 3}}.
Furthermore, from the minimal hitting set duality relationship between AXps
and CXP’s [31], the sets in X are MHSes of the sets in Y and vice-versa. (Clearly,
we could follow the definitions and reach the same conclusions.) ��

3 Explaining Decision Lists

It is easy to see that just like DTs [37], DLs can also exhibit redundancy in the
literals used, and so the computation of PI-explanations can be instrumental to
conveying short explanations to a human decision maker.

Example 6. Consider a possible DL shown below for the function f(x1, . . . , x4) =
(x1 ∧ x2) ∨ (x3 ∧ x4). (This DL is constructed by applying a “direct translation”
of all the paths of the DT shown in [37, Figure 1b] from left to right into rules
followed by appending a default rule predicting class f = 1.)

R0: IF x1 = 0 ∧ x3 = 0 THEN f = 0
R1: ELSE IF x1 = 0 ∧ x3 = 1 ∧ x4 = 0 THEN f = 0
R2: ELSE IF x1 = 0 ∧ x3 = 1 ∧ x4 = 1 THEN f = 1
R3: ELSE IF x1 = 1 ∧ x2 = 0 ∧ x3 = 0 THEN f = 0
R4: ELSE IF x1 = 1 ∧ x2 = 0 ∧ x3 = 1 ∧ x4 = 0 THEN f = 0
R5: ELSE IF x1 = 1 ∧ x2 = 0 ∧ x3 = 1 ∧ x4 = 1 THEN f = 1
R6: ELSE IF x1 = 1 ∧ x2 = 1 THEN f = 1
Rdef: ELSE THEN f = 1

Consider a data instance v = (1, 0, 1, 1) and observe that rule R5 fires the
prediction f = 1. Although rule R5 has four literals, an AXp for instance v is
(x3 = 1) ∧ (x4 = 1). Similarly, in practice one may expect examples of DLs
s.t. AXps will be significanlty smaller than the rules that fire the corresponding
predictions.

This observation is confirmed by the experimental results in Sect. 4, in that
explanations can play an important role in understanding the predictions made
by DLs. ��

3.1 DL Explainability

Perhaps surprisingly, whereas DTs can be explained in polynomial time, DLs
cannot. This section proves a number of theoretical results related to explain-
ability of DLs. Here we will be using the knowledge compilation (KC) map [20],
which studied a wealth of queries on knowledge representation languages. We
consider the concrete setting of classification, i.e. a language L denotes a classifier
τ and a target prediction c. Let us briefly define the queries of interest [20]:

258 A. Ignatiev and J. Marques-Silva

1. Satisfiability (SAT): if there exists a polynomial-time algorithm for deciding
the satisfiability of τ(x) = c, i.e. to decide in polynomial time whether there
exists x ∈ F such that τ(x) = c. In the case of DLs, this problem will be
referred to as DLSAT.

2. Implicant test (IM): if there exists a polynomial-time algorithm that decides
whether a conjunction of literals ρ is such that ρ � τc, i.e. ∀(x ∈ F).ρ(x) →
τc(x). In the case of DLs, this problem will be referred to as DLIM.

Similarly, we can define DNFSAT (which is trivially in P) and DNFIM (which
is well-known to be in P only if P = NP [20]).

Proposition 1. DLSAT is NP-complete.

Proof. It is easy to see that the DLSAT is in NP. We simply guess an assignment
to the features and check whether the prediction is the expected one according to
the DL. To prove NP-hardness, the reduction of CNFSAT to DLSAT is organized
as follows:

1. Consider a CNF formula φ with clauses c1, c2, . . . , cm.
2. Let the variables in φ denote the features (w.l.o.g. assume the features to be

Boolean).
3. Consider the negation of each clause ¬ci which represents a conjunction of

literals
∧

lj∈ci
¬lj .

4. For each ¬ci, create a rule πi with antecedent
∧

lj∈ci
¬lj and prediction �.

5. Create a default rule with prediction ⊕.
6. Hence, formula φ is satisfiable if and only if there is an assignment to the

features which results in prediction ⊕.

The prediction is � if some clause ci is falsified, i.e. ¬ci is satisfied (and hence
rule πi fires). Otherwise, if all clauses are satisfied, and so all ¬ci are falsified,
then the prediction is ⊕. ��
Proposition 2. No polynomial-time algorithm exists for DLIM unless P = NP.

Proof. We reduce DNFIM (i.e. IM for DNF) to DLIM, given that IM for DNF is
well-known to be solvable in polynomial time only if P = NP [20]. Let ψ denote
a DNF, with k terms, i.e. ψ = t1 ∨ . . . ∨ tk, and let p denote a conjunction of
literals. IM for DNF is to decide whether p is an implicant of ψ, i.e. p � ψ. The
reduction of DNFIM to DLIM is organized as follows:

1. For each conjunction of literals ti in ψ, create a rule with antecedent given
by ti, i.e. πi = ti, and prediction �.

2. The (k+1)th rule is created as follows: the antecendent is p and the prediction
is ⊕.

3. Finally, we add a default rule with prediction �.

As a result, the prediction will be ⊕ if and only if p∧∧
i∈[k](¬ti) is satisfied, and

so p � ψ, in which case p is not an implicant of ψ. ��

SAT-Based Rigorous Explanations for Decision Lists 259

Given the above results, we can conclude the following.

Proposition 3. There is no polynomial-time algorithm for finding an AXp of
a decision list unless P = NP.

Proof (sketch). If there was a polynomial-time algorithm for finding an AXp for
a DL then we would be able to solve IM for DL in polynomial time. This would
in turn imply that IM for DNF is solvable in polynomial time. ��

A Word on Decision Sets. Although decision sets are unordered (in contrast
to DLs), this fact does not simplify the computation of PI-explanations. (In
what follows, we assume that a DS implements a total classification function,
which is not the case in general due to the issue of overlap [35]—otherwise,
PI-explanations would be ill-defined.)

Proposition 4 Finding an AXp for a DS is hard for DP.

Proof (sketch). It is known [35] that decision sets can be associated with DNF
formulas. It is also known [70] that finding a prime implicant (PI) of a DNF D
given a satisfying assignment v is complete for DP. Given the aforementioned
connection between DSs and DNFs, we show here that the above problem can
be reduced to finding a PI-explanation of a DS.

Let the terms in the DNF D become the rules for prediction ⊕ in the cor-
responding DS. Also, let the default rule of the DS predict �. Hence, a set of
literals ρ (contained in the literals induced by v) is a PI of the DNF D iff ρ is a
PI-explanation for the DS prediction ⊕ given v. ��
Remark 1. In the case of decision sets, it is also simple to observe that deciding
whether a set of literals ρ is an AXp is in DP. For that, one needs to prove first
that the set of literals ρ entails prediction ⊕; this problem is clearly in coNP.
Additionally, one also needs to prove subset-minimality of ρ, i.e. that removing
any single literal from ρ results in a subset of literals that does not entail the
prediction ⊕. (We can consider |ρ| sets of literals, each of which removes a literal
from ρ to get a set of literals ρk, and check that there are |ρ| assignments such for
each ρk we get a different prediction �.) The latter problem is in NP. Therefore
and given Proposition 4, we can establish DP-completeness of the decision version
of finding a PI-explanation in the case of DSs.

DLs vs. DTs and vs. DSs. The results of this section are somewhat surprising
in terms of comparing DTs with DLs and DSs. On the one hand, satisfiability
query is trivially in P for DTs and DSs, but it is NP-complete for DLs. On
the other hand, AXps can be computed in polynomial time for DTs [37], but a
polynomial-time algorithm for computing AXps for DLs and DSs would imply
P = NP.

260 A. Ignatiev and J. Marques-Silva

3.2 Explaining Arbitrary DLs with SAT

When explaining decision lists, one can use the work on computing rigorous
abductive [32,66] and contrastive explanations [31] for ML models. This section
describes a novel propositional encoding for DL classifiers that can be exploited
by the generic approach of [31,32].

Let v denote a point in feature space with prediction c ∈ K. Moreover, let
the rule that fires on v be i ∈ R. Note that for an arbitrary rule k ∈ R to fire,
the following constraint must hold true:

∧

rj∈R
o(j)<o(k)

¬(l(j)) ∧ l(k) (5)

Constraint (5) encodes the fact that the literals in all the rules preceding rule
k must not fire and the rule k must fire. (Recall that l(i) represents the set of
literals of rule i). This constraint is straightforward to clausify, i.e. convert to
CNF. Moreover, let ϕ(i) denote the set of clauses resulting from clausification
of the constraint (5) for rule i to fire.

Given a set of literals ρ, ρ is an implicant of the decision function associated
with the DL (i.e. ρ is an AXp) for the instance v and the corresponding prediction
c(i) if:

ρ �
∨

j∈R
c(j)=c(i)

ϕ(j) (6)

i.e. for any point x in feature space, if ρ(x) holds true, then one of the rules
predicting the same class c(i) as rule i must hold true as well. Constraints (5)
and (6) comprise the propositional encoding that can be used in the framework
of [32] to compute one AXp for the prediction made by a decision list for a
given input instance. Note that computing such an AXp ρ is typically done by
reducing the initial set of literals Iv, which clearly entails the right-hand side
of (6), i.e. Iv �

∨
j∈R,c(j)=c(i) ϕ(j). Also note that in practice it is convenient

to negate this tautology and instead deal with its negation, which is obviously
unsatisfiable. Following [31,32], this enables one to apply the well-developed
apparatus for computing one AXp (resp. CXp) as an MUS (resp. MCS) of the
negated formula [6,7,26,36,38,42,45,48,50,52,53], but also for enumerating a
given number of all AXps (resp. CXps) through MUS (resp. MCS) enumera-
tion [41,43,44,55,60].

Example 7. As mentioned above, when computing an AXp in the form of (6), it
is convenient to negate the tautology Iv �

∨
j∈R,c(j)=c(i) ϕ(j) and instead work

with unsatisfiable formula
Iv ∧

∧

j∈R
c(j)=c(i)

¬ϕ(j)

Here, the left part Iv of the conjunction serves as the set S of unit-size soft
clauses, each represented by a literal assigning a value to a feature. This way

SAT-Based Rigorous Explanations for Decision Lists 261

AXps and CXps can be found as minimal subsets of S (i.e. MUSes or MCSes,
respectively), subject to the hard clauses H �

∧
j∈R,c(j)=c(i) ¬ϕ(j). Also observe

that the negation ¬ϕ(k) (recall that ϕ(k) enforces rule k to fire) constitutes the
disjunction

¬l(k) ∨
∨

rj∈R
o(j)<o(k)

l(j)

which enforces that either rule k does not fire or one of the preceding rules fires.
Also, to enforce that the default rule does not fire, we can simply require one
of the non-default rules of the DL to fire. Finally, note that the hard clauses H
encode the fact of misclassification, which is clearly impossible when the input
instance Iv is given as the soft clauses S, thus making formula H∧S unsatisfiable.

Now, consider the DL from Example 6 and recall that rule R5 fires prediction
f = 1 for the instance v = (1, 0, 1, 1). As prediction f = 1 is represented by rules
R2, R5, R6, Rdef, our hard clauses H must enforce that none of them fires. Given
the above, the hard clauses H are formed by

H =

⎧
⎨

⎩

¬ϕ(2) �
[
¬l(2) ∨ ∨1

j=0 l(j)
]
;

¬ϕ(6) �
[
¬l(6) ∨ ∨5

j=0 l(j)
]
;

¬ϕ(5) �
[
¬l(5) ∨ ∨4

j=0 l(j)
]
;

¬ϕdef �
[∨6

j=0 l(j)
]

⎫
⎬

⎭

Here, CNF encoding of terms l(j) is omitted as it is trivial to obtain. ��
As can be observed in Example 7, the propositional encoding described

in this section targets simplicity and for this reason it exhibits redundancy,
e.g. expressions

∨k−1
j=0 l(j) in the representation of ¬ϕ(k) are repeated for every

k′ > k. As shown in Sect. 4, the performance results suggest that the proposed
encoding scales well on DLs of realistic size. Nevertheless, a number of improve-
ments can be envisioned, which add more structure to the encoding, but with
the cost of using additional auxiliary variables. Our initial experiments suggest
no significant gains were obtained with a more complex propositional encoding.

4 Experimental Results

This section aims at assessing the proposed SAT-based approach to computing
and enumerating rigorous abductive explanations (AXps) [32,66] as well as con-
trastive explanations (CXps) [31] for decision list models. First, the approach
will be tested from the perspective of raw performance, followed by additional
information on the comparative number of AXps and CXps as well as their
length.

Experimental Setup. The experiments were performed on a MacBook Pro
laptop running macOS Big Sur 11.2.3. Therefore, each individual process was
run on a Quad-Core Intel Core i5-8259U 2.30 GHz processor with 16 GByte of
memory. The memory limit was set to 4 GByte while the time limit used was
set to 1800 1800 s, for each individual process to run.

262 A. Ignatiev and J. Marques-Silva

Prototype Implementation. A prototype implementation2 of the proposed
approach was developed as a Python script instrumenting incremental calls to
the Glucose 3 SAT solver [4] using the PySAT toolkit [28]. The implementation
targets the computation of one explanation (either an AXp or a CXp) and
enumeration of a given number of those, with a possibility to enumerate all.

It is known [31] that a CXp can be computed as an MCS for the encod-
ing formula discussed above and hence CXp enumeration is implemented in the
prototype as LBX-based MCS enumeration [53]. Similarly, AXp corresponds to
an MUS of the formula and, as a result, AXp enumeration is done using the
MARCO-like MUS enumeration approach [41,43,60] due to the hitting set dual-
ity between AXps and CXps [31]. Concretely, the MARCO-like explainer is orga-
nized as two interconnecting oracles: (i) a SAT oracle checking (un)satisfiability
of a selected set of clauses of the formula, and (ii) a minimal hitting set (MHS)
oracle, which computes minimal hitting sets of a current collection of MCSes
of the formula obtained so far. The MHS oracle was implemented on top of the
RC2 MaxSAT solver exploited incrementally [29]. Each iteration of the MARCO-
like explainer computes either an AXp or a CXp. The former are reported and
blocked (by adding a single clause to the MHS oracle) while the latter are used
later as the sets to hit. The explainer stops as soon as there are no more minimal
hitting set identified by the MHS oracle. As a result, the MARCO-like explainer
produces both AXps and CXps upon the end of execution. Note that thanks to
the use of MaxSAT-based MHS oracle, AXps computed this way are irredun-
dant, i.e. subset-minimal, and do not have to be reduced further while CXps do
need to be reduced by a dedicated reduction procedure (see below). Also note
that the MARCO-like approach can also be used in a dual way, i.e. targeting
CXp enumeration and computing AXps as a by-product. This mode of operation
of the explainer has also been implemented in the developed prototype.

It is also important to mention that all the three modes of operation make
incremental use of the underlying SAT oracles. As such, the LBX-like CXp enu-
meration computes an explanation, blocks it by adding a single clause and pro-
ceeds to the next CXp. Furthermore, once all explanations for a given data
instance are enumerated, all the previously added blocking clauses are disabled
and the enumeration process starts again for a new data instance. This is done
with the use of unique selector variables introduced for each data instance. On
the contrary, the MARCO-like approaches accumulate and block all explana-
tions on the MHS oracle side. This enables one to keep the same SAT oracle on
the checking side of the approach while restarting the MHS oracle from scratch,
i.e. with an empty collection of sets to hit, for each new data instance.

Finally, the following heuristics are used. LBX-like computation of a single
CXp makes use of the Clause D (CLD) heuristic [50]. Computation of a single
AXp is done as a simple deletion-based linear search procedure [51], strength-
ened by exhaustive enumeration of unit-size MCSes used to bootstrap the MHS
oracle. Although a more sophisticated algorithm QuickXPlain [38] has been also

2 The prototype is available at https://github.com/alexeyignatiev/xdl-tool.

https://github.com/alexeyignatiev/xdl-tool

SAT-Based Rigorous Explanations for Decision Lists 263

implemented, it turned out to be outperformed by the aforementioned simpler
alternative in this concrete setting.

Benchmarks and Methodology. Experimental evaluation was performed on
a subset of datasets selected from a few publicly available sources. In particular,
these include datasets from UCI Machine Learning Repository [69] and Penn
Machine Learning Benchmarks [58] as well as datasets previously studied in the
context of ML explainability [63] and fairness [23,24]. The number of selected
datasets is 72. We applied the approach of 5-fold cross validation, i.e. each dataset
was randomly split into 5 chunks of instances; each of these chunks served as
test data while the remaining 4 chunks were used to train the classifiers. As a
result, each dataset (out of 72) resulted in 5 individual pairs of training and test
datasets represented by 80% and 20% of data instances. Therefore, the total
number of training datasets considered in the evaluation is 360.

Given a training dataset, i.e. represented by 4 chunks of the original data,
a decision list model was trained with the use of the well-known heuristic algo-
rithm CN2 [14,15]3, the implementation of which was taken from the well-known
Python toolkit Orange4. The time spent on training the models was ignored.
Next, the prototype explainer was run in one of the three modes described above,
to enumerate all explanations (either AXps, or CXps) for each of the instances
of the original 100% data. Also and as mentioned above, the explainer was given
1800 1800seconds for each of the 360 datasets/models.

Note that the number of rules in the decision list models constructed by CN2
for the target datasets varied from 6 to 2055. Also, the total number of non-class,
i.e. solely antecedent, literals used in the models varied from 6 to 6754. Finally,
propositional formulas encoding the explanation problems for these models had
from 7 to 15340 variables and from 9 to 3932987 clauses. It is important to
mention that all data was treated as categorical and hence the propositional
formulas given to the encoder incorporated cardinality constraints enforcing that
a feature can take exactly one value; in the experiments, these constraints were
encoded into CNF using the pairwise encoding [59]. Although left untested, other
cardinality encodings would result in smaller formulas—the pairwise encoding
was selected intentionally in order to produce larger formulas and so to test
scalability of the proposed SAT-based approach.

Raw Performance. Figure 2a depicts a cactus plot showing the raw perfor-
mance of the explainer working in the three selected modes of operation. (Note
that the CPU time axis is scaled logarithmically.) As can be observed, all the
algorithms are able to finish successful computation of all the target explanations
for all the data instances of each of the 360 benchmark datasets within the given
time limit. Surprisingly, the best performing configuration overall turns out to
3 Recent alternative approaches to sparse decision lists [1,2,65] have also been con-

sidered but were eventually discarded for two reasons: (1) they can only deal with
binary data and (2) they produce sparse decision lists containing a couple of rules
and a few literals in total—i.e. these methods do not provide models that would be
of interest for our work.

4 https://orangedatamining.com/.

https://orangedatamining.com/

264 A. Ignatiev and J. Marques-Silva

0 100 200 300 400
datasets

10−2

10−1

100

101

102

103

C
PU

tim
e
(s
)

MARCO-like AXp Enumeration
MARCO-like CXp Enumeration
LBX-like CXp Enumeration

(a) Raw performance comparison

101 102 103 104 105 106
Total number of AXps per dataset

101

102

103

104

105

106

To
ta
ln
um

be
ro
fC

X
ps

pe
rd
at
as
et

(b) Number of AXps and CXps per dataset

Fig. 2. Performance of the three operation modes and the total number of explanations
per dataset they enumerate.

be MARCO-based AXp enumeration. MARCO-based CXp enumeration is a bit
slower. Recall that both MARCO-based modes end up enumerating the same
sets of explanations including AXps (CXps, resp.) and dual CXps (dual AXps,
resp.). Also, recall that the only major difference between the two configurations
is the type of the target explanations that are provided by the MHS oracle while
the dual explanations have to be reduced by a dedicated reduction procedure.
Therefore, the performance difference shown suggests that in practice it may
be more beneficial to target AXps and so to reduce dual CXps than doing the
opposite (which is not really surprising given that the former correspond to MUS
extraction while the latter correspond to MCS extraction). Finally, it should be
mentioned that although LBX-like CXp explanation works the most efficiently
for most of the benchmarks, in some cases it is outperformed by the competitors,
which may be explained by the need to incrementally block a significant number
of previously computed solutions (recall that, on the contrary, the MARCO-like
configurations restart the MHS oracle from scratch for every new data instance).

AXps vs CXps. As can be seen in Fig. 2b, the total number of AXps per
dataset tends to be lower than the total number of CXps. Concretely, the num-
ber of AXps per dataset varies from 16 to 72838 while the number of CXps per
dataset varies from 23 to 248825. (Observe that the time to compute one expla-
nation is negligible.) These data are in line with the results previously obtained
in [31] when explaining a different kind of ML model (namely, XGBoost mod-
els [13]) with a different reasoning engine (namely, Z3 SMT solver [56]). Unsur-
prisingly, the average number of CXps per data instance is also higher than the
average number of AXps, as shown in Fig. 3a. In general, the average number
of CXps per instance varies from 1 to 20.8 while the average number of AXps
goes from 1 to 22.7. However and as one can observe in the scatter plot Fig. 3a,

SAT-Based Rigorous Explanations for Decision Lists 265

100 101 102
Average number of AXps per instance

100

101

102
Av

er
ag
e
nu

m
be
ro

fC
X
ps

pe
ri
ns
ta
nc
e

(a) Average number of explanations per instance

100 101 102
Average AXp length per instance

100

101

102

Av
er
ag
e
C
X
p
le
ng

th
pe
ri
ns
ta
nc
e

(b) Average explanation size per instance

Fig. 3. Average number of AXps and CXps per data instance and their average size.

for the lion’s share of data instances there is a single AXp while there are many
more CXps. Note that the picture is the opposite for the average explanation
length (measured as the number of literals remaining in the explanation). In
particular, CXps are shorter than AXps and the average length of a CXp per
data instance does not exceed 2.8 while the average length of AXp varies from
1 to 15.8 (which in fact may provide another insight into the underperform-
ing MARCO-like CXp enumeration). Observe that these data also confirms the
results previously reported in [31].

Final Remarks. A few conclusions can be made with respect to the experi-
mental results shown above. First, all the explainer configurations scale well and
are able to enumerate all explanations for all data instances incrementally, even
for DL models with thousands of rules and literals encoded into CNF formulas
with millions of clauses. Second, MARCO-like AXp enumeration outperforms
both LBX-like and MARCO-like CXp enumeration. Third, the number of CXps
per dataset and per instance tends to be higher than the number of AXps. And
finally, AXps are on average much larger than CXps.

5 Conclusions

This paper investigates the computation of rigorous (or PI-) explanations for
DLs. The paper first argues that, similar to DTs [37], DLs may also not be
interpretable. (This observation is also validated by the experimental results.)
Furthermore, the paper proves that in contrast to the case of DTs, finding one
PI-explanation for DLs (and also for DSs) cannot be in P unless P = NP. As a
result, one possible solution for finding AXps and CXps is to encode the prob-
lem to propositional logic, and find one or enumerate more than one explana-
tion(s) using SAT oracles. The experimental results demonstrate that SAT-based

266 A. Ignatiev and J. Marques-Silva

approaches are effective at finding explanations (both AXps and CXps) of DLs.
The experimental results also confirm that a MARCO-like algorithm is effective
at enumerating explanations of DLs.

The results in this paper suggest a number of future research topics. The
application of SAT to explaining DLs motivates the investigation of which other
ML models can be explained with SAT solvers, and for which explanations can
be computed efficiently.

References

1. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M.I., Rudin, C.: Learning certi-
fiably optimal rule lists. In: KDD, pp. 35–44 (2017)

2. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M.I., Rudin, C.: Learning certifi-
ably optimal rule lists for categorical data. J. Mach. Learn. Res. 18, 234:1–234:78
(2017). http://jmlr.org/papers/v18/17-716.html

3. Audemard, G., Koriche, F., Marquis, P.: On tractable XAI queries based on com-
piled representations. In: KR, pp. 838–849 (2020)

4. Audemard, G., Lagniez, J., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: SAT, pp. 309–317
(2013)

5. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: PADL, pp. 174–186 (2005)

6. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

7. Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model
rotation. In: FMCAD, pp. 37–40 (2011)

8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Frontiers in Artificial
Intelligence and Applications, vol. 336. IOS Press, Amsterdam (2021)

9. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure
and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

10. Bouckaert, R.R., et al.: WEKA - experiences with a java open-source project.
J. Mach. Learn. Res. 11, 2533–2541 (2010). http://portal.acm.org/citation.cfm?
id=1953016

11. Camburu, O., Giunchiglia, E., Foerster, J., Lukasiewicz, T., Blunsom, P.:
Can I trust the explainer? verifying post-hoc explanatory methods. CoRR
abs/1910.02065 (2019). http://arxiv.org/abs/1910.02065

12. Chen, C., Rudin, C.: An optimization approach to learning falling rule lists. In:
AISTATS, pp. 604–612 (2018)

13. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: KDD, pp.
785–794 (2016)

14. Clark, P., Boswell, R.: Rule induction with CN2: some recent improvements. In:
EWSL, pp. 151–163 (1991)

15. Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3, 261–283
(1989)

16. Cohen, W.W.: Efficient pruning methods for separate-and-conquer rule learning
systems. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference
on Artificial Intelligence, 28 August–3 September 1993, Chambéry, France. pp.
988–994. Morgan Kaufmann (1993)

http://jmlr.org/papers/v18/17-716.html
http://portal.acm.org/citation.cfm?id=1953016
http://portal.acm.org/citation.cfm?id=1953016
http://arxiv.org/abs/1910.02065

SAT-Based Rigorous Explanations for Decision Lists 267

17. Cohen, W.W.: Fast effective rule induction. In: ICML, pp. 115–123 (1995)
18. Cohen, W.W., Singer, Y.: A simple, fast, and effictive rule learner. In: AAAI, pp.

335–342 (1999)
19. Darwiche, A., Hirth, A.: On the reasons behind decisions. In: ECAI, pp. 712–720

(2020). https://doi.org/10.3233/FAIA200158
20. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,

229–264 (2002)
21. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT

instances. In: CP, pp. 225–239 (2011)
22. Demsar, J., et al.: Orange: data mining toolbox in python. J. Mach. Learn. Res.

14(1), 2349–2353 (2013). http://dl.acm.org/citation.cfm?id=2567736, https://
orangedatamining.com/

23. Auditing black-box predictive models. https://blog.fastforwardlabs.com/2017/03/
09/fairml-auditing-black-box-predictive-models.html (2016)

24. Friedler, S., Scheidegger, C., Venkatasubramanian, S.: On algorithmic fairness,
discrimination and disparate impact (2015)

25. Ignatiev, A.: Towards trustable explainable AI. In: IJCAI, pp. 5154–5158 (2020)
26. Ignatiev, A., Janota, M., Marques-Silva, J.: Quantified maximum satisfiability.

Constraints An Int. J. 21(2), 277–302 (2016)
27. Ignatiev, A., Morgado, A., Marques-Silva, J.: Propositional abduction with implicit

hitting sets. In: ECAI, pp. 1327–1335 (2016)
28. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for proto-

typing with SAT oracles. In: SAT, pp. 428–437 (2018)
29. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J.

Satisf. Boolean Model. Comput. 11(1), 53–64 (2019)
30. Ignatiev, A., Morgado, A., Weissenbacher, G., Marques-Silva, J.: Model-based diag-

nosis with multiple observations. In: IJCAI, pp. 1108–1115 (2019)
31. Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J.: From contrastive to

abductive explanations and back again. In: AI*IA (2020). preliminary version avail-
able from https://arxiv.org/abs/2012.11067

32. Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for
machine learning models. In: AAAI, pp. 1511–1519 (2019)

33. Ignatiev, A., Narodytska, N., Marques-Silva, J.: On relating explanations and
adversarial examples. In: NeurIPS, pp. 15857–15867 (2019)

34. Ignatiev, A., Narodytska, N., Marques-Silva, J.: On validating, repairing and refin-
ing heuristic ML explanations. CoRR abs/1907.02509 (2019). http://arxiv.org/
abs/1907.02509

35. Ignatiev, A., Pereira, F., Narodytska, N., Marques-Silva, J.: A sat-based approach
to learn explainable decision sets. In: IJCAR, pp. 627–645 (2018)

36. Ignatiev, A., Previti, A., Liffiton, M.H., Marques-Silva, J.: Smallest MUS extraction
with minimal hitting set dualization. In: CP, pp. 173–182 (2015)

37. Izza, Y., Ignatiev, A., Marques-Silva, J.: On explaining decision trees. CoRR
abs/2010.11034 (2020)

38. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In: AAAI, pp. 167–172 (2004)

39. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint frame-
work for description and prediction. In: KDD, pp. 1675–1684 (2016)

40. Lakkaraju, H., Bastani, O.: “How do I fool you?”: manipulating user trust via
misleading black box explanations. In: AIES, pp. 79–85 (2020)

41. Liffiton, M.H., Malik, A.: Enumerating infeasibility: finding multiple MUSes
quickly. In: CPAIOR, pp. 160–175 (2013)

https://doi.org/10.3233/FAIA200158
http://dl.acm.org/citation.cfm?id=2567736
https://orangedatamining.com/
https://orangedatamining.com/
https://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
https://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
https://arxiv.org/abs/2012.11067
http://arxiv.org/abs/1907.02509
http://arxiv.org/abs/1907.02509

268 A. Ignatiev and J. Marques-Silva

42. Liffiton, M.H., Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J.,
Sakallah, K.A.: A branch and bound algorithm for extracting smallest minimal
unsatisfiable subformulas. Constraints An Int. J. 14(4), 415–442 (2009)

43. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints An Int. J. 21(2), 223–250 (2016)

44. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas.
In: SAT, pp. 173–186 (2005)

45. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

46. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43
(2018)

47. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In:
NeurIPS, pp. 4765–4774 (2017)

48. Lynce, I., Marques-Silva, J.: On computing minimum unsatisfiable cores. In: SAT
(2004)

49. Marques-Silva, J., Gerspacher, T., Cooper, M.C., Ignatiev, A., Narodytska, N.:
Explaining Naive Bayes and other linear classifiers with polynomial time and delay.
In: NeurIPS (2020)

50. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI, pp. 615–622 (2013)

51. Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: SAT,
pp. 159–173 (2011)

52. Mencia, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sub-
linear oracle queries. In: SAT, pp. 342–360 (2016)

53. Mencia, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In:
IJCAI, pp. 1973–1979 (2015)

54. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

55. Morgado, A., Liffiton, M.H., Marques-Silva, J.: MaxSAT-based MCS enumeration.
In: HVC, pp. 86–101 (2012)

56. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS, pp. 337–340
(2008)

57. Narodytska, N., Shrotri, A., Meel, K.S., Ignatiev, A., Marques-Silva, J.: Assess-
ing heuristic machine learning explanations with model counting. In: Janota, M.,
Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 267–278. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-24258-9 19

58. Penn Machine Learning Benchmarks. https://github.com/EpistasisLab/penn-ml-
benchmarks

59. Prestwich, S.D.: CNF encodings. In: Handbook of Satisfiability: Second Edition,
Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 75–100. IOS Press
(2021)

60. Previti, A., Marques-Silva, J.: Partial MUS enumeration. In: AAAI (2013)
61. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95

(1987)
62. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the

predictions of any classifier. In: KDD, pp. 1135–1144 (2016)
63. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic

explanations. In: AAAI, pp. 1527–1535 (2018)
64. Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246 (1987). https://

doi.org/10.1007/BF00058680

https://doi.org/10.1007/978-3-030-24258-9_19
https://github.com/EpistasisLab/penn-ml-benchmarks
https://github.com/EpistasisLab/penn-ml-benchmarks
https://doi.org/10.1007/BF00058680
https://doi.org/10.1007/BF00058680

SAT-Based Rigorous Explanations for Decision Lists 269

65. Rudin, C., Ertekin, S.: Learning customized and optimized lists of rules with math-
ematical programming. Math. Program. Comput. 10(4), 659–702 (2018). https://
doi.org/10.1007/s12532-018-0143-8

66. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining Bayesian
network classifiers. In: IJCAI, pp. 5103–5111 (2018)

67. Shih, A., Choi, A., Darwiche, A.: Compiling Bayesian network classifiers into deci-
sion graphs. In: AAAI, pp. 7966–7974 (2019)

68. Slack, D., Hilgard, S., Jia, E., Singh, S., Lakkaraju, H.: Fooling LIME and SHAP:
adversarial attacks on post hoc explanation methods. In: AIES, pp. 180–186 (2020)

69. UCI Machine Learning Repository. https://archive.ics.uci.edu/ml
70. Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L.: Complexity of two-level logic

minimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(7), 1230–
1246 (2006)

71. Wang, F., Rudin, C.: Falling rule lists. In: AISTATS (2015)
72. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowl-

edge base reasoning. In: NeurIPS, pp. 2319–2328 (2017)
73. Yang, H., Rudin, C., Seltzer, M.I.: Scalable bayesian rule lists. In: ICML, pp. 3921–

3930 (2017)

https://doi.org/10.1007/s12532-018-0143-8
https://doi.org/10.1007/s12532-018-0143-8
https://archive.ics.uci.edu/ml

Investigating the Existence of Costas
Latin Squares via Satisfiability Testing

Jiwei Jin1,4, Yiqi Lv1,3, Cunjing Ge5, Feifei Ma1,2,3(B), and Jian Zhang1,3

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

maff@ios.ac.cn
2 Laboratory of Parallel Software and Computational Science,

Institute of Software, Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

4 Shandong Jiaotong University, Jinan, China
5 Johannes Kepler University Linz, Linz, Austria

Abstract. Costas Latin squares are important combinatorial structures
in combinatorial design theory. Some Costas Latin squares are found in
recent years, but there are still some open problems about the exis-
tence of Costas Latin squares with specified properties including idem-
potency, orthogonality, and certain quasigroup properties. In this paper,
we describe an efficient method for solving these problems using state-
of-the-art SAT solvers. We present new results of Costas Latin squares
with specified properties of even order n ≤ 10. It is found that within
this order range, most Costas Latin squares with such properties don’t
exist except for a few cases. The non-existence can be certified since SAT
solvers can produce a formal proof. Experimental results demonstrate the
effectiveness of our method.

1 Introduction

Costas Latin squares (introduced in [4]) are important combinatorial structures
which have potential applications in industries [2]. The existence of Costas Latin
squares were studied in recent years. J. Dinitz et al. [3] studied Costas Latin
squares from a construction as well as a classification point of view, and ver-
ified the conjecture that there is no Costas Latin square for any odd order
n>3. Costas Latin squares which have specified properties are also the interest
of mathematicians. These properties include idempotency, orthogonality, and
certain quasigroup properties, which are often used as the basis of recursive con-
struction. The existence problems of these Costas Latin squares are still open
problems, and are difficult for conventional mathematical methods.

With the rapid advance in SAT solving techniques, some problems, which
used to be very difficult for traditional mathematic methods, have been resolved
recently by SAT solvers. Marijn Heule et al. solved some long-standing open
problem, such as the boolean pythagorean triples problem and Schur Number

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 270–279, 2021.
https://doi.org/10.1007/978-3-030-80223-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_19

Investigating the Existence of Costas Latin Squares via Satisfiability Testing 271

Five problem via parallel SAT solving techniques [5,6]. Curtis Bright et al. devel-
oped a SAT+CAS paradigm of coupling SAT solvers with computer algebra
systems [1,12], which has tackled various combinatorial problems. SAT solving
techniques also play an important role in the study of quasigroups [11]. Pei
Huang et al. described a method for solving the large set problem of idempotent
quasigroups [8].

In this paper, we focus on open problems about Costas Latin squares with
specified properties. We attempt to find instances of Costas Latin squares with
those properties, or to decide the non-existence of them if they don’t have the
specified properties via state-of-the-art SAT solvers.

Searching for Costas Latin squares with specified properties are quite chal-
lenging for computers. In this paper we present two effective solving strategies:
the transversal matrix and symmetry breaking. The transversal matrix is used
to reduce the complexity in modeling, while symmetry breaking is used to prune
isomorphic search spaces. Experiments are conducted to test the effectiveness of
our strategies. The results show that both strategies are highly efficient.

Since Costas Latin squares of order n ≤ 3 are trivial or simple, and it is
conjectured that there is no Costas Latin square for any odd order n >3 [3],
we only focus on Costas Latin squares of order 4, 6, 8, 10. We derive new results
for Costas Latin squares of this order range with aforementioned properties,
including some instances of Costas Latin squares with certain properties and
the non-existence of most cases. The newly discovered Costas Latin squares have
been double checked with another program we developed, and the non-existence
results can be validated thanks to the capability of modern SAT solvers.

This paper is organized as follows: In Sect. 2, we introduce some preliminar-
ies about Costas Latin squares; In Sect. 3, 4 we describe how to model these
problems in logic language and techniques used for improving the searching effi-
ciency; In Sect. 5 we present the new mathematical results and experimental
results with analysis; In the final section, we give conclusions.

2 Preliminaries

A Latin square is a n × n array filled with n different symbols, each occurring
exactly once in each row and exactly once in each column. In this paper we used
the integer sequence 1, 2, 3, · · · , n as symbols.

A Costas array of order n is a n × n array of dots and empty cells such that:
(a). There are n dots and n × (n − 1) empty cells, with exactly one dot in each
row and column. (b). All the segments between pairs of dots differ in length or
in slope.

For notational convenience, Costas arrays are often presented by a certain
one-line notation. For a Costas array of order n, we use π(i) = j whenever a dot
is in cell(i,j). By this notation, a Costas array of order n can be presented as the
permutation (π(1), π(2), · · · , π(n)).

A Costas Latin square of order n is a Latin square of order n such that for
each symbol i ∈ {1, 2, · · · , n}, a Costas array results if a dot is placed in the cells

272 J. Jin et al.

containing symbol i. We use CLS(n) to denote Costas Latin square of order n.
The follows is a CLS(4):

1 2 4 3
2 3 1 4
3 4 2 1
4 1 3 2

The one-line representation of the symbol 1 is {1, 3, 4, 2}, 2 is {2, 1, 3, 4}, 3
is {4, 2, 1, 3}, 4 is {3, 4, 2, 1}. They are all Costas array, so the Latin square is a
Costas Latin square.

For a CLS(n) A, we use A(i, j) to denote the symbol in the i-th row and the
j-th column. If A has the property that A(i, i) = i for all i ∈ {1, 2, · · · , n}, then
it is called an idempotent Costas Latin square.

The orthogonality is an interesting property of Latin squares. For two CLS(n)
A and B, if for all n × n positions, the pair (A(i, j), B(i, j)), i, j ∈ {1, 2, · · · , n}
are different, then A and B are called orthogonal. The follows are two orthogonal
CLS(4) and the result pairs:

2 3 4 1
4 1 2 3
3 2 1 4
1 4 3 2

4 3 2 1
3 4 1 2
1 2 3 4
2 1 4 3

24 33 42 11
43 14 21 32
31 22 13 44
12 41 34 23

A quasigroup is an algebraic structure such that the multiplication table of a
finite quasigroup is a Latin square. Conversely, every Latin square can be taken as
the multiplication table of a quasigroup. The existence of quasigroups satisfying
the seven short identities has been studied systematically. These identities are:

– 1. xy ⊗ yx = x : Schröder quasigroup
– 2. yx ⊗ xy = x : Steins third law
– 3. (xy ⊗ y)y = x : C3-quasigroup
– 4. x ⊗ xy = yx : Steins first law; Stein quasigroup
– 5. (yx ⊗ y)y = x
– 6. yx ⊗ y = x ⊗ yx : Steins second law
– 7. xy ⊗ y = x ⊗ xy : Schröders first law

If we take a Costas Latin square as a multiplication table of a quasigroup,
and it has one of the quasigroup properties mentioned above, then it is called
the Costas Latin square with the specified quasigroup property. One task of this
paper is to search for Costas Latin square with certain quasigroup property.

3 Modeling

In this section, we will introduce the method to model Costas Latin squares
with logic language. We assume that the symbols (numbers) of CLS is an inte-
ger sequence 1, 2, · · · , n, and row index and column index begin with 1. For
convenient we use N to denote the set {1, 2, · · · , n}.

Investigating the Existence of Costas Latin Squares via Satisfiability Testing 273

Since in a Latin square A, each number occurs exactly once in each row and
exactly once in each column, it is easy to know that:

∀x, y, x1, x2, y1, y2 ∈ N :
x1 �= x2 �→ A(x1, y) �= A(x2, y)
y1 �= y2 �→ A(x, y1) �= A(x, y2) (1)

For a CLS(n) A, the Costas property requires that for each i ∈ N , all the
segments between pairs of i differ in length or in slope. That is for all positions
with the same number: a) Each four positions don’t form a parallelogram. B) If
three or four positions are in a line, the distances between them are different.
This can be encoded as:

∀x, y, x′, y′, u, v, u′, v′ ∈ N :

(A(x, y) = A(x′, y′) = A(u, v) = A(u′, v′) ∧ (x − x′ = u − u′) ∧ (y − y′ = v − v′))

�→ x = u ∨ x = x′ (2)

The orthogonality property involves two CLS(n) A, B. This property requires
that in all n×n positions, the pair (A(i, j), B(i, j)), i, j ∈ N are different. It can
be encoded as:

∀x1, x2, y1, y2 ∈ N :
x1 �= x2 �→ A(x1, y1) �= A(x2, y2) ∨ B(x1, y1) �= B(x2, y2)
y1 �= y2 �→ A(x1, y1) �= A(x2, y2) ∨ B(x1, y1) �= B(x2, y2) (3)

The idempotency property of a CLS(n) A can be encoded simply as:

∀x ∈ N : A(x, x) = x (4)

The quasigroup properties are easy to be encoded, for example, the formula
for the first one is: ∀x, y ∈ N : A(A(x, y), A(y, x)) = x. Due to length limitation
we omit the logic formulas for them.

4 Improvements in Modeling

Since the basic models in Sect. 3 are hard for SAT solvers, we introduce some
search strategies to improve them. The most important strategies are symmetry
breaking and the transversal matrix. We say that combinatorial problems have
symmetries if they allow isomorphic solutions. Symmetry breaking can reduce
the search time spending on revisiting equivalent states of these problems, and is
used widely in search algorithms. In this paper we propose a simple but effective
symmetry breaking method. For a CLS(n) A, all numbers in it are just symbols,
after replacing 1, 2, · · · , n by any its permutation, it is still a Costas Latin square.
So the method to break symmetries for Costas Latin squares is just to fix its
first column:

∀x ∈ N : A(x, 1) = x (5)

274 J. Jin et al.

It is easy to see that for CLS(n), the simple symmetry breaking method can
reduce the search space by n!.

The formula for Costas property and the formula for orthogonality property
are difficult to handle. We use a method called transversal finding paradigm to
improve the search efficiency. As described by Donald Knuth in [9], transversal-
finding paradigm will reduce a factor of more than 1012(!) when searching Eulers
conjecture of order 10. In [7,10], the authors show that modeling an orthogonal
mate finding problem via transversal-finding paradigm can improve the efficiency
of automated reasoning tools. In this paper we will show that the transversal-
finding paradigm can also be used for modeling Costas property and improve
the solving efficiency.

A transversal in a Latin square is a collection of positions, one from each
row and one from each column, so that the elements in these positions are all
different. It can be written as a vector, where the i -th element records the row
index of the cell that appears in the i -th column. A matrix is called a transversal
matrix of Latin square, if it consists of n mutually disjoint transversal vectors.
In this paper, we use a variation of transversal matrix. For a Latin square A of
order n, we construct a matrix TA for it by this way:

If A(i,j)=k, then TA(k,j)=i, where i, j, k ∈ N .
We can see that each Latin square has a unique transversal matrix, and each

transversal matrix belongs to only one Latin square. Here is an example of a
Latin square of order 4 (left) and its transversal matrix (right):

1 2 4 3
2 3 1 4
3 4 2 1
4 1 3 2

1 4 2 3
2 1 3 4
3 2 4 1
4 3 1 2

In transversal matrix, the i -th row represents the row index of i in the original
Latin square. Let’s see the number 2 of the above example. It is in the 2,1,3,4
row (from left to right) in the original Latin square. In the transversal matrix,
this is recorded as the vector of the 2-th row (2, 1, 3, 4).

If a Latin square A doesn’t have Costas property, then there is a number
i in it and at least two segments between i are same in length and in slope.
That is the four points decide a parallelogram. Suppose that the four points
are A(x1, y1), A(x2, y2), A(x3, y3), A(x4, y4). In order to model Costas property
we should consider all the four points in a n × n matrix. Since in TA, the
row information of A are collected in the i-th row, TA(i, y1) = x1, TA(i, y2) =
x2, TA(i, y3) = x3, TA(i, y4) = x4, the formula for Costas property involves only
the i-th row of TA, a vector of n.

If a Latin square A doesn’t have Costas property, then in some i -th row of
its transversal matrix TA, there must be four column x, y, u, v, which make the
following hold:

TA(i, x) − TA(i, y) = TA(i, u) − TA(i, v) ⇔ x − y = u − v

Investigating the Existence of Costas Latin Squares via Satisfiability Testing 275

We use transversal matrix to simplify the formula for Costas property by
replacing Formula 2 to the following formula for transversal matrix TA:

∀x, y, z, u, v ∈ N :
TA(x, u) − TA(x, y) = TA(x, v) − TA(x, z) ∨ u − y = v − z �→ y = z ∨ u = y

(6)

Next we will use transversal matrix to reformulate Formula 3 for orthogonal-
ity property. From [10], we know that finding a pair of orthogonal Latin squares
is equivalent to the transversal-finding phase. The transversal matrix focus on
the positions information rather than the elements themselves. For two CLS(n)
A, B, their transversal matrix are TA, TB respectively. If we formulate orthog-
onality property using A,B directly, then we should consider all of the 2×n×n
positions of A,B. By using transversal matrix TA, TB, we can reduce the for-
mula to involving only 2 × n vectors. For some u and v in TA, TB, obviously
for a column x, A(TA(u, x), x) = u and B(TB(v, x), x) = v, since TA(u, x)
and TB(v, x) are row index of u, v in A,B. If TA(u, x) = TB(v, x), then the
positions of u, v in A,B are the same, denoted as p1, and in this cell, the pair
(A(TA(u, x), x), B(TB(v, x), x)) is (u, v). Suppose that A and B are orthogonal.
If there is another position p2 for A,B in y-th column, and the pair in it is also
(u, v), then p2 must be same as p1, and x = y holds. Otherwise A and B can’t
be orthogonal. So we use the following formula for transversal matrix:

∀x, y, u, v ∈ N : x �= y �→ TA(u, x) �= TB(v, x) ∨ TA(u, y) �= TB(v, y) (7)

Due to length limitation we don’t give more formal definitions of transversal
matrix. More formal definitions and details are in [10].

5 New Results and Experimental Evaluation

In this section, we derive new results of our methods on Costas Latin squares
of order 4,6,8,10 with aforementioned properties. We find some instances of
Costas Latin squares with certain properties and decide the non-existence of
most cases. The newly discovered Costas Latin squares have been double checked
with another program we developed, and the non-existence results can be val-
idated thanks to the capability of modern SAT solvers. Also we evaluate the
efficiency of symmetry breaking and transversal matrix strategies. The experi-
ments are performed on a PC with Intel CPU (1.60 GHz), 4G memory, Ubuntu
18.04. We encode Costas Latin square problems as CNF formulas, and solve
them by a SAT solver: Glucose with default setting.

5.1 New Results

Table 1 indicates whether CLS(n) with specified properties exist or not. Here
Ide means idempotency, Ort means orthogonality. s(sat) means that the CLS(n)

276 J. Jin et al.

Table 1. The overall results of searching for CLS(n)

Order n Ide Quasigroup Ort

.1 .2 .3 .4 .5 .6 .7

CLS(4) s s s s s u u s s

CLS(6) u u u u u u u u u

CLS(8) s u u u u u u u u

CLS(10) u u u u u u u u ∗

with the certain property exists and u (unsat) means they don’t exist. CLS(10)−
Ort is very hard and isn’t solved within 12 h.

For CLS(4), there is no instance with quasigroup identities 5 and 6, and all
other properties hold. For CLS of order 6,8,10, only the instances with idempo-
tency exist for CLS(8). Here are some instances:

CLS(4)-Ide

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

CLS(4)-Q1

2 3 1 4
4 1 3 2
3 2 4 1
1 4 2 3

CLS(4)-Q2

2 4 1 3
3 1 4 2
4 2 3 1
1 3 2 4

CLS(4)-Q3

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

CLS(4)-Q4

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

CLS(4)-Q7

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

CLS(4)-Ort-A

1 3 4 2
2 4 3 1
3 1 2 4
4 2 1 3

CLS(4)-Ort-B

3 4 2 1
2 1 3 4
1 2 4 3
4 3 1 2

CLS(8)-Ide

1 3 5 7 4 2 8 6
4 2 6 8 3 1 5 7
5 7 3 1 6 8 4 2
8 6 2 4 7 5 1 3
6 8 4 2 5 7 3 1
7 5 1 3 8 6 2 4
2 4 8 6 1 3 7 5
3 1 7 5 2 4 6 8

5.2 Experimental Evaluation

In order to evaluate the effectiveness of symmetry breaking and transversal
matrix strategies, we compared the running times of algorithms using these
strategies against those lack one or two strategies. Since the symmetry breaking
strategy is not fit for quasigroup identities and idempotent because it may con-
flict with these properties, we conducted two groups of experiments. One is for
the problems to which this strategy is applicable, as illustrated in Table 2. The
other is for problems to which it is not applicable, as shown in Table 3.

Table 2 and Table 3 show the running times (in seconds) of different meth-
ods in solving CLS problems. We set the timeout to 3600 s. Each column is
the running times of various methods for certain problems. SB + Tr means

Investigating the Existence of Costas Latin Squares via Satisfiability Testing 277

Table 2. The run times of different methods in solving CLS-Ord and CLS-Ort

SB+Tr SB Tr non SB+Tr SB Tr non

CLS(6)-Ord 0.07 0.08 0.07 0.10 CLS(8)-Ord 1.39 100.04 26.46 2207.91

CLS(6)-Ort 0.28 2.23 TO TO CLS(8)-Ort 67.04 1230.96 TO TO

Table 3. The run times of different methods in solving CLS-Ide and CLS-Qi

Tr non Tr non Tr non

CLS(6)-Ide 0.07 0.10 CLS(8)-Ide 0.97 17.79 CLS(10)-Ide 406.59 TO

CLS(6)-Q1 0.07 0.13 CLS(8)-Q1 1.84 36.58 CLS(10)-Q1 351.70 TO

CLS(6)-Q2 0.08 0.19 CLS(8)-Q2 2.88 97.45 CLS(10)-Q2 889.16 TO

CLS(6)-Q3 0.07 0.10 CLS(8)-Q3 1.00 2.16 CLS(10)-Q3 12.05 38.61

CLS(6)-Q4 0.07 0.09 CLS(8)-Q4 0.98 1.86 CLS(10)-Q4 10.93 36.37

CLS(6)-Q5 0.09 0.12 CLS(8)-Q5 3.73 5.83 CLS(10)-Q5 880.58 84.13

CLS(6)-Q6 0.07 0.10 CLS(8)-Q6 0.94 6.68 CLS(10)-Q6 11.06 TO

CLS(6)-Q7 0.07 0.10 CLS(8)-Q7 1.01 2.21 CLS(10)-Q7 12.09 TO

that the method employs both symmetry breaking and transversal matrix; SB
and Tr mean that methods using only symmetry breaking and only transver-
sal matrix respectively. non means that the method uses neither of these two
strategies. CLS(i)-Ord represents ordinary CLS(i), i.e., CLS(i) without any
property. Although the existential problems of CLS(i)-Ord have been deter-
mined by other work, we still use them to evaluate our strategies. Q1, · · · , Q7
represent the aforementioned seven quasigroup properties.

From Table 2 we can see that symmetry breaking technique is highly efficient.
CLS(6)-Ort and CLS(8)-Ort can only be solved with the symmetry breaking
technique. From Table 3 we can see that transversal matrix significantly improves
the solving efficiency. For almost all problems, the algorithm with transversal
matrix is faster than the one without it.

At last we show the number of variables and the number of clauses (in the
best method) of each problem in Table 4.

Table 4. The number of variables and clauses in each case

Vars Clauses Vars Clauses Vars Clauses

CLS(6)-Odr 432 73830 CLS(8)-Odr 1024 628360 CLS(10)-Odr 2000 3245210

CLS(6)-Ide 432 73830 CLS(8)-Ide 1024 628360 CLS(10)-Ide 2000 3245210

CLS(6)-Q1-7 432 75120 CLS(8)-Q1-7 1024 622448 CLS(10)-Q1-7 2000 3255200

CLS(6)-Ort 864 186540 CLS(8)-Ort 2048 1486096 CLS(10)-Ort 4000 7390420

278 J. Jin et al.

6 Conclusion

This paper describes an application of SAT solvers to an important combina-
torial structures: Costas Latin Squares. The existence of Costas Latin Squares
with specified properties are difficult for mathematical methods. We present two
effective solving strategies for these problems: symmetry breaking and transver-
sal matrix. As a result, we find some new instances and prove the non-existence
of a number of cases for even order n ≤ 10. In the future, we will investigate
more challenging cases, such as the orthogonal Costas Latin Squares of order 10,
as well as Costas Latin Squares of order n ≥ 12. We believe that finding Costas
Latin Squares can be an interesting benchmark for SAT solvers.

Acknowledgments. This work has been supported by the National Natural Science
Foundation of China (NSFC) under grant No.61972384, and the Key Research Program
of Frontier Sciences, Chinese Academy of Sciences under grant number QYZDJ-SSW-
JSC036. Feifei Ma is also supported by the Youth Innovation Promotion Association
CAS under grant No. Y202034. We thank professor Lie Zhu at SooChow university for
suggesting these open problems and his valuable advice. We also thank the anonymous
reviewers for their comments and suggestions.

References

1. Bright, C., Ganesh, V., Heinle, A., Kotsireas, I., Nejati, S., Czarnecki, K.: Math-
Check2: A SAT+CAS verifier for combinatorial conjectures. In: Gerdt, V.P.,
Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp.
117–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45641-6 9

2. Costas, J.P.: A study of a class of detection waveforms having nearly ideal range-
doppler ambiguity properties. Proc. IEEE 72(8), 996–1009 (1984)

3. Dinitz, J., Ostergard, P., Stinson, D.: Packing costas arrays. J. Comb. Math. Comb.
Comput. 80, 02 (2011)

4. Etzion, T.: Combinatorial designs with costas arrays properties. Discrete Math.
93(2–3), 143–154 (1991)

5. Heule, M.J.H.: Schur number five. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the
8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 6598–6606. AAAI Press
(2018)

6. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 15

7. Huang, P., Liu, M., Ge, C., Ma, F., Zhang, J.: Investigating the existence of orthog-
onal golf designs via satisfiability testing. In: Davenport, J.H., Wang, D., Kauers,
M., Bradford, R.J., (eds.) Proceedings of the 2019 on International Symposium
on Symbolic and Algebraic Computation, ISSAC 2019, Beijing, China, 15–18 July
2019, pp. 203–210. ACM (2019)

https://doi.org/10.1007/978-3-319-45641-6_9
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15

Investigating the Existence of Costas Latin Squares via Satisfiability Testing 279

8. Huang, P., Ma, F., Ge, C., Zhang, J., Zhang, H.: Investigating the existence of
large sets of idempotent quasigroups via satisfiability testing. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 354–
369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 24

9. Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial Algo-
rithms, Part 2. Pearson Education India, Noida

10. Ma, F., Zhang, J.: Finding orthogonal latin squares using finite model searching
tools. Sci. China Inf. Sci. 56(3), 1–9 (2013)

11. Zhang, H.: Combinatorial designs by SAT solvers. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T., (eds.) Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications, pp. 533–568. IOS Press (2009)

12. Zulkoski, E., Bright, C., Heinle, A., Kotsireas, I.S., Czarnecki, K., Ganesh, V.:
Combining SAT solvers with computer algebra systems to verify combinatorial
conjectures. J. Autom. Reason. 58(3), 313–339 (2017)

https://doi.org/10.1007/978-3-319-94205-6_24

Assessing Progress in SAT Solvers
Through the Lens of Incremental SAT

Stepan Kochemazov1(B), Alexey Ignatiev2, and Joao Marques-Silva3

1 ITMO University, St. Petersburg, Russia
stepan.kochemazov@itmo.ru

2 Monash University, Melbourne, Australia
alexey.ignatiev@monash.edu

3 IRIT, CNRS, Toulouse, France
joao.marques-silva@irit.fr

Abstract. There is a wide consensus, which is supported by the hard
experimental evidence of the SAT competitions, that clear progress in SAT
solver performance has been observed in recent years. However, in the
vast majority of practical applications of SAT, one is expected to use SAT
solvers as oracles deciding a possibly large number of propositional formu-
las. In practice, this is often achieved through the use of incremental SAT.
Given this fundamental use of SAT solvers, this paper investigates whether
recent improvements in solver performance have an observable positive
impact on the overall problem-solving efficiency in settings where incre-
mental SAT is mandatory or at least expected. Our results, obtained on
a number of well-known practically significant applications, suggest that
most improvements made to SAT solvers in recent years have no positive
impact on the overall performance when solvers are used incrementally.

1 Introduction

Boolean Satisfiability (SAT) solving can only be viewed as one of the most
important successes of computer science. SAT was the first decision problem to
be proved NP-complete in the early 70s [4]. As a result, and unless P = NP, SAT
being NP-complete implies in theory and in practice that the worst-case run-
ning time of SAT algorithms grows exponentially with the number of variables.
This was indeed the case until the early 90s, with SAT solvers capable at best of
deciding formulas with a few hundred variables and a few thousand clauses. How-
ever, since the mid 90s, and building on the well-known DPLL algorithm [5,6],

1 It is generally accepted that the term CDCL was coined by L. Ryan [40].

Stepan Kochemazov is supported by the Ministry of Science and Higher Education of
Russian Federation, research project no. 075-03-2020-139/2 (goszadanie no. 2019-1339).
Joao Marques-Silva is supported by the AI Interdisciplinary Institute ANITI, funded
by the French program “Investing for the Future – PIA3” under Grant agreement
no. ANR-19-PI3A-0004, and by the H2020-ICT38 project COALA “Cognitive Assisted
agile manufacturing for a Labor force supported by trustworthy Artificial intelligence”.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 280–298, 2021.
https://doi.org/10.1007/978-3-030-80223-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_20

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 281

a stream of new algorithmic improvements led to what is now known as CDCL
(conflict-driven clause learning) SAT solvers1. CDCL SAT solving revolutionized
the size and complexity of the formulas that SAT solvers can decide efficiently
in practice. Indeed, it is well-known that in many applications, modern CDCL
SAT solvers routinely decide formulas with a few million variables and tens of
millions clauses. As a direct consequence of these algorithmic improvements, the
last two decades have witnessed an ever increasing range of highly significant
practical applications [3, Ch. 04]. (The techniques used in SAT solvers have also
found widespread use in other automated reasoners, including SMT [3, Ch. 33],
ASP [9], CP/LCG [37], ILP and even theorem provers [3].) This success makes
SAT one of the few NP-complete problems that has achieved widespread prac-
tical deployment. Among the improvements made to DPLL-style SAT solvers,
it is generally accepted that clause learning [23,25,26] played a fundamental
role, not only because of its remarkable ability to prune the search space for
practical formulas, but also because it enables other techniques to become very
effective in practice. Other improvements of notice include search restarts [10],
branching heuristics [34], watched literals [34], phase saving [39] and literal block
distance [2]. (A detailed account can be found in different chapters of the recent
SAT handbook [3].) Furthermore, it is generally accepted that the hard experi-
mental evidence offered by the SAT competitions supports the following asser-
tion: “There has been regular performance improvements in SAT solvers over
the years”.

In terms of practical uses of SAT, incremental SAT is by far the most often
used option. The most widely used approach for instrumenting incremental SAT
was proposed originally in the MiniSat solver [7], using the so-called activation
(or selection variables). Since then, a wealth of practical applications of SAT have
resorted to incremental SAT solving (e.g. [3, Ch. 04] and references therein). The
importance of incremental SAT is underscored for example by specific optimiza-
tions in the engineering of recent SAT solvers [1,11,17]. As yet another example,
the PySAT framework for prototyping with SAT solvers makes extensive use of
incremental SAT solving [12].

This paper seeks to understand how significant the recent progress made in
SAT solvers, as documented by the results from the SAT competitions, is to prac-
tical incremental SAT solving. Although there is a well-known incremental track
in the SAT competitions, the problem we address is somewhat different. First,
our investigation is not limited to the applications considered in the incremen-
tal track of the SAT competition; indeed we consider applications of well-known
importance, but which are not contemplated in the incremental track. Second, we
do not seek to find the best SAT solver, but instead to assess whether specific
algorithmic improvements made to SAT solvers contribute visibly to improve
solver performance, specifically when the goal is incremental SAT solving2. Our
results indicate that, contrary to the conclusions obtained from the results of the

2 Similarly, in the area of Satisfiability Modulo Theories (SMT) reasoning [3], it is
generally accepted that not all optimizations made to SAT and SMT solvers find
widespread use.

282 S. Kochemazov et al.

SAT competition, most of the improvements made to SAT solvers in recent years
do not contribute in a visible way to improving the performance of SAT solv-
ing. Furthermore, based on the prominent role of incremental SAT in practical
problem solving, one overall recommendation of this work is that the assess-
ment of future SAT solvers should take into account their observed performance
improvements with respect to incremental SAT solving.

The paper is organized as follows. Section 2 briefly introduces the notation
and definitions used throughout. Section 3 analyzes the results of the SAT com-
petition, aiming to draw the general conclusions that justify our assertion above.
Section 4 outlines how a SAT solver was instrumented to enable the proposed
study. Section 5 presents the experimental results we have obtained. Section 6
concludes the paper.

2 Preliminaries

Definitions and Notation. The standard definitions used in SAT solving are
assumed throughout the paper [3]. A SAT solver decides the decision problem of
propositional logic (for formulas represented in conjunctive normal form (CNF)).
For satisfiable formulas, a SAT solver returns a model, i.e. an assignment that
satisfies the formula. For unsatisfiable formulas, most CDCL SAT solvers will
return a non-minimal explanation for unsatisfiability. Most modern CDCL SAT
solvers offer an incremental interface, without exception inspired by the incre-
mental interface of MiniSat [7]. Incremental SAT solving finds an ever increas-
ing range of practical applications (a sample of which are documented e.g. [3,
Ch. 04]).

Related Work. A number of papers have investigated improvements to the per-
formance of SAT solvers from different perspectives [8,15]. However, none has
investigated how improvements made to SAT solvers impact incremental SAT
solving. The importance of incremental SAT solving is demonstrated by its ubiq-
uitous use in e.g. the PySAT framework [12]. Before PySAT was developed,
incremental SAT was extensively used in a wide range of applications of SAT (a
brief account is available from [3, Ch. 04]). The importance of incremental SAT
explains a number of recent optimizations made to SAT solvers [1,11,17].

3 Motivation

It is natural to view the winners of recent SAT Competitions as state of the art
in CDCL SAT solving. They incorporate the most promising CDCL heuristics
aimed at improving solvers’ performance over a wide variety of benchmarks
originating from different application domains. There are two SAT solvers that
played a special role in SAT competitions over the years. They are MiniSat[7]
and Glucose [2]. It will not be an exaggeration to say that from 2005 to 2015
the list of competition winners in all categories tended to include at least one
version (or sometimes hack) of either one or the other.

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 283

In 2015 the COMiniSatPS solver [36] combined the Luby series restarts [21]
from MiniSat and Glucose-style restarts into a single whole, where the solver
switched between two modes, each exploiting one of the restart strategies in
conjunction with VSIDS activity values specific to each mode.

In 2016 MapleCOMSPS[20] supplanted Glucose as the source of many of the
winners of SAT Competitions 2016 to 2020. The key novel feature of Maple-
COMSPS was the use of learning rate branching heuristic (LRB) [19] instead of
VSIDS joined with Luby restarts in COMiniSatPS. It also replaced the scheme
for switching between modes employed by COMiniSatPS by a simple variant
where the LRB+Luby restarts mode is used exclusively during the first 2500 s.

In 2017 MapleCOMSPS has been extended with an expensive inprocessing
[14] technique for improving the quality of learnt clauses, termed learned clause
minimization [18,22,38], with the resulting solver called MapleLCMDist.

In 2018 the latter was augmented with the chronological backtracking [31,35]
heuristic aimed at improving the solver behavior in specific cases, in form of
MapleLCMDistChronoBT. (The chronological backtracking scheme mimics the
organization of backtracking used in the GRASP SAT solver [25].)

The winner of SAT Race 2019 implemented on top of MapleLCMDistChrono-
BT the so-called duplicate learnts heuristic [16] aimed at detecting and exploit-
ing repeatedly learned clauses, resulting in the MapleLCMDistChronoBT-DL-v3
solver. It also changed the parameters of LBD-based separation between tiers of
learnt clauses and used a new scheme for switching between solver modes, which
is reminiscent to the one used in MapleCOMSPS but is less frequent.

Finally, Relaxed LCMDCBDL newTech [41], that took the 2nd place at SAT
Competition 2020, incorporated into MapleLCMDistChronoBT-DL-v3 the sto-
chastic local search (SLS) component, complemented with rephasing technique3,
and a novel approach that modifies the activity values of branching heuristic in a
CDCL solver based on some of the statistics accumulated by the SLS component.
It also modified the scheme for switching between solver modes.

There is a clear agreement that the performance of SAT Competition winners
improved significantly over the years4, thanks to the several major heuristics listed
above, among others. In this context, it is very surprising that many applications
of SAT solvers still employ the time-tested MiniSat and Glucose first introduced
back in 2003 [7] and 2009 [2], respectively. For example, if we look at the partic-
ipants of the recent MaxSAT Evaluations [28–30], it turns out that the majority
of them employ either Glucose (different versions), MiniSat 2.2 or COMiniSatPS
as the underlying SAT solver. Of course, there are many possible reasons for this,
varying from unwillingness of developers to replace the core components of work-
ing tools under pretext that they already work well enough, to the fact that many
SAT Competition winners of recent years do not provide incremental interface
out of the box. However, whatever the reasons behind this are, it is important to
question and evaluate whether the apparent progress in CDCL SAT solvers indeed
translates into the benefits in their practical applications.

3 http://fmv.jku.at/chasing-target-phases/.
4 http://fmv.jku.at/kissat/.

http://fmv.jku.at/chasing-target-phases/
http://fmv.jku.at/kissat/

284 S. Kochemazov et al.

Of course, it is impossible to cover all possible use cases of SAT solvers in a
single study. Therefore, in this paper we concentrate our attention on the ones
that can be employed incrementally, in particular, in maximum satisfiability
(MaxSAT) solving and minimal unsatisfiable subset (MUS) extraction.

4 Setup and Its Rationale

In order to evaluate whether or not the improvements made to SAT solvers
in recent years contribute to their performance in the incremental setting, it
is first necessary to choose a solver (or solvers) that could serve as (a) strong
representative(s) of the solver “generation”. It would be ideal to exploit the
winner of the most recent SAT Competition that implements all the recently
proposed CDCL heuristics, can be easily modified to enable or disable some of
the heuristics whenever needed, and that can be embedded into various tools that
could apply it incrementally. Unfortunately, the winner of the SAT Competition
2020, the Kissat solver does not support the incremental mode according to
the data available at the moment of writing, and thus is not eligible for the
experiments that we need to perform. However, Relaxed LCMDCBDL newTech
that took the 2nd place in the main track of SAT Competition 2020 satisfies all
the aforementioned criteria. Despite not supporting incremental SAT out of the
box, it uses the MiniSat codebase and thus can be easily upgraded.

For our experiment we prepared a variant of Relaxed LCMDCBDL newTech,
which we hereinafter refer to as RLNT5. Compared to the original, RLNT
supports incremental mode, has several small issues fixed and also allows to
separately enable or disable some of its major heuristics. In particular, we are
interested in testing the implementations of stochastic local search and rephas-
ing components (SLS) introduced in Relaxed LCMDCBDL newTech, the dupli-
cate learnts (DL) heuristic that appeared in MapleLCMDistChronoBT-DL-
v3, the chronological backtracking (CB) that became a signature of MapleL-
CMDistChronoBT, the DISTANCE (DIST) and learnt clause minimization
heuristics (LCM) first introduced in MapleLCMDist. These were modified in
order to be enabled or disabled via preprocessor conditional inclusive directives
(e.g. #define SLS and #ifdef SLS). As it happens, these heuristics represent
the vital development steps signifying the progress of SAT solvers in the last
4 SAT Competitions and so can serve as inherent characteristics of the corre-
sponding generations of SAT solvers.

The listed heuristics employed in RLNT were not specifically adapted to the
incremental usage separately. Instead, the variables that govern scheduling of the
procedures that switch between solver modes, apply learnt clause minimization,
apply rephasing, and so on—these are all reset to initial values with each new call
to the SAT solver. The motivation for this adjustment is to alleviate the increase in
intervals between, e.g. learnt clause minimization, so that each call of a SAT solver
preserves the accumulated knowledge, but still uses all the heuristics as often as it
would in the “standard” non-incremental mode. In line with this, the call to the
5 https://github.com/veinamond/RLNT.

https://github.com/veinamond/RLNT

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 285

0 200 400 600 800
instances

0

1000

2000

3000

4000

5000
C
PU

tim
e
(s
)

Relaxed LCMDCBDL newTech
RLNT-2020
MapleLCMDistChrBt-DL-v3
RLNT-2018
RLNT-2019
MapleLCMDistChronoBT
RLNT-2017
RLNT-2016
MapleLCMDist
MapleCOMSPS
Glucose 3
MiniSat 2.2

(a) All benchmarks

200 250 300 350 400 450 500 550
instances

0

1000

2000

3000

4000

5000

C
PU

tim
e
(s
)

(b) Satisfiable benchmarks

200 250 300 350 400
instances

0

1000

2000

3000

4000

5000
C
PU

tim
e
(s
)

(c) Unsatisfiable benchmarks

Fig. 1. Evaluation of considered solvers over benchmarks from the main tracks of SAT
competitions 2017–2020.

SLS component is scheduled to happen at the start of each SAT solver invoca-
tion since this is the way it is used in the original implementation. Due to the fact
that it mainly affects rephasing, and also that SLS subsolver calls take negligible
amount of time, this implementation should not introduce any adverse effects on
the solver’s performance. It should be noted that the changes between, say, the SAT
competition 2016 winner MapleCOMSPS and Relaxed LCMDCBDL newTech
certainly cannot be summarized to just the 5 heuristics listed above. There have
been also small changes to the handling of conflict clauses with small literal block
distance, and to the strategy employed to switch between solver modes that com-
bine branching heuristics with restart strategies (LRB+Luby restarts and VSIDS
+ glucose restarts). It is natural to assume that these changes are worthwhile, but
it should be checked experimentally anyway. Therefore, in the following experi-
ments we opt to use the following SAT solvers:

– MapleCOMSPS – SAT Competition 2016 winner.
– MapleLCMDist – SAT Competition 2017 winner.

286 S. Kochemazov et al.

– MapleLCMDistChronoBT – SAT Competition 2018 winner.
– MapleLCMDistChronoBT-DL-v3 – SAT Race 2019 winner.
– Relaxed LCMDCBDL newTech – SAT Competition 2020 2nd place.
– RLNT-2020 – RLNT with SLS, DL, CB, LCM and DIST enabled.
– RLNT-2019 – RLNT with DL, CB, LCM and DIST enabled.
– RLNT-2018 – RLNT with CB, LCM and DIST enabled.
– RLNT-2017 – RLNT with LCM and DIST enabled.
– RLNT-2016 – RLNT with SLS, CB, DL, LCM and DIST disabled.
– Glucose 3.0.
– MiniSat 2.2.

Thus, our conjecture is that RLNT-2019 should be functionally “equivalent” to
the winner of SAT Race 2019, RLNT-2018 to the winner of SAT Competition
2018, etc. (The results of the following section confirm this.) To offset the newer
solvers we will use Glucose 3.0 and time-tested MiniSat 2.2, which both are often
employed in many practical applications up to these days, although having been
released back in 2013 and 2008, respectively.

4.1 SAT Competition Main Track Benchmarks

In this experiment we used the benchmarks from the main tracks of the SAT
Competitions 2017–2020; thus, the total number of benchmarks considered is
1550. The experiments were performed on the nodes of the computing cluster
[27], equipped with two 18-core Intel Xeon E5-2695 v4 CPUs and 128 GB RAM.
All the competitors worked in 36 simultaneous threads with the time limit of
5000 s. As the evaluation criteria, we used the Solution Count Ranking (SCR)
and Penalized Average Runtime (PAR-2) following the metrics used in the SAT
Competitions.

The results of the evaluation are presented in the form of cactus plots in
Fig. 1 and as a more detailed statistics in Table 1. From the presented results, it
is easy to conclude that in accordance with the SAT Competition criteria, the
RLNT configurations perform as well as (or better than) the corresponding SAT
Competition winners with negligible deviations. This confirms that the rationale
behind the selected baseline solver as well as the implementation choices made is
reasonable. Also, one can easily observe the trend according to which the recent
competitions favor satisfiable benchmarks over unsatisfiable, thus making the
solvers which are stronger on satisfiable benchmarks look better. The particularly
distinctive difference between Relaxed LCMDCBDL newTech (and RLNT-2020)
and the remaining group is thanks to the SLS component that appears to be
solely responsible for being able to tackle at least 80 benchmarks. Finally, the
performance of Glucose 3 and MiniSat 2.2 when contrasted with that of more
modern solvers appears to be an issue. It is especially so if we look at the
performance of MiniSat 2.2 on unsatisfiable benchmarks compared to that of
the competition.

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 287

Table 1. The detailed statistics on the performance of considered solvers over bench-
marks from the main tracks of SAT Competitions 2017–2020.

SCR SAT UNSAT PAR-2

Relaxed LCMDCBDL newTech 980 585 395 4199

RLNT-2020 978 586 392 4203

MapleLCMDistChrBt-DL-v3 896 484 412 4772

RLNT-2018 890 479 411 4811

RLNT-2019 889 474 415 4822

MapleLCMDistChronoBT 879 461 418 4933

RLNT-2017 870 470 400 4961

RLNT-2016 849 465 384 5096

MapleLCMDist 849 449 400 5107

MapleCOMSPS 813 430 383 5303

Glucose 3 666 325 341 6238

MiniSat 2.2 603 356 247 6606

Now let us see whether or not the overall picture will change when we move
into the incremental context.

4.2 SAT Competition Incremental Track Benchmarks

In this series of experiments we used the benchmarks and applications from the
Incremental Track of SAT Competition 2020. The solvers participating in this
track have to support the IPASIR6 incremental interface. In the course of the
evaluation, the solvers are compiled into an incremental library together with
specific IPASIR-based applications that aim to cover various practical domains
that may employ incremental solvers. In 2020, the incremental track included
the applications for (a) finding backbones of a CNF SAT formula, (b) finding
variables essential for the satisfiability of a formula, (c) finding the longest simple
path in a graph, (d) a simple MaxSAT solver, (e) Ijtihad QBF solver and (f) the
PASAR solver for solving planning instances. For each application, there were 50
instances (which overlapped in the case of finding backbones and the variables
essential for satisfiability). Due to high requirements to the execution environ-
ment, in particular for it to support C++ 17, we used PCs with 16-core AMD
Ryzen 3950x CPUs and 32 GB RAM running Ubuntu 20.04, as the computing
platform. The solvers were launched in 16 threads.

The results of this experiment are summarized in Table 2 and cactus plots
in Fig. 2. It needs to be noted, that since incremental track is significantly less
popular than the main track (at least looking at the number of participants of
each), it is less polished and is harder to reproduce. In particular, the outputs and

6 https://github.com/biotomas/ipasir.

https://github.com/biotomas/ipasir

288 S. Kochemazov et al.

RLNT-2020
RLNT-2019
RLNT-2018

RLNT-2017
RLNT-2016
Riss-7.1.2

abcdsat i20
cadicalsc2020
cryptominisat5

Glucose 3
MiniSat 2.2

Fig. 2. Evaluation of considered solvers over benchmarks from the incremental track
of SAT competitions 2020.

Table 2. The detailed statistics on the performance of considered solvers over bench-
marks from the incremental track of SAT Competitions 2020. The best results for each
application are marked with bold. Column S refers to the number of solved instances,
P2 – to the PAR-2 score.

bones essentials lsp max ijtihad pasar

S P2 S P2 S P2 S P2 S P2 S P2

RLNT-2020 49 350 40 2219 43 1987 26 4869 11 6879 44 2325

RLNT-2019 48 580 40 2170 34 3546 27 4753 12 6845 45 2733

RLNT-2018 49 482 40 2168 34 3577 27 4739 13 6393 41 3254

RLNT-2017 49 441 40 2174 34 3542 27 4745 12 6845 45 2553

RLNT-2016 49 322 40 2086 33 3837 26 4826 14 6369 43 2902

Glucose 3 45 1108 40 2273 32 3845 24 5211 14 6895 42 3387

MiniSat 2.2 48 635 40 2180 34 3811 24 5212 2 9600 22 6380

Riss-7.1.2 45 1108 39 2388 32 3844 25 5013 13 7270 37 3907

abcdsat i20 48 627 39 2450 32 4205 25 4696 11 7830 36 4295

cadicalsc2020 45 1085 39 2323 34 3381 27 4756 15 6729 47 2400

cryptoMiniSat5 49 333 37 2737 34 3495 26 4478 15 5966 3 9496

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 289

the success criterion for each application have to be parsed by hand, the number
of instances is small, and the majority of instances are too simple. Moreover,
there are frequent problems when the built application produces a core-dump
and it is unclear whether the application itself is to blame or the solver was not
built properly. This is the reason, for example, of the poor performance of the
CryptoMiniSat5 solver in the pasar application or of MiniSat 2.2 in both ijtihad
abd pasar applications: the majority of launches ended in a core-dump. (It is
unclear to us how the organizers treated such situations in their evaluation.)
Nevertheless, the results we obtained more-or-less follow the ones available at
SAT Competition 2020 web page.7

One conclusion to be drawn from the presented data is that the RLNT con-
figurations perform in the incremental setting as well as the participants of the
incremental track of SAT Competition 2020, and in several cases outperform
them. It means that the RLNT solver and its configurations can be viewed as
the state-of-the-art representatives of the modern SAT solvers. Thus, we are jus-
tified to use them for the following in-depth evaluation presented below. Another
conclusion is that Glucose 3, although it is not a winner in any of the subtracks,
is on par with most of the competitors for all the considered benchmarks. Of
particular interest is the fact that in contrast to SAT Competition Main Track
benchmarks, in the incremental track environment, MiniSat 2.2 is on par with its
peers (with the exception of pasar and ijtihad applications where it has likely
suffered from some implementation issue). Finally, one can observe that the
incremental track of the SAT Competition 2020 does not provide a solid num-
ber of benchmarks that could demonstrate the performance differences (if any)
among the competitors of the incremental track, leaving much to be desired. All
these points bring us to the need to evaluate the progress in SAT solving in a
thorough evaluation from the perspective of two well-known practical use-case
scenarios for incremental SAT, which is covered next.

5 Experimental Evidence

This section details the experimental results obtained with the use of the devel-
oped configurations of RLNT in the two concrete practical settings of (1) max-
imum satisfiability (MaxSAT) solving and (2) minimal unsatisfiable subset
(MUS) extraction, where incremental calls to a SAT oracle are of crucial impor-
tance. Concretely, in all the following experiments we tested the 5 configurations
of RLNT (2016–2020) and compared them to the Glucose 3 SAT solver [1], which
has been widely used in various incremental settings. Finally, we additionally
considered the “good old” MiniSat 2.28 solver [7] to see how it stands against
more advanced SAT solvers.

All the SAT solvers are integrated in the PySAT framework [12] and are
used in a unified fashion through the same API. The conducted experiments
involve testing three practical problem solvers: (1) an award-winning core-guided
7 https://satcompetition.github.io/2020/results.html.
8 https://github.com/niklasso/minisat.

https://satcompetition.github.io/2020/results.html
https://github.com/niklasso/minisat

290 S. Kochemazov et al.

MaxSAT solver RC2 [13,28–30]9 (namely, competition configurations RC2-A
and RC2-B), (2) a linear search SAT-UNSAT algorithm for MaxSAT [33]10

(in the following referred to as LSU), and (3) a simple deletion-based MUS
extractor [12,24]11 (referred to as MUSx). All the problem solvers used are a
part of the PySAT framework.

Note that the rationale behind the choice of the problem solvers is to test
the performance of the underlying SAT oracles when dealing with (1) mostly
unsatisfiable oracle calls, (2) mostly satisfiable oracle calls, and (3) mixed (sat-
isfiable and unsatisfiable) oracle calls. Hereinafter, given a problem solver ∗, its
configuration that exploits the Glucose 3 (resp. MiniSat 2.2) solver is marked
as ∗G3 (resp. ∗M22) while the configurations using one of the RLNT solvers are
marked by the corresponding year, as ∗year.

Our experimental setup replicates the setup of the annual MaxSAT Evalu-
ations [28–30]. In particular, the experiments were performed on the StarExec
cluster12. Each process was run on an Intel Xeon E5-2609 2.40 GHz processor
with 128 GByte of memory, in CentOS 7.7. The memory limit for each individ-
ual process was set to 32 GByte. The time limit used was set to 3600 s for each
individual process to run.

5.1 RC2 MaxSAT and Mostly Unsatisfiable Calls

The RC2 MaxSAT solver [13] belongs to the large family of core-guided MaxSAT
solvers [33] and provides an efficient implementation of the OLL/RC2 algo-
rithm [32]. For this reason, each iteration performed by the solver involves call-
ing a SAT oracle incrementally given an unsatisfiable formula that is slightly
modified at each iteration of the algorithm. The solver proceeds until the final
iteration, which determines the working formula to be satisfiable. The solver can
also be instructed to apply a few additional heuristics [13], some of which may
increase the number of satisfiable oracle calls; however, unsatisfiable oracle calls
made by RC2 still prevail. Note that the competition configurations RC2-A and
RC2-B make use of the Glucose 3 SAT solver. Also note that this part of the
experiment tested RC2 on the complete set of benchmarks (both unweighted
and weighted) from the MSE’20.

Figure 3 shows two cactus plots depicting the performance of the RC-A and
RC2-B solvers on the MSE’20 benchmarks when using either Glucose 3 or one
of the variants of RLNT as an underlying SAT oracle. According to Fig. 3a,
in total, the best performance of RC2-A is achieved when using RLNT-2016. It
solves 792 instances and in average spends 1293.2 s per instance. The default,
RC2-AG3 is not far away with 790 instances solved and the average time spent
being 1290.8 s. The worst performance is demonstrated when RLNT-2020 is in
use; here, the average time used per instance is 1549.8 s and the number of

9 https://pysathq.github.io/docs/html/api/examples/rc2.html.
10 https://pysathq.github.io/docs/html/api/examples/lsu.html.
11 https://pysathq.github.io/docs/html/api/examples/musx.html.
12 https://www.starexec.org/.

https://pysathq.github.io/docs/html/api/examples/rc2.html
https://pysathq.github.io/docs/html/api/examples/lsu.html
https://pysathq.github.io/docs/html/api/examples/musx.html
https://www.starexec.org/

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 291

500 550 600 650 700 750 800
instances

0

500

1000

1500

2000

2500

3000

3500
C
PU

tim
e
(s
)

RC2-A2016

RC2-AG3

RC2-A2018

RC2-A2019

RC2-A2017

RC2-AM22

RC2-A2020

(a) Performance of RC2-A

500 550 600 650 700 750 800 850
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e
(s
)

RC2-BG3

RC2-B2016

RC2-B2019

RC2-B2017

RC2-B2018

RC2-BM22

RC2-B2020

(b) Performance of RC2-B

Fig. 3. RC2 with various SAT solvers on MSE’20 unweighted and weighted bench-
marks.

10−1 100 101 102 103 104
RC2-AG3

10−1

100

101

102

103

104

R
C
2-
A
20
16

3600 sec. timeout

36
00

se
c.
tim

eo
ut

(a) RC2-AG3 vs RC2-A2016 (best)

10−1 100 101 102 103 104
RC2-AG3

10−1

100

101

102

103

104

R
C
2-
A
20
20

3600 sec. timeout

36
00

se
c.
tim

eo
ut

(b) RC2-AG3 vs RC2-A2020 (worst)

Fig. 4. Performance of RC2-AG3 compared to RC2-A with best and worst RLNT.

instances successfully solved is 741. As an additional remark, the MiniSat 2.2
based version is not far behind the top performing competitors – it solves 779
instances and spends 1327.5 s per instance on average. As can be seen in Fig. 3b,
similar results are obtained by RC2-B. The worst performance is shown by RC2-
B2020, which solves 695 benchmarks and spends 1805.8 s per formula on average.
The default configuration RC2-BG3 outperforms the other competitors with 826
instances solved in 1222.7 s on average while RC2-B2016 comes second with 825
instances solved in 1213.3 s on average. RC2-BM22 solves 768 instances with
the average time of 1385.1 s. The scatter plots shown in Fig. 4 and Fig. 5 detail

292 S. Kochemazov et al.

10−1 100 101 102 103 104
RC2-BG3

10−1

100

101

102

103

104
R
C
2-
B
20
16

3600 sec. timeout

36
00

se
c.
tim

eo
ut

(a) RC2-BG3 vs RC2-B2016 (best)

10−1 100 101 102 103 104
RC2-BG3

10−1

100

101

102

103

104

R
C
2-
B
20
20

3600 sec. timeout

36
00

se
c.
tim

eo
ut

(b) RC2-BG3 vs RC2-B2020 (worst)

Fig. 5. Performance of RC2-BG3 compared to RC2-B with best and worst RLNT.

200 225 250 275 300 325 350
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e
(s
)

LSU2019

LSU2017

LSU2018

LSU2016

LSUG3

LSUM22

LSU2020

(a) Performance of LSU

600 650 700 750 800 850 900 950
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e
(s
)

MUSx2019
MUSxG3

MUSx2018
MUSx2016
MUSx2017
MUSx2020
MUSxM22

(b) Performance of MUSx

Fig. 6. Performance of LSU and MUSx with various SAT solvers.

the performance comparison of the default version of RC2-AG3 and RC2-BG3

against the best- and worst-performing competitor running RLNT. As can be
observed, there is no clear winner in the pair RC2-∗G3 vs RC2-∗2016 while for the
lion’s share of benchmarks the default versions of the solver working on top of
Glucose 3 significantly outperform RC2-∗ with the most advanced RLNT-2020.

5.2 LSU MaxSAT and Mostly Satisfiable Calls

The LSU MaxSAT algorithm performs a linear search strategy iterating over the
possible numbers of satisfied soft clauses and decreasing this number as long as

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 293

10−1 100 101 102 103 104
LSUG3

10−1

100

101

102

103

104
LS

U
20
19

3600 sec. timeout

36
00

se
c.
tim

eo
ut

(a) LSUG3 vs LSU2019 (best)

10−1 100 101 102 103 104
LSUG3

10−1

100

101

102

103

104

LS
U
20
20

3600 sec. timeout

36
00

se
c.
tim

eo
ut

(b) LSUG3 vs LSU2020 (worst)

Fig. 7. Performance of LSUG3 compared to LSU with best and worst RLNT.

the underlying solver reports the current formula to be satisfiable. As a result,
all but one iterations of the algorithm involve satisfiable oracle calls. Similarly to
RC2, we used the MSE’20 benchmarks for testing the performance of LSU. One
difference, however, is that our implementation of LSU supports only unweighted
formulas, i.e. the weighted formulas are discarded.

The performance of LSU is summarized in the cactus plot shown in Fig. 6a.
Observe that although the version with Glucose 3 is outperformed by a few other
competitors, it is not too far behind. Concretely, it solves 317 benchmarks, each
within 1699 s on average. The best performing LSU2019 solves 327 instances, with
the average running time of 1714.2 s. The worst configuration is LSU2020, which
can cope with 312 formulas in 1771.9 s on average. Finally, observe that LSUM22

also solves 312 instances and the average time spent per formula is 1751.3 s.
The scatter plots shown in Fig. 7a and Fig. 7b detail performance comparison of
LSUG3 against LSU2019 and LSU2020 (as best- and worst-performing configura-
tions of RLNT). According to these plots, Glucose 3 tends to be significantly
faster than both RLNT-2019 and RLNT-2020, although RLNT-2019 manages
to solve more instances overall.

5.3 MUS Extraction and Mixed Oracle Calls

The MUS extractor MUSx implements the simple deletion-based algorithm,
which is bootstrapped with an unsatisfiable core of a formula and iterates over
all clauses of the core trying to incrementally get rid of them one-by-one to
get an MUS [12,24]. Therefore and depending on whether the target clause
belongs to an MUS, the outcome of the corresponding SAT oracle call may vary.
Hence, this part of the experiment aims at representing a practical scenario where
the outcomes of incremental SAT solver calls are mixed. As the standard MUS

294 S. Kochemazov et al.

10−1 100 101 102 103 104
MUSxG3

10−1

100

101

102

103

104
M
U
Sx

20
19

3600 sec. timeout

36
00

se
c.
tim

eo
ut

(a) MUSxG3 vs MUSx2019 (best)

10−1 100 101 102 103 104
MUSxG3

10−1

100

101

102

103

104

M
U
Sx

20
20

3600 sec. timeout

36
00

se
c.
tim

eo
ut

(b) MUSxG3 vs MUSx2020 (worst)

Fig. 8. Performance of MUSxG3 compared to MUSx with best and worst RLNT.

benchmarks date back to 2011 and most of them are not challenging enough,
we opted to generate a large collection of new MUS benchmarks based on the
MSE’20 benchmark set. Concretely, we ran RC2 and dumped the working for-
mulas representing the two last unsatisfiable oracle calls. (In practice, these calls
are typically the hardest for a SAT solver.) The generation procedure resulted
in 1103 formulas in total. Note that in order to make a fair comparison, for each
benchmark MUSx was bootstrapped with an initial unsatisfiable core, which was
always obtained by Glucose 3. This was done to ensure that the reduction phase
computes exactly the same MUS guaranteed by the same initial unsatisfiable
core as well as the same order of clauses to traverse.

Figure 6b overviews the performance of MUSx given the competing SAT
engines. MUSx2019 outperforms the competitors and successfully deals with 934
formulas, within 802.2 sec. on average. MUSxG3 comes second with 933 instances
solved spending 779.1 s on average. Although the version based on MiniSat 2.2 is
slower than all the other configurations for this family of benchmarks (it solves
890 instances with the average time per instance being 926.2 s), once again, the
worst RLNT-based configuration uses RLNT-2020. It solves 893 benchmarks
spending 983.5 s per benchmark. Scatter plots comparing the performance of
MUSxG3 against the best- and worst-performing RLNT-based configurations
MUSx2019 and MUSx2020 are shown in Fig. 8a and Fig. 8b, respectively. Observe
that MUSxG3 is much faster than both competitors, which is especially clear in
the case of MUSx2020.

5.4 Final Remarks

Observe that none of the tested configurations of RLNT brings any consistent
(and significant) performance improvements to the considered problem solvers.

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 295

Table 3. PAR-2 measure for each of the tested SAT solvers.

MiniSat 2.2 Glucose 3 RLNT-2016 RLNT-2017 RLNT-2018 RLNT-2019 RLNT-2020

RC2-A 2536.8 2466.3 2462.5 2544.6 2536.7 2543.9 2875.7

RC2-B 2628.1 2287.7 2281.3 2406.0 2406.1 2387.5 3272.8

LSU 3391.1 3307.4 3302.7 3306.3 3318.7 3259.7 3411.7

MUSx 1621.4 1333.9 1345.7 1386.3 1361.8 1353.8 1665.7

Overall 2303.2 2061.9 2056.3 2151.8 2153.2 2134.3 2754.0

Motivated by this observation, we decided to measure and report the PAR-2 met-
ric for all the tested SAT solvers per each of the performed experiments as well
as across all benchmarks, which is presented in Table 3. As the table suggests,
the best overall performance is demonstrated by the solvers with RLNT-2016
“on board” although its advantage over Glucose 3 is negligible. This enables us
to conclude that most of the heuristics recently proposed for SAT solvers have
no significant (or none at all) positive impact on the performance of practical
problem solvers in settings when SAT oracles are to be used incrementally.

6 Conclusions

This paper studies improvements made to SAT solvers in recent years, and ana-
lyzes their impact on performance when the SAT solvers are used for solving
incremental SAT. Based on Relaxed LCMDCBDL newTech a new SAT solver
RLNT was developed, to allow the activation/deactivation of specific heuristics
and to allow incremental SAT uses. Thus, RLNT is able to be executed under
a vast number of possible configurations. The experimental results, on the SAT
competition problem instances, demonstrate that RLNT is on par with the best
performing SAT solvers. As for the incremental SAT track, the experimental
results suggest that recent improvements made to SAT solvers offer no clear
gains. Furthermore, the experimental results on two well-known applications of
incremental SAT, confirm that most recent improvements have no observable
contribution to improving SAT solving performance in incremental settings.

The conclusions drawn from the experimental results can be challenged if
other uses of incremental SAT are considered. We feel that MaxSAT and MUS
extraction are fairly representative, since a large number of SAT calls is usually
required, both with satisfiable and unsatisfiable outcomes. Further validation of
our conclusions would require considering additional applications that build on
incremental SAT solving. Moreover, the results presented in the paper represent
a first step towards a deeper understanding of the interplay between incremen-
tal SAT and optimizations used for improving the efficiency of SAT solvers.
Additional experiments and analyzes will enable a more comprehensive under-
standing of this interplay. From a SAT practitioner’s perspective, we believe this
work demonstrates the need for a discussion within the SAT community on the
improvements made to SAT solvers in light of (practical) incremental SAT solv-

296 S. Kochemazov et al.

ing, including more focus on this issue in the annual SAT Competitions. We also
believe this work can serve to start such a discussion.

References

1. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5 23

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI, pp. 399–404 (2009)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
2nd edn. IOS Press, Amsterdam (2021)

4. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158
(1971)

5. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

8. Fichte, J.K., Hecher, M., Szeider, S.: A time leap challenge for SAT-solving. In:
Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 267–285. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58475-7 16

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in prac-
tice. Synth. Lect. Artif. Intell. Mach. Learn. 6(3), 1–238 (2012). Morgan & Claypool
Publishers

10. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through
randomization. In: AAAI, pp. 431–437 (1998)

11. Hickey, R., Bacchus, F.: Speeding up assumption-based SAT. In: Janota, M., Lynce,
I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 164–182. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24258-9 11

12. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for proto-
typing with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018.
LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94144-8 26

13. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J.
Satisf. Boolean Model. Comput. 11(1), 53–64 (2019)

14. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 28

15. Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy of
modern sat solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol.
6695, pp. 343–356. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21581-0 27

16. Kochemazov, S., Zaikin, O., Semenov, A.A., Kondratiev, V.: Speeding up CDCL
inference with duplicate learnt clauses. In: ECAI, pp. 339–346 (2020)

https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-030-58475-7_16
https://doi.org/10.1007/978-3-030-24258-9_11
https://doi.org/10.1007/978-3-030-24258-9_11
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-21581-0_27
https://doi.org/10.1007/978-3-642-21581-0_27

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 297

17. Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed up MUS extraction.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5 21

18. Li, C., Xiao, F., Luo, M., Manyà, F., Lü, Z., Li, Y.: Clause vivification by unit
propagation in CDCL sat solvers. Artif. Intell. 279, 103197 (2020)

19. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 9

20. Liang, J.H., Oh, C., Ganesh, V., Czarnecki, K., Poupart, P.: MapleCOMSPS,
MapleCOMSPS LRB, MapleCOMSPS CHB. In: Procceedings of SAT Competi-
tion 2016, vol. B-2016-1, pp. 52–53 (2016)

21. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Inf. Process. Lett. 47(4), 173–180 (1993)

22. Luo, M., Li, C., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause minimization
approach for CDCL SAT solvers. In: IJCAI, pp. 703–711 (2017)

23. Marques-Silva, J.: Search algorithms for satisfiability problems in combinational
switching circuits. Ph.D. thesis, University of Michigan (1995)

24. Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In:
Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0 14

25. Marques-Silva, J., Sakallah, K.A.: GRASP - a new search algorithm for satisfiabil-
ity. In: ICCAD, pp. 220–227 (1996)

26. Marques-Silva, J., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999). https://doi.org/10.
1109/12.769433

27. Irkutsk Supercomputer Center of SB RAS. http://hpc.icc.ru
28. MaxSAT Evaluation 2018. https://maxsat-evaluations.github.io/2018/
29. MaxSAT Evaluation 2019. https://maxsat-evaluations.github.io/2019/
30. MaxSAT Evaluation 2020. https://maxsat-evaluations.github.io/2020/
31. Möhle, S., Biere, A.: Backing backtracking. In: Janota, M., Lynce, I. (eds.) SAT

2019. LNCS, vol. 11628, pp. 250–266. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24258-9 18

32. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 41

33. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints Int. J. 18(4),
478–534 (2013). https://doi.org/10.1007/s10601-013-9146-2

34. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535 (2001)

35. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8 7

36. Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In:
Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 23

37. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause genera-
tion. Constraints Int. J. 14(3), 357–391 (2009). https://doi.org/10.1007/s10601-
008-9064-x

https://doi.org/10.1007/978-3-642-39071-5_21
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-642-21581-0_14
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
http://hpc.icc.ru
https://maxsat-evaluations.github.io/2018/
https://maxsat-evaluations.github.io/2019/
https://maxsat-evaluations.github.io/2020/
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/s10601-013-9146-2
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/s10601-008-9064-x

298 S. Kochemazov et al.

38. Piette, C., Hamadi, Y., Säıs, L.: Vivifying propositional clausal formulae. In: ECAI,
pp. 525–529 (2008)

39. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72788-0 28

40. Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
School of Computing Science, Simon Fraser University (2004)

41. Zhang, X., Cai, S.: Relaxed backtracking with rephasing. In: Proceedings of SAT
Competition 2020, vol. B-2020-1, pp. 15–16 (2020)

https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0_28

Projection Heuristics for Binary
Branchings Between Sum and Product

Oliver Kullmann(B) and Oleg Zaikin(B)

Swansea University, Swansea, UK
{O.Kullmann,O.S.Zaikin}@Swansea.ac.uk

Abstract. We consider a fundamental problem in the theory of branch-
ing heuristics for tree-based solvers, applicable e.g. to SAT, #SAT, CSP,
#CSP. Such tree-based solvers are used as the cubing-part in the Cube-
and-Conquer paradigm, and are thus of renewed interest for general
(#)SAT solving. These solvers build at least implicitly a branching (back-
tracking) tree, with the goal to minimise tree-size. The heuristics are
based on evaluating the progress made in a transition from an instance
F to some “simplified” F ′ by a distance d(F, F ′) (the bigger the more
progress). When a branching (F ′

1, . . . , F
′
k) is to be chosen for F , for each

possibility we consider its branching tuple t given by ti = d(F, F ′
i),

project it to a single number π(t), and choose a branching with min-
imal π(t). This paper investigates the choices for π(t), in a theoretical
framework. The general theory is reviewed, together with the theoretical
result on the “canonical projection” π(t) = τ(t). Focusing then on binary
branchings (k = 2, t = (a, b)), we analyse the asymptotics of τ(a, b), and
reflect on the whole possible range of binary projections, arriving at first
practical possibilities for dynamic heuristics.

1 Introduction

Historically, look-ahead solvers ([9,16]) were the first successful complete SAT
solvers. With the rise of CDCL solvers ([17]), they went into oblivion, but the suc-
cessful Cube-and-Conquer (C&C) framework ([11]) creates some space for them,
since the efficient cubing (splitting) depends essentially on a good understand-
ing of the branching process. Look-ahead solvers seem fundamentally tree-based:
this restricts their power, but enables perfect parallelisation and a good under-
standing of the branching process (which needs to be aborted at some point –
that’s what C&C is doing, passing the task to the conquer-solver).

This paper starts a review of the fundamental theory of branching heuris-
tics for tree-based solvers, looking especially at the question of what makes a
“good projection”: the heuristical measurement comes up with numbers for each
branch, collected into a tuple of positive real numbers, a “branching tuple” t,
and the “projection” π(t) combines these numbers into a single number, which
is to be minimised (maximised) to find the best branching variable. Obviously

O. Kullmann and O. Zaikin—Supported by EPSRC grant EP/S015523/1.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 299–314, 2021.
https://doi.org/10.1007/978-3-030-80223-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_21

300 O. Kullmann and O. Zaikin

the projection π is not unique, but what about the induced linear order? In the
chapter [16] of the Handbook of Satisfiability on Branching Heuristics, it is out-
lined that under the assumption, that the branching width k is arbitrarily large,
the induced linear ordering is indeed unique, given various natural axiomatic
requirements on the consistency of the ordering. We review and extend these
basic statements, and provide a proof for the existence and uniqueness of the
canonical ordering, in a simplified setting. The canonical ordering is given by the
canonical projection, the tau-function τ(t). Concentrating on binary branching,
as in (#)SAT, i.e., k = 2, we analyse this fundamental function, and show how
to (relatively) efficiently compute τ(a, b) (with high precision).

When only binary branchings are considered, then the uniqueness-result in
fact does not apply (at least not directly). In practice an “approximation” to
the tau-function is used, the product (i.e., (a, b) �→ a · b, which is then to be
maximised), improving on the earlier use of the sum. When standardised to form
a (generalised) mean, then indeed τ lies in the interval given by the product-
and the sum-projections. We consider a range of possible alternative projections
in this interval. The final target is an understanding of the many parameters
involved, so that they can be chosen offline and/or optimised online to yield
efficient SAT solvers, based on proper dynamic heuristics.

Before we come to an outline of this paper, we review some recent literature.
The basic method of trees with branching tuples (called “metric trees” in this
paper), allowing the branching tuples to contain any positive real numbers, is a
fundamental tool in the field of exponential upper bounds for algorithms; see [7]
for an overview on that field, and see [8] for applications to bounds on circuit
size and #SAT. Practical applications include solving vehicle routing problems
([19]), and solving the minimum latency problem ([5]). In [2,4] a similar but
restricted branching theory was developed, only considering binary branchings
with natural numbers as distances (which in turn allows stronger tools from the
theory of recurrences), in the context of branch-and-bound algorithms for MIP.

An outline of the paper is as follows: Sect. 2 reviews the general theory, and
provides a proof of the fundamental Lemma 1 on the composition of branching
tuples, missing from the literature. The basic Theorem 1 on estimating tree sizes
(known since [15]) gets a new proof, and we apply it to control the growth of
trees based upon a single branching tuple. Section 3 proves Theorem 2 on the
uniqueness of the order of branching tuples, given natural axioms. Corollary
1 gives a formulation suitable for restricted branching width (as used by SAT
solvers). Section 4 then studies the binary tau-function, obtaining sharp asymp-
totic bounds and a method for fast computation. Section 5 finally considers the
whole range of possibilities for binary projections, and we conclude in Sect. 6 by
a summary and an outlook on future applications.

2 Branching Tuples and Distances

In this section we review the relevant elements of the theory of branching heuris-
tics (for look-ahead solvers), as given in [16]. In Subsect. 2.1 we speak about the

Projection Heuristics for Binary Branchings Between Sum and Product 301

background, the (abstract) backtracking tree T of a look-ahead solver, whose size
we want to minimise (by polytime means). “Minimising the size” refers to the
construction of T , by recursively expanding a node v into its children w1, . . . , wk.
This is guided by attaching numerical information to each branch, the “dis-
tances” d(v, wi) > 0, a positive real number, the greater the more progress was
made. A simple example for a distance is measuring the number of variables
eliminated in the branch v � wi. This numerical information is collected per
node in the associated branching tuple d(v). For the actual choice of the branch-
ing, in the context of the solving process (note that T is the final result of this
process, while d records the progress measurements for the branching chosen
by the solver), we assume that a list of branching tuples is given, and a selec-
tion is done by minimising the “projected value” of each branching tuple d(v);
that there is a canonical choice for a projection is shown in Sect. 3, based on
the general theory on tree sizes reviewed in Subsect. 2.2. A fundamental lemma
is presented in Lemma 1, connecting the canonical projection of the branching
tuples in a tree with the canonical projection of the flattening of the whole tree
into a single branching tuple. This lemma is implicit in [16, Lemma 7.5.1], but
there is no proof of it in the literature, and the concept of “flattening a tree”
is a new device introduced here, simplifying certain aspects of the theory. For
the basic Theorem 1 on bounds of tree sizes (which was introduced in [15]),
we get in this way a new proof (the proof of [16, Theorem 7.4.8] is based on
tree-probability distributions, which are not needed in this paper). This section
is concluded by lemmas on expansions of branching tuples into trees, such that
a strong handle on the tree sizes and other data are obtained.

2.1 Trees and Distances

The basic object is a rooted tree T , which we treat as (special) directed (finite)
acyclic graph (dag) with exactly one source. So as a digraph we have the set
V (T) of vertices, which we denote here as the set of nodes nds(T) := V (T). The
unique source (the node with no in-neighbours) is denoted by rt(T) ∈ nds(T).
The special property of T , which makes it a rooted tree, is that from rt(T)
there is exactly one path to every node of T . As usual we denote by E(T) ⊂
nds(T) × nds(T) the set of arcs (directed from the root towards the leaves).

Every node v ∈ nds(T) has a set chdT (v) ⊂ nds(T) of children (the out-
neighbours of v). The number of children of a node is its degree, denoted by
degT (v) := |chd(v)| ∈ N0. The leaves of T are the sinks of T , and the set of
leaves is denoted by lvs(T) := {v ∈ nds(T) : chd(v) = ∅} ⊆ nds(T); obviously
v ∈ lvs(T) ⇔ degT (v) = 0. An inner node of T is a node which is not a
leaf, and we use inds(T) := nds(T) \ lvs(T) for the set of all inner nodes. To
avoid technical difficulties we assume that T has no single-child nodes, that
is, for every v ∈ inds(T) we have deg(v) ≥ 2. The main complexity measure
here is #nds(T) := |nds(T)| ∈ N, the number of nodes of T . Sometimes it is
more convenient to consider #lvs(T) := |lvs(T)| ≤ #nds(T), the number of
leaves. By definition holds #nds(T) = #lvs(T) + |inds(T)|. In a full binary tree
(i.e., all inner nodes have degree two) we have #nds(T) = 2#lvs(T) − 1 and

302 O. Kullmann and O. Zaikin

|inds(T)| = #lvs(T) − 1. To be able to speak of the tuple of children of an inner
node, we make the further assumption that we have ordered trees; we could avoid
that by using multisets, however using tuples seems more natural in our context.
Technically this is handled by considering one infinite linearly ordered set (U ,≤)
(for example U = N with the natural order) as the universe of vertices, that is, for
every rooted tree T we have V (T) ⊂ U . When we use now chd(v) = {w1, . . . , wk},
then we assume from now one that w1 < · · · < wk (and thus k = deg(v)). As
the induced linear order on lvs(T) we use the lexicographical order as given by
the paths from the root to the leaves (that is, the order of the leaves as they
show up in the inorder traversal of T); we could use any other linear order on
the leaves, but this order lets us avoid certain abstractions here.

The main examples of such trees T are given by the branching trees (back-
tracking trees) of look-ahead solvers. At the leaves of T we might have the
solved nodes (where either unsatisfiability was determined, or a (partial) satis-
fying assignment was found), or the nodes as given to a conquer-solver in the
C&C setting. For #SAT-solving we naturally have to consider the whole tree (as
is done in this paper), since we need to count all solutions. For SAT-solving, con-
sidering the whole tree means that the basis for the heuristic is the unsatisfiable
case (without early abortion by finding a satisfying assignment). This is a natural
point of view, since complete SAT-solvers are intrinsically unsatisfiability-driven,
while the possible short-cuts for (just) finding a single satisfiable assignment are
handled by the choice of the first branch; see [16, Section 7.9] and [9, Subsection
5.3.2] for information on this in the context of look-ahead solvers. We remark
that we exclude single-child nodes, since they correspond to an actual reduction
performed (no branching occurred), and can be contracted into the parent node.

The basic building block of the branching heuristic, from the theoretical side,
is given by a distance on T , a map d : E(T) → R>0 labelling every arc with a
positive real number. The intuitive meaning of d((v, w)) = d(v, w) > 0 is that
it measures the progress made in the transition from v to its child w ∈ chd(v).
More generally, for any (undirected) graph G and a mapping d : E(G) → R>0

we obtain a metric, which is a map d : V (G)2 → R≥0, by defining d(v, w) for
arbitrary v, w ∈ V (G) as the minimum weighted length of a path between v
and w. So a distance d on a (rooted, directed) tree T induces a metric, using
the underlying (undirected) graph. Thus for v, w ∈ nds(T) we have d(v, w) =
d(v, c)+d(c, w) for the common ancestor c of v, w in T , and where d(v, c) = d(c, v)
resp. d(c, w) is the sum of d-values of arcs on the unique path from c to v resp.
w. In this paper we don’t travel paths against the direction of the arcs, but the
terminology of a “metric tree” for a pair (T, d) is nevertheless a natural choice:

Definition 1. A nontrivial rooted tree T here is a dag T = (V,E) with
V ⊂ U and E ⊆ V × V with exactly one source, where the underlying graph is a
tree (connected and acyclic), where every inner node has at least two children,
and with #nds(T) = |V (T)| ≥ 3. A distance on T is a map d : E(T) → R>0.
Pairs (T, d) are called metric trees, and the set of all metric trees is MT . For
an inner node v with chd(v) = {w1, . . . , wk} the associated branching tuple

Projection Heuristics for Binary Branchings Between Sum and Product 303

d(v) := (d(v, w1), . . . , d(v, wk)) ∈ R
deg(v)
>0 is the tuple of distances from v to its

children (using the given linear order on the children).

As T is the final result of the run of the look-ahead solver, the branching tuple
d(v) only records the distances for the (final) choices as made by the algorithm
for the branchings. In the process of recursively expanding v, the setting is that
the solver actually sees for every possible branching a corresponding branching
tuple, and the solver chooses one of them; the distance on T then records this
choice, while for the solver a distance d(F, F ′) between problem instances is
needed to construct the branching tuples. The object of study of this paper is
not d (which we assume is given), but the choice of “the best” branching tuple.
For more information on distances d as used in (look-ahead) SAT solvers see [9,
Subsection 5.3.1] and [16, Section 7.7],

So we consider now branching tuples in isolation (later in Subsect. 2.2 we
introduce the “canonical projection”, which cans the branching tuple into a
single number, the smaller the better). Let BT :=

⋃
k≥2 BTk, BTk := R

k
>0 be

the set of all branching tuples, i.e., all tuples of positive real numbers of width
(length) k ≥ 2. We use the following natural operations for t ∈ BTk:

– |t| := k ∈ N≥2 is the length of t;
– min(t),max(t) ∈ R>0 are the minimal resp. maximal values;
– Σ(t) :=

∑|t|
i=1 ti ∈ R>0 is the sum of all values.

We emphasise that branching tuples contain arbitrary positive real numbers,
and so the theory is a generalisation of the theory of recurrences, which only
consider branching tuples with natural numbers as entries.

From metric trees we extract the set of branching tuples, and for a set of
branching tuples we consider the set of all metric trees using only these tuples:

Definition 2. For (T, d) ∈ MT let BT (T, d) := {d(v) : v ∈ inds(T)} ⊂ BT
be the (finite) set of branching tuples associated with the inner nodes. And for
B ⊆ BT let MT (B) := {T ∈ MT : BT (T) ⊆ B} be the (infinite) set of metric
trees, where all associated branching tuples are in B.

A tree with a distance can be flattened to a single branching tuple, forgetting
the branching structure:

Definition 3. For T ∈ MT let the branching tuple fl(T) ∈ BT#lvs(T) contain
for each leaf v ∈ lvs(T) the sum of distances from rt(T) to v, that is, for lvs(T) =
{w1, . . . , w#lvs(T)} we set fl(T) := (d(rt(T), w1), . . . , d(rt(T), w#lvs(T))).

Example 1. For the metric tree
T := v1

2

�����
���

��

1 ���
��� 4

������
����

����
�

v2
4

�����
� 3

���
���

v3
2

�����
�2 ��

3

���
���

v4

v5 v6 v7 v8 v9
we have
1. #nds(T) = 9, #lvs(T) = 6, |inds(T)| = 3.
2. BT (T) = {(2, 1, 4), (4, 3), (2, 2, 3)}.
3. fl(T) = (2 + 4, 2 + 3, 1 + 2, 1 + 2, 1 + 3, 4) = (6, 5, 3, 3, 4, 4).

304 O. Kullmann and O. Zaikin

2.2 The Tau-Function and Bounds on Tree Sizes

Generalising the notion of a root of a “characteristic polynomial” from the theory
of recurrences, the “tau-function” is a fundamental tool:

Definition 4. For t ∈ BT we define the characteristic function χt : R>0 → R>0

by χ(t)(x) :=
∑|t|

i=1 x−ti . Since χ(t) is strictly decreasing with χ(t)(1) = |t| ≥ 2
and limx→∞ χ(t)(x) = 0, there is exactly one x0 ∈ R>1 with χ(t)(x0) = 1, and
we define τ(t) := x0.

So τ(t) � x for x > 0 iff χ(t)(x) � 1. The basic intuition behind τ : BT → R>1

can be grasped by considering the “main” solution to a difference equation: One
seeks a function f : N0 → R≥0 satisfying for some given a ∈ N

k a recurrence
∀n ∈ N0, n ≥ ai : f(n) =

∑k
i=1 f(n − ai). For example the Fibonacci recurrence

f(n) = f(n − 1) + f(n − 2) is given by k = 2 and a = (1, 2). Now f(n) := τ(a)n

fulfils the recurrence, since
∑k

i=1 τ(a)−ai = 1, and multiplying both sides with
τ(a)n yields τ(a)n = f(n) =

∑k
i=1 τ(a)n−ai =

∑k
i=1 f(n − ai). Basic properties

for a ∈ BT , λ ∈ R>0 and the restriction τk := τ | BTk are (all with easy proofs):

1. τk is symmetric (invariant under permutation).
2. τk is strictly decreasing in each component.
3. τk(1, . . . , 1) = k.
4. If t is a proper prefix of t′ then τ(t) < τ(t′).
5. τ(λ · a) = τ(a)1/λ, τ(a)min(a) ≤ |a| ≤ τ(a)max(a).

An important property of all τk is that they are strictly convex, that is for all
a, b ∈ BTk and 0 < λ < 1 holds τ((1 − λ)a + λb) < (1 − λ)τ(a) + λτ(b) (this
requires more work to check). This implies for example that τ(2, 2) < τ(1, 3),
using a := (1, 3), b := (3, 1) and λ := 0.5. Strict convexity is a generalisation
of the “penalty” given to “imbalanced” branching tuples, due to the inherent
exponential growth: Comparing e.g. (x, x) with (x−ε, x+ε), the former is better
since the loss in the branch x − ε is bigger than the win in the branch x + ε,
due to the convexity of exponential functions. A simple sufficient criterion for
deriving τ(a) ≤ τ(b) is obtained by using symmetry, monotonicity and the prefix
condition; we condense this into the following order relation:

Definition 5. The order-relation a�b (“a is trivially smaller than b”) holds for
a, b ∈ BT if the following three conditions are fulfilled: (1) |a| ≤ |b|; (2) there is
a permutation a′ of a, such that for all i ∈ {1, . . . , |a|} holds ai ≥ bi; (3) either
|a| < |b| or there is i ∈ {1, . . . , |a|} with a′

i > bi.

Some simple properties of the trivially-smaller-relation (“trivially better”) are:

1. � is a strict partial order on BT (i.e., irreflexive (a �� a) and transitive
(a � b ∧ b � c ⇒ a � c)), without minimal or maximal elements.

2. If a � b then τ(a) < τ(b).
3. Sufficient criterion for a � b are:

(a) |a| ≤ |b| ∧ min(a) > max(b) ⇒ a � b.
(b) |a| < |b| ∧ min(a) ≥ max(b) ⇒ a � b.

Projection Heuristics for Binary Branchings Between Sum and Product 305

A fundamental lemma is that the tau-value for a flattened metric tree is in the
interval given by minimum and maximum tau-values over the inner nodes; for a
set of branching tuples B we use τ(B) := {τ(t) : t ∈ B} in the usual way:

Lemma 1. For T ∈ MT holds min τ(BT (T)) ≤ τ(fl(T)) ≤ max τ(BT (T)).

Proof. Let r := rt(T). First consider the special case |inds(T)| = 2. Let a := d(r),
and for the other inner node v ∈ inds(T) \ {r} let b := d(v), while c := fl(T).
W.l.o.g. we can assume that v is the first child of r, and thus, using p := deg(r)
and q := deg(v) we have c = (a1 + b1, . . . , a1 + bq, a2, . . . , ap). W.l.o.g. we further
assume that τ(a) ≤ τ(b), and thus χ(b)(τ(a)) ≥ 1 and χ(a)(τ(b)) ≤ 1. So we
have to show τ(a) ≤ τ(c) ≤ τ(b). The first inequality follows by

χ(c)(τ(a)) =
q∑

i=1

τ(a)−a1−bi +
p∑

i=2

τ(a)−ai = τ(a)−a1 ·
q∑

i=1

τ(a)−bi +
p∑

i=2

τ(a)−ai

= τ(a)−a1 · χ(b)(τ(a)) +
p∑

i=2

τ(a)−ai ≥ τ(a)−a1 +
p∑

i=2

τ(a)−ai = 1,

and the second inequality follows by

χ(c)(τ(b)) =
q∑

i=1

τ(b)−a1−bi +
p∑

i=2

τ(b)−ai = τ(b)−a1 ·
q∑

i=1

τ(b)−bi +
p∑

i=2

τ(b)−ai

= τ(b)−a1 +
p∑

i=2

τ(b)−ai = χ(a)(τ(b)) ≤ 1.

Now we prove the statement by induction over n := |inds(T)|. For n = 1 we
have fl(T) = d(r) and BT (T) = {d(r)}, and thus the assertion trivially holds. It
remains the case n ≥ 2. Consider a node v ∈ inds(T) with chd(v) ⊆ lvs(T). Let
T ′ be the subtree of T with the leaves of v removed, that is, V (T ′) = V (T)\chd(v)
and E(T ′) = E(T) \ {(v, w) : w ∈ chd(T)}. So |inds(T)| = n − 1, and we can
apply the induction hypothesis to T ′, that is, we have

min τ(BT (T ′)) ≤ τ(fl(T ′)) ≤ max τ(BT (T ′)).

We note that BT (T) = BT (T ′) ∪ {d(v)}. Let T ′′ be the flattening of T ′ as a
tree with one inner node, and so we have fl(T ′′) = fl(T ′). We assume rt(T ′′) = r
and v ∈ lvs(T ′′), and thus for the metric tree S obtained by attaching the
branching of v in T to T ′′ we have fl(S) = fl(T) and BT (S) = {fl(T ′), d(v)}. We
can apply the above special case to S and obtain min τ(BT (S)) ≤ τ(fl(S)) ≤
max τ(BT (S)). Finally we have min τ(BT (T)) = min(τ(BT (T ′)) ∪ {d(v)}) ≤
min({τ(fl(T ′))}∪{d(v)}) = min τ(BT (S)), and similarly holds max τ(BT (S)) ≥
max(τ(BT (T))). ��

Example 2. For the metric tree

306 O. Kullmann and O. Zaikin

T := v1
2

�����
���

�� 1

����
���

���

v2
1

�����
� 1

���
���

v3
3

�����
� 8

���
���

v4 v5 v6 v7
we have
1. BT (T) = {(2, 1), (1, 1), (3, 8)}.
2. fl(T) = (2 + 1, 2 + 1, 1 + 3, 1 + 8) = (3, 3, 4, 9).
3. τ(BT (T)) = {1.618 . . . , 2, 1.1461 . . .}, τ(fl(T)) = 1.4147

The global meaning of the tau-values of inner nodes over a tree with given
distance is that they yield upper (and lower) bounds on the number of leaves,
which is expressed by the following theorem (for which we give an alternative,
simpler proof here):

Theorem 1 [16, Theorem 7.4.8]. For T ∈ MT holds

(min τ(BT (T)))min fl(T) ≤ #lvs(T) ≤ (max τ(BT (T)))maxfl(T).

Proof. Lemma 1 yields (min τ(BT (T)))min fl(T) ≤ τ(fl(T))min fl(T) ≤ |fl(T)| =
#lvs(T) ≤ τ(fl(T))maxfl(T) ≤ (max τ(BT (T)))maxfl(T). ��

Theorem 1 gives a global meaning to the target for the branching heuristics
to choose branchings with associated branching tuples t minimising τ(t). Of
course, this only makes sense for a “sensible” distance d, with max fl(T) being
a reasonable parameter of the input. Our main application of Theorem 1 is to
show that branching tuples t, t′ with τ(t) < τ(t′) can be expanded so that the
tau-relation becomes trivial:
Definition 6. An expansion of t ∈ BT is any fl(T) ∈ BT for T ∈ MT ({t}).
So for any expansion t′ of t we have τ(t′) = τ(t).

Lemma 2. For t ∈ BT and K ∈ R≥max(t) there exists an expansion t′ of t with
min(t′) > K − max(t), max(t′) ≤ K, and τ(t)K−max(t) < |t′| ≤ τ(t)K .

Proof. Consider any metric tree T with BT (T) = {t}, such that max fl(T) ≤ K,
while T can not be expanded further (by expanding any leaf) without violating
the bound max fl(T) ≤ K; obviously such T exist, since one can start with t itself,
and expand leaves as long as one stays below K. Let t′ := fl(T). Then we have
min(t′) > K − max(t), and by Theorem 1 we get τ(t)K−max(t) < |t′| ≤ τ(t)K . ��
Lemma 3. For all a, b ∈ BT with τ(a) < τ(b) there are expansions a′ of a and
b′ of b with a′

� b′.

Proof. Let α := ln(τ(b))
ln(τ(a)) (thus α > 1). Choose any Kb ≥ max(a)+α·max(b)

α−1 > 0.
Thus for β := Kb + max(a) and γ := α · (Kb − max(b)) holds β ≤ γ, and we can
choose (any) Ka with β ≤ Ka ≤ γ. By Lemma 2 there are expansions a′, b′ of
a, b with
– min(a′) > Ka − max(a) and |a′| ≤ τ(a)Ka ;
– max(b′) ≤ Kb and τ(b)Kb−max(b) < |b′|.
From Ka ≥ β we get Ka −max(a) ≥ Kb, and thus min(a′) > max(b′). And from
Ka ≤ γ we get τ(a)Ka ≤ τ(b)Kb−max(b), and thus |a′| < |b′|. ��

Projection Heuristics for Binary Branchings Between Sum and Product 307

3 The Canonical Order of Branching Tuples

As explained in Subsect. 2.2, the canonical projection τ(t) has a natural global
meaning, namely it yields an upper bound on the number of leaves in the branch-
ing tree. Thus it makes sense to use τ(t) for projection, and observing its value
should be also useful to monitor the state of the search. Here now we give its
local meaning : the order on branching tuples as stipulated by τ is uniquely
given by natural axioms on how we want the projection to behave when com-
paring different branching tuples. More precisely, recall that a total (or linear)
quasi-order on a set X is a binary relation ≤ which is reflexive (x ≤ x), tran-
sitive (x ≤ y ∧ y ≤ z ⇒ x ≤ z) and total (x ≤ y ∨ y ≤ x). By defining
t ≤τ t′ :⇔ τ(t) ≤ τ(t′) we obtain a total quasi-order on BT (the smaller the
“better”). The task of this section is to give an intrinsic characterisation of this
order. This is achieved in Theorem 2, which is equivalent to [16, Theorem 7.5.3],
but there is no proof there, while here we give a complete proof. Based on the
notion of expansions, we can also provide a natural formulation for the case of
restricted width of branching tuples.

What are now the axioms for comparing branching tuples? Consider a total
quasi-order � on BT . As usual we define t � t′ if t � t′ and t′ � t (� is an
equivalence relation on BT), and t ≺ t′ if t � t′ and t �� t′. We call it a canonical
branching order if it fulfils the following four properties for all t, t′ ∈ BT :

(S) Symmetry For a permutation t′ of t holds t � t′.
(E) Expansion If t′ is an expansion of t then t′ � t.
(T) Trivial comparison If t � t′ then t ≺ t′.
(D) Density For t ≺ t′ there is ε > 0 such that t − ε ∈ BT and t − ε ≺ t′.

For (D) we used t − ε := (t1 − ε, . . . , t|t| − ε).

Theorem 2. There is exactly one canonical branching order, namely ≤τ .

Proof. ≤τ is a canonical branching order by Lemma 1 and continuity of τ (for
fixed branching-width). Now consider any canonical branching order � and a, b ∈
BT , where we assume w.l.o.g. a � b. In case of τ(a) < τ(b) by Lemma 3 there
are expansions a′, b′ with a′

� b′. Thus by (E) and (T) we get a � a′ ≺ b′ � b.
It remains the case τ(a) = τ(b). If a � b, then we are done, so assume w.l.o.g.
a ≺ b. By (D), (T) there is ε > 0 with a ≺ a − ε ≺ b. We have τ(a) < τ(a − ε),
and thus τ(b) < τ(a − ε), whence by the first part b ≺ a − ε, a contradiction. ��

Corollary 1. For k ∈ N, k ≥ 2, the canonical branching order ≤τ restricted to
BTk is uniquely determined by the conditions (S), (T), (D) and

(Ek) If for a, b ∈ BTk there are expansions a′, b′ with a′
� b′, then a ≺ b.

Proof. The proof of Theorem 2 works as well. ��

308 O. Kullmann and O. Zaikin

4 Analysis and Numerics of Binary Tau

In the remainder of this paper we focus on binary branchings (k = 2). In this
section we first concentrate τ(a, b) to its essential core wτ(x), and show in Lemma
4, that this core is asymptotically very close to a well-known special function,
the Lambert-W function. This enables us in Theorem 4 to give good lower and
upper bounds for wτ(x) by elementary functions. Using these bounds as starting
points for the Newton-Raphson algorithm, only very few iterations are needed
to compute wτ(x) (and thus τ(a, b)) with full precision (the observed worst-case
precision for double is two ulp’s, that is, nearly precise in the last machine-digit).

At least for numerical reasons it seems better to consider the logarithm of
the tau-function, denoted by lτ : BT → R>0, and defined by lτ(t) := ln(τ(t))
(using the natural logarithm). This replaces the computation of arbitrary powers
(x, y) �→ xy by the computation of the exponential function (x, y) �→ exp(x·y). It
seems indeed best to compute lτ(t) directly, and then to use τ(t) = exp(lτ(t)):
lτ(t) is the unique x ∈ R>0 such that

∑|t|
i=1 exp(−ti · x) = 1. We now have

lτ(λ · t) = 1
λ · lτ(t) and lτk(1, . . . , 1) = ln(k).

We see that T(t) := ln(|t|)
lτ(t) fulfils T(λ·t) = λ·T(t) and min(t) ≤ T(t) ≤ max(t).

Indeed T : BT → R>0 has further properties of a (general) “mean”, as shown
in [16, Section 7.3.3]. We will discuss some further properties of such means
in Subsect. 5.1. Here for us only the bounds on T(t) from [16, Theorem 7.3.4]
are relevant. In general we have T(t) ≤ Σ(t)

|t| , that is mean-tau is at most the
arithmetic mean. We remark that T(t) for fixed |t| is strictly concave.

In the remainder of this paper we concentrate on lτ2 : BT2 → R>0, as this
is at least currently most important for SAT solving. So lτ(a, b) is the unique
x > 0 with exp(−a · x) + exp(−b · y) = 1. It is an elementary exercise to show
that T(a, b) ≥

√
a · b holds, that is, binary mean-tau is at least the geometric

mean. Indeed it seems fastest and most accurate to not compute lτ(a, b) directly,
but to eliminate one argument of lτ(a, b); we use the form which yields a strictly
increasing function:

Definition 7. For x ∈ R>0: wτ (x) := lτ(1, 1
x) ∈ R>0.

We have the following easy properties:

1. wτ(x) = lτ(1, 1
x) = x · lτ(1, x), wτ(x−1) = x−1 wτ(x).

2. wτ is strictly increasing with limx→0 wτ(x) = 0 and limx→+∞ wτ(x) = +∞.
3. wτ(1) = ln(2), wτ(2) = 2 ln(1+

√
5

2), wτ(12) = ln(1+
√
5

2).
4. lτ(a, b) = 1

a lτ(1, b
a) = 1

a wτ(a
b).

5. The characteristic equation for wτ(a), a ∈ R>0, and x ∈ R>0 is

exp(−x) + exp(−x

a
) = 1.

The above mentioned bounds, that T(a, b) lies between the geometric and
the arithmetic mean, yields elementary bounds for wτ(x):

ln 4
1 + x−1

= ln(4)
x

x + 1
≤ wτ(x) ≤ ln(2)

√
x.

Projection Heuristics for Binary Branchings Between Sum and Product 309

We will see that asymptotically wτ(x) ∼ ln(x), and thus these bounds are very
bad for large x. The best bounds on wτ(x) for larger x seem to be obtained by
using the principal branch of the Lambert-W function (see [18, Section 4.13]).
This is a function W : R≥0 → R≥0, defined for a ∈ R≥0 as the unique x ∈ R≥0

with x · exp(x) = a. Thus W (a) · exp(W (a)) = a, exp(W (a)) = a
W (a) , W (a) =

a
exp(W (a)) , and exp(−W (a)) = W (a)

a for a > 0. Simple values are W (a) = 0 iff
a = 0, W (e) = 1, and more generally W (x · exp(x)) = x.

Before we can show the close relation between wτ(x) and W (x), we remind
at a few elementary properties:

1. For all x ∈ R: exp(x) ≥ 1 + x.
2. Thus for all x ∈ R>−1: exp(−x) ≤ 1

1+x .
3. For all x ∈ R \ {0,−1}: 1

1+x + 1
1+ 1

x

= 1.

The following relation was pointed out in the discussion [13]:

Lemma 4. For all x ∈ R>0 holds W (x) ≤ wτ(x) ≤ ln(exp(W (x)) + 1).

Proof. We show lower and upper bound by substitution into the characteris-
tic equation for wτ . First we have exp(−W (x)) + exp(− 1

xW (x)) = W (x)
x +

exp(− 1
xW (x)) ≥ W (x)

x + (1 + − 1
xW (x)) = 1, and thus W (x) ≤ wτ(x). The

upper bound follows similarly:

exp(− ln(exp(W (x)) + 1)) + exp(− 1
x

ln(exp(W (x)) + 1)) =

1
1 + exp(W (x))

+ exp(− 1
x

ln(exp(W (x)) + 1)) ≤

1
1 + exp(W (x))

+
1

1 + 1
x ln(exp(W (x)) + 1)

≤

1
1 + exp(W (x))

+
1

1 + 1
x ln(exp(W (x)))

=
1

1 + exp(W (x))
+

1
1 + 1

xW (x)
=

1
1 + exp(W (x))

+
1

1 + 1
exp(W (x))

= 1.

��
So wτ(x) is asymptotically equal to W (x). Indeed not just limx→∞

wτ(x)
W (x) = 1,

but also limx→∞ wτ(x) − W (x) = 0. The best bounds on W (x) seem to be as
follows:

Theorem 3 ([12], Theorems 2.5, 2.7). For x ∈ R>1 holds:

(ln x − ln lnx + 1)
ln x

1 + ln x
≤ W (x).

While for x ∈ R≥e holds:

W (x) ≤ ln x − ln lnx +
e

e − 1
ln lnx

ln x
.

310 O. Kullmann and O. Zaikin

Thus limx→∞
W (x)
ln(x) = 1, and so also limx→∞

wτ(x)
ln(x) = 1. We summarise the

elementary bounds for wτ(x):

Theorem 4. For x ∈ R>1 holds

max
(ln 4
1 + x−1

, (ln x − ln lnx + 1)
ln x

1 + ln x

)
≤ wτ(x)

≤ min
(
ln(2)

√
x, ln(

x · (1 + ln x)
(ln x − ln lnx + 1) ln x

+ 1)
)
.

The first parts of the min- and max are used in the bounds only for very small x
(less than 3; but for these x they are crucial), while for large x the second parts
are (much) better (indeed very accurate). Using the lower bound of Theorem 4
to compute wτ(x) via Newton-Raphson iteration (which will converge monotoni-
cally from below to wτ(x), with quadratic convergence), yields very good results:
The hardest cases are for say x ≤ 1000, with the maximum observed iterations
until fixed-point (typically with one ulp precision, observed never more than two
ulp) being six iterations, while the average case for usual SAT-solving seems to be
around 3.5 iterations (always for full precision). Not using the bounds obtained
by Lambert-W means for x in usual SAT ranges hundreds of iterations, and for
very large x thousands of iterations.

We conclude by mentioning that in [14] an algorithm for computing the
canonical order of branching tuples is stated, which aims at avoiding to com-
pute the (l)tau-value explicitly, by using the characteristic functions to only
perform Newton-Raphson iteration when needed. If this does not start with a
good bound, then however this takes, as with the (l)tau-computation, many iter-
ations. And for binary branching tuples, as we have seen above, the number of
iterations is now, with the very good bounds, very low anyway, and thus such
an approach seems only needed for non-binary branching tuples. For the best
branching tuple found, one may want to compute the (l)tau-value anyway, due to
its global value, making it possible to monitor the overall progress of the search.

5 On Binary Projections

Practical experience shows that in most cases the maximum-projection (i.e.,
target is to maximise) (a, b) ∈ BT2 �→ a · b is much better than (a, b) ∈ BT2 �→
a + b. Why is this the case? [16, Section 7.6] offers two explanations: On the
one hand, based on Theorem 1 it is argued, that maximising the sum is like
maximising a lower bound on the tree-size, while maximising the product is like
minimising an upper bound on tree-size, which is intrinsically more meaningful;
this argument makes sense, but is purely qualitatively. On the other hand, [16,
Lemma 7.6.1] states that the approximation of T(a, b) by

√
a · b is better than

the approximation by a+b
2 , measured in terms of differences; this does not take

into account the scale of numbers, and is thus not a very precise argument. We
have also the fact that the arithmetic mean is linear (convex and concave), while
the geometric mean is concave, which fits better to the expected superlinear

Projection Heuristics for Binary Branchings Between Sum and Product 311

growth. In this final section now we want to develop a more precise tool given
by the “kernel” of a mean, and we show alternatives to sum, product and tau,
by considering the p-mean for 0 ≤ p ≤ 1 as some form of continuum between
product and sum. The main argument why Corollary 1 possibly is not the final
truth about binary projections is that the trees for concrete instances are not
arbitrarily large (which is implicitly assumed in the proof of Corollary 1).

From the outset, one considers total quasi-orders ≺ on BT2 fulfilling (S), (T)
and (D). By Corollary 1 we know that ≺ is ≤τ (restricted to binary branchings)
iff ≺ is compatible with every trivial comparison obtain by expansion, i.e., (E2)
holds. We now consider whether there are interesting such orders ≺ without (E2).
To get a handle on different orderings, we consider maps m : BT2 → R>0, such
that m(a, b) is to be maximised. In order to be able to compare the numerical
values of such projections m, we standardise them to form “means”, as we will
discuss now (that’s why we consider maximisation here instead of minimisation,
which was needed for the tau-function).

5.1 On Means in General

The minimum requirements for a mean m : BT2 → R>0 are:

1. m(a, b) = m(b, a) (symmetry).
2. m is strictly increasing in each component.
3. min(a, b) ≤ m(a, b) ≤ max(a, b) (consistency).

We additionally assume homogeneity here (“scale invariance”), that is, for λ > 0
holds m(λ · a, λ · b) = λ · m(a, b). As a further requirement, concavity is of
importance, assuming that tree-growth is super-linear. We have mentioned three
means already:

1. m0(a, b) :=
√

a · b, the geometric mean: this is the default for SAT-solving
(note that maximising m0(a, b) is equivalent to maximising a · b).

2. m1(a, b) := a+b
2 , the arithmetic mean: this was the older default heuristic,

and is typically still used for tie-braking.
3. T(a, b) = ln(2)

lτ(a,b) ; we have m0(a, b) ≤ T(a, b) ≤ m1(a, b).

A natural generalisation of m0,m1, as already considered in [16, Section 7.3.3]
for obtaining bounds, are the p-means mp for p ∈ R. Since the sum is already
bad enough (in most cases), in this initial study we do not go beyond m1—and
indeed mp is strictly convex iff p > 1. We also don’t go below the geometric mean,
as that seems not fruitful in general (though on selected families of benchmarks
this might be different). So we restrict our attention to 0 ≤ p ≤ 1:

1. mp(a, b) := (ap+bp

2)1/p for 0 < p ≤ 1.
2. m1(a, b) is the above arithmetic mean.
3. mp(a, b) ≥ mp′(a, b) for p ≥ p′.
4. limp→0 mp(a, b) = m0(a, b).

312 O. Kullmann and O. Zaikin

5.2 Comparing the Various Means by Their Kernels

Due to homogeneity, we can reduce means with two arguments to their “kernels”,
which are functions in just one argument:

Definition 8. For a mean m : BT2 → R>0 let the kernel m : R≥1 → R≥1 be
defined as m(x) := m(1, x) for x ≥ 1.

We assume in the following w.l.o.g. 0 < a ≤ b (using symmetry). Due to homo-
geneity we have m(a, b) = a · m(b

a). From m ≥ m′ follows m ≥ m′, and thus we
have m1 ≥ mp ≥ m0 as well as m1 ≥ T ≥ m0. The meaning of the kernel is as
follows:

– We measure the imbalance of (a, b) ∈ BT2 by the quotient x := b
a ≥ 1 (the

larger x, the greater the imbalance).
– m(x)

m(1) = m(x) is the “reward” given for having (1, x) instead of just (1, 1).
– Due to the standardisation via using means, we can indeed compare the

kernel-values for different means p, q: if p(x) ≥ q(x), then the mean p gives a
greater reward to x than the mean q.

The kernels of our means are as follows; we use the symbol ∼ here to denote
asymptotic equality (i.e., the quotient approaches 1 as x goes to infinity):

1. m1(x) = 1
2 + x

2 ∼ x
2 .

2. mp(x) = (12 + xp

2)1/p ∼ x
21/p

.
3. T(x) = ln(2)

wτ(1/x) = ln(2) x
wτ(x) ∼ ln(2) x

W (x) ∼ ln(2) x
ln(x) = x

log2(x)
.

4. m0(x) =
√

x.

m1 gives the greatest reward, m0 the smallest, while mp,T are incomparable in
general, but there is a clear picture: There is a threshold value p0 ≈ 0.307 (the
infimum of 0 ≤ p ≤ 1 with T ≤ mp), where for p > p0 the mean mp always gives
a greater reward than T, while for p < p0 first (i.e., small x) the reward given
by mp is smaller, and then greater than the reward given by T (and the smaller
p, the larger the first realm, being the whole range finally for p = 0).

This paper concentrates on the basic theory, but we can report on the very
first experimental results. As look-ahead solver the simplest SAT-algorithm, the
DLL algorithm ([6]) was used, with a modern implementation and branching
heuristic as given by the tawSolver ([1]). The projections T and mp for 0 ≤ p ≤ 1
were run on uniform random 3-SAT benchmarks, and compared by average size
of the corresponding backtracking trees. The optimal p obtained was p ≈ 0.26,
which was still clearly worse here than T (by 10%), while slighly better than m0

(by 1%), and much better than m1 (by 20%). Clearly the runtime for T is higher,
up to a total runtime twice as much compared to m0, but for a stronger look-
ahead solver (DLL indeed is the “zero-look-ahead look-ahead-solver”), which
spends much more time on each variable, the tau-computation would contribute
far less to the total runtime, while its influence could be much larger. Even for
the tawSolver, on selected combinatorial benchmarks the effects (positive and
negative) on tree-sizes can be much higher.

Projection Heuristics for Binary Branchings Between Sum and Product 313

Our first general hypothesis on the (dynamic) choice of a good projection for
binary branchings is, phrased in the terminology of means-functions: In general T
is best, but for large reductions (distances) or for nodes closer towards the leaves
the penalty for imbalance can be reduced (there is no “exponential growth”
anymore), moving towards m1, while possibly closer to the root, or when only
small reductions are achievable, it is conceivable that an increase in the penalty,
moving closer to m0, might be beneficial (the situation might get “out of control”,
and thus one needs to be more “cautious”).

6 Summary and Outlook

We provided a review of the general theory of branching heuristics for look-
ahead-like solvers. Via flattening of metric trees, we gave a new simple proof of
the main theorem on bounding tree sizes, and we were able to provide concise
proofs showing the uniqueness of the canonical branching order. Turning to
binary branchings, the core of the binary tau-function has been condensed into
the function wτ(x), where strong lower and upper bounds are given, showing
wτ(x) ∼ ln(x). That “core” (in a variation) yielded the kernel of generalised
means, which enabled us to make precise comparisons between alternatives to
standard projections for binary branchings. We derived a first general hypothesis
on a better dynamic numerical control of the branching process.

Perhaps the most important future application of this whole approach is in
improving Cube-and-Conquer (see [10] for a high-level overview). In general,
having strong methods for splitting is vital here. The Cube-and-Conquer solver
needs to use a strong branching scheme in the cubing-phase, creating a tree,
where the leaves are the problems given to the conquer-solver. This scheme relies
on the analysis of the tree created, with the main target of minimising tree size.
More general than a lookahead SAT solver, the leaves here are not those nodes
where the residual instances were “solved”, but where they are “easy enough”
for the conquer-solver. The target is still to minimise tree sizes, and for that the
theory outlined in the paper is the very basis. The higher cost of computing τ(t)
should be less relevant in this context.

A further aspect, which should become important in the future, is that for
a branching-tuple t by τ(t) we obtain a global evaluation on the goodness of t
(“global” in the sense of being comparable in principle over the whole course
of computation). Monitoring these values should be valuable to gauge “success”
or “failure” of the current strategy, possibly triggering a switch of methods,
e.g., cutting off the cube-computation at the current node and switching to the
conquer-solver (somewhat similar to random restarts for CDCL solvers).

References

1. Ahmed, T., Kullmann, O., Snevily, H.: On the van der Waerden numbers w(2; 3, t).
Disc. Appl. Math. 174, 27–51 (2014). https://doi.org/10.1016/j.dam.2014.05.007

https://doi.org/10.1016/j.dam.2014.05.007

314 O. Kullmann and O. Zaikin

2. Anderson, D., Bodic, P.L., Morgan, K.: Further results on an abstract model for
branching and its application to mixed integer programming. Math. Program.
(2020). https://doi.org/10.1007/s10107-020-01556-4

3. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press (2009)

4. Bodic, P.L., Nemhauser, G.L.: An abstract model for branching and its application
to mixed integer programming. Math. Program. 166(1–2), 369–405 (2017). https://
doi.org/10.1007/s10107-016-1101-8

5. Bulhões, T., Sadykov, R., Uchoa, E.: A branch-and-price algorithm for the mini-
mum latency problem. Comput. Oper. Res. 93, 66–78 (2018). https://doi.org/10.
1016/j.cor.2018.01.016

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557

7. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES, Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

8. Golovnev, A., Kulikov, A.S., Smal, A.V., Tamaki, S.: Gate elimination: circuit size
lower bounds and #SAT upper bounds. Theor. Comput. Sci. 719, 46–63 (2018).
https://doi.org/10.1016/j.tcs.2017.11.008

9. Marijn J. H. Heule and Hans van Maaren. Look-ahead based SAT solvers. In Biere
et al. [3], chapter 5, pages 155–184. https://doi.org/10.3233/978-1-58603-929-5-
155

10. Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM 60(8),
25–34 (2017). https://doi.org/10.1145/3107239

11. Heule, M.J.H., Kullmann, O., Biere, A.: Cube-and-conquer for satisfiability. In:
Handbook of Parallel Constraint Reasoning, pp. 31–59. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-63516-3 2

12. Hoorfar, A., Hassani, M.: Inequalities on the Lambert W function and hyperpower
function. J. Inequalities Pure Appl. Math. 9(2), 1–5 (2008). https://www.emis.de/
journals/JIPAM/article983.html

13. Pinelis, I.: A certain generalisation of the golden ratio. MathOverflow. https://
mathoverflow.net/users/36721/iosifpinelis, https://mathoverflow.net/q/320595

14. Knuth, D.E.: The Art of Computer Programming, Satisfiability (Fascicle 6), vol.
4. Addison-Wesley, Boston (2015). ISBN-13 978–0134397603

15. Kullmann, O.: Obere und untere Schranken für die Komplexität von aussagenlo-
gischen Resolutionsbeweisen und Klassen von SAT-Algorithmen. Master’s thesis,
Johann Wolfgang Goethe-Universität Frankfurt am Main (1992). (Upper and lower
bounds for the complexity of propositional resolution proofs and classes of SAT
algorithms (in German); Diplomarbeit am Fachbereich Mathematik)

16. Kullmann, O.: Fundaments of branching heuristics. In: Biere et al. [3], chap. 7, pp.
205–244 (2007). https://doi.org/10.3233/978-1-58603-929-5-205

17. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere et al. [3], chap. 4, pp. 131–153 (1996). https://doi.org/10.3233/978-1-
58603-929-5-131

18. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook
of Mathematical Functions. NIST and Cambridge University Press, Cambridge
(2010). ISBN 978-0-521-19225-5

19. Pecin, D., Pessoa, A.A., Poggi, M., Uchoa, E.: Improved branch-cut-and-price for
capacitated vehicle routing. Math. Program. Comput. 9(1), 61–100 (2017). https://
doi.org/10.1007/s12532-016-0108-8

https://doi.org/10.1007/s10107-020-01556-4
https://doi.org/10.1007/s10107-016-1101-8
https://doi.org/10.1007/s10107-016-1101-8
https://doi.org/10.1016/j.cor.2018.01.016
https://doi.org/10.1016/j.cor.2018.01.016
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1016/j.tcs.2017.11.008
https://doi.org/10.3233/978-1-58603-929-5-155
https://doi.org/10.3233/978-1-58603-929-5-155
https://doi.org/10.1145/3107239
https://doi.org/10.1007/978-3-319-63516-3_2
https://www.emis.de/journals/JIPAM/article983.html
https://www.emis.de/journals/JIPAM/article983.html
https://mathoverflow.net/users/36721/iosif pinelis
https://mathoverflow.net/users/36721/iosif pinelis
https://mathoverflow.net/q/320595
https://doi.org/10.3233/978-1-58603-929-5-205
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.1007/s12532-016-0108-8
https://doi.org/10.1007/s12532-016-0108-8

On Dedicated CDCL Strategies
for PB Solvers

Daniel Le Berre1 and Romain Wallon2(B)

1 Centre de Recherche en Informatique de Lens (CRIL),
Univ. Artois, CNRS, 62300 Lens, France

leberre@cril.fr
2 LIX, Laboratoire d’Informatique de l’X, Ecole Polytechnique,

X-Uber Chair, 91120 Palaiseau, France
wallon@lix.polytechnique.fr

Abstract. Current implementations of pseudo-Boolean (PB) solvers
working on native PB constraints are based on the CDCL architecture
which empowers highly efficient modern SAT solvers. In particular, such
PB solvers not only implement a (cutting-planes-based) conflict analysis
procedure, but also complementary strategies for components that are
crucial for the efficiency of CDCL, namely branching heuristics, learned
constraint deletion and restarts. However, these strategies are mostly
reused by PB solvers without considering the particular form of the PB
constraints they deal with. In this paper, we present and evaluate dif-
ferent ways of adapting CDCL strategies to take the specificities of PB
constraints into account while preserving the behavior they have in the
clausal setting. We implemented these strategies in two different solvers,
namely Sat4j (for which we consider three configurations) and Round-
ingSat. Our experiments show that these dedicated strategies allow to
improve, sometimes significantly, the performance of these solvers, both
on decision and optimization problems.

Keywords: Pseudo-Boolean solving · Pseudo-Boolean optimization ·
Branching heuristics · Learned constraint deletion strategies · Restart
policies

1 Introduction

The success of so-called modern SAT solvers has motivated the generalization
of the conflict-driven clause learning (CDCL) architecture [13,30,31] to solve
pseudo-Boolean (PB) problems [35]. The main motivation behind the develop-
ment of PB solvers is that classical SAT solvers are based on the resolution proof
system, which is a weak proof system: instances that are hard for resolution (for
instance those requiring counting capabilities, such as pigeonhole principle for-
mulae [20]) are hard for SAT solvers. A stronger alternative is the cutting planes

R. Wallon—Most of this paper is based on research conducted by this author while he
was working as a PhD student at CRIL (Univ Artois & CNRS).

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 315–331, 2021.
https://doi.org/10.1007/978-3-030-80223-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_22&domain=pdf
http://orcid.org/0000-0003-3221-9923
http://orcid.org/0000-0001-7200-4279
https://doi.org/10.1007/978-3-030-80223-3_22

316 D. Le Berre and R. Wallon

proof system [19,21,32], which allows, for instance, to solve pigeonhole principle
formulae with a linear number of derivation steps. Generally speaking, this proof
system p-simulates resolution: any resolution proof can be simulated by a poly-
nomial size cutting planes proof [10]. In theory, PB solvers should thus be able
to find shorter unsatisfiability proofs, and thus be more efficient than classical
SAT solvers. In practice however, current PB solvers fail to keep the promises
of the theory. In particular, most PB solvers [9,12,25,36] implement a subset of
the cutting planes proof system known as generalized resolution [21]. This sub-
set is convenient as it allows to extend the CDCL algorithm to PB constraints.
As soon as a constraint becomes conflicting, the generalized resolution rule is
applied between this constraint and the reason for the propagation of one of its
literals to derive a new conflicting constraint. This operation is repeated until
an assertive constraint is eventually derived. However, solvers implementing this
procedure do not exploit the full power of the cutting planes proof system [37],
and are still behind resolution-based solvers in PB competitions [34].

Despite the recent improvements brought by RoundingSat [16] with the use
of the division rule during conflict analysis, current implementations of cutting
planes still have a critical drawback: they degenerate to resolution when given
a CNF as input. Moreover, such implementations are more complex than just
replacing resolution during conflict analysis by generalized resolution: finding
which rules to apply and when is not that obvious [17,24]. In particular, PB
solvers need to take care about the specific properties of PB constraints and of
the cutting planes proof system to fit in the CDCL architecture. Additionally,
CDCL comes with many other features, without which the performance of the
solver may become very bad (see, e.g., [15]). To the best of our knowledge,
little work has been done on extending these components for PB solvers: they
are mostly reused from their definition in classical SAT solvers, and adapted
just enough to work in the solver, without considering their effective impact
in the context of PB solving. In this paper, we focus on such features, namely
branching heuristics, learned constraint deletion strategies and restart schemes.
We implemented different new strategies for these features, designed to consider
the characteristics of PB constraints. Our experiments show that they allow to
improve, sometimes significantly, the performance of different PB solvers, both
on decision and optimization instances.

2 Preliminaries

We consider a propositional setting defined on a finite set of propositional vari-
ables V. A literal � is a variable v ∈ V or its negation v̄. Boolean values are
represented by the integers 1 (true) and 0 (false), so that v̄ = 1 − v.

A pseudo-Boolean (PB) constraint is an integral linear equation or inequation
over Boolean variables of the form

∑n
i=1 αi�i � δ, in which the coefficients αi

and the degree δ are integers, �i are literals and �∈ {<,≤,=,≥, >}. Such a
constraint can be normalized in linear time into a conjunction of constraints of
the form

∑n
i=1 αi�i ≥ δ in which the coefficients and the degree are all positive

On Dedicated CDCL Strategies for PB Solvers 317

integers. In the following, we thus assume that all PB constraints are normalized.
A cardinality constraint is a PB constraint in which all coefficients are equal to 1
and a clause is a cardinality constraint of degree 1. This definition illustrates
that PB constraints are a generalization of clauses, and that clausal reasoning
is thus a special case of PB reasoning.

PB solvers have thus been designed to extend the CDCL algorithm of classical
SAT solvers. In particular, when looking for a solution, PB solvers have to assign
variables. In the following, we use the notation �(V @D) to represent that literal �
has been assigned value V at decision level D, and �(?@?) to represent that �
is unassigned. Assigning variables is achieved either by making a decision or by
propagating a truth value for a variable. In this context, the normalized form of
PB constraints is particularly useful for detecting propagations: as for clauses,
propagations are triggered after the falsification of some literals in the constraint.
However, contrary to clauses, a PB constraint may propagate a literal even if
some other literals in this constraint are unassigned or satisfied, as shown in the
following example.

Example 1. The PB constraint 5a(0@3)+5b(?@?)+c(?@?)+d(?@?)+e(0@1)+
f(1@2) ≥ 6 propagates the literal b under the current partial assignment. If b is
assigned to 0, giving 5a(0@3)+5b(0@3)+c(?@?)+d(?@?)+e(0@1)+f(1@2) ≥ 6,
the constraint becomes conflicting. In both cases, observe that f is satisfied and
c and d are unassigned.

After propagations are triggered, it may happen that a constraint becomes
conflicting. When this is the case, PB solvers perform a conflict analysis simi-
lar to that of SAT solvers, and successively apply the cancellation rule between
the conflicting constraint and the reason for the propagation of some of its lit-
erals, so as to eliminate these literals. However, doing so does not guarantee
to preserve the conflict, and several approaches based on the (partial) weak-
ening rule have been introduced [11,16,24] to provide such a guarantee, by
(locally) assuming that some literals are assigned to 1. Some solvers such as
Sat4j-GeneralizedResolution [25] apply this rule iteratively until the conflict
is guaranteed to be preserved, while others such as RoundingSat [16], Sat4j-
RoundingSat and Sat4j-PartialRoundingSat [24] apply it on all literals that are
not falsified and not divisible by the coefficient of the literals to eliminate, before
applying the division rule.

3 Branching Heuristics

An important component in a SAT solver is its branching heuristic: to find
efficiently a solution or an unsatisfiability proof, the solver has to choose the
right variables on which to make decisions. Currently, most SAT solvers rely on
VSIDS [31] or one of its variants [7], or the more recent LRB [27]. We focus on
the former, as it is the one adopted by the native PB solvers we considered.

The most popular variant of VSIDS is exponential VSIDS (EVSIDS), intro-
duced in MiniSat [13]. In this heuristic, a value g is chosen between 1.01 and 1.2

318 D. Le Berre and R. Wallon

at the beginning of the execution of the solver. When a variable is encountered
during the analysis of the i-th conflict, this variable is bumped, i.e., its score is
updated by adding gi to its current score. When it comes to selecting a variable,
the solver chooses the variable with the highest score. We remark that, as the
original VSIDS, EVSIDS is designed to favor variables appearing in recent con-
flicts. Moreover, modern implementations of VSIDS not only update the score of
variables appearing in the learned clauses, but also that of variables appearing
in all clauses used to produce them. This approach aims to favor the selection
of variables that are involved in recent conflicts.

3.1 VSIDS in PB Solvers

Current PB solvers rely thus on the VSIDS heuristic (or one of its variants) to
decide which variable should be assigned next. In practice, this heuristic may
be used as is by PB solvers, even though doing so does not allow to take into
account all the information given by a PB constraint, as observed in [9] (which,
however, does not explicitly provide a more suitable heuristic). This is why
different variants of this heuristic have been proposed. In [11, Section 4.5], it is
proposed to add, for each variable appearing in a cardinality constraint of the
original problem (i.e., not for learned constraints) the degree of this constraint to
the initial score of the corresponding variables. This approach actually counts the
occurrences of the variable in the clauses that are represented by the cardinality
constraint.

Example 2 (from [11, Section 4.5]). If the cardinality constraint a + b + c ≥ 2
is present in the original constraint database, the score of each of its variables
is increased by 2. Indeed, this constraint is equivalent to the conjunction of the
clauses a + b ≥ 1, a + c ≥ 1 and b + c ≥ 1. If this constraint is learned, the
corresponding scores are only increased by 1.

Despite providing a more specific heuristic than the original VSIDS heuristic
when considering PB problems, this heuristic is not completely satisfactory, as it
does not fit well in modern implementations of VSIDS, and especially of EVSIDS.
First, as only the original constraints are considered, the heuristic does not
bring any improvement over the classical implementation of the heuristic, which
essentially relies on the bumping of variables involved in recent conflicts. Second,
the particular form of general PB constraints is not taken into account by this
heuristic. The main reason for only considering cardinality constraints in this
case is that computing the number of clauses in which a literal of a PB constraint
appears is hard in general. Another alternative, implemented in Pueblo [36], is
estimating the relative importance of a literal in a constraint, by computing the
ratio of its coefficient by the degree of the constraint. This value is then added to
the VSIDS score of the variable. On the contrary, Sat4j [25] and RoundingSat [16]
both implement a more classical EVSIDS heuristic, by bumping each variable
encountered during conflict analysis. However, some implementation details are
worth noting for these two solvers. In particular, Sat4j bumps these variables

On Dedicated CDCL Strategies for PB Solvers 319

each time they appear in a reason, while RoundingSat bumps them only once
(as in MiniSat [13]), except if the variable is eliminated during conflict analysis,
in which case it is bumped twice.

3.2 Towards Better VSIDS for PB Solvers

As mentioned above, current implementations of the VSIDS heuristic in SAT
solvers, and in particular the EVSIDS heuristic, are designed to favor the selec-
tion of variables that are involved in recent conflicts. When only considering
clauses, identifying such literals is straightforward: the literals involved in a
conflict are those appearing in the clauses encountered during conflict analysis.
However, this is no longer the case when PB constraints are considered. Indeed,
given a PB constraint, the literals it contains may not play the same role in
the constraint, and thus may not have the same influence in the conflicts in
which this constraint is involved. In order to take into account this asymme-
try between the literals when computing VSIDS scores, we introduce different
ways of bumping the variables appearing in the constraints encountered during
conflict analysis. The main reason for the asymmetry of the literals in a PB con-
straint is the presence of coefficients in the constraint. To take these literals into
account, we generalize the heuristics proposed in the PB solvers pbChaff [11,
Section 4.5], [12] and Pueblo [36] by defining the following bumping strategies:

– The bump-degree strategy multiplies the increment by the degree of the con-
straint, as a naive generalization of pbChaff ’s approach, which only considers
the degree of the original cardinality constraints.

– The bump-coefficient strategy multiplies the increment by the coefficient of
the literal being bumped, as a tentative measure of the importance of the
corresponding variable.

– The bump-ratio-coefficient-degree strategy multiplies the increment by the
ratio of the coefficient of the literal by the degree of the constraint, as proposed
in Pueblo.

– The bump-ratio-degree-coefficient strategy multiplies the increment by the
ratio of the degree of the constraint by the coefficient of the literal, as a gen-
eralization of pbChaff ’s strategy taking into account the relative importance
of the variable in the constraint.

Let us illustrate these different strategies by the following example.

Example 3. When bumping the variable a from the constraint 5a + 5b + c + d +
e + f ≥ 6, the increment is multiplied by:

– 6 in the case of bump-degree,
– 5 in the case of bump-coefficient,
– 5/6 in the case of bump-ratio-coefficient-degree (as in Pueblo), and
– 6/5 in the case of bump-ratio-degree-coefficient

before being added to the variable’s score.

320 D. Le Berre and R. Wallon

Another key observation to take into account to detect literals that are actu-
ally involved in a conflict is to consider the impact of the current assignment.
Indeed, in classical SAT solvers, all variables appearing in the clauses encoun-
tered during conflict analysis are always assigned, and all but one are actually
falsified. However, in PB constraints, this is not always the case (see Example 1),
and falsified literals may even be ineffective [24, Section 3.1].

Definition 1 (Effective Literal). Given a conflicting (resp. assertive) PB
constraint χ, a literal � of χ is said to be effective in χ if it is falsified and
satisfying it would not preserve the conflict (resp. propagation). We say that �
is ineffective when it is not effective.

Remark 1. To identify ineffective literals in a constraint, we use a greedy algo-
rithm that works as follows. The literals of the constraint are successively (and
implicitly) weakened away, and only those for which the weakening does not
preserve the conflict (resp. propagations) are kept. This operation, yields an
(implicit) clause that is both implied by the constraint and conflicting (resp.
assertive). Its literals are those considered as effective. Note that this approach
is similar to that used by SATIRE [38] or Sat4j-Resolution [25] to derive clauses
during conflict analysis.

Even though they may be encountered during conflict analysis, ineffective
literals do not play any role in the conflict, and neither do the corresponding
variables. We thus introduce three other bumping strategies taking into account
the current assignment:

– The bump-assigned strategy bumps only assigned variables appearing in the
constraints encountered during conflict analysis.

– The bump-falsified strategy bumps only variables whose literals appear as
falsified in the constraints encountered during conflict analysis.

– The bump-effective strategy bumps only variables whose literals are effective
in the constraints encountered during conflict analysis.

Example 4. When bumping the variables of the constraint 5a(0@3)+5b(1@3)+
c(?@?) + d(?@?) + e(0@1) + f(1@2) ≥ 6,

– the strategy bump-assigned bumps the variables a, b, e and f ,
– the strategy bump-falsified bumps the variables a and e, and
– the strategy bump-effective bumps only the variable a.

4 Learned Constraint Deletion

PB solvers, similarly to SAT solvers, need to regularly delete learned constraints
during their execution. Indeed, storing these constraints may not only increase
the memory required by the solver, but may also slow down unit propagation.
In this context, the key element is to detect which constraints to remove. In PB
solvers, this feature is mostly inherited directly from SAT solvers. For instance,

On Dedicated CDCL Strategies for PB Solvers 321

Pueblo [36] uses MiniSat ’s learned constraint deletion, based on the activity of
learned constraints (the less active constraints are removed first), Sat4j [25] uses
also an activity-based strategy but more aggressively as in Glucose [2], while
RoundingSat [16] considers a custom hybrid approach, based on both the LBD
and the activity measures (the latter is used as a tie-break rule when the former
gives identical measures). In other PB solvers, such as pbChaff [12] and Galena
[9], the learned constraint deletion in use (if any) is not documented. In [9],
a perspective is however mentioned to weaken learned constraints instead of
removing them. However, note that while measures such as those based on the
activity may be reused as they are by PB solvers (they do not take into account
the representation nor the semantics of the constraints they evaluate), for other
evaluation schemes, paying attention to the particular form of PB constraints
may be more relevant to properly evaluate the quality of the constraints. This
section focuses on two main approaches towards this direction.

4.1 Size-Based Measures

In classical SAT solvers, size-based measures delete the largest clauses in the
database, i.e., those containing many literals. The intuition behind this eval-
uation scheme is that large clauses are weak, especially from a propagation
viewpoint: a propagation can only be triggered after many literals have become
falsified. When considering PB constraints, this is not the case anymore. Indeed,
recall that PB constraints may propagate literals while some other literals remain
unassigned, and that the number of literals in a PB constraint does not neces-
sarily reflect its strength.

Another reason that motivated the use of size-based measures in SAT solv-
ing is that large clauses are expensive to handle, which is also true for PB con-
straints. In particular, in such constraints, the size also takes into account the
size of the coefficients, which is not negligible: as coefficients may become very
large during conflict analysis, arbitrary precision encoding is required to repre-
sent these coefficients. As we already discussed, this representation slows down
arithmetic operations, and thus the conflict analysis performed by the solver.
Different approaches have been studied to limit the growth of the coefficient,
such as those based on the division [16] or the weakening [24] rules. However,
these approaches lead to the inference of weaker constraints. By using a qual-
ity measure that takes into account the size of the coefficients, we can favor
the learning of constraints with “small” coefficients. Towards this direction, we
introduce quality measures based on the degree of the learned constraints, as
described below:

– The degree quality measure evaluates the quality of a learned constraint by
the value of its degree.

– The degree-bits quality measure evaluates the quality of a learned constraint
by the minimum number of bits required to represents its degree

In both cases, the smaller the degree, the better the constraint. Indeed, it is
well-known that the degree of a PB constraint can be used as an upper bound

322 D. Le Berre and R. Wallon

of the coefficients of the constraints (because of the saturation rule), so that
considering only the degree is enough for the purpose of this measure.

Example 5. The degree-based quality measures for the constraint 5a + 5b + c +
d + e + f ≥ 6 are:

– 6 in the case of degree, and
– 3 in the case of degree-bits (as the binary representation of 6, i.e., 110, needs

3 bits).

4.2 LBD-Based Measures

Another alternative to measure the quality of learned clauses in SAT solvers is
the so-called LBD [2].

Definition 2 (LBD). Consider a clause γ and the current assignment of its
literals. Let π be a partition of these literals, such that literals are partitioned
w.r.t. their decision levels. The LBD of γ is the number of classes in π.

The LBD of a clause is first computed when this clause is learned, and is
then updated each time the clause is used as a reason. In this context, the notion
of LBD relies on the fact that all literals in a conflicting clause are falsified,
and when the clause is used as a reason, only one literal is not falsified (the
propagated literal), but its decision level is also that of another (falsified) literal,
which has triggered the propagation. When PB constraints are considered, this
is not the case anymore. As such, LBD is not well-defined for such constraints.
To consider it as a quality measure for learned PB constraints, we thus need to
take into account the literals that are unassigned in these constraints. To do so,
we introduce five different definitions of this measure. First, we consider a sort
of default definition of LBD for PB constraints, which only takes into account
assigned literals. This definition of LBD was used for instance in the first version
of RoundingSat [16].

Definition 3 (LBDa). Consider a PB constraint χ and the current assignment
of its assigned literals. Let π be a partition of these literals, such that literals are
partitioned w.r.t. their decision levels. The LBDa of χ is the number of classes
in π (“a” stands for “assigned”).

Unassigned literals may be considered as if they were assigned to a “dummy”
decision level. This decision level may be the same for all literals, or not.

Definition 4 (LBDs). Consider a PB constraint χ and the current assignment
of its assigned literals. Let π be a partition of these literals, such that literals are
partitioned w.r.t. their decision levels. Let n be the number of classes in π. The
LBDs of χ is n if all literals in χ are assigned, and n + 1 otherwise (“s” stands
for “same”).

On Dedicated CDCL Strategies for PB Solvers 323

Definition 5 (LBDd). Consider a PB constraint χ and the current assignment
of its assigned literals. Let π be a partition of these literals, such that literals are
partitioned w.r.t. their decision levels. Let n be the number of classes in π. The
LBDd of χ is n + u, where u is the number of unassigned literals in χ (“d”
stands for “different”).

Another possible extension of LBD is to only consider falsified literals, as in
the current version of RoundingSat :

Definition 6 (LBDf). Consider a PB constraint χ and the current assignment
of its falsified literals. Let π be a partition of these literals, such that literals are
partitioned w.r.t. their decision levels. The LBDf of χ is the number of classes
in π (“f” stands for “falsified”).

The definition above is based on the observation that, when a clause is
learned, all literals in this clause are falsified. However, it may happen that
falsified literals in a PB constraint are actually ineffective (while this is never
the case in a clause). As these literals are not involved in the conflict, we should
not consider them either. We thus define another extension of LBD that only
considers effective literals:

Definition 7 (LBDe). Consider a PB constraint χ and the current assignment
of its effective literals. Let π be a partition of these literals, such that literals are
partitioned w.r.t. their decision levels. The LBDe of χ is the number of classes
in π (“e” stands for “effective”).

Example 6. The LBD-based quality measures for the constraint χ given by
5a(0@3) + 5b(1@3) + c(?@?) + d(?@?) + e(0@1) + f(1@2) ≥ 6 are:

– LBDa(χ) = |{{a, b}, {e}, {f}}| = 3
– LBDs(χ) = |{{a, b}, {c, d}, {e}, {f}}| = 4
– LBDd(χ) = |{{a, b}, {c}, {d}, {e}, {f}}| = 5
– LBDf (χ) = |{{a}, {e}}| = 2
– LBDe(χ) = |{{a}}| = 1

We remark that the definitions of LBD introduced in this section are exten-
sions of the original definition of LBD (as given by Definition 2), in the sense
that they all coincide when learning clauses.

4.3 Deleting PB Constraints

Taking advantage of the measures described above, we define the following
deletion strategies, which are applied each time the learned clause database is
reduced:

– delete-degree, which deletes the constraints with the highest degree,
– delete-degree-bits, which deletes the constraints with the largest degree,
– delete-lbd-a, which deletes the constraints with the highest LBDa,
– delete-lbd-s, which deletes the constraints with the highest LBDs,
– delete-lbd-d, which deletes the constraints with the highest LBDd,
– delete-lbd-f, which deletes the constraints with the highest LBDf , and
– delete-lbd-e, which deletes the constraints with the highest LBDe.

324 D. Le Berre and R. Wallon

5 Restarts

Restarts are a very powerful feature of CDCL SAT solvers [18]. Even though
this feature is not completely understood, it seems required to exploit more
power of the resolution proof system [1,14,33]. Restarting is mainly forgetting
all decisions made by the solver, and go back to the root decision level. The
main advantage of doing so is that wrong decisions made at the very beginning
of the search can be cancelled to avoid being stuck in a subpart of the search
space. To this end, many restart schemes have been proposed [8], either static
such as those based on the Luby series [22,28] or dynamic, as in PicoSAT [5] or
Glucose [3]. In this section, we focus on the latter, considering restart strategies
based on the quality of learned constraints. Such restarts are not exploited in
current PB solvers. In solvers such as pbChaff [12] or Galena [9], it is not clear
whether restarts are implemented or not, as they do not mention this feature. As
Pueblo [36] is heavily based on MiniSat [13], it is most likely to inherit its restart
policy, even though no mention of this feature is made in [36] either. Regarding
more recent solver, Sat4j [25] implements PicoSAT ’s static and aggressive restart
scheme [6] and RoundingSat [16] uses a Luby-based restart policy [22,28]. Note
that a common point to these two strategies is that they do not take into account
the constraints that are being considered, as they are both static policies. They
may thus be reused without any modification since they are independent from
the type of the constraints being considered. In this section, we propose instead
to follow Glucose’s restart policy [3]. In this solver, the decision of whether a
restart should be performed depends on the quality of the constraints that are
currently being learned: when this quality decreases, the solver is most likely
exploring the wrong search space. As of Glucose, the quality of learned clauses
is measured with their LBD (see Definition 2). To measure the decrease in the
quality of learned clauses, the average LBD is computed over the most recent
clauses (in practice, the last 100 clauses). Whenever this average is greater than
70% of the average LBD computed over all learned clauses, a restart should
be performed. Glucose also implements a wide variety of tricks to improve its
restart policy (such as restart blocking) that are beyond the scope of this paper.

We thus define 7 restarts strategies, that exploit the quality measures defined
in Sect. 4, namely restart-degree, restart-degree-bits,restart-lbd-a, restart-lbd-s,
restart-lbd-d, restart-lbd-f and restart-lbd-e.

6 Experimental Results

This section presents an empirical evaluation of the different strategies pre-
sented in this paper implemented in two PB solvers, namely Sat4j [25] and
RoundingSat [16]. All experiments have been executed on a cluster of comput-
ers equipped with quadcore bi-processors Intel XEON X5550 (2.66 GHz, 8 MB
cache). The time limit was set to 1200 s and the memory limit to 32 GB. For
space reasons, this section does not report the results of all individual strate-
gies presented in this paper, but focuses on the performance of those providing

On Dedicated CDCL Strategies for PB Solvers 325

the best improvements to the considered solvers. The interested reader may still
have a look to the publicly available detailed results of our experiments [26].

6.1 Solver Configurations

Let us first describe our implementation of the different strategies in Sat4j
[25], which are available in its repository1. For this solver, we considered three
main configurations, namely Sat4j-GeneralizedResolution, Sat4j-RoundingSat
and Sat4j-PartialRoundingSat [24]. For these three configurations, the default
strategies are given below:

– the branching heuristic bumps all variables appearing in each constraint
encountered during conflict analysis each time they are encountered,

– learned constraints are stored in a mono-tiered database, and are regularly
deleted using MiniSat ’s learned constraint deletion strategy [13], based on
the activity of learned constraints (i.e., the constraints to remove are those
that are less involved in recent conflicts), and

– the restart policy is that of PicoSAT [6].

Based on our experiments, the best combination of strategies for Sat4j-
GeneralizedResolution is bump-effective, delete-lbd-s and restart-degree, while the
best combination for both Sat4j-RoundingSat and Sat4j-PartialRoundingSat is
bump-assigned, delete-degree-bits and the static restart policy of PicoSAT [6].

For RoundingSat [16], our implementation is available in a dedicated reposi-
tory2. We refactored this solver starting from commit a17b7d0e (denoted master
in the following) to support the use of the different strategies presented in this
paper. The default configuration of this solver corresponds to the refactored
version of RoundingSat set up with the default strategies originally used by this
solver, i.e.:

– the branching heuristic bumps all variables appearing in each constraint
encountered during conflict analysis once, and twice when eliminated,

– learned constraints are stored in a mono-tiered database, and are regularly
deleted using the LBDf of the constraints and their activity as a tie-break,
and

– the restart policy uses the Luby series (with factor 100) [22].

The best combination of strategies for this solver, according to our exper-
iments, is bump-assigned (with a bumping on the variables each time they are
encountered), delete-lbd-e and restart-lbd-e.

6.2 Decision Problems

We first consider the performance of the different solvers on decision problems.
To this end, we ran the different solvers on the whole set of decision bench-
marks containing “small” integers used in the PB competitions since the first
edition [29], for a total of 5582 instances. Figure 1 gives the results of the different
solvers on these inputs, with their default and best configurations.
1 https://gitlab.ow2.org/sat4j/sat4j/tree/cdcl-strategies
2 https://gitlab.com/pb-cdcl-strategies/roundingsat/-/tree/cdcl-strategies

https://gitlab.ow2.org/sat4j/sat4j/tree/cdcl-strategies
https://gitlab.com/pb-cdcl-strategies/roundingsat/-/tree/cdcl-strategies

326 D. Le Berre and R. Wallon

3500 3600 3700 3800 3900 4000 4100 4200 4300
Number of solved inputs

0

200

400

600

800

1000

1200

R
un

ti
m
e
(i
n
se
co
nd

s)

VBS (Sat4j + RoundingSat)
VBS (RoundingSat)
RoundingSat (best)
RoundingSat (master)
RoundingSat (default)
VBS (Sat4j)
Sat4j-PartialRoundingSat (best)
Sat4j-RoundingSat (best)
Sat4j-GeneralizedResolution (best)
Sat4j-PartialRoundingSat (default)
Sat4j-RoundingSat (default)
Sat4j-GeneralizedResolution (default)

Fig. 1. Cactus plots of different configurations of Sat4j and RoundingSat on decision
problems. For more readability, the first (easy) 3500 instances are cut out.

The cactus plot shows that the different configurations of Sat4j are signifi-
cantly improved by the use of our dedicated strategies. Quite interestingly, we
can also observe that Sat4j-GeneralizedResolution with the best combination of
the strategies beats both implementations of RoundingSat in Sat4j with their
default strategies. In the case of RoundingSat, we can also note a small improve-
ment over its default configuration, but this improvement is not as significant as
in Sat4j. Let us remark that combining the best strategies is not enough to get
the best of all the strategies we investigated. In particular, for each feature we
considered, the Virtual Best Solver (VBS) of the different strategies, i.e., the one
obtained by selecting the best performing strategies on each individual input,
has far better performance than each individual strategy, and this applies to all
configurations of Sat4j and RoundingSat This suggests that no strategy is better
than the other on all benchmarks, and that they are actually complementary.

6.3 Optimization Problems

Let us now consider the performance of the different solvers on optimization
problems, by using as input the whole set of optimization benchmarks containing
“small” integers used in the PB competitions since the first edition [29], for a
total of 4374 instances. Considering the huge amount of computation time needed
to perform our exhaustive experiments on decision problems (more than 8 years
of CPU time), we focused for these experiments on the best configurations of
the different solvers we identified on decision problems (which still took about 9
months of CPU computation time). Figure 2 shows the results we obtained for
these configurations.

On Dedicated CDCL Strategies for PB Solvers 327

2000 2100 2200 2300 2400 2500
Number of solved inputs

0

200

400

600

800

1000

1200
R
un

ti
m
e
(i
n
se
co
nd

s)

VBS (Sat4j + RoundingSat)
VBS (RoundingSat)
RoundingSat (best)
RoundingSat (default)
RoundingSat (master)
VBS (Sat4j)
Sat4j-RoundingSat (best)
Sat4j-PartialRoundingSat (best)
Sat4j-RoundingSat (default)
Sat4j-PartialRoundingSat (default)
Sat4j-GeneralizedResolution (best)
Sat4j-GeneralizedResolution (default)

Fig. 2. Cactus plots of different configurations of Sat4j and RoundingSat on optimiza-
tion problems. For more readability, the first (easy) 2000 instances are cut out.

Similarly to decision problems, we can observe on the cactus plots that all
solvers are improved by the dedicated strategies on optimization problems, with
a particularly significant improvement to Sat4j-GeneralizedResolution.

6.4 Discussion

Let us now make a more detailed analysis of our experimental results.
Not so surprisingly, the strategy that has the most important impact, espe-

cially in Sat4j, is the bumping strategy, i.e., the branching heuristic. On the
one hand, our experiments showed that the strategies bump-degree and bump-
ratio-degree-coefficient have really poor performance in all considered solvers
(including RoundingSat). As described in [11, Section 4.5], these strategies are
designed to estimate the number of clauses that are represented by the PB con-
straint whose literals are being bumped. However, when a conflict occurs, not
all these clauses are actually involved in the conflict, and thus some variables
get “more bumped” than they should be.

On the other hand, assignment-based bumping strategies are, among all indi-
vidual strategies, those having the biggest impact on the performance of Sat4j.
For instance, we observed that Sat4j-GeneralizedResolution solves the (optimiza-
tion) instances of the factor family much faster thanks to the bump-effective
strategy (changing the learned constraint deletion or restart strategies makes
almost no difference on this family). We made further investigations to under-
stand why there was such an improvement, and it appears that the production
of irrelevant literals (i.e., literals that occur in a PB constraint, but never affect
its truth value, whatever their assignment) penalize the solver on this particular
family. It is known that such literals may impact the size of the proof built by PB
solvers [23]. Our experiments here also show that they may pollute the solver’s
heuristic, as bump-effective never bumps irrelevant literals (they are always inef-
fective). This also proposes another way to deal with such literals.

328 D. Le Berre and R. Wallon

The big impact of the bumping strategies in Sat4j may also explain why
the gain in RoundingSat is not so significant. Indeed, the aggressive weakening
performed by RoundingSat tends, in a sense, to already identify the literals that
are already involved in the conflict. This is particularly visible if we look at the
behavior the different bumping strategies in RoundingSat : there is almost no
difference between them. This suggests that the gain in this solver comes mostly
from the learned constraint deletion strategy or the restart policy, which improve
the default strategies without being significantly better.

In particular, we observed that, in Sat4j, performing no deletion at all is
actually better than the (default) activity-based deletion strategy. This may
be explained by the fact that PB solvers are often slower in practice than SAT
solvers, especially because the operations they need to perform, such as detecting
propagations and applying the cancellation rule, are more complex than their
counterpart in SAT solvers. This means that the number of conflicts per second
in a PB solver is lower than that in a SAT solver, and so is the number of
learned constraints. As a consequence, PB solvers do not need to clean their
learned constraint database as regularly as a SAT solver.

Regarding the restart policies, there is no big difference between the strate-
gies, except for degree-bits, which does not have good performance compared
to the others, and especially to degree. This may be explained by the fact that
degrees with the same number of bits may take very different values. These are
taken into account by the latter while the former does not distinguish them.
Nevertheless, there is clearly room for improvement as the VBS performs much
better than the individual strategies.

It is also important to note that the different strategies we considered in this
paper are often tightly linked in the solver, and may thus interact with each
other. This is particularly true for the learned constraint deletion and restart
policies, since they use the same quality measures. While using them indepen-
dently does not necessarily have a big impact on the solver (this is particularly
true for the learned constraint deletion strategy), combining them often allows
to get better performance. For instance, in RoundingSat, while the best (indi-
vidual) strategies are PicoSAT ’s restart policy and the deletion based on the
LBDs, the best gain is actually obtained by using the LBDe quality measure
both for learned constraint deletion and restarts.

Another consequence of the tight link between the different strategies and
the solver itself is that implementation details may have unintended side effects
on the performance of the solver. For instance, to implement the new strategies
in RoundingSat, we had to adapt the code and change some data structures in
the branching heuristic (by replacing an ordered set with an (unordered) hash
map), resulting in the same literals being bumped, but in a different order. As
the insertion/update order of the variables is used as a tie-break by EVSIDS, the
order in which the literals are selected varies between the master and default
configuration of the solver, which increases the difficulty to interpret the results
of RoundingSat, especially on optimization problems.

To conclude this analysis, let us summarize the main outcomes of our exper-
iments. The biggest impact on the solver is obtained by carefully adapting the

On Dedicated CDCL Strategies for PB Solvers 329

bumping strategy: while considering coefficients in this case worsens all tested
solvers, considering the current partial assignment may drastically improve them.
Regarding constraint deletion, using the activity based measure (which is the
default in Sat4j, and only a tie-break in RoundingSat) has really poor perfor-
mance. The other strategies have a lesser impact on the solver, and seem more
closely dependent on the proof system of the solver to bring improvement. How-
ever, if one needs to set up strategies that work well for all different proof systems,
it would be bump-assigned for the bumping strategies, delete-lbd-s for the
deletion strategy and either degree-based or PicoSAT ’s restart policy (depend-
ing of whether big degrees are expected to be produced or not, respectively).

7 Conclusion

In this paper, we introduced different branching heuristics, learned constraint
deletion and restart strategies dedicated to native PB solving. These strate-
gies are generalizations of those classically implemented in SAT solvers, and are
designed to take into account the properties of PB constraints to better fit in the
CDCL architecture. Our experiments revealed that one of the key aspects of PB
constraints to take into account is the current assignment of their literals. This
is particularly true for the EVSIDS-based heuristics, but also for the learned
constraint deletion strategies and the restart policies through the use of new
LBD-based measures. When combined, these strategies allow to improve the
PB solvers RoundingSat and Sat4j, with a particularly significant improvement
for the latter, both on decision and optimization problems.

Nevertheless, none of these strategies performs better than the others on
all benchmarks: their VBS clearly beats each individual strategy, even when
considering their combination. Yet, the strategies introduced in this paper show
that better adapting SAT strategies may improve the performance of PB solvers.
A perspective for future research is to find better ways to adapt such strategies,
and to define new strategies that are specifically designed for PB solving or
PB optimization (rather than adapting existing strategies). Another avenue to
explore is to find how to properly combine these strategies to get their best,
while taking into account the interactions between these different strategies.
In particular, it is not clear that combining all single best strategies provides
the best combination. A possible approach to identify such a combination is to
use dynamic algorithm configuration to select the most appropriate strategies
according to the state of the solver [4].

Acknowledgement. The authors are grateful to the anonymous reviewers for their
numerous comments, that greatly helped to improve the paper. Part of this work was
supported by the French Ministry for Higher Education and Research and the Hauts-de-
France Regional Council through the “Contrat de Plan État Région (CPER) DATA”.
This publication was supported by the Chair “Integrated Urban Mobility”, backed by
L’X – École Polytechnique and La Fondation de l’École Polytechnique and sponsored
by Uber. The Partners of the Chair shall not under any circumstances accept any
liability for the content of this publication, for which the author shall be solely liable.

330 D. Le Berre and R. Wallon

References

1. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. JAIR 40, 353–373 (2011)

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of IJCAI 2009, pp. 399–404 (2009)

3. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In:
Milano, M. (ed.) Proceedings of CP 2012, pp. 118–126 (2012)

4. Biedenkapp, A., Bozkurt, H.F., Eimer, T., Hutter, F., Lindauer, M.: Dynamic algo-
rithm configuration: foundation of a new meta-algorithmic framework. In: Proceed-
ings of ECAI 2020 (2020)

5. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Proceed-
ings of SAT 2008, pp. 28–33 (2008)

6. Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)
7. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Proceedings

of SAT 2015, pp. 405–422 (2015)
8. Biere, A., Fröhlich, A.: Evaluating CDCL Restart Schemes. In: Proceedings of

Pragmatics of SAT 2015 and 2018. EPiC Series in Computing, vol. 59, pp. 1–17
(2019)

9. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE Trans.
CAD Integrated Circuits Syst., 305–317 (2005)

10. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discrete Appl. Math., 25–38 (1987)

11. Dixon, H.: Automating pseudo-boolean inference within a DPLL framework. Ph.D.
thesis, University of Oregon (2004)

12. Dixon, H.E., Ginsberg, M.L.: Inference methods for a pseudo-boolean satisfiability
solver. In: Proceedings of AAAI 2002, pp. 635–640 (2002)

13. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Proceedings of SAT 2004,
pp. 502–518 (2004)

14. Elffers, J., Giráldez-Crú, J., Nordström, J., Vinyals, M.: Using Combinatorial
Benchmarks to Probe the Reasoning Power of Pseudo-Boolean Solvers. In: Pro-
ceedings of SAT 2018, pp. 75–93 (2018)

15. Elffers, J., Giráldez-Cru, J., Gocht, S., Nordström, J., Simon, L.: Seeking practical
CDCL insights from theoretical SAT benchmarks. In: Proceedings of IJCAI 2018,
pp. 1300–1308 (2018)

16. Elffers, J., Nordström, J.: Divide and conquer: towards faster pseudo-boolean solv-
ing. In: Proceedings of IJCAI 2018, pp. 1291–1299 (2018)

17. Gocht, S., Nordström, J., Yehudayoff, A.: On Division Versus Saturation in Pseudo-
Boolean Solving. In: Proceedings of IJCAI’2019. pp. 1711–1718 (2019)

18. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through ran-
domization. In: Proceedings of AAAI 1998, pp. 431–437 (1998)

19. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society, pp. 275–278 (1958)

20. Haken, A.: The intractability of resolution. Theoretical Computer Science, pp.
297–308 (1985)

21. Hooker, J.N.: Generalized resolution and cutting planes. Annals of Operations
Research, pp. 217–239 (1988)

22. Huang, J.: The Effect of Restarts on the Efficiency of Clause Learning. In: Pro-
ceedings of IJCAI 2007, pp. 2318–2323 (2007)

On Dedicated CDCL Strategies for PB Solvers 331

23. Le Berre, D., Marquis, P., Mengel, S., Wallon, R.: On irrelevant literals in pseudo-
boolean constraint learning. In: Proceedings of IJCAI 2020, pp. 1148–1154 (2020)

24. Le Berre, D., Marquis, P., Wallon, R.: On Weakening strategies for PB solvers. In:
Proceedings of SAT 2020, pp. 322–331 (2020)

25. Le Berre, D., Parrain, A.: The SAT4J library, Release 2.2, System Description.
JSAT, pp. 59–64 (2010)

26. Le Berre, D., Wallon, R.: On Dedicated CDCL Strategies for PB Solvers Compan-
ion Artifact, May 2021. https://doi.org/10.5281/zenodo.4751685

27. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Proceedings of SAT 2016, pp. 123–140 (2016)

28. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
In: Information Processing Letters, pp. 173–180 (1993)

29. Manquinho, V., Roussel, O.: The First Evaluation of Pseudo-Boolean Solvers
(PB’05). JSAT, pp. 103–143 (2006)

30. Marques-Silva, J., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput., 220–227 (1999)

31. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of DAC 2001, pp. 530–535 (2001)

32. Nordström, J.: On the interplay between proof complexity and SAT solving. ACM
SIGLOG News, pp. 19–44 (2015)

33. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175(2), 512–525 (2011)

34. Roussel, O.: Pseudo-Boolean Competition 2016 (2016). http://www.cril.fr/PB16/.
Accessed 20 May 2020

35. Roussel, O., Manquinho, V.M.: Pseudo-Boolean and Cardinality Constraints. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 695–733. IOS
Press (2009)

36. Sheini, H.M., Sakallah, K.A.: Pueblo: a hybrid pseudo-boolean SAT solver. JSAT,
pp. 165–189 (2006)

37. Vinyals, M., Elffers, J., Giráldez-Crú, J., Gocht, S., Nordström, J.: In Between
resolution and cutting planes: a study of proof systems for pseudo-boolean SAT
solving. In: Proceedings of SAT 2018, pp. 292–310 (2018)

38. Whittemore, J., Kim, J., Sakallah, K.A.: SATIRE: a new incremental satisfiability
engine. In: Proceedings of DAC 2001, pp. 542–545 (2001)

https://doi.org/10.5281/zenodo.4751685
http://www.cril.fr/PB16/

Efficient Local Search for Pseudo Boolean
Optimization

Zhendong Lei1,2, Shaowei Cai1,2(B), Chuan Luo3, and Holger Hoos4

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{leizd,caisw}@ios.ac.cn
2 School of Computer Science and Technology,

University of Chinese Academy of Sciences, Beijing, China
3 Microsoft Research, Beijing, China

chuan.luo@microsoft.com
4 Leiden University, Leiden, The Netherlands

hh@liacs.nl

Abstract. Pseudo-Boolean Optimization (PBO) can be used to model
many combinatorial optimization problems. PBO instances encoded from
real-world applications are often large and difficult to solve; in many
cases, close-to-optimal solutions are useful and can be found reasonably
efficiently, using incomplete algorithms. Interestingly, local search algo-
rithms, which are known to be effective for solving many other combina-
torial optimization problems, have been rarely considered in the context
of PBO. In this paper, we are introducing a new and surprisingly effec-
tive local search algorithm, LS-PBO, for PBO. LS-PBO adopts a well
designed weighting scheme and a new scoring function. We compare LS-
PBO with previous PBO solvers and with solvers for related problems,
including MaxSAT, Extended CNF and Integer Linear Programming
(ILP). We report results on three real-world application benchmarks,
from the Minimum-Width Confidence Band, Wireless Sensor Network
Optimization and Seating Arrangement Problems, as well as on bench-
marks from the most recent PB Competition. These results demonstrate
that our LS-PBO algorithm achieves much better performance than pre-
vious state-of-the-art solvers on real-world benchmarks.

Keywords: Local search · Pseudo boolean optimization

1 Introduction

Leveraging sustained and impressive improvements in the state of the art in
practically solving SAT and MaxSAT, high-performance solvers for these prob-
lems are now increasingly used for solving suitably encoded real-world problems.
However, in many cases, these encodings produce very large problem instances,
due to the limited expressive power of CNF. This becomes obvious, for example,

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 332–348, 2021.
https://doi.org/10.1007/978-3-030-80223-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_23

Efficient Local Search for Pseudo Boolean Optimization 333

when contrasting SAT and MaxSAT encodings with formulations in the frame-
work of Pseudo-Boolean Optimization (PBO), which can be used to model a
large range of real-world problems from operations research, economics, manu-
facturing, etc. PBO formulations use linear pseudo-Boolean (LPB) constraints
of the form

∑
ai · li ≥ k, where ai, k ∈ R, li is a variable xi or its negation xi,

and xi takes values from {0, 1}, in combination with an objective function of the
form min

∑
ci · li; this facilitates substantially more concise formulations than

(weighted) CNF clauses.
Algorithms for solving PBO can be categorized into three families. First,

Pseudo-Boolean solvers [7,18,22] are usually based on ideas from conflict-driven
clause learning (CDCL) SAT solvers [24], and they can be easily extended to
solve PBO – instead of stopping when a solution to all constraints is found,
one can determine the value of the current solution and add a new constraint,
such that a new solution must improve on the best solution found so far [1].
The well-known PBO solver OpenWBO [19] and the recent PBS/PBO solvers
RoundingSAT [8] and HYBRID [6] are based on this idea. As a classical approach
for solving combinatorial optimization problems, Branch and Bound (BnB) has
also been applied to PBO [15]. Most work on BnB for PBO focuses on techniques
for calculating lower bounds on the value of the cost function. Whenever the
lower bound estimate is higher than or equal to the upper bound, the search
can be pruned, since no better solution can be found by extending the current
partial assignment. Important techniques for determining lower bounds include
Maximum Independent Set [5] and Linear Programming Relaxation [17]. Further
pruning of the search tree is usually achieved using cutting planes [10]. Finally,
PB constraints can be translated into SAT, and surprisingly, this approach can
be quite efficient [23]. However, all of these complete methods may fail to find
optimal solutions for very large instances.

One of the most widely used approaches for underlying incomplete algo-
rithms for challenging combinatorial optimization problems is local search. Some-
what surprisingly, the literature on local search algorithms for handling Pseudo-
Boolean constraints is very sparse. In fact, the only recent work on local search
for PBO introduced Extended CNF (ECNF), which can express cardinality con-
straints (a special case of LPB) directly, along with a local search solver for
ECNF formulae [16].

In this work, we propose LS-PBO, a novel, highly effective local search algo-
rithm for PBO. In our method, we transform the objective function into so-called
objective constraints, which are added to the original constraints in the PBO
instances. We introduce a constraint weighting scheme for PB constraints and a
scoring function to guide the local search. The weights of constraints, including
original and newly generated objective constraints, are updated throughout the
search. The scoring function exploits the objective constraints and other con-
straints, and is used to select the variables that are iteratively modified by the
local search procedure.

We evaluate our approach on three real-world problems – Minimum-Width
Confidence Band, Wireless Sensor Network Optimization, and Seating Arrange-

334 Z. Lei et al.

ment – as well as the benchmark instances from the latest PB competition
(2016). We compare LS-PBO with previous PBO solvers, as well as with solvers
for related problems, including MaxSAT, Extended CNF and Integer Linear Pro-
gramming (ILP). Our empirical results show that LS-PBO achieves substantial
improvements in terms solution quality and running time over state-of-the-art
solvers for all these problems on our real-world benchmark instances.

The remainder of this paper is structured as follows. Section 2 provides some
background knowledge. Section 3 introduces the weighting scheme and the scor-
ing function used in our algorithm. Section 4 presents our new local search algo-
rithm for PBO. The results from our experiments are presented in Sect. 5. In
Sect. 6, we provide some general conclusions and an outlook on future work.

2 Preliminaries

A 0-1 ILP constraint is an inequality of the form:

∑
ai · xi

⎧
⎨

⎩

≤
=
≥

⎫
⎬

⎭
b, ai, b ∈ N, xi ∈ {0, 1} (1)

Using the relation xi = 1−xi, the general form of (1) can be converted into an
equivalent normalized LPB constraint involving only ≥ and positive coefficients:

∑
ai · li ≥ k, ai, k ∈ N

+, li ∈ {xi, xi} (2)

The li are typically referred to as literals, and a literal is either a variable
xi or its negation xi. Cardinality constraints are special linear pseudo-Boolean
(LPB) constraints, where all coefficients ai are equal to 1:

∑
li ≥ k, k ∈ N

+, li ∈ {xi, xi} (3)

An instance of the Pseudo-Boolean Optimization (PBO) Problem consists of
a set of LPB constraints and an objective function min :

∑
ci · li, ci ∈ N

+, and
the goal is to minimize the value of the objective function while satisfying all
pseudo-Boolean constraints.

A complete assignment for PBO instance F is a mapping that assigns 0 or 1
to each variable. An assignment α of F is feasible if, and only if, it satisfies all
constraints in F . The value of the objective function of a feasible solution α is
denoted as obj(α).

A CNF clause is a disjunction of literals, which can also be expressed as a
set of literals {l1, l2, ..., ln}; it is satisfied under a given assignment if it has at
least one literal evaluate to true, and falsified otherwise. Different methods of
encoding LPB constraints into CNF have been studied, using BDDs, adders and
sorting networks.

In Extended CNF (ECNF) [16], a clause is of the form ({l1, l2, ..., ln}, k),
where k is the cardinality of the clause, and an ECNF clause with cardinality

Efficient Local Search for Pseudo Boolean Optimization 335

k is satisfied if it has at least k literals evaluate to true, and falsified otherwise.
ECNF has the same expressive power as cardinality constraints. LPB constraints
can be encoded into ECNF via introducing additional variables and constraints.
For example, the LPB constraint 2x1 + x2 ≥ 2 can be expressed by three ECNF
clauses, ({y1, y2, x2}, 2), ({¬y1, x1}, 1), ({¬y2, x1}, 1).

3 Main Ideas

In this section, we present the main ideas leveraged in our new local search
algorithm for solving Pseudo-Boolean Optimization problems.

3.1 Constraint Weighting

Weighting techniques are very commonly used in local search algorithms for
discrete optimization problems – mostly, to increase the weight of unsatisfied
constraints and thereby bias the search process towards satisfying these. Here,
we propose a new weighting scheme for PBO. Specifically, in addition to the
(hard) LPB constraints, whose weights we denote w(c), we introduce an objective
constraint :

– Given a PBO instance with an objective function min :
∑n

i=1 ci · li, the
objective constraint is defined as

∑n
i=1 ci·li < obj∗, where obj∗ is the objective

value of the best solution found in the current run of the algorithm; at the
beginning of the search, obj∗ is initialized to ∞.

We further define:

– the coefficient of constraint c :
∑n

i=1 ai · li (≥ or <) k, coeff(c) :=∑n
i=1 ai/n;

– the average constraint coefficient of the given PBO instance, avg coeff :=∑m
c=1 w(c)·coeff(c)/m, where m is the number of contraints.

Our new weighting scheme, Weighting-PBO, works as follows: We assign an
integer weight w(c) with each constraint c, including the hard constraints and the
objective constraint; at the beginning of the search, these weights are initialized
to 1. Whenever the local search process is “stuck” in a local optimum, the weights
of constraints are updated as follows:

– For each unsatisfied hard constraint c, w(c) := w(c) + 1;
– If the objective constraint oc is unsatisfied and w(oc) ·coeff(oc)−avg coeff ≤

ζ, then w(oc) := w(oc) + 1.

By increasing the weights of hard constraints, we help the local search process to
find feasible solutions, by focusing on constraints that are often falsified in local
optima. The weight updates for the objective constraint help guide the search
towards solutions with better objective values.

336 Z. Lei et al.

We note that our primary goal is to find a feasible solution. Only when a fea-
sible solution is found, we consider it meaningful to decrease cost (i.e., the value
of the objective function). With this consideration, the weights of the hard con-
straint should be treated differently from the weight objective constraint. Intu-
itively, in order to find a feasible solution, the weight of the objective constraint
should not be too large compared to the weights of the hard constraints – oth-
erwise, the search is likely to become limited to a small subspace of assignments
that satisfy the objective constraint. To prevent this situation, in our weighting
scheme, we set an upper limit to the weight of the objective constraint.

3.2 Scoring Function

Local search algorithms typically use a scoring function and heuristics based on
it to guide the search process. For SAT and related problems, these scoring func-
tions usually measure the benefits of flipping a Boolean variable. Here, we define
three scoring functions based on the constraint weights. Specifically, we define a
scoring function for measuring the benefits w.r.t. satisfying hard constraints and
a scoring function w.r.t. the objective score. We also consider the sum of these
two functions as a combined scoring function.

– If a hard constraint c of the given PBO instance is unsatisfied (
∑

ai · li < k),
it incurs a penalty of w(c) · (k − ∑

ai · li).
– The objective constraint oc, no matter weather it is satisfied or not, incurs a

penalty of w(oc) · ∑
ci · li.

– The hard score of a variable x, denoted hscore(x), is the decrease of the total
penalty of unsatisfied hard constraints caused by flipping x.

– The objective score of a variable x, denoted by oscore(x), is the decrease of
the penalty of the objective constraint caused by flipping x.

– The score of a variable x is defined as score(x) := hscore(x) + oscore(x).

Example 1. Consider a PBO instance min : 100 · x1 + 200 · x2 + 300 · x3, s.t.
c : 2 · x1 + 3 · x2 + 4 · x3 ≥ 5, and suppose the current weights of the hard con-
straint c and the objective constraint oc are 2 and 1, respectively, given the
assignment (x1, x2, x3) = (1, 0, 0), then hscore(x1) = −2 × 2, hscore(x2) =
2 × 3, hscore(x3) = 2 × 3 and oscore(x1) = 1 × 100, oscore(x2) = −1 ×
200, oscore(x3) = −1 × 300. Note that, the reason why hsore(x3) is 2 × 3 rather
than 2×4 is that the maximum penalty it can reduce for this constraint is 2×3.

Note that the hscore and oscore functions measure the change on the total
weight of the hard constraints and the objective constraint, respectively. Thus,
the value of these functions are calculated based on the weights of constraints.
Therefore, the weighting scheme provide guidance to the search process via the
scoring functions.

Efficient Local Search for Pseudo Boolean Optimization 337

Algorithm 1: LS-PBO
Input: PBO instance F , cutoff time cutoff
Output: A solution α of F and its objective value

1 begin
2 α∗ := ∅, obj∗ := +∞;
3 α := all variables are set to 0;
4 while elapsed time < cutoff do
5 if α is feasible and obj(α) < obj∗ then α∗ := α; obj∗ := obj(α) ;
6 if D := {x|score(x) > 0} �= ∅ then
7 x := a variable in D with the highest score;
8 else
9 update constraint weights using Weighting-PBO;

10 if ∃ unsatisfied hard constraints then
11 c := a randomly chosen unsatisfied hard constraint;
12 x :=the variable with highest score in c;

13 else
14 x :=a randomly chosen variable with oscore(x) > 0;

15 α := α with x flipped;

16 return (α∗, obj∗)

4 A Local Search Algorithm for PBO

In this section, we introduce LS-PBO, a new local search algorithm for PBO
that is based on the weighting scheme and scoring functions from the previous
section.

An outline of LS-PBO is presented in Algorithm 1. In the beginning, LS-PBO
generates a complete assignment α by assigning each variable to 0 (the default
value)1, and the best found solution α∗ and its objective value are initialized as
∅ and +∞, respectively.

The main part of the algorithm consists of a loop (lines 4–15) in which
assignment α is iteratively modified, by flipping the truth value assigned to
one variable, until a given time limit is reached. During the search, whenever
a better feasible solution is found, the best feasible solution α∗, and obj∗ are
updated accordingly (line 5).

At each iteration, if the set D of the variables with positive score is not
empty, LS-PBO selects the variable with the highest score in D, breaking ties
by preferring the variable that has been flipped least recently.

If set D is empty (line 8), which means that the search process has reached a
local optimum, LS-PBO uses the weighting scheme to update the weights of the
constraints. Then, a random perturbation is applied: If there exit falsified hard

1 This all-0 initial assignment leads to better results than randomized initial assign-
ments on the WSNO problem, where all hard constraints have at least one negative
literal, while has little impact on the other two problems.

338 Z. Lei et al.

constraints, one of them is chosen uniformly at random, and the variable with
the highest score in is selected from it. If there are no falsified hard constraints,
a variable x with oscore(x) > 0 is selected uniformly at random and flipped.

When the time limit is reached, LS-PBO returns the best solution α∗, and its
objective value obj∗. Note that, if the algorithm fails to find any feasible solution
during the search, then α∗ = ∅ and obj∗ = +∞.

5 Experiments

We evaluate LS-PBO on PBO instances from both real-world application prob-
lems and the latest PB competition, comparing LS-PBO against state-of-the-art
solvers for various encodings, including two PBO solvers, two MaxSAT solvers,
one ECNF solver and one ILP solver:

– Open-WBO [19] was one of the best-performing Pseudo-Boolean Optimiza-
tion solvers in the recent PB competition 2016.

– HYBRID [6] is a very recent PBO solver built upon RoundingSAT [8]; it has
been shown to perform better than the PB solver RoundingSAT, the SAT
solver SAT4J, the PBO solver NAPS (which re-encodes PBO instances into
CNF and solves them using a CDCL solver), and the ILP solver SCIP on a
broad range of PBO benchmarks [6].

– Loandra [2] is a MaxSAT solver that won two unweighted categories and was
ranked 2nd in two weighted categories of the incomplete track of MSE 2019.

– SATLike-c [4] is a MaxSAT solver that won two unweighted categories, and
was ranked 2nd in two weighted categories of incomplete track in MSE 2020.

– LS-ECNF [16] is an Extended Partial MaxSAT solver known to perform well
on problems with cardinality constraints.

– Gurobi [9] is one of the most powerful ILP solvers [11]; here, we use both its
complete and heuristic versions.

Our solver LS-PBO has been implemented in C++ and compiled using g++
with -O3 option. The parameter ζ is set to 100, following preliminary experi-
ments with ζ = 10, 20, 50, 80, 100, 150, 200, 500, which indicated a single peak in
performance at ζ = 100.

The experiments were conducted on a server using 2.00 GHz Intel Xeon Plat-
inum 8153 CPUs, 512 GB RAM, running the Centos 7.7.1908 Linux operating
system. We used time limits of 300 and 3600 s. For each instance, we report the
value of the objective function of the best feasible solution found by each solver.
For each randomized solver, we performed 20 runs per instance with different
seeds, and we report the minimum, median and maximum performance values
obtained over these 20 runs.

In our experiments, we used three real-world application benchmarks
described in the following as well as instances from the most recent PB com-
petition. For some of these benchmarks, the instances are available in differ-
ent encodings and we can thus compare the solvers directly, running each on
its native formulation. For others, we need to encode the PBO instances into

Efficient Local Search for Pseudo Boolean Optimization 339

weighted CNF (for MaxSAT), Extended CNF and Integer Liner Programming
(ILP) for comparison. For the weighted CNF encoding, we use PBLib [21], a
C++ tool for efficiently encoding PB constraints into CNF. The ENCF and
ILP encodings are straightforward. Our solver and all benchmark instances are
available at https://lcs.ios.ac.cn/∼caisw/Resource/LS-PBO/.

5.1 Minimum-Width Confidence Band Problem

The Minimum-Width Confidence Band Problem (MWCB) is a central problem
arising from the analysis of multivariate data, namely, determining minimum-
width multivariate confidence intervals. We consider a set of n data vectors xi,
each of length m, represented by a matrix X ∈ R

n×m. Let xij ∈ X denote the
j-th element of xi; X can, for instance, represent time series data, where xi is
a sequence of values observed at successive points in time. A confidence band is
defined as a pair (l, u) of vectors, where l, u ∈ R

m and lj ≤ uj for all j. The size
of the confidence band CB = (l, u) is SIZE(CB) =

∑m
1 (uj − lj). The concept

of error of a confidence band captures the relationship between a confidence
band and a dataset. In the following, I[C] denotes an indicator function with
value 1 if condition C is satisfied, and 0 otherwise.

Definition 1. Given a data vector xi and a confidence band CB = (l, u), the
error of xi w.r.t. CB is defined as the number of points in xi that lie outside of
CB, i.e., ERROR(xi, CB) =

∑m
j=1 I[xij < lj ∨ uj < xij].

In the MWCB problem, the goal is to find a confidence band CB of minimal
size that satisfies the following constraints:

∑n
i=1 I[ERROR(xi, CB) > s] ≤ k

∀j ∈ [1,m]
∑n

i=1 I[xij < lj ∨ xij > uj] ≤ t,

The MWCB problem was proposed in [3], where encodings of MWCP
instances where solved using MaxSAT and ILP solvers. In that work, a PB
encoding of the MWCB problem was also described, which we also use here.
For our experiments, we obtained benchmark instances based on the MIT-BIH
arrhythmia database,2 which is often used in this field [3,12]. There are n = 2027
observations in heartbeat-pvc for m = 253 time points. In our experiments, the
number of observations ranges from 1000 to 2000, and the number of time points
ranges from 200 to 250. As for parameter values, we consider k ∈ {0.05·n, 0.1·n},
s = 0.05 m and t = k, as done in [3].

Empirical Results on MWCB: The results from our experiments on MWCB
are shown in Tables 1 and 2. Note that, according to our results, Open-WBO
performs worse than HYBRID (they are both PBO solvers), and SATLike-c
performs very similarly to Loandra (both are MaxSAT solvers), so we do not
report results for them here.
2 http://physionet.org/physiobank/database/mitdb/.

https://lcs.ios.ac.cn/~caisw/Resource/LS-PBO/
http://physionet.org/physiobank/database/mitdb/

340 Z. Lei et al.

Table 1. Empirical results on MWCB, using a 300 s time limit.

Instance LS-PBO LS-ECNF Loandra HYBRIDGurobi

n m k min[median,max] min[median,max] Comp.Heur.

1000 200 90110877[+1137, +2678] 115437[+688, +1797] 145826 168706 178806178806

1000 250 90148419[+1728, +3434] 154520[+810, +1773] 212839 229951 225930225930

1200 200 90112315[+1755, +39538] 116215[+1299, +40078]181602 223161 220532220532

1200 250 90152635[+1292, +3085] 156652[+2378, +3361] 258986 294630 292139292139

1400 200 90112449[+1697, +43271] 116437[+880, +43576] 162754 224998 221419221419

1400 250 90152348[+2055, +3372] 157077[+1432, +2976] 224473 286857 290957290957

1600 200 90138877[+3330, +17492] 150257[+2862, +11811]N/A 353560 353637353637

1600 250 90190110[+10081, +21720]200335[+4720, +11411]N/A 449511 444099444099

1800 200 90226605[+5755, +12123] 237681[+5843, +12136]325357 378119 371792371792

1800 250 90286398[+6610, +14552] 296513[+5038, +13063]N/A 472753 466396466396

2000 200 90251293[+4628, +49657] 260974[+6095, +48602]N/A 393500 386950386950

2000 250 90319214[+4682, +8080] 324478[+8252, +14350]N/A 483632 484738484738

1000 200 95117375[+935, +2624] 124137[+693, +1842] 149161 154645 175815131435

1000 250 95157216[+1628, +3041] 165082[+1079, +1427] 208022 204125 226035226035

1200 200 95118988[+1030, +41269] 126289[+1327, +40220]171594 189875 222200153473

1200 250 95160248[+1535, +2384] 169527[+1326, +2544] 202194 270289 210573292950

1400 200 95119772[+459, +42860] 126961[+750, +45110] 169947 208118 223483223483

1400 250 95162509[+960, +2317] 170748[+1427, +2105] 199947 276115 291315291315

1600 200 95185417[+7263, +20133] 196546[+3490, +8452] 276634 336499 349746349746

1600 250 95239321[+3937, +16837] 254685[+2948, +8332] 388998 442173 446997446997

1800 200 95253976[+3498, +7565] 260176[+2906, +5323] 329055 368134 371603371603

1800 250 95318906[+2578, +8154] 325120[+2296, +6345] 420992 460488 465933465933

2000 200 95277757[+3111, +49303] 278487[+2383, +52978]N/A 375494 387405387405

2000 250 95343670[+5656, +11008] 349308[+3499, +6921] N/A 491377 484636484636

For the 300 s time limit, Gurobi performs worst. Loandra may fail to find
feasible solutions in some cases, but it performs better than HYBRID for most
instances. LS-PBO and LS-ECNF perform much better than all other solvers.
Now we turn our focus to the comparison between LS-PBO and LS-ECNF. LS-
PBO consistently outperforms LS-ECNF on all MWCB instances. More encour-
agingly, for each MWCB instance, even the worst solution of LS-PBO is better
than that found by other solvers.

For the 3600 s time limit, Gurobi shows much improved performance, and
in fact performs better than Loandra and HYBRID, but still much worse than
LS-PBO. The increase in running time does not have much impact on the per-
formance of LS-PBO, which clearly remains the best of the solvers we considered
for solving these MWCB instances.

5.2 Wireless Sensor Network Optimization Problem

Nowadays, in Internet of Things (IoT) applications, Wireless Sensor Networks
(WSN) [13,14]provide an effective and flexible mechanism for accessing informa-
tion in many real-world applications. We consider the following problem. Given

Efficient Local Search for Pseudo Boolean Optimization 341

Table 2. Empirical results on MWCB, using a 3600 s time limit.

Instance LS-PBO LS-ECNF Loandra HYBRID Gurobi

n m k min[median,max] min[median,max] Comp.Heur.

1000 200 90110450[+743, +3075] 114602[+899, +1376] 143854 148403 127146119670

1000 250 90148181[+1797, +2999] 153101[+732, +1521] 212839 200498 159888160566

1200 200 90111060[+2340, +40120] 115803[+703, +38819] 174318 182787 122907123099

1200 250 90150212[+2793, +4201] 156568[+843, +1631] 220894 258209 162783169289

1400 200 90110792[+2081, +43621] 115383[+794, +42816] 151074 198229 121170120765

1400 250 90150981[+1615, +3698] 155964[+896, +2235] 201628 245942 165157173345

1600 200 90137763[+4193, +19123] 148050[+2659, +10149]N/A 294479 353637207782

1600 250 90183797[+10768, +25258]197618[+2333, +7077] N/A 375047 252988267170

1800 200 90221717[+2755, +7563] 228785[+8389, +12156]309036 343437 275615310234

1800 250 90280700[+2553, +7322] 291657[+4226, +7370] 381621 461042 382024466396

2000 200 90247557[+3616, +40465] 258033[+2933, +40994]N/A 372058 330113386950

2000 250 90310250[+3577, +9109] 321742[+2311, +5741] N/A 454465 484738484738

1000 200 90117375[+847, +2960] 124055[+501, +1924] 127499 137079 127501131240

1000 250 90156625[+1428, +2395] 164512[+975, +1950] 177597 186906 167825167765

1200 200 90118045[+1611, +40975] 125787[+748, +40675] 136513 153666 126149132959

1200 250 90159310[+1812, +3316] 168346[+1365, +2898] 185112 227155 167596181787

1400 200 90119092[+675, +43534] 126229[+912, +45015] 142457 159342 124943132487

1400 250 90161814[+852, +2416] 170012[+1093, +2678] 199947 253924 175104172885

1600 200 90185822[+5659, +10050] 196658[+1421, +8340] 272554 263979 230254250291

1600 250 90239049[+3677, +10498] 251506[+3238, +10852]361586 366987 446997298824

1800 200 90251744[+5171, +7848] 257759[+2635, +7740] 321124 317803 287682275934

1800 250 90314968[+3855, +8023] 323095[+2704, +8370] 395373 410809 343816465933

2000 200 90274498[+2734, +48493] 278461[+2230, +53004]N/A 339323 292612296753

2000 250 90342836[+4865, +8795] 349537[+1455, +6692] N/A 446888 360203484636

n sensor nodes, let ri denote the range of the i-th sensor node. The greater this
range, the shorter is the lifetime Li of a given sensor node. There are m points
of interest that should be covered by at least k sensors each. Let dij denote the
physical distance between the i-th sensor node and the j-th point. Let wit be a
Boolean variable that models whether the i-th sensor node is awake at the t-th
time interval. If T denotes the sleep/wake-up scheduling length of the WSN,
the goal in the Wireless Sensor Network Optimization Problem (WNSO) is to
maximize T while fulfilling a set of constraints (outlined later in this section).

In previous work [13,14], WSNO has been encoded into a set of decision
problems for fixed scheduling lengths T , which were then solved using a SAT
or SMT solver. This process starts with T set to 1; then, whenever an instance
has been found satisfiable, T is increased by one. Upon encountering the first
unsatisfiable instance in this process, T − 1 is returned as the optimal solution
of the given WSNO instance.

342 Z. Lei et al.

In practice, this approach has been found to be limited to about 10 sensors,
which is far below the instance sizes encountered in real-world applications.
Here, we propose an encoding as an optimization problem, which is solved using
a single run of a suitable solver. To our best knowledge, we are the first to
consider this kind of encoding for WSNO. In our experiments, the number of
sensors n ranges from 100 to 500, the number of points m ranges from 40 to 200,
and the coverage k ranges from 4 to 6.

To obtain a PBO instance, we introduce additional variables Tt, t ∈ [1, ub]
such that Tt = 1 means that the scheduling length of the current solution is at
least t, and ub is an upper bound on the value of T ; we use ub =

∑
Li/k.

– Objective function: The goal is to maximize the scheduling length, i.e.

min :
∑t=ub

t=1 T t (4)

– Correctness of variables Ti: If Tt = 1, then Tt−1 = 1:

∀t ∈ [2, ub] T t + Tt−1 ≥ 1 (5)

– Coverage constraint: If Tt = 1 then, at the t-th time interval, every point
must be covered by at least k nodes:

∀j ∈ [1,m], t ∈ [1, ub], Sj = {i|dij ≤ ri}
∑

i∈Sj
wi,t + k · T t ≥ k (6)

– Lifetime constraint: For each sensor node, the number of time intervals at
which the node is awake must not exceed the node’s lifetime:

∀i ∈ [1, n]
∑t=ub

t=1 wi,t ≥ ub − Li (7)

– Evasive constraint: Each sensor node must not stay active for more than E
consecutive time intervals:

∀i ∈ [1, n], t ∈ [1, ub − E]
∑t′=t+E

t′=t wi,t′ ≥ 1 (8)

– Moving target constraint: Some critical points may be required not be covered
by the same sensor for more than M consecutive time intervals, where M < E:

∀j ∈ CR, i ∈ Sj , t ∈ [1, ub − M], CR ⊃ [1,m]
∑t′=t+M

t′=t wi,t′ ≥ 1 (9)

Empirical Results on WSNO: The results of our experiments on WSNO are
shown in Tables 3 and 4. Note that, as Open-WBO was found to perform worse
than HYBRID, and Loandra worse than SATlike-c in this experiment, we do
not show results for these solvers.

Efficient Local Search for Pseudo Boolean Optimization 343

Table 3. Empirical results on WSNO, using a 300 s time limit.

Instance LS-PBO LS-ECNF SATLike-c HYBRID Gurobi

n m k min[median,max] min[median,max] min[median,max] Comp. Heur.

100 40 4 210[+0, +4] 210[+2, +6] 741[+15, +44] 210 210 210

150 60 4 602[+0, +0] 605[N/A, N/A] 1063[+71, +93] 602 1180 1180

200 80 4 715[+0, +10] 726[N/A, N/A] N/A[N/A, N/A] 1767 1911 1911

250 100 4 1305[+0, +433] 2200[N/A, N/A] N/A[N/A, N/A] 2123 2200 2200

300 120 4 1257[+32, +1315] 2572[N/A, N/A] N/A[N/A, N/A] 2510 2572 2572

350 140 4 1737[+206, +1426] 3163[N/A, N/A] N/A[N/A, N/A] 3137 3163 3163

400 160 4 2240[+644, +1296] N/A[N/A, N/A] N/A[N/A, N/A] 3509 N/A N/A

450 180 4 1869[+931, +2172] N/A[N/A, N/A] N/A[N/A, N/A] 4026 N/A N/A

500 200 4 3727[+886, +886] N/A[N/A, N/A] N/A[N/A, N/A] 4613 N/A N/A

100 40 6 140[+0, +4] 140[+4, +9] 363[+39, +119] 140 140 140

150 60 6 402[+0, +1] 787[+0, N/A] 727[+30, +53] 402 709 709

200 80 6 477[+0, +8] 504[N/A, N/A] N/A[N/A, N/A] 911 1274 1274

250 100 6 870[+0, +89] 1467[+0, +0] N/A[N/A, N/A] 1299 1467 1467

300 120 6 839[+0, +876] 1715[+0, +0] N/A[N/A, N/A] 1580 1715 1715

350 140 6 1158[+114, +951] 2109[+0, +0] N/A[N/A, N/A] 2075 2109 2109

400 160 6 1493[+0, +864] 2357[+0, +0] N/A[N/A, N/A] 2340 2357 2357

450 180 6 1246[+543, +1448] 2694[+0, N/A] N/A[N/A, N/A] 2670 N/A N/A

500 200 6 1784[+1291, +1291] 3075[N/A, N/A] N/A[N/A, N/A] 3075 N/A N/A

Table 4. Empirical results on WSNO, using a 3600 s time limit. Cases in which a solver
was able to prove the optimality of the solution to a given instance are marked “∗”.

Instance LS-PBO LS-ECNF SATLike-c HYBRID Gurobi

n m k min[median,max] min[median,max] min[median,max] Comp. Heur.

100 40 4 210[+0, +3] 210[+0, +1] 214[+51, +78] 210* 210* 210*

150 60 4 602[+0, +2] 602[+23, +578] 802[+67, +127] 602* 602* 602*

200 80 4 715[+0, +6] 720[+9, +126] 1806[+53, +74] 715* 715* 715*

250 100 4 1305[+0, +0] 1307[+893, N/A] 2110[+53, +82] 1305 2200 2200

300 120 4 1257[+0, +48] 1383[N/A, N/A] N/A[N/A, N/A] 1608 2572 2572

350 140 4 1737[+0, +85] 3163[+0, N/A] N/A[N/A, N/A] 2635 3163 3163

400 160 4 2240[+0, +10] N/A[N/A, N/A] N/A[N/A, N/A] 2915 N/A N/A

450 180 4 1869[+0, +381] N/A[N/A, N/A] N/A[N/A, N/A] 3697 N/A N/A

500 200 4 2577[+14, +2036] 4613[N/A, N/A] N/A[N/A, N/A] 4277 N/A N/A

100 40 6 140[+0, +0] 140[+1, +3] 141[+1, +5] 140* 140* 140*

150 60 6 402[+0, +0] 426[+361, +361] 403[+68, +94] 402* 402* 402*

200 80 6 477[+0, +2] 489[+25, +785] 1150[+51, +85] 477* 1274 1274

250 100 6 870[+0, +6] 1467[+0, +0] 1349[+90, +116] 870* 1109 870

300 120 6 839[+0, +37] 1715[+0, +0] N/A[N/A, N/A] 839 1715 1715

350 140 6 1158[+0, +34] 2109[+0, +0] N/A[N/A, N/A] 1158 2109 2109

400 160 6 1493[+0, +22] 2357[+0, +0] N/A[N/A, N/A] 1493 2357 2357

450 180 6 1246[+0, +269] 2694[+0, N/A] N/A[N/A, N/A] 2130 N/A N/A

500 200 6 1718[+0, +79] 3075[+0, +0] N/A[N/A, N/A] 2559 N/A N/A

344 Z. Lei et al.

For the 300 s time limit, LS-ECNF and SATLike-c turned out to be unable
to find any feasible solutions in most cases, resulting in the worst performance.
HYBRID was is able to find feasible solutions for all instances and performs
better than Gurobi, but the gap between HYBRID and our solver LS-PBO is
very large. For many instances, even the worst solutions found by LS-PBO is
better than those obtained from HYBRID. For the 3600 s time limit, LS-ECNF
and SATLike-c still performs worse than other solvers. For small instances, LS-
PBO can find the same optimal solutions as HYBRID and Gurobi in most cases.
Nevertheless, for the larger instances, LS-PBO usually produces better solutions
than HYBRID and Gurobi. Furthermore, we can also see that the performance
obtained in independent runs of LS-PBO does not vary much. Overall, on this
WSNO benchmark, LS-PBO represents a substantial improvement over all other
methods we considered.

5.3 Seating Arrangements Problem

The Seating Arrangements Problem (SAP) arises frequently in real-world situ-
ations, such as weddings and annual meetings of companies: Given n guests, m
tables and s labels, where each guest can have multiple labels, let xij denote
whether guest i is seated at table j, and yjk whether there is a guest with label
k seated at j. The objective is then assign guests to tables such that the number
of different labels found at each table is minimized, i.e., to the largest possi-
ble extent to have at each table guests with the same labels, subject to some
additional constraints (specified below). We note that this can be regarded as a
special kind of clustering problem. A PBO formulation is as follows:

– Objective function: The goal is to minimize the number of labels at each
table:

min :
∑m

j=1

∑s
k=1 yjk (10)

– The number of the labels of each table must not exceed a given number C:

∀j ∈ [1,m]
∑s

k=1 yjk ≥ s − C (11)

– Each guest i can only be seated at exactly one table:

∀i ∈ [1, n]
∑m

j=1 xij ≥ 1,
∑m

j=1 xij ≥ m − 1 (12)

– Each table has at most U guests:

∀j ∈ [1,m]
∑n

i=1 xij ≥ n − U (13)

– Each table has at least L guests:

∀j ∈ [1,m]
∑n

i=1 xij ≥ L (14)

Efficient Local Search for Pseudo Boolean Optimization 345

– Guests which have conflicts with each other cannot be seated at the same
table, i.e., for every pair of guests i and i′ that have such a conflict:

∀j ∈ [1,m] xij + xi′j ≥ 1 (15)

– Table j will contain all the labels of Si, where Si denotes the set of all labels
of guest i, if i is allocated to table j:

∀i ∈ [1, n], j ∈ [1,m], k ∈ Si xij + yjk ≥ 1 (16)

SAP was originally proposed in the MaxSAT Evaluation 2017 [20]. Compared
to the original formulation, we introduce an additional constraint (see constraint
(11)), since in real-world applications, it seems important that guests seated at
any given table should not have too many different labels.

Empirical Results for SAP: The results from our experiments on SAP are
shown in Table 5. As Loandra and Open-WBO failed to find any feasible solution
for any of the instances, we do not report their experiment results.

We found that all CNF- and PB-based solvers were unable to find feasible
solutions for any of the instances, even when using a time limit of 3600 s. For a
300 s time limit, Gurobi was only able to find 2 feasible solutions, and this number
increased to 3 for a 3600 s time limit. While both LS-PBO and LS-ECNF can
solve all these instances quickly, LS-PBO shows much better performance: For
each instance, the worst solution found by LS-PBO turned out to be superior to
the best solution produced by LS-ECNF.

5.4 Results on Pseudo-Boolean Competition Benchmark

Finally, we evaluated our solver against state-of-the-art competitors on the OPT-
SMALL-INT benchmark from the most recent Pseudo-Boolean Competition in
2016, which has also been used in recent literature to evaluate PBO solvers [6].
For this PB16 benchmark, we report the average score of each solver, which is
computed by the sum of the ratios between the best solution found by a given
solver and the best solution found by all solvers. This comparison methodology
has also been used in recent MaxSAT Evaluations (2017–2020). We did not
include MaxSAT solvers in our experiments, since several of the instances from
PB16 are too large to admit practical encodings into MaxSAT.

The results from our experiments on PB16 are shown in Table 6. For this
benchmark, LS-PBO cannot compete with HYBRID yet, but it tends to perform
better than Gurobi. We note that the gap between LS-PBO and HYBRID is not
very big, and we are convinced that it can be reduced or eliminated in future
work on LS-PBO.

346 Z. Lei et al.

Table 5. Empirical results on SAP, with 300 s and 3600 s time limits.

InstanceLS-PBO LS-ECNF SATLike-c HYBRID Gurobi

n min[median,max]min[median,max]min[median,max] compheur

TimeLimit= 300 s

100 582[+4, +9] 606[+14, +30] N/A[N/A, N/A] N/A 688 759

110 623[+8, +12] 668[+14, N/A] N/A[N/A, N/A] N/A 841 841

120 680[+10, +13] 698[+8, +12] N/A[N/A, N/A] N/A N/A N/A

130 745[+5, +9] 761[+10, +14] N/A[N/A, N/A] N/A N/A N/A

140 762[+8, +13] 791[+8, +15] N/A[N/A, N/A] N/A N/A N/A

150 829[+5, +10] 845[+10, +16] N/A[N/A, N/A] N/A N/A N/A

160 873[+6, +13] 882[+18, +25] N/A[N/A, N/A] N/A N/A N/A

170 907[+7, +14] 932[+8, +16] N/A[N/A, N/A] N/A N/A N/A

180 975[+10, +14] 994[+20, +28] N/A[N/A, N/A] N/A N/A N/A

190 1005[+10, +17] 1028[+14, +20] N/A[N/A, N/A] N/A N/A N/A

200 1066[+16, +21] 1096[+17, +26] N/A[N/A, N/A] N/A N/A N/A

210 1110[+11, +16] 1145[+10, +15] N/A[N/A, N/A] N/A N/A N/A

220 1157[+17, +26] 1195[+6, +14] N/A[N/A, N/A] N/A N/A N/A

230 1202[+11, +17] 1232[+11, +20] N/A[N/A, N/A] N/A N/A N/A

240 1236[+8, +14] 1262[+20, +28] N/A[N/A, N/A] N/A N/A N/A

250 1289[+12, +24] 1328[+11, +18] N/A[N/A, N/A] N/A N/A N/A

260 1333[+14, +22] 1358[+15, +24] N/A[N/A, N/A] N/A N/A N/A

270 1396[+19, +30] 1432[+19, +30] N/A[N/A, N/A] N/A N/A N/A

280 1422[+13, +21] 1458[+19, +29] N/A[N/A, N/A] N/A N/A N/A

290 1473[+12, +21] 1512[+16, +29] N/A[N/A, N/A] N/A N/A N/A

300 1538[+23, +31] 1582[+18, +31] N/A[N/A, N/A] N/A N/A N/A

TimeLimit= 3600 s

100 580[+3, +5] 606[+17, +36] N/A[N/A, N/A] N/A 622 759

110 620[+6, +9] 666[+14, N/A] N/A[N/A, N/A] N/A 660 841

120 679[+6, +10] 700[+6, +10] N/A[N/A, N/A] N/A N/A N/A

130 738[+7, +10] 761[+9, +15] N/A[N/A, N/A] N/A N/A N/A

140 757[+7, +10] 790[+8, +16] N/A[N/A, N/A] N/A N/A N/A

150 822[+5, +9] 845[+11, +18] N/A[N/A, N/A] N/A N/A 972

160 869[+4, +8] 895[+6, +12] N/A[N/A, N/A] N/A N/A N/A

170 897[+9, +13] 928[+12, +20] N/A[N/A, N/A] N/A N/A N/A

180 971[+7, +10] 990[+25, +32] N/A[N/A, N/A] N/A N/A N/A

190 996[+11, +17] 1028[+14, +23] N/A[N/A, N/A] N/A N/A N/A

200 1071[+3, +8] 1096[+17, +26] N/A[N/A, N/A] N/A N/A N/A

210 1094[+15, +25] 1146[+9, +14] N/A[N/A, N/A] N/A N/A N/A

220 1152[+10, +18] 1195[+7, +12] N/A[N/A, N/A] N/A N/A N/A

230 1195[+9, +13] 1225[+15, +26] N/A[N/A, N/A] N/A N/A N/A

240 1219[+15, +20] 1270[+12, +20] N/A[N/A, N/A] N/A N/A N/A

250 1274[+12, +22] 1330[+9, +19] N/A[N/A, N/A] N/A N/A N/A

260 1318[+12, +18] 1358[+13, +24] N/A[N/A, N/A] N/A N/A N/A

270 1392[+11, +16] 1443[+8, +16] N/A[N/A, N/A] N/A N/A N/A

280 1407[+15, +21] 1455[+22, +33] N/A[N/A, N/A] N/A N/A N/A

290 1448[+20, +28] 1513[+17, +29] N/A[N/A, N/A] N/A N/A N/A

300 1538[+8, +18] 1582[+18, +26] N/A[N/A, N/A] N/A N/A N/A

Efficient Local Search for Pseudo Boolean Optimization 347

Table 6. Empirical results on benchmarks from the 2016 PB Competition

Benchmark#inst.TimelimitLS-OPB HYBRID Gurobi (comp)Gurobi(heur)

Score (avg)Score(avg)Score (avg) Score (avg)

PB16 1600 300 s 0.6683 0.8018 0.6762 0.6562

PB16 1600 3600 s 0.7283 0.8130 0.6990 0.6859

6 Conclusions and Future Work

We have introduced a new and highly effective local search algorithm for PBO,
LS-PBO. Experiments on benchmarks from three real-world application prob-
lems, as well as on a suite of benchmark instances from the most recent PB
competition demonstrate clearly that LS-PBO performs far better than a broad
set of other state-of-the-art solvers not only for PBO, but also for MaxSAT,
ECNF and ILP. This establishes our new algorithm as the method of choice for
solving many real-world problems that can be easily and naturally formalised in
the framework of PBO. In future work, we intend to develop even more efficient
local search solvers for PBO and demonstrate their ability to effectively solve
additional real-world combinatorial problems.

Acknowledgement. This work was supported by the Beijing Academy of Artifi-
cial Intelligence (BAAI), and the Youth Innovation Promotion Association, Chinese
Academy of Sciences (No. 2017150), and partly sponsored by China Construction Bank
University (Project No. 2020103).

References

1. Barth, P.: A Davis-Putnam enumeration algorithm for linear pseudo-Boolean opti-
mization. In: Technical Report MPI-I-95-2-003. Max Plank Institute for Computer
Science (1995)

2. Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incom-
plete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS,
vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19212-9 3

3. Berg, J., Oikarinen, E., Järvisalo, M., Puolamäki, K.: Minimum-width confidence
bands via constraint optimization. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416,
pp. 443–459. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-
2 29

4. Cai, S., Lei, Z.: Old techniques in new ways: clause weighting, unit propagation
and hybridization for maximum satisfiability. Artif. Intell. 287, 103354 (2020)

5. Coudert, O., Madre, J.C.: New ideas for solving covering problems. In: Preas, B.
(ed.) Proceedings of the 32st Conference on Design Automation, 1995, pp. 641–646.
ACM Press (1995)

6. Devriendt, J., Gocht, S., Demirović, E., Stuckey, P., Nordström, J.: Cutting to
the core of pseudo-Boolean optimization: combining core-guided search with cut-
ting planes reasoning. In: AAAI 2021, Accepted (2021). http://www.csc.kth.se/
∼jakobn/research/CuttingToTheCore AAAI.pdf

https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-319-66158-2_29
https://doi.org/10.1007/978-3-319-66158-2_29
http://www.csc.kth.se/~jakobn/research/CuttingToTheCore_AAAI.pdf
http://www.csc.kth.se/~jakobn/research/CuttingToTheCore_AAAI.pdf

348 Z. Lei et al.

7. Elffers, J., Giráldez-Cru, J., Nordström, J., Vinyals, M.: Using combinatorial
benchmarks to probe the reasoning power of pseudo-boolean solvers. In: Bey-
ersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 75–93.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8 5

8. Elffers, J., Nordström, J.: Divide and conquer: towards faster pseudo-Boolean solv-
ing. In: Lang, J. (ed.) Proceedings of IJCAI 2018, pp. 1291–1299 (2018)

9. Gurobi Optimization, L.: Gurobi optimizer reference manual (2019). http://www.
gurobi.com

10. Hooker, J.N.: Logic-based methods for optimization. In: Borning, A. (ed.) PPCP
1994. LNCS, vol. 874, pp. 336–349. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-58601-6 111

11. Hvattum, L.M., Løkketangen, A., Glover, F.W.: Comparisons of commercial MIP
solvers and an adaptive memory (tabu search) procedure for a class of 0–1 integer
programming problems. Algorithmic Oper. Res. 7(1), 13–20 (2012)

12. Jussi, K., Kai, P., Aristides, G.: Confidence bands for time series data. In: Data
Mining and Knowledge Discovery, pp. 1530–1553 (2014). https://doi.org/10.1007/
s10618-014-0371-0

13. Kovasznai, G., Erdelyi, B., Biro, C.: 2018 IEEE International Conference on Future
IoT Technologies (Future IoT) - Investigations of Graph Properties in Terms of
Wireless Sen, pp. 1–8 (2018)

14. Kovásznai, G., Gajdár, K., Kovács, L.: Portfolio SAT and SMT solving of cardinal-
ity constraints in sensor network optimization. In: 21st SYNASC 2019, pp. 85–91.
IEEE (2019)

15. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: a survey. Oper. Res. 14(4),
699–719 (1966)

16. Lei, Z., Cai, S., Luo, C.: Extended conjunctive normal form and an efficient algo-
rithm for cardinality constraints. Proc. IJCAI 2020, 1141–1147 (2020)

17. Liao, S.Y., Devadas, S.: Solving covering problems using lpr-based lower bounds. In:
Yoffa, E.J., Micheli, G.D., Rabaey, J.M. (eds.) Proceedings of the 34st Conference
on Design Automation, Anaheim, 1997, pp. 117–120. ACM Press (1997)

18. Manquinho, V.M., Roussel, O.: The first evaluation of pseudo-Boolean solvers
(pb’05). J. Satisf. Boolean Model. Comput. 2(1–4), 103–143 (2006)

19. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

20. Martins, R., Sherry, J.: Lisbon wedding: seating arrangements using maxsat. In:
MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, pp. 25–26 (2017).
http://hdl.handle.net/10138/228949

21. Philipp, T., Steinke, P.: PBLib – a library for encoding pseudo-boolean constraints
into CNF. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 9–16.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 2

22. Prestwich, S.: Randomised backtracking for linear pseudo-Boolean constraint prob-
lems. Proc. CPAIOR 2002, 7–20 (2002)

23. Sakai, M., Nabeshima, H.: Construction of an ROBDD for a pb-constraint in band
form and related techniques for pb-solvers. IEICE Trans. Inf. Syst. 98-D(6), 1121–
1127 (2015)

24. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In:
Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of ICCAD 1996, pp. 220–227.
IEEE Computer Society ACM (1996)

https://doi.org/10.1007/978-3-319-94144-8_5
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/3-540-58601-6_111
https://doi.org/10.1007/3-540-58601-6_111
https://doi.org/10.1007/s10618-014-0371-0
https://doi.org/10.1007/s10618-014-0371-0
https://doi.org/10.1007/978-3-319-09284-3_33
http://hdl.handle.net/10138/228949
https://doi.org/10.1007/978-3-319-24318-4_2

Scheduling Reach Mahjong Tournaments
Using Pseudoboolean Constraints

Martin Mariusz Lester(B)

University of Reading, Reading, UK
m.lester@reading.ac.uk

Abstract. Reach mahjong is a gambling game for 4 players, most pop-
ular in Japan, but played internationally, including in amateur tourna-
ments across Europe. We report on our experience of generating tour-
nament schedules for tournaments hosted in the United Kingdom using
pseudoboolean solvers. The problem is essentially an extension of the
well-studied Social Golfer Problem (SGP) in operations research. How-
ever, in our setting, there are further constraints, such as the positions
of players within a group, and the structure of the tournament graph,
which are ignored in the usual formulation of the SGP. We tackle the
problem primarily using the SAT/pseudoboolean solver clasp, but some-
times augmented with an existing local search-based solver for the SGP.

Keywords: Social Golfer Problem · Mahjong · Tournament
scheduling · Pseudoboolean constraints

Reach mahjong (or riichi mahjong) is a gambling game for 4 players. A game
(or hanchan) is played over several rounds. In each round, players seated at a
table sequentially draw and discard tiles in an attempt to form a winning hand
of 14 tiles. At the end of the round, the losing players pay a number of points to
the winner, according to the value of his hand. The player with the most points
at the end of the game is the winner.

Reach mahjong is most popular in Japan, although it is played throughout
the world. In Europe, a few hundred amateur players compete in tournaments
arranged throughout the year and around the continent. Tournaments are typi-
cally organised locally, but run following rules published by the European Mahjong
Association (EMA) [1], which has approved and ranked tournaments since 2008.
This raises the question of how best to schedule games in a tournament.

We report on our experience of using the pseudoboolean (PB) solver clasp [8]
to generate tournament schedules (such as Table 1) for tournaments run in the
United Kingdom since 2013. This includes generating a schedule for 128 players
over 10 sessions for the 2016 European Riichi Mahjong Championship (ERMC),
which satisfied a complex combination of constraints. Our software CoMaToSe
(Constraint Mahjong Tournament Scheduler) and benchmarks are online [13].

In Sect. 1 we describe some details of the tournament scheduling problem and
the constraints that they lead to. Then, in Sect. 2, we describe how we encode those
c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 349–358, 2021.
https://doi.org/10.1007/978-3-030-80223-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_24&domain=pdf
http://orcid.org/0000-0002-2323-1771
https://doi.org/10.1007/978-3-030-80223-3_24

350 M. M. Lester

constraints. The scheduling problem is essentially an extension of the Social Golfer
Problem (SGP), which is amenable to solution using SAT solvers [9,12], but we
found that for larger tournaments, and with our extended set of constraints, a PB
formulation was more tractable. To our knowledge, there is no previous published
work considering mahjong tournament scheduling; our encoding of the constraints
extending the SGP is original. We evaluate our approach in Sect. 3. Finally, in
Sect. 4 we discuss related work on the SGP, and more generally on tournament
scheduling for games with more than 2 players, before concluding.

1 Problem Description

Size, length and format. A number of practical constraints and conventions have
arisen over time that essentially fix the format of a tournament. Tournaments typ-
ically take place at the weekend, so usually last 1–2 days. Players may travel to a
tournament and expect to play throughout; tournament rules specify that all play-
ers should play the same number of games and, after adding up each player’s score
in every game, the player with the highest score should be the winner. Games are
played to a time limit in a session of 90 min. Allowing time for breaks and so on, it
is usual to have 3–5 sessions in a day, for a total of 4–10 sessions in a tournament.
A 2-day tournament might typically attract around 48 players. Every 3 years, a
European Championship (ERMC) is held, which lasts longer and attracts more
players. The main phase of the 2016 championship in the UK had 128 players over
10 sessions; the 2019 championship in the Netherlands had 140 players over 12 ses-
sions. A tournament venue usually has enough tables and equipment to allow all
participants to play simultaneously, although this may be variable in quality.

Wind Allocation. During each round, each player is allocated a different com-
pass point (East, South, West or North) as his wind. The East player is the dealer.
When he wins, he gets 50% more points and stays as dealer for the next round.
If he does not win, the wind allocations rotate. He becomes North for the next
round, the South player becomes East, and so on. In a full game, each player
gets to be East twice; being North initially (and hence East last) may be an
advantage because it confers some control over when the game ends. However,
if a game is curtailed because of a tournament time limit, being North or West
initially puts one at a disadvantage, as one often misses a second turn as dealer.

Table 1. A tournament schedule for 24 players and 5 sessions (SGP 6-4-5) with d = 10.

Table 1 2 3 4 5 6
Session E S W N E S W N E S W N E S W N E S W N E S W N

1 1 3 2 4 7 8 5 6 11 12 10 9 14 13 15 16 17 20 18 19 24 22 23 21
2 9 23 7 17 3 19 10 15 16 6 24 2 8 18 21 12 22 5 1 14 20 11 4 13
3 11 18 14 24 21 1 13 17 20 7 3 22 10 4 6 23 2 15 9 8 12 16 19 5
4 15 21 6 20 4 22 16 9 19 23 8 14 2 17 11 5 3 24 12 13 18 10 1 7
5 13 8 22 10 23 2 20 12 5 15 4 18 19 9 24 1 7 16 21 11 6 14 17 3

Scheduling Reach Mahjong Tournaments Using Pseudoboolean Constraints 351

The core problem is thus how best to schedule 4–12 sessions of a 4-player
game for 16–140 players. Initial wind allocations for a table can be included in
the schedule, or they can be drawn at random by the players before the game.
Players might feel aggrieved if they have a disadvantageous wind allocation, even
if it was produced at random. Balanced allocation of winds in the schedule avoids
this and reduces setup time at the start of the game.

1.1 Constraints

The following have been suggested as desirable properties in a schedule:

Socialisation: Players want to play as many different opponents as possible.
Wind balance: In order to share the potential penalty of not getting a second

turn as dealer across all players, each player should be allocated each starting
wind position roughly an equal number of times. Obviously, this is not possible
when the number of sessions is not a multiple of 4 and even then, it may not
always be possible.

Table movement: To reduce the chances of cheating, and to share the incon-
venience of playing on a table with low-quality equipment, a player should
not play on the same table twice.

Of these, most players consider socialisation most important. With just this
requirement, tournament scheduling is an instance of the well-studied SGP. With
the relatively low ratio of players to sessions in many tournaments, satisfying
just this requirement leaves relatively little scope for changing who plays who in
each round. However, in larger tournaments, we may also wish to consider what
properties are desirable in the tournament graph of “who plays who”. Intuitively,
we can view a tournament as a process by which points flow along edges from
losing players to winning players. We then expect that the final scores of players
are indicative of a linear ordering of their skill, but this depends on there being
adequate potential for points to flow between any two players. This leads to the
following desirable properties of the tournament graph:

Graph connectedness: The tournament graph should be connected.
Graph diameter: The diameter of the tournament graph (greatest distance

between any pair of players) of the tournament should be as low as possible. In
our setting, this usually means 2. This is a stronger version of the requirement
that the graph be connected, with the same motivation. If two players cannot
face each other directly, points can still flow between them via other players,
but we would like the route to be as short as possible.

Multiple short paths: If two players in the tournament graph are not adja-
cent, there should be multiple paths between them, ideally of length 2. This
increases the potential for indirect flow of points between them.

For a tournament graph with diameter 2, we will refer to the minimum num-
ber of paths of length 2 between any two non-adjacent players in the tournament
graph as d. Necessarily, d ≥ 1. For the schedule in Table 1, we used graph con-
straints to enforce d = 10; prior to this, the schedule had d = 9.

352 M. M. Lester

2 Problem Encoding

As the most important constraint is socialisation, we start with a PB encoding
for the SGP, then add our other constraints in a monolithic formulation. By
convention, we refer to an SGP instance as g-p-w with:

– g — the number of groups playing simultaneously
– p — the number of players in a group (always 4 for mahjong)
– w — the number of sessions (weeks in the SGP)

We chose our solver by evaluating participants in the SAT and PB [4] compe-
titions of 2012, which were the most recent competitions at the time. Of these,
we found that clasp [8] was most effective, particularly when run with the crafty
preset for combinatorially hard problems.

Initially, we had focused on the use of SAT, as Triska had developed an
effective SAT encoding of the SGP [18]. However, his socialisation constraint
is O(g4p2w2). For large numbers of players, we found that just generating the
constraints was too slow, so starting with the 2016 European Championship
(SGP 32-4-10), we adopted a PB formulation.

We had assumed that, while a PB might not find an optimal solution, if it
ceased to make progress, it would at least have found a locally optimal solution.
However, a tournament organiser told us he had been able to improve wind
balance in a generated schedule by shuffling wind allocations of two tables. We
found that, using an encoding that considered only wind balance, we could fine-
tune the schedule generated from the monolithic encoding and automate this.

Although the SAT/PB method for solving SGP instances is competitive, the
best automated method currently known is Triska’s heuristic-guided local search
algorithm [17]; an implementation by Rezaei is available online [15]. Therefore,
for tournament schedules that correspond to hard instances of the SGP, we can
import a solution to the SGP instance and just tune the wind balance. While
fixing group allocations in this way may remove the best solutions from the space
considered by the solver, in practice it allows us to find better solutions than
using a constraint solver in isolation. In all cases we considered, we were able to
find an optimal wind allocation this way.

2.1 Monolithic Constraint Encoding

We now present our monolithic PB constraint encoding of the problem. We set
n = g.p as the number of players. The constraints range over the following
Boolean variables, where h, i, j ∈ [1, n] with j > i, h �= i and h �= j, k ∈ [1, g],
l ∈ [1, w] and s ∈ [1, p]:

– Pi,k,l — true just if i plays in group k in session l
– Si,k,l,s — true just if i plays in group k in session l in seat position s
– Mi,j,l — true if i and j meet in session l
– Ci,j — true only if i and j meet (compete) in any session
– Di,j,h — true only if i and j both meet h (compete indirectly)

Scheduling Reach Mahjong Tournaments Using Pseudoboolean Constraints 353

We encode East as position 1, South as 2 and so on. Constraint sets are as follows;
quantification (∀,

∑
) of indices is always implicitly over the ranges above.

Each group must have exactly p players:

∀k, l.∑i Pi,k,l = p (1)

Each player must play in exactly one group in each session:

∀i, l.∑k Pi,k,l = 1 (2)

Optionally, to break symmetries, order players sequentially in the first session:

∀i.Pi,�i/g�,1 = 1 (3)

If i and j play in the same group in the same session, then they must meet in
that session:

∀i, j, k, l.−P i,k,l + −P j,k,l + Mi,j,l ≥ −1 (4)

and they must meet at most once over all sessions:

∀i, j.∑l −M i,j,l ≥ −1 (5)

i and j competed only if they played in the same group in any session:

∀i, j.−Ci,j +
∑

k,l Pi,k,lPj,k,l ≥ 0 (6)

i and j competed indirectly via h only if they both competed with h:

∀i, j, h.Cmin(i,h),max(i,h) + Cmin(h,j),max(h,j) + −2Di,j,h ≥ 0 (7)

i and j must compete directly, or compete indirectly d times (d configurable):

∀i, j.d · Ci,j +
∑

h Di,j,h ≥ d (8)

Each player must play in each group at most once over all sessions:

∀i, k.∑l −P i,k,l ≥ −1 (9)

If i sits in a position in a group, he must play in that group:

∀i, k, l, s.−Si,k,l,s + Pi,k,l ≥ 0 (10)

If i plays in a group, he must sit in one of its positions:

∀i, k, l.−P i,k,l +
∑

s Si,k,l,s ≥ 0 (11)

Exactly one player must sit in every seat:

∀k, l, s.∑i Si,k,l,s = 1 (12)

354 M. M. Lester

Each player must play in each position (roughly) the same number of times:

∀i, s.∑k,l Si,k,l,s ≥ �w/p� ∀i, s.∑k,l −Si,k,l,s ≥ −�w/p	 (13)

Constraints 1–5 follow Walser [20]; the rest are original. The constraint sets
are largely orthogonal: any of 4–5 (socialisation), 6–8 (enforcing d), 9 (table
movement) and 10–13 (wind balance) can be removed independently. Note con-
straints 6 are non-linear. Concerning size: 4–5 is O(g2p2w) (O(g2w) smaller than
Triska’s SAT encoding); 6–8 is O(g3p3); 10–13 is O(g2p2w).

In practice, it may not always be possible to satisfy all constraints simulta-
neously, whether because there is no solution, or because the solver cannot find
one. In these cases, constraint sets 5, 8, 9 or 13 can be made soft, turning the
problem into a Weighted Boolean Optimisation (WBO) instance.

Apart from the obvious symmetry breaking of fully specifying session 1, most
existing symmetry breaking techniques for the SGP violate the extra constraints
in our problem. For example, putting players 1–4 on tables 1–4 in later rounds,
or requiring that the tables are ordered by lowest numbered player on the table,
violates table movement. Formulations of the pure SGP that encode a table as an
ordered list usually benefit from breaking symmetry in the ordering of players.
In the PB formulation, native cardinality constraints make it easy to encode a
table as an unordered set, so there is no symmetry to break. Of course, when
one adds wind allocation, ordering of players at a table is no longer a symmetry.

2.2 Wind Balancing Constraint Encoding

Our constraint encoding for fine-tuning wind allocations uses variables Wi,l,s,
which are true just if player i is in position s in session l. The constraints depend
on a fixed allocation of players to groups, which we refer to using values of P
variables from the monolithic encoding; tuning can only change a player’s seat
at a table. Our encoding is as follows. Each player must have a seat:

∀i, l.∑s Wi,l,s = 1 (14)

Exactly one player in a group can take each seat:

∀k, l, s.∑{i|Pi,k,l} Wi,l,s = 1 (15)

Each player must play in each position (roughly) the same number of times:

∀i, s.∑l Wi,l,s ≥ �w/p� ∀i, s.∑l −W i,l,s ≥ −�w/p	 (16)

3 Evaluation

We have used our encoding to generate schedules for the 2016 ERMC and several
smaller tournaments in the UK. Timings were generated on a machine running

Scheduling Reach Mahjong Tournaments Using Pseudoboolean Constraints 355

Debian Linux 10 with a 3.4 GHz Intel Core i5-7500 CPU and 64 GB of RAM.
We used clasp 3.3.4 with crafty preset and Rezaei’s local search SGP solver [15].

For the 2016 ERMC (32-4-10), we used our monolithic encoding, incremen-
tally turning on constraints to obtain the best schedule possible. Enforcing just
socialisation took 18 s. We turned on table movement and wind balance, tight-
ening the wind constraints (13) to give each player 2 turns in each seat plus 1
turn as East or South and 1 turn as West or North; solving this took 2 m 10 s.
The schedule’s tournament graph already had diameter 2, but d = 1. Adding
the constraint d = 2, it took 14 m to solve. Changing to d = 3, clasp found no
solution in 1 h. So finally, keeping the hard constraint d = 2 and adding a soft
constraint d = 3, with a timeout of 1 h, we generated a schedule violating only
122 of

(
128
2

)
= 8128 soft constraints. Overall, the instance had 1.3M variables

and 3.9M constraints. Appendix A shows benchmarks for similar instances.
For comparison, solving the SGP instance with local search and balancing

the winds using our constraint formulation yielded a solution in less than 1s.
The tournament graph had diameter 2, but with d = 1, and there is no easy way
to tune the graph while maintaining socialisation.

For the smaller tournaments, the tournament graph was necessarily low diam-
eter, so we did not enforce it with constraints. 1-day tournaments usually had
5 sessions and ranged from 24 to 52 players (6-4-5 to 13-4-5). 2-day tourna-
ments usually had 8 sessions and ranged from 32 to 68 players (8-4-8 to 17-4-8).
We benchmarked our monolithic encoding on these intervals, setting a solver
time limit of 10m and making wind balance a soft constraint. For instances in
the 1-day interval, it took less than 0.5 s to solve constraints for a schedule with
maximal socialisation, table movement and wind balance, except for 6-4-5, which
took 3.6 s. For the 2-day interval (see Table 2), the 8-4-8 instance is significant
as it is the original formulation of the SGP, and remains out of reach for SAT-
and PB-based methods, including ours, so we imported a solution to balance.
For 9-4-8 and 10-4-8, clasp solved the constraints only with wind balance turned
off. For the rest of the interval, clasp found solutions with 2–21 wind constraint
violations. In all cases, whether using schedules generated by our monolithic
encoding, or importing schedules generated by local search, we were able to
tune wind balance perfectly, satisfying all constraints, usually in under 2 s.

Table 2. Benchmarks applying monolithic encoding to 2-day tournaments (g-4-8).

Groups 8 9 10 11 12 13 14 15 16 17

Variables 14k 18k 22k 27k 32k 37k 44k 50k 57k 64k

Constraints 43k 60k 81k 105k 134k 168k 207k 252k 304k 361k

Socialisation only time (s) − 53 0.52 0.46 0.56 0.77 0.94 1.2 1.5 1.7

Constraints violated after 10m − − − 2 3 3 3 13 11 21

Total wind constraints − − − 176 192 208 224 240 256 272

Wind balance tuning time (s) 0.045 1.2 0.094 0.15 0.17 0.030 1.5 0.13 15 9.5

356 M. M. Lester

Table 3. Comparison of NLC WBO solvers. Constraints violated after 10 m (g-4-8).

Groups 8 9 10 11 12 13 14 15 16 17

clasp - - - 2 3 3 3 13 11 21

SAT4J - - - 36 9 8 10 16 20 28

NaPS - - - - 38 30 46 67 49 73

ToySat - - - - - - - - - -

Groups 8 9 10 11 12 13 14 15 16 17

SAT4J-cutting - - - - - - - - 65 69

SAT4J-rounding - - - - - - - 100 - 86

SAT4J-partial - - - - - - - - - 76

To confirm that clasp was still an appropriate choice of solver, we compared
up-to-date versions of entrants in the relevant track (WBO SOFT-SMALLINT-
NLC) of the most recent PB Competition (2016), as well as experimental versions
of SAT4J using the cutting planes and rounding SAT techniques. Table 3 shows
the comparison. Although the standard SAT4J solver is competitive, clasp is
still best. Some new PB solvers have participated in the more active MaxSAT
Evaluation competition, but none supports WBO with non-linear clauses.

Summary: For large instances, where the tournament graph structure was of
concern, our monolithic constraint encoding allowed the graph to be optimised
at the same time as allocating wind positions. For hard SGP instances, we neces-
sarily had to import an SGP solution, but our wind encoding successfully tuned
this. In other cases, there was little difference between the quality of schedules
generated: using our monolithic encoding, then tuning wind allocations if nec-
essary; and using a local search SGP solver, followed by tuning wind allocation.
However, the latter was considerably faster.

4 Related Work and Conclusions

The SGP was posted on the Usenet group sci.op-research in 1998. The origi-
nal SGP, to find the highest w for which 8-4-w is solvable, is problem 10 in
CSPLib [10]. Optimal solutions of the SGP are entry A107431 in OEIS [2].
Walser suggested a PB encoding [20]. Later, Gent and Lynce proposed a SAT
encoding [9]. Much work on solving SGP instances focuses on breaking symme-
tries [3,6,7,11]. Triska studied the problem extensively [16–18].

Recently, Lardeux and others revisited the SAT encoding, exploring effi-
cient, correct translation of set constraints [12]; they seem unaware of PB prob-
lems/solvers. Liu and others investigated solving SGP instances in parallel [14].

We found no previous research specifically on scheduling a mahjong tourna-
ment. Bridge and whist are 4-player games, but played by 2 co-operating pairs,
not 4 competing individuals. Individual bridge tournaments [19] were played in
the past, but are currently not popular. Whist games are shorter than mahjong
games, and partnership is still significant, which leads to different goals [5].

We have shown how to generate good tournament schedules for reach
mahjong tournaments run according to the conventions of the European Mahjong
Association. Since 2013, our approach has been used to generate schedules for
several tournaments hosted in the UK, including the 2016 ERMC. Our experi-
ence reaffirms the message that SAT/PB solvers are an effective and convenient

Scheduling Reach Mahjong Tournaments Using Pseudoboolean Constraints 357

but imperfect tool for solving complex problems that arise in real life. We think it
is likely that a custom local search algorithm that considered all our constraints
simultaneously would outperform our approach. However, this would have been
far less convenient than applying an existing solver.

A Benchmarks for Large Instances

Table 4. Benchmarks applying monolithic encoding to large tournaments (g-4-10).

Groups 28 29 30 31 32 33 34 35 36

Soc. + wind time (s) 2.7 3.1 4.2 3.3 131 5.3 102 76 241
Soc. + wind + d = 2 time (s) 46 46 38 100 847 664 1189 - -

With d = 3 soft: Variables 0.9M 1.0M 1.1M 1.2M 1.3M 1.4M 1.5M 1.7M 1.8M
Constraints 2.6M 2.9M 3.2M 3.5M 3.8M 4.2M 4.6M 5.0M 5.5M

Constraints violated after 1h 0 62 61 1 122 196 - 327 -

References

1. European Mahjong Association. http://mahjong-europe.org/
2. The on-line encyclopedia of integer sequences. https://oeis.org/A000108, sequence

A000108
3. Azevedo, F.: An attempt to dynamically break symmetries in the social golfers

problem. In: Azevedo, F., Barahona, P., Fages, F., Rossi, F. (eds.) CSCLP 2006.
LNCS (LNAI), vol. 4651, pp. 33–47. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73817-6 2

4. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Overview and analysis of the SAT
challenge 2012 solver competition. Artif. Intell. 223, 120–155 (2015). https://doi.
org/10.1016/j.artint.2015.01.002

5. Berman, D.R., McLaurin, S.C., Smith, D.D.: Ranking whist players. Discret. Math.
283(1–3), 15–28 (2004). https://doi.org/10.1016/j.disc.2004.01.005

6. Cotta, C., Dotú, I., Fernández, A.J., Van Hentenryck, P.: Scheduling social golfers
with memetic evolutionary programming. In: Almeida, F., et al. (eds.) HM 2006.
LNCS, vol. 4030, pp. 150–161. Springer, Heidelberg (2006). https://doi.org/10.
1007/11890584 12

7. Dotú, I., Van Hentenryck, P.: Scheduling social golfers locally. In: Barták, R.,
Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 155–167. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11493853 13

8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72200-7 23

9. Gent, I.P., Lynce, I.: A SAT encoding for the social golfer problem. In: In
IJCAI2005 Workshop on Modelling and Solving Problems with Constraints (2005).
https://www.inesc-id.pt/ficheiros/publicacoes/2516.pdf

10. Harvey, W.: CSPLib problem 010: Social golfers problem. http://www.csplib.org/
Problems/prob010

http://mahjong-europe.org/
https://oeis.org/A000108
https://doi.org/10.1007/978-3-540-73817-6_2
https://doi.org/10.1007/978-3-540-73817-6_2
https://doi.org/10.1016/j.artint.2015.01.002
https://doi.org/10.1016/j.artint.2015.01.002
https://doi.org/10.1016/j.disc.2004.01.005
https://doi.org/10.1007/11890584_12
https://doi.org/10.1007/11890584_12
https://doi.org/10.1007/11493853_13
https://doi.org/10.1007/978-3-540-72200-7_23
https://doi.org/10.1007/978-3-540-72200-7_23
https://www.inesc-id.pt/ficheiros/publicacoes/2516.pdf
http://www.csplib.org/Problems/prob010
http://www.csplib.org/Problems/prob010

358 M. M. Lester

11. Harvey, W., Winterer, T.: Solving the MOLR and social golfers problems. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 286–300. Springer, Heidelberg (2005).
https://doi.org/10.1007/11564751 23

12. Lardeux, F., Monfroy, E., Crawford, B., Soto, R.: Set constraint model and auto-
mated encoding into SAT: application to the social golfer problem. Ann. Oper.
Res. 235(1), 423–452 (2015). https://doi.org/10.1007/s10479-015-1914-5

13. Lester, M.M.: CoMaToSe: Constraint Mahjong Tournament Scheduler (May 2021).
https://doi.org/10.5281/zenodo.4764650

14. Liu, K., Löffler, S., Hofstedt, P.: Social golfer problem revisited. In: van den Herik,
J., Rocha, A.P., Steels, L. (eds.) ICAART 2019. LNCS (LNAI), vol. 11978, pp.
72–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37494-5 5

15. Rezaei, A.: Golfer: A toolkit for solving social golfer problem (2015). https://
github.com/arezae4/golfer

16. Triska, M.: Solution methods for the social golfer problem (2008). https://www.
metalevel.at/mst.pdf, Master’s thesis

17. Triska, M., Musliu, N.: An effective greedy heuristic for the social golfer prob-
lem. Ann. Oper. Res. 194(1), 413–425 (2012). https://doi.org/10.1007/s10479-
011-0866-7

18. Triska, M., Musliu, N.: An improved SAT formulation for the social golfer prob-
lem. Ann. Oper. Res. 194(1), 427–438 (2012). https://doi.org/10.1007/s10479-010-
0702-5

19. English Bridge Union: Individual competitions. https://www.ebu.co.uk/
documents/cmh/Individuals.pdf

20. Walser, J.P.: AMPL model of ‘maximum socializing on the golf course’ (1998).
https://www.csplib.org/Problems/prob010/models/AMPLmodel.txt.html

https://doi.org/10.1007/11564751_23
https://doi.org/10.1007/s10479-015-1914-5
https://doi.org/10.5281/zenodo.4764650
https://doi.org/10.1007/978-3-030-37494-5_5
https://github.com/arezae4/golfer
https://github.com/arezae4/golfer
https://www.metalevel.at/mst.pdf
https://www.metalevel.at/mst.pdf
https://doi.org/10.1007/s10479-011-0866-7
https://doi.org/10.1007/s10479-011-0866-7
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-010-0702-5
https://www.ebu.co.uk/documents/cmh/Individuals.pdf
https://www.ebu.co.uk/documents/cmh/Individuals.pdf
https://www.csplib.org/Problems/prob010/models/AMPLmodel.txt.html

On the Hierarchical Community
Structure of Practical Boolean Formulas

Chunxiao Li1(B), Jonathan Chung1(B), Soham Mukherjee1,2(B),
Marc Vinyals3(B), Noah Fleming4(B), Antonina Kolokolova5(B), Alice Mu1(B),

and Vijay Ganesh1(B)

1 University of Waterloo, Waterloo, Canada
{jonathan.chung1,soham.mukherjee,xiao.mu,vganesh}@uwaterloo.ca

2 Perimeter Institute for Theoretical Physics, Waterloo, Canada
3 Technion, Haifa, Israel

marcviny@cs.technion.ac.il
4 University of Toronto, Toronto, Canada

noahfleming@cs.toronto.edu
5 Memorial University of Newfoundland, St. John’s, Canada

Abstract. Modern CDCL SAT solvers easily solve industrial instances
containing tens of millions of variables and clauses, despite the theo-
retical intractability of the SAT problem. This gap between practice
and theory is a central problem in solver research. It is believed that
SAT solvers exploit structure inherent in industrial instances, and hence
there have been numerous attempts over the last 25 years at charac-
terizing this structure via parameters. These can be classified as rigor-
ous, i.e., they serve as a basis for complexity-theoretic upper bounds
(e.g., backdoors), or correlative, i.e., they correlate well with solver run
time and are observed in industrial instances (e.g., community struc-
ture). Unfortunately, no parameter proposed to date has been shown to
be both strongly correlative and rigorous over a large fraction of indus-
trial instances.

Given the sheer difficulty of the problem, we aim for an intermedi-
ate goal of proposing a set of parameters that is strongly correlative
and has good theoretical properties. Specifically, we propose parameters
based on a graph partitioning called Hierarchical Community Structure
(HCS), which captures the recursive community structure of a graph
of a Boolean formula. We show that HCS parameters are strongly cor-
relative with solver run time using an Empirical Hardness Model, and
further build a classifier based on HCS parameters that distinguishes
between easy industrial and hard random/crafted instances with very
high accuracy. We further strengthen our hypotheses via scaling studies.
On the theoretical side, we show that counterexamples which plagued flat
community structure do not apply to HCS, and that there is a subset of
HCS parameters such that restricting them limits the size of embeddable
expanders.

J. Li and J. Chung—Joint first author
J. Li—Work done in part while the authors were at the 2021 Satisfiability: Theory,
Practice, and Beyond program at the Simons Institute, Berkeley, CA, USA.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 359–376, 2021.
https://doi.org/10.1007/978-3-030-80223-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_25

360 C. Li et al.

1 Introduction

Over the last two decades, Conflict-Driven Clause-Learning (CDCL) SAT solvers
have had a dramatic impact on many sub-fields of software engineering [10], for-
mal methods [12], security [16,45], and AI [8], thanks to their ability to solve
large real-world instances with tens of millions of variables and clauses [38],
notwithstanding the fact that the Boolean satisfiability (SAT) problem is known
to be NP-complete and is believed to be intractable [15]. A plausible explana-
tion of this apparent contradiction would be that NP-completeness of the SAT
problem is established in a worst-case setting, while the dramatic efficiency of
modern SAT solvers is witnessed over “practical” instances. However, despite
over two decades of effort, we still do not have an appropriate mathematical
characterization of practical instances (or a suitable subset thereof) and atten-
dant complexity-theoretic upper and lower bounds. This gap between theory and
practice is rightly considered one of the central problems in solver research by
theorists and practitioners alike.

The fundamental premise in this line of work is that SAT solvers are able to
find short proofs (if such proofs exist) in polynomial time (i.e., they are efficient)
for industrial instances and that they are able to do so because they somehow
exploit the underlying properties (a.k.a. structure) of such industrial Boolean
formulas1, and, further, that hard randomly-generated or crafted instances are
difficult because they do not possess such structure. Consequently, considerable
work has been done in characterizing the structure of industrial instances via
parameters. The parameters discussed in literature so far can be broadly clas-
sified into two categories: correlative and rigorous2. The term correlative refers
to parameters that take a specific range of values in industrial instances (as
opposed to random/crafted) and further have been shown to correlate well with
solver run time. This suggests that the structure captured by such parame-
ters might explain why solvers are efficient. An example of such a parameter
is modularity (more generally community structure [4]). By contrast, the term
rigorous refers to parameters that characterize classes of formulas that are fixed-
parameter tractable (FPT), such as backdoors [44,48], backbones [29], treewidth,
and branchwidth [1,37], among many others [37], or have been used to prove
complexity-theoretic bounds over randomly-generated classes of formulas such
as clause-variable ratio (a.k.a., density) [14,39].

The eventual goal in this context is to discover a parameter or set of param-
eters that is both strongly correlative and rigorous, such that it can then be
used to establish parameterized complexity-theoretic bounds on an appropri-
ate mathematical abstraction of CDCL SAT solvers, thus finally settling this
decades-long open question. Unfortunately, the problem with all the previously
proposed rigorous parameters is that either “good” ranges of values for these
parameters are not witnessed in industrial instances (e.g., such instances can

1 The term industrial is loosely defined to encompass instances obtained from hardware
and software testing, analysis, and verification applications.

2 Using terminology by Stefan Szeider [43].

On the HCS of Practical SAT Formulas 361

have both large and small backdoors) or they do not correlate well with solver
run time (e.g., many industrial instances have large treewidth and yet are easy
to solve, and treewidth alone does not correlate well with solving time [28]).

Consequently, many attempts have been made at discovering correlative
parameters that could form the basis of rigorous analysis [4,21]. Unfortunately,
all such correlative parameters either seem to be difficult to work with theoreti-
cally (e.g., fractal dimension [2]) or have obvious counterexamples, i.e., it is easy
to show the existence of formulas that simultaneously have “good” parameter
values and are provably hard-to-solve. For example, it was shown that industrial
instances have high modularity, i.e., supposedly good community structure [4],
and that there is good-to-strong correlation between modularity and solver run
time [32]. However, Mull et al. [30] later exhibited a family of formulas that have
high modularity and require exponential-sized proofs to refute. Finally, this line
of research suffers from important methodological issues, that is, experimental
methods and evidence provided for correlative parameters tend not to be con-
sistent across different papers in the literature.

Hierarchical Community Structure of Boolean Formulas: Given the
sheer difficulty of the problem, we aim for an intermediate goal of proposing a
set of parameters that is strongly correlative and has good theoretical properties.
Specifically, we propose a set of parameters based on a graph-theoretic struc-
ture called Hierarchical Community Structure (HCS), inspired by a commonly-
studied concept in the context of hierarchical networks [13,35], which satisfies
all the empirical tests hinted above and has better theoretical properties than
previously proposed correlative parameters. The intuition behind HCS is that it
neatly captures the structure present in human-developed systems which tend
to be modular and hierarchical [41], and we expect this structure to be inherited
by Boolean formulas modelling these systems.

Contributions3:

1. Empirical Result 1 (HCS and Industrial Instances): We show that a
set of parameters based on the HCS of the variable-incidence graph (VIG)
of Boolean formulas are effective in distinguishing industrial instances from
random/crafted ones. Moreover, we build a classifier that robustly classifies
SAT instances into the categories they belong to (verification, random, etc.).
The classification accuracy is approximately 99% and we perform a variety
of tests to ensure there is no overfitting (See Sect. 5.1).

2. Empirical Result 2 (Correlation between HCS and Solver Run
Time): We build an empirical hardness model based on our HCS parameters
to predict the solver run time for a given problem instance. Our model, based
on regression, performs well, achieving an R2 score of 0.83, much stronger
than previous such results (See Sect. 5.2)

3 Instance generator and data can be found at https://satsolvercomplexity.github.
io/hcs. Also, for the full-length paper and appendices (with proofs of theorems in
Sect. 6), please refer to the arXiv version of the paper [26].

https://satsolvercomplexity.github.io/hcs
https://satsolvercomplexity.github.io/hcs

362 C. Li et al.

3. Empirical Result 3 (Scaling Experiments of HCS Instances): We
empirically show, via scaling experiments, that HCS parameters such as com-
munity degree and leaf-community size positively correlate with solving time.
We empirically demonstrate that formulas whose HCS decompositions fall in
a good range of parameter values are easier to solve than instances with a
bad range of HCS parameter values (See Sect. 5.4).

4. Theoretical Results: We theoretically justify our choice of HCS by showing
that it behaves better than other parameters. More concretely, we show the
advantages of hierarchical over flat community structure by identifying HCS
parameters which let us avoid hard formulas that can be used as counterex-
amples to community structure [30], and by showing graphs where HCS can
find the proper communities where flat modularity cannot. We also show that
there is a subset of HCS parameters (leaf-community size, community degree,
and fraction of inter-community edges) such that restricting them limits the
size of embeddable expanders (See Sect. 6).

5. Instance Generator: Finally, we provide an HCS-based instance generator
which takes input values of our proposed parameters and outputs a formula
that satisfies those values. This generator can be used to generate “easy” and
“hard” formulas with different hierarchical structures (See Sect. 5.4).

Research Methodology: We also codify a set of empirical tests which we
believe parameters must pass in order to be considered for further theoretical
analysis. While other researchers have considered one or more of these tests, we
bring them together into a coherent and sound research methodology that can
be used for future research in formula parameterization (See Sect. 3). We believe
that the combination of these tests provides a strong basis for a correlative
parameter to be considered worthy of further analysis.

2 Preliminaries

Variable Incidence Graph (VIG): Researchers have proposed a variety of
graphs to study graph-theoretic properties of Boolean formulas. In this work
we focus on the Variable Incidence Graph (VIG), primarily due to the relative
ease of computing community structure over VIGs compared to other graph
representations. The VIG for a formula F over variables x1, . . . , xn has n vertices,
one for each variable. There is an edge between vertices xi and xj if both xi and
xj occur in some clause Ck in F . One drawback of VIGs is that a clause of width
w corresponds to a clique of size w in the VIG. Therefore, large width clauses (of
size nε) can significantly distort the structure of a VIG, and formulas with such
large width clauses should have their width reduced (via standard techniques)
before using a VIG.

Community Structure and Modularity: Intuitively, a set of variables (ver-
tices in the VIG) of a formula forms a community if these variables are more
densely connected to each other than to variables outside of the set. An (optimal)
community structure of a graph is a partition P = {V1, . . . , Vk} of its vertices into

On the HCS of Practical SAT Formulas 363

communities that optimizes some measure capturing this intuition, for instance
modularity [31], which is the one we use in this paper. Let G = (V,E) be a graph
with adjacency matrix A and for each vertex v ∈ V denote by d(v) its degree.
Let δP : V × V → {0, 1} be the community indicator function of a partition,
i.e. δP (u, v) = 1 iff vertices u and v belong to the same community in P . The
modularity of the partition P is

Q(P) :=
1

2|E|
∑

u,v∈V

[
Au,v − d(u)d(v)

2|E|
]

δP (u, v) (1)

Note that Q(P) ranges from −0.5 to 1, with values close to 1 indicating good
community structure. We define the modularity Q(G) of a graph G as the maxi-
mum modularity over all possible partitions, with corresponding partition P(G).
Other measures may produce radically different partitions.

Expansion of a Graph: Expansion is a measure of graph connectivity [23].
Out of several equivalent such measures, the most convenient to relate to HCS
is edge expansion: given a subset of vertices S ⊆ V , its edge expansion is h(S) =
|E(S, V \S)|/|S|, and the edge expansion of a graph is h(G) = min1≤|S|≤n/2 h(S).
A graph family Gn is an expander if h(Gn) is bounded away from zero. Reso-
lution lower bounds (of both random and crafted formulas) often rely on strong
expansion properties of the graph [5].

3 Research Methodology

As stated above, the eventual goal of the research presented here is to discover
a structure and an associated parameterization that is highly correlative with
solver run time, is witnessed in industrial instances, and is rigorous, i.e., forms
the basis for an upper bound on the parameterized complexity [37] of the CDCL
algorithm. Considerable work has already been done in attempting to identify
exactly such a set of parameters [32]. However, we observed that there is a wide
diversity of research methodologies adopted by researchers in the past. We bring
together the best lessons learned into what we believe to be a sound, coherent,
and comprehensive research methodology explained below. We argue that every
set of parameters must meet the following empirical requirements in order to be
considered correlative:

1. Structure of Industrial vs. Random/Crafted Instances: A requisite
for a structure to be considered correlative is that industrial instances must
fall within a certain range of values for the associated parameters, while ran-
dom and crafted instances must have a different range. An example of such
a structure is the community structure of the VIG of Boolean formulas, as
parameterized by modularity. Multiple experiments have shown that indus-
trial instances have high modularity (close to 1), while random instances tend
to have low modularity (close to 0) [32]. This could be demonstrated via a
correlation experiment or by building a classifier that takes parameter values
as input features.

364 C. Li et al.

2. Correlation between Structure and Solver Run Time: Another
requirement is correlation between parameters of a structure and solver
run time. Once again, community structure (and the associated modular-
ity parameter) forms a good example of a structure that passes this essential
test. For example, it has been shown that the modularity of the community
structure of industrial instances (resp. random instances) correlates well with
low (resp. high) solver run time [32]. One may use either correlation methods
or suitable machine learning predictors (e.g., random forest) as evidence here.

3. Scaling Studies: To further strengthen the experimental evidence, we
require that the chosen structure and its associated parameters must pass
an appropriately designed scaling study. The idea here is to vary one param-
eter value while keeping as much of the rest of the formula structure constant
as possible, and see its effect on solver run time. An example of such a study is
the work of Zulkoski et al. [47], who showed that increasing the mergeability
metric has a significant effect on solver run time.

Limitations of Empirical Conclusions: As the reader is well aware, any
attempt at empirically discovering a suitable structure (and associated param-
eterization) of Boolean formulas and experimentally explaining the power of
solvers is fraught with peril, since all such experiments involve pragmatic design
decisions (e.g., which solver was used, choice of benchmarks, etc.) and hence may
lead to contingent or non-generalizable conclusions. For example, one can never
quite eliminate a parameter from further theoretical analysis based on empirical
tests alone, for the parameter may fail an empirical test on account of bench-
marks considered or other contingencies. Another well-understood issue with
conclusions based on empirical analysis alone is that they by themselves cannot
imply provable statements about asymptotic behavior of algorithms. However,
one can use empirical analysis to check or expose gaps between the behavior of
an algorithm and the tightness of asymptotic statements (e.g., the gap between
efficient typical-case behavior vs. loose worst-case statements). Having said all
this, we believe that the above methodology is a bare minimum that a set of
parameters must pass before being considered worthy of further theoretical anal-
ysis. In Sect. 5, we go into further detail about how we protect against certain
contingent experimental conclusions.

Limits of Theoretical Analysis: Another important aspect to bear in mind
is that it is unlikely any small set of parameters can cleanly separate all easy
instances from hard ones. At best, our expectation is that we can characterize a
large subset of easy real-world instances via the parameters presented here, and
thus take a step towards settling the central question of solver research.

4 Hierarchical Community Structure

Given that many human-developed systems are modular and hierarchical [41],
it is natural to hypothesize that these properties are transferred over to
Boolean formulas that capture the behaviour of such systems. We additionally
hypothesize that purely randomly-generated or crafted formulas do not have

On the HCS of Practical SAT Formulas 365

G11

G12 G22

G21

G1 G2

G11 G12 G22G21

G1 G2

Fig. 1. A hierarchical decomposition (right) constructed by recursively maximizing the
modularity of the graph (left).

these properties of hierarchy and modularity, and that this difference partly
explains why solvers are efficient for the former and not for the latter class of
instances. We formalize this intuition via a graph-theoretic concept called Hier-
archical Community Structure (HCS), where communities can be recursively
decomposed into smaller sub-communities. Although the notion of HCS has been
widely studied [13,35], it has not been considered in the context of Boolean for-
mulas before.

Hierarchical Community Structure Definition: A hierarchical decomposi-
tion of a graph G is a recursive partitioning of G into subgraphs, represented as
a tree T . Each node v in the tree T is labelled with a subgraph of G, with the
root labelled with G itself. The children of a node corresponding to a (sub)graph
H are labelled with a partitioning of H into subgraphs {H1, . . . , Hk}; see Fig. 1.
There are many ways to build such hierarchical decompositions. The method
that we choose constructs the tree by recursively maximizing the modularity, as
in the hierarchical multiresolution method [22]. We call this the HCS decompo-
sition of a graph G: for a node v in the tree T corresponding to a subgraph H
of G, we construct |P(H)| children, one for each of the subgraphs induced by
the modularity-maximizing partition P(H), unless |P(H)| = 1, in which case v
becomes a leaf of the tree. In the case of HCS decompositions, we refer to the
subgraphs labelling the nodes in the tree as communities of G.

We are interested in comparing the hierarchical community structures of
Boolean formulas in conjunctive normal form, represented by their VIGs. For
this comparison, we use the following parameters:

– The community degree of a community in a HCS decomposition is the number
of children of its corresponding node.

– A leaf-community is one with degree 0.
– The size of a community is its number of vertices.
– The depth or level of a community is its distance from the root.
– The inter-community edges of a partition P(H) are EIC (H) =

⋃
Hi,Hj∈P(H)

E(Hi,Hj), the edges between all pairs of subgraphs, and their endpoints
VIC (H) =

⋃
EIC are the inter-community vertices. Note that 2|EIC (H)|/|H|

is an upper bound for the edge expansion of H.

366 C. Li et al.

Note that these parameters are not independent. For example, changes in the
number of inter-community vertices or inter-community edges will affect modu-
larity. Since our hierarchical decomposition is constructed using modularity, this
could affect the entire decomposition and hence the other parameters.

5 Empirical Results

We now turn to the results of our empirical investigations with HCS parame-
ters. We computed 49 unique parameters capturing the HCS structure, together
with several base parameters measuring different structural properties of input
VIGs4. To compute the hierarchical community structure, we used the Louvain
method [7] to detect communities and recursively call the Louvain method to
produce a hierarchical decomposition. The Louvain method is considered to be
more efficient and produces higher-modularity partitions than other known algo-
rithms.

Experimental Design. In our experiments we used a set of 10 869 instances
from five classes, which we believe is sufficiently large and diverse to draw sound
empirical conclusions (See Appendix [26]). We did not explicitly balance the
ratio of satisfiable instances in our benchmark selection because we expect our
methods to be sufficiently robust as long as the benchmark contains a sufficient
number of SAT and UNSAT instances.

In order to get interesting instances for modern solvers, we considered formu-
las which were previously used in the SAT competition from 2016 to 2018 [38].
Specifically, we took instances from five major tracks of the competition: agile,
verification, crypto, crafted, and random. We also generated additional instances
for some classes: for verification, we scaled the number of unrolls when encod-
ing finite state machines for bounded model checking; for crypto, we encoded
SHA-1 and SHA-256 preimage problems; for crafted, we generated combinato-
rial problems using cnfgen [25]; and for random, we generated k-CNFs at the
corresponding threshold CVRs for k ∈ {3, 5}, again using cnfgen. A summary
of the instances is presented in the Appendix.

We preprocessed all formulas using the MiniSAT preprocessor [17], and used
MapleSAT [27] as our CDCL solver of choice since it is a leading and repre-
sentative solver. The core of the preprocessing was a combination of variable
elimination with subsumption and self-subsuming resolution [17]. For comput-
ing satisfiability and running time, we used SHARCNET’s Intel E5-2683 v4
(Broadwell) 2.1 GHz processors [40], limiting the computation time to 5000 s5.
For parameter computation we did not limit the type of processor because struc-
tural parameter values are independent of processing power.

5.1 HCS-based Category Classification of Boolean Formulas

The question whether our set of HCS parameters is able to capture the under-
lying structure that differentiates industrial instances from the rest naturally
4 For a complete list, see: https://satsolvercomplexity.github.io/hcs/data.
5 This value is the time limit used by the SAT competition.

https://satsolvercomplexity.github.io/hcs/data

On the HCS of Practical SAT Formulas 367

Table 1. Results for classification and regression experiments with HCS parameters.
For regression we report R2 values, whereas for classification we report the mean of
the balanced accuracy score over 5 cross-validation datasets.

Category Runtime

Score 0.996 ± 0.001 0.825 ± 0.016

Top 5 features rootMergeability

maxInterEdges/CommunitySize

cvr

leafCommunitySize

lvl2InterEdges/lvl2InterVars

rootInterEdges

lvl2Mergeability

cvr

leafCommunitySize

lvl3Modularity

lends itself to a classification problem. Therefore, we built a multi-class Random
Forest classifier to classify a given SAT instance into one of the five categories:
verification, agile, random, crafted, or crypto. Random Forests [9] can learn com-
plex, highly non-linear relationships while having simple structure, and hence are
easier to interpret than other models (e.g., deep neural networks).

We used an off-the-shelf implementation of a Random Forest classifier imple-
mented as sklearn.ensemble.RandomForestClassifier in scikit-learn [33].
Using the default set of parameters in scikit-learn version 0.24, we trained our
classifier using 800 randomly sampled instances of each category on a set of 49
features to predict the class of the problem instance. We found that our clas-
sifier performs extremely well, giving an average accuracy score of 0.99 over 5
cross-validation datasets. Further, the accuracy did not depend on our choice
of classifier. In particular, we found similar accuracy scores when we used C-
Support Vector classification [34] instead of Random Forests.

We also determined the five most important features used by our classifier.
Since several features in our feature set are highly correlated, we first performed
a hierarchical clustering on the feature set based on Spearman rank-order corre-
lations. From the 22 clusters that were generated, we arbitrarily chose a single
feature from each cluster as a representative member of the cluster f6. Using
these 22 representative features, we then computed their importance using per-
mutation importance [9]. In Table 1 we list the top five representative features
from each cluster, not necessarily in order of importance.

5.2 HCS-based Empirical Hardness Model

We used our HCS parameters to build an empirical hardness model (EHM)
to predict the run time of MapleSAT on a given instance. Since the solving
time is a continuous variable, we considered a regression model built using Ran-
dom Forests, namely sklearn.ensemble.RandomForestRegressor from scikit-
learn [33]. Before training our regression model, we removed instances which
timed-out at 5000 s and those instances that were solved almost immediately (in

6 See https://satsolvercomplexity.github.io/hcs/data for details on clusters.

https://satsolvercomplexity.github.io/hcs/data

368 C. Li et al.

zero seconds) to avoid issues with artificial cut-off boundaries. We then trained
our Random Forest model using the default set of parameters in scikit-learn ver-
sion 0.24 to predict the logarithm of the solving time using the remaining 1880
instances, equally distributed between different categories.

We observed that our regression model performs quite well, with an R2

score [42] of 0.83, which implies that in the training set, almost 83% of the
variability of the dependent variable (i.e., in our case, the logarithm of the solv-
ing time) is accounted for, and the remaining 17% is still unaccounted for by our
choice of parameters. Similar to category classification, we also looked for the
top five predictive features used by our Random Forest regression model using
the exact same process. We list the representative features in Table 1.

Additionally, we trained our EHM on each category of instances separately.
We found that the performance of our EHM varies with instance category. Con-
cretely, agile outperformed all other categories with an average R2 value of 0.94,
followed by random, crafted and verification instances with scores of 0.81, 0.85
and 0.74 respectively. The worst performance was shown by the instances in
crypto, with a score of 0.48.

5.3 HCS Parameter Value Ranges for Industrial/Random Instances

In the previous section, we reported on the top five parameters most predic-
tive of the solver runtime in the context of our Random Forest regression
model. These parameters can be divided into five distinct classes of parame-
ters: mergeability-based, modularity-based, inter-community edge based, CVR,
and leaf-community size. The parameters CVR, mergeability and modularity
have been studied by previous work. CVR [11] is perhaps the most studied
parameter among the three. Zulkoski et al. [47] showed that mergeability, along
with combinations of other parameters, correlates well with solver run time;
Ansotegui et al. [4] showed that industrial instances have good modularity com-
pared to random instances; and Newsham et al. [32] showed that modularity has
good-to-strong correlation with solver run time. We examined the remaining
parameters, i.e. inter-community edge based parameters (rootInterEdges) and
leaf-community size to gain a better understanding of the impact of these param-
eters on the problem structure and solver runtime, respectively. In this subsec-
tion, we look at how HCS parameters scale as the size of industrial instances
increases. And in Sect. 5.4, we introduce a HCS instance generator, which we use
to perform a set of controlled experiments. We then discuss how the hardness of
the instances changes when certain HCS parameters are increased/decreased.

Observations. We observe that hierarchical decomposition generally produces
leaf communities of maximal size comparable to the largest clause width, except
for very unbalanced formulas (easy for other reasons). The community degree is
highest at root level of every instance, and seems to be bounded by O(log n).
This fits within the range of parameters considered in Sect. 6.

In Fig. 2, we show how the inter-community edge based parameter
rootInterEdges scales with the number of variables in a formula, for verifica-
tion and random instances. We note that for random instances, rootInterEdges

On the HCS of Practical SAT Formulas 369

102 103 104 105
nvars

101

102

103

104

105

106

ro
ot
In
te
rE
dg
es

verification
random

Fig. 2. Dependence of the number of inter-community edges at the root level (rootIn-
terEdges) vs. the number of variables in a formula, for verification and random instances
in our dataset. The two distinct lines (starting from the bottom) for random instances
correspond to 3-CNFs and 5-CNFs, respectively.

grows linearly with the instance size, whereas in verification instances it grows
sublinearly. This supports our intuition that graphs of hard (random) instances
are expanders, whereas graphs of industrial instances are not.

5.4 Scaling Experiments with HCS Parameters

Instance Generator. To isolate the effects of HCS parameters on solver run-
time, we built an HCS instance generator to construct SAT instances with vary-
ing leaf-community size and other HCS parameters. On a high level, the instance
generator constructs instances bottom-up, starting with random disjoint formu-
las of predefined CVR as leaf communities, then combining them recursively
by introducing bridge clauses with variables in at least two sub-communities to
form super-communities at that level, which in turn are combined at the follow-
ing level. We point out that in our generator, modularity is specified implicitly
through the above parameters, and we do not control for mergeability at all. We
refer the reader to the works by Zulkoski et al. [47] and Giráldez-Cru [20] for lit-
erature on the empirical behaviours of mergeability and power law, respectively.

It is important to note that our HCS instance generator is not intended to be
perfectly representative of real-world instances. In fact, there are multiple prop-
erties of our generated instances which are not reflective of industrial instances.
For example, our generator assumes that all leaf-communities have the same
size and depth, which is demonstrably untrue of industrial instances. In some
cases, the communities produced by our generator might not be the same as
the communities which would be detected using the Louvain method to perform
a hierarchical community decomposition. For example, it might be possible to
further decompose the generated “leaf-communities” into smaller communities.

370 C. Li et al.

Thus, our generator is only intended to demonstrate the effect of varying HCS
parameters on solver runtime.

Observations. We constructed formulas with varying CVR, power law param-
eter, hierarchical degree, depth, inter-community edge density, inter-community
variable density, and clause width. We found evidence which suggests that
increasing any of leaf-community size, depth, or community degree, while keeping
every other HCS parameter fixed, increases the overall hardness of the generated
formula. For example, we found that changing the size of leaf-communities from
15 variables to 20, the solving time changed from 4.96 s to upwards of 5000 s.
Similarly, changing the depth from 4 to 5 resulted in an increase in solving time
from 0.03 s to over 5000 s.

5.5 Discussion of Empirical Results

The goal of our experimental work was to first ascertain whether HCS parameters
can distinguish between industrial and random/crafted instances, and whether
these parameters show any correlation with CDCL solver runtime. The robust-
ness of our classifier indicates that HCS parameters are indeed representative of
the underlying structure of Boolean formulas from different categories. Further,
our empirical hardness model confirms that the correlation of HCS parameters
with solver run time is strong—much stronger than previously proposed param-
eters. We also find that our HCS parameters are more effective in capturing the
hardness or easiness of formulas from industrial/agile/random/crafted, but not
crypto. The crypto class is an outlier. It is not clear from our experiments (nor
any previous ones) as to why crypto instances are hard for CDCL solvers.

We also identified the top five (representative) parameters in terms of their
importance in predicting the category (classification) or runtime of an instance
(regression). The accuracy for classification and regression with only the top fea-
tures dropped to 0.94 and 0.77, respectively, suggesting that only a few param-
eters are likely to play a role in closing the question on why solvers are efficient
for industrial instances. Note that a classification accuracy of 0.99 is likely to
suggest that our model is over-fitting. Fortunately, in our case our models are
trained over a large set of instances obtained via very different methods (e.g.,
random over various widths, different kinds of crafted, verification instances from
different domains), and therefore, there is sufficient entropy in our data set so
that overfitting is unlikely to be a concern for the robustness of our model.

In our investigation of parameters based on inter-community edges and leaf-
community size, we found that industrial instances typically have small average
leaf-community size, high modularity, and relatively few inter-community edges,
while random/crafted have larger average leaf-community size, low modular-
ity, and a very high number of inter-community edges. This suggests that leaf-
community size and the fraction of inter-community edges, as well as community
degree, are important HCS parameters to consider further.

On the HCS of Practical SAT Formulas 371

6 Theoretical Results

In this section, we show that hierarchical decomposition avoids some of the pit-
falls of flat community structure, a promising correlative parameter for explain-
ing easiness of the industrial instances [32]. Community structure was theoreti-
cally shown to be insufficient by Mull et al. [30], where they showed that formulas
with good community structure can have random formulas embedded in them
either in a community or over the inter-community edges. To avoid embedding
a random formula in a community, its size has to be small (relative to the entire
graph), and avoiding expanders over inter-community edges requires that there
not be too many communities. A way to be able to restrict both is to consider a
hierarchical decomposition, limiting both the number of sub-communities (com-
munity degree) in each level of the decomposition, as well as the leaf community
size thus avoiding the most important issues that flat community structure suf-
fers from.

Based on our experimental work, we narrow down the most predictive HCS
parameters to be leaf-community size, community degree, and the number inter-
community edges in each decomposition. These parameters also play a role in
our theoretical results below. For a formula to have “good” HCS, we restrict the
parameter ranges as follows: the graph must exhibit O(log n) leaf-community
size and community degree, and have a small number of inter-community edges
in each decomposition of a community. These assumptions are supported by our
experimental results (See Appendix [26]). We show that these restrictions are
necessary in Appendix, where we also present a significantly simplified proof of
the result of Mull et al. [30].

Bounding the Size of Expanders in Good HCS Graphs. Ideally, we would
like to be able to prove an upper bound on proof size or search time which
depends on the HCS parameters of a formula. Unfortunately, our current state
of understanding does not allow for that. A step towards such a result would be to
show that formulas with good HCS (and associated parameter value ranges) are
not susceptible to typical methods of proving resolution lower bounds. Currently,
all resolution bounds exploit expansion properties – typically boundary expan-
sion – of the CNF formula (or more precisely its bipartite constraint-variable
incidence graph (CVIG)). Therefore our goal is to show that formulas with good
HCS parameters have poor expansion properties, and also do not have large
expanding subgraphs embedded within them. Note that the VIG is related to
the CVIG by taking the square of its adjacency matrix, from where it follows
that, for formulas with low width, if the VIG is not edge-expanding then the
CVIG is not vertex-expanding. Furthermore, again for formulas with low width,
vertex expansion is closely related to boundary expansion. Hence we only need
to focus on VIG edge expansion. With this in mind, we state several positive
and negative results.

First, we observe (see Appendix) that if the number of inter-community edges
at the top level of the decomposition grows sub-linearly with n and at least two
sub-communities contain a constant fraction of vertices, then this graph family

372 C. Li et al.

is not an expander. Unfortunately, we can also show (see Appendix) that graphs
with good HCS can simultaneously have sub-graphs that are large expanders,
with the worst case being very sparse expanders, capable of “hiding” in the
hierarchical decomposition by contributing relatively few edges to any cut. To
avoid that, we require an explicit bound on the number of inter-community
edges, in addition to small community degree and small leaf-community size.
This lets us prove the following statement.

Theorem 1. Let G = {Gn} be a family of graphs. Let f(n) ∈ ω(poly(log n)),
f(n) ∈ O(n). Assume that G has HCS with the number of inter-community edges
o(f(n)) for every community C of size at least Ω(f(n)) and depth is bounded by
O(log n). Then G does not contain an expander of size f(n) as a subgraph.

Note that our experiments show that the leaf size and depth in industrial
instances are relatively small and the number of inter-community edges grows
slowly. From this and the theorem above, we can show that graphs with very
good HCS properties do not contain linear-sized expanders.

Lower Bounds Against HCS: We are also able to show several of strong
lower bounds on formulas with good HCS (see Appendix). For a number of
combinations of parameters, we show that restricting ourselves to “good” ranges
of these parameters does not rule out formulas which require superpolynomial
size resolution refutations. Our most striking counterexample essentially shows
that if the degree of the VIG is more than a small constant, then it is possible
to embed formulas of superpolynomial resolution complexity. In contrast with
the previous results on the size of embeddable expanders in instances with good
HCS, this result shows how to embed a sparse expander of superlogarithmic size.

Hierarchical vs. Flat Modularity: It is well-known that modularity suffers
from a resolution limit and cannot detect communities smaller than a certain
threshold [18], and that HCS can avoid this problem in some instances [7]. In
Appendix we provide an asymptotic, rigorous statement of this observation.

Theorem 2. There exists a graph G whose natural communities are of size
log(n) and correspond to the (leaf) HCS communities, while the partition maxi-

mizing modularity consists of communities of size Θ
(√

n/ log3 n
)
.

7 Related Work

Community Structure: Using modularity to measure community structure
allows one to distinguish industrial instances from randomly-generated ones [4].
Unfortunately, it has been shown that expanders can be embedded within formu-
las with high modularity [30], i.e., there exist formulas that have good community
structure and yet are hard for solvers.

Heterogeneity: Unlike uniformly-random formulas, the variable degrees in
industrial formulas follow a powerlaw distribution [3]. However, degree hetero-
geneity alone fails to explain the hardness of SAT instances. Some heterogeneous

On the HCS of Practical SAT Formulas 373

random k-SAT instances were shown to have superpolynomial resolution size [6],
making them intractable for current solvers.

SATzilla: SATzilla uses 138 disparate parameters [46], some of which are probes
aimed at capturing a SAT solver’s state at runtime, to predict solver running
time. Unfortunately, there is little or no evidence that most of these parameters
are amenable to theoretical analysis.

Clause-Variable Ratio (CVR): Cheeseman et al. [11] observed the satisfia-
bility threshold behavior for random k-SAT formulas, where they show formulas
are harder when their CVR are closer to the satisfiability threshold. Outside
of extreme cases, CVR alone seems to be insufficient to explain hardness (or
easiness) of instances, as it is possible to generate both easy and hard formulas
with the same CVR [19]. Satisfiability thresholds are poorly defined for indus-
trial instances, and Coarfa et al. [14] demonstrated the existence of instances for
which the satisfiability threshold is not equal to the hardness threshold.

Treewidth: Although there are polynomial-time non-CDCL algorithms for SAT
instances with bounded treewidth [1], treewidth by itself does not appear to be
a predictive parameter of CDCL solver runtime. For example, Mateescu [28]
showed that some easy instances have large treewidth, and later it was shown
that treewidth alone does not seem to correlate well with solving time [47].

Backdoors: In theory, the existence of small backdoors [36,44] should allow
CDCL solvers to solve instances quickly, but empirically backdoors have been
shown not to strongly correlate with CDCL solver run time [24].

8 Conclusions and Future Work

In this paper, we propose HCS as a correlative set of parameters for explain-
ing the power of CDCL SAT solvers over industrial instances, which also has
good theoretical properties. Empirically, HCS parameters are much more pre-
dictive than previously proposed correlative parameters in terms of classifying
instances into random/crafted vs. industrial, and in terms of predicting solver
run time. Among the top five most predictive parameters, three are HCS param-
eters, namely leaf-community size, modularity and fraction of inter-community
edges. The remaining two are cvr and mergeability. We further identify the fol-
lowing core HCS parameters that are the most predictive among all HCS param-
eters, namely, leaf-community size, modularity, and fraction of inter-community
edges. Indeed, these same parameters also play a role in our subsequent theoret-
ical analysis, where we show that counterexamples to flat community structure
do not apply to HCS, and that restricting certain HCS parameters limits the
size of embeddable expanders. In the final analysis, we believe that HCS, along
with other parameters such as mergeability or heterogeneity, will play a role in
finally settling the question of why solvers are efficient over industrial instances.

374 C. Li et al.

References

1. Alekhnovich, M., Razborov, A.: Satisfiability. Branch-width and Tseitin tautolo-
gies. Comput. Complex. 20(4), 649–678 (2011). https://doi.org/10.1007/s00037-
011-0033-1

2. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: The fractal dimension of
SAT formulas. In: Proceedings of the 7th International Joint Conference on Auto-
mated Reasoning - IJCAR 2014, pp. 107–121 (2014). https://doi.org/10.1007/978-
3-319-08587-6 8

3. Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT
instances. In: IJCAI 2009, Proceedings of the 21st International Joint Conference
on Artificial Intelligence, pp. 387–392 (2009)

4. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formu-
las. In: Proceedings of the 15th International Conference on Theory and Applica-
tions of Satisfiability Testing - SAT 2012, pp. 410–423 (2012). https://doi.org/10.
1007/978-3-642-31612-8 31

5. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple.
J. ACM (JACM) 48(2), 149–169 (2001)

6. Bläsius, T., Friedrich, T., Göbel, A., Levy, J., Rothenberger, R.: The impact of
heterogeneity and geometry on the proof complexity of random satisfiability. In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, pp. 42–53 (2021). https://doi.org/10.1137/1.9781611976465.4

7. Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of commu-
nities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008). https://
doi.org/10.1088/1742-5468/2008/10/P10008

8. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif.
Intell. 90(1–2), 281–300 (1997)

9. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

10. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. ACM Trans. Inf. Syst. Secur. (TISSEC) 12(2),
1–38 (2008)

11. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: Proceedings of the 12th International Joint Conference on Artificial Intelligence
IJCAI 1991, pp. 331–337. (1991)

12. Clarke Jr, E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Checking.
MIT Press (2018)

13. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction
of missing links in networks. Nature 453(7191), 98–101 (2008). https://doi.org/
10.1038/nature06830

14. Coarfa, C., Demopoulos, D.D., San Miguel Aguirre, A., Subramanian, D., Vardi,
M.Y.: Random 3-SAT: the plot thickens. Constraints 8(3), 243–261 (2003). https://
doi.org/10.1023/A:1025671026963

15. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971).
https://doi.org/10.1145/800157.805047

16. Dolby, J., Vaziri, M., Tip, F.: Finding bugs efficiently with a SAT solver. In: Pro-
ceedings of the 6th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 195–204 (2007). https://doi.org/10.1145/1287624.1287653

https://doi.org/10.1007/s00037-011-0033-1
https://doi.org/10.1007/s00037-011-0033-1
https://doi.org/10.1007/978-3-319-08587-6_8
https://doi.org/10.1007/978-3-319-08587-6_8
https://doi.org/10.1007/978-3-642-31612-8_31
https://doi.org/10.1007/978-3-642-31612-8_31
https://doi.org/10.1137/1.9781611976465.4
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/nature06830
https://doi.org/10.1038/nature06830
https://doi.org/10.1023/A:1025671026963
https://doi.org/10.1023/A:1025671026963
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/1287624.1287653

On the HCS of Practical SAT Formulas 375

17. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 5

18. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc.
Natl. Acad. Sci. 104(1), 36–41 (2007). https://doi.org/10.1073/pnas.0605965104

19. Friedrich, T., Krohmer, A., Rothenberger, R., Sutton, A.M.: Phase transitions for
scale-free SAT formulas. In: Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI 2017, pp. 3893–3899. AAAI Press (2017)

20. Giráldez-Cru, J.: Beyond the structure of SAT formulas. Ph.D. thesis, Universitat
Autònoma de Barcelona (2016)

21. Giráldez-Cru, J., Levy, J.: A modularity-based random SAT instances generator.
In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, pp. 1952–1958 (2015). http://ijcai.org/Abstract/15/277

22. Granell, C., Gomez, S., Arenas, A.: Hierarchical multiresolution method to over-
come the resolution limit in complex networks. Int. J. Bifurcat. Chaos 22(07),
1250171 (2012)

23. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Am. Math. Soc. 43(4), 439–561 (2006)

24. Kilby, P., Slaney, J., Thiebaux, S., Walsh, T.: Backbones and backdoors in satisfi-
ability. Proc. Natl. Conf. Artif. Intell. 3, 1368–1373 (2005)

25. Lauria, M., Elffers, J., Nordström, J., Vinyals, M.: CNFgen: a generator of crafted
benchmarks. In: Proceedings of the 20th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2017), pp. 464–473 (2017). https://doi.
org/10.1007/978-3-319-94144-8 18

26. Li, C., et al.: On the hierarchical community structure of practical sat formulas.
arXiv preprint arXiv:2103.14992 (2021)

27. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Proceedings of the 19th International Conference on
Theory and Applications of Satisfiability Testing - SAT 2016, pp. 123–140 (2016).
https://doi.org/10.1007/978-3-319-40970-2 9

28. Mateescu, R.: Treewidth in industrial SAT benchmarks. Tech. Rep. MSR-TR-2011-
22, Microsoft (2011). https://www.microsoft.com/en-us/research/publication/
treewidth-in-industrial-sat-benchmarks/

29. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity from characteristic ‘phase transitions’. Nature
400(6740), 133–137 (1999)

30. Mull, N., Fremont, D.J., Seshia, S.A.: On the hardness of SAT with community
structure. In: Proceedings of the 19th International Conference on Theory and
Applications of Satisfiability Testing (SAT), pp. 141–159 (2016). https://doi.org/
10.1007/978-3-319-40970-2 10

31. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004). https://doi.org/10.1103/physreve.69.
026113

32. Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of
community structure on SAT solver performance. In: Theory and Applications
of Satisfiability Testing - SAT 2014–17th International Conference, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, 14–17 July, 2014.
Proceedings, pp. 252–268 (2014). https://doi.org/10.1007/978-3-319-09284-3 20

33. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

https://doi.org/10.1007/11499107_5
https://doi.org/10.1073/pnas.0605965104
http://ijcai.org/Abstract/15/277
https://doi.org/10.1007/978-3-319-94144-8_18
https://doi.org/10.1007/978-3-319-94144-8_18
http://arxiv.org/abs/2103.14992
https://doi.org/10.1007/978-3-319-40970-2_9
https://www.microsoft.com/en-us/research/publication/treewidth-in-industrial-sat-benchmarks/
https://www.microsoft.com/en-us/research/publication/treewidth-in-industrial-sat-benchmarks/
https://doi.org/10.1007/978-3-319-40970-2_10
https://doi.org/10.1007/978-3-319-40970-2_10
https://doi.org/10.1103/physreve.69.026113
https://doi.org/10.1103/physreve.69.026113
https://doi.org/10.1007/978-3-319-09284-3_20

376 C. Li et al.

34. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp.
61–74. MIT Press (1999)

35. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical
organization of modularity in metabolic networks. Science 297(5586), 1551–1555
(2002)

36. Samer, M., Szeider, S.: Backdoor trees. In: Automated Reasoning, vol. 1, pp. 363–
368. Springer (2008)

37. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications, 2nd edn., vol. 336. IOS Press (2021)

38. SAT: The International SAT Competition. http://www.satcompetition.org.
Accessed 06 Mar 2021

39. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems.
Artif. Intell. 81(1–2), 17–29 (1996)

40. SHARCNET: SHARCNET: Graham Cluster. https://www.sharcnet.ca/my/
systems/show/114. Accessed 06 Mar 2021

41. Simon, H.A.: The architecture of complexity. Proc. Am. Philos. Soc. 106(6), 467–
482 (1962). http://www.jstor.org/stable/985254

42. Steel, R.G.D., Torrie, J.H.: Principles and Procedures of Statistics. McGraw-Hill
(1960)

43. Szeider, S.: Algorithmic utilization of structure in SAT instances. Theoretical Foun-
dations of SAT/SMT Solving Workshop at the Simons Institute for the Theory of
Computing (2021)

44. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:
IJCAI-2003, Proceedings of the Eighteenth International Joint Conference on Arti-
ficial Intelligence, pp. 1173–1178 (2003). http://ijcai.org/Proceedings/03/Papers/
168.pdf

45. Xie, Y., Aiken, A.: Saturn: a SAT-based tool for bug detection. In: Proceedings
of the 17th International Conference on Computer Aided Verification, CAV 2005,
pp. 139–143 (2005). https://doi.org/10.1007/11513988 13

46. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Features for SAT (2012). http://
www.cs.ubc.ca/labs/beta/Projects/SATzilla/. Accessed Feb 2021

47. Zulkoski, E., Martins, R., Wintersteiger, C.M., Liang, J.H., Czarnecki, K., Ganesh,
V.: The effect of structural measures and merges on SAT solver performance. In:
Proceedings of the 24th International Conference on Principles and Practice of
Constraint Programming, pp. 436–452 (2018). https://doi.org/10.1007/978-3-319-
98334-9 29

48. Zulkoski, E., et al.: Learning-sensitive backdoors with restarts. In: Proceedings of
the 24th International Conference on Principles and Practice of Constraint Pro-
gramming, pp. 453–469 (2018). https://doi.org/10.1007/978-3-319-98334-9 30

http://www.satcompetition.org
https://www.sharcnet.ca/my/systems/show/114
https://www.sharcnet.ca/my/systems/show/114
http://www.jstor.org/stable/985254
http://ijcai.org/Proceedings/03/Papers/168.pdf
http://ijcai.org/Proceedings/03/Papers/168.pdf
https://doi.org/10.1007/11513988_13
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
https://doi.org/10.1007/978-3-319-98334-9_29
https://doi.org/10.1007/978-3-319-98334-9_29
https://doi.org/10.1007/978-3-319-98334-9_30

Smt-Switch: A Solver-Agnostic C++ API
for SMT Solving

Makai Mann1(B) , Amalee Wilson1 , Yoni Zohar1 , Lindsey Stuntz1,
Ahmed Irfan1 , Kristopher Brown1 , Caleb Donovick1 , Allison Guman3,

Cesare Tinelli2 , and Clark Barrett1

1 Stanford University, Stanford, USA
{makaim,amalee,yoniz,lstuntz,irfan,donovick}@cs.stanford.edu,

ksb@stanford.edu
2 The University of Iowa, Iowa City, USA

cesare-tinelli@uiowa.edu
3 Columbia University, New York City, USA

ag3910@columbia.edu

Abstract. This paper presents Smt-Switch, an open-source, solver-
agnostic API for SMT solving. Smt-Switch provides simple, uniform,
and high-performance access to SMT solving for applications in areas
such as automated reasoning, planning, and formal verification. It defines
an abstract interface, which can be implemented by different SMT
solvers. The interface allows the user to create, traverse, and manipu-
late terms, as well as dynamically dispatch queries to various underlying
SMT solvers.

1 Introduction

Smt-Switch is an open-source, solver-agnostic C++ API for interacting with
SMT-LIB-compliant SMT solvers. While SMT-LIB [1] provides a standard tex-
tual interface for SMT solving, there are limitations to that interface. In partic-
ular, applications that need to manipulate solver formulas or respond to solver
output are easier and more efficient with an integrated API. Common approaches
for addressing these limitations include committing to a specific solver (and its
API) or using a custom internal expression representation, which is then trans-
lated to SMT-LIB and sent to a solver. In contrast, Smt-Switch provides a
generic in-memory API, but without a custom representation, instead providing
a lightweight wrapper around the underlying solver expressions. Smt-Switch
already has support for many prominent SMT solvers and a variety of theories,
and it provides an extensible abstract interface which makes it easy to add new
solvers and theories. Smt-Switch is open-source and uses the permissive BSD
license. It is available at https://github.com/makaimann/smt-switch.

The remainder of the paper is organized as follows. We start by describing
the architecture of the tool in Sect. 2. Section 3 illustrates how to use the API
with a simple example. We cover related work in Sect. 4 and give an experimental
evaluation in Sect. 5. Finally, Sect. 6 concludes.
c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 377–386, 2021.
https://doi.org/10.1007/978-3-030-80223-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_26&domain=pdf
http://orcid.org/0000-0002-1555-5784
http://orcid.org/0000-0002-3315-815X
http://orcid.org/0000-0002-2972-6695
http://orcid.org/0000-0001-7791-9021
http://orcid.org/0000-0002-9374-9138
http://orcid.org/0000-0001-9336-1267
http://orcid.org/0000-0002-6726-775X
http://orcid.org/0000-0002-9522-3084
https://github.com/makaimann/smt-switch
https://doi.org/10.1007/978-3-030-80223-3_26

378 M. Mann et al.

Fig. 1. Architecture diagram

2 Design

Figure 1 depicts an overview of the Smt-Switch architecture. After some gen-
eral comments, we explain the various components in the figure. Throughout this
paper, we refer to the external code of some SMT solver used by Smt-Switch as
an underlying solver, and we use backend to refer to the Smt-Switch wrapper
for an underlying solver. Smt-Switch delegates as much of the functionality
to the underlying solvers as possible. This reduces redundancy and results in
simpler implementations and lower memory overhead. The API is implemented
in C++, and Smt-Switch also provides Python bindings using Cython [4].

Building and Linking. Smt-Switch uses CMake [13]. The build infrastruc-
ture is designed to be modular with respect to backend solvers. This allows the
user to build Smt-Switch once and then link solver backends to their project
as needed. The build configuration script also has options to enable static and
debug builds.

Testing. We use GoogleTest [10] and Pytest [14] for the C++ test infrastructure
and the Python test infrastructure, respectively. Tests are parameterized by
solver so that each test can easily be run over all solvers.

Custom Exceptions. Smt-Switch defines its own set of exceptions inher-
ited from std::exception. Each of them has a std::string message. The
defined exceptions are: i) SmtException – the generic base class exception,
ii) NotImplementedException, iii) IncorrectUsageException, and iv)
InternalSolverException.

License. The Smt-Switch code is distributed under the BSD 3-clause license
and provides setup scripts for building underlying solvers with similarly liberal

Smt-Switch 379

open-source licenses. For solvers with more restrictive licenses, users are respon-
sible for obtaining the underlying solver libraries themselves.

2.1 Interface

Smt-Switch provides abstract classes that define an interface for interacting
with an underlying SMT solver. The interface corresponds closely to SMT-LIB
version 2.6 [1], making it straightforward to connect solvers that are SMT-LIB
compliant. At the Smt-Switch API level, the user interacts with smart pointers
to the abstract classes. The virtual method functionality of C++ allows the
interface to be agnostic to the underlying solver. The three primary abstract
classes are: i) AbsSort; iii) AbsTerm; and iii) AbsSmtSolver. The Op class
is not abstract and does not need to be implemented by the backend. However,
the backend must interpret an Op when building terms.

AbsSort. The AbsSort abstract class represents logical sorts in Smt-Switch.
A Sort is a pointer to an AbsSort. An enum called SortKind is used to
represent built-in SMT-LIB sorts. In some cases, additional parameters are
needed to create a sort. For example, bitvector sorts all have SortKind BV,
and to create a bitvector sort, an additional parameter for bit-width is needed.
Smt-Switch currently supports the following sorts, as they are defined in the
SMT-LIB standard: i) Booleans, ii) integers, iii) reals, iv) fixed-width bitvectors,
v) uninterpreted functions, vi) arrays, vii) uninterpreted sorts, and viii) algebraic
datatypes. Each backend is responsible for creating an AbsSort object, given
a SortKind (and its parameters if any). The backend must also be able to
provide the SortKind and parameter information from a given sort.

Op. Op is a struct that represents logical function operators in Smt-Switch.
As with sorts, there is an enum (called PrimOp) that contains built-in SMT-
LIB functions from various theories. An Op stores a PrimOp and up to
two integer indices. Unindexed operators are defined only by their PrimOp.
Indexed operators use one or two indices. For example, integer addition is repre-
sented as PrimOp::Plus without any indices, while bitvector extraction uses
PrimOp::Extract together with two indices specifying the most and least sig-
nificant bits of the extracted slice. Smt-Switch uses a simple naming scheme
for PrimOp’s based on the corresponding SMT-LIB names.

AbsTerm. The AbsTerm abstract class represents logical terms, and a Term
is a pointer to an AbsTerm. A Term can be a symbol (uninterpreted constant
or function), a parameter (variable to be bound by a quantifier), a value (term
corresponding to a model value such as 0 or 1), or an operator applied to one
or more terms. Parameters are bound using the Forall or Exists operators.
Terms can be queried to obtain their Sort, Op, and children (if a Term is
not a function application, its Op is null). Note that, unlike the current SMT-
LIB standard, we consider uninterpreted functions themselves to be terms. To
create an uninterpreted function application, the Apply Op is used, where the
first argument is the function to be applied and the rest of the arguments are

380 M. Mann et al.

Terms representing the arguments to the function. This simplifies the interface
and also makes it possible to support higher-order constructs if an underlying
solver supports it. It also facilitates an invariant maintained by Smt-Switch:
any Term with a non-null operator is equal to the result of querying its Op and
children and then creating a new Term with the obtained Op and children.

AbsSmtSolver. The AbsSmtSolver class provides the main interface that
a user interacts with. It has methods for declaring Sorts, building Terms,
asserting formulas, and checking for satisfiability. The method names mirror the
commands of SMT-LIB, replacing “-” with “ .” One exception is assert, which
is assert formula in Smt-Switch to avoid clashing with the C assertion
macro. SmtSolver is a pointer to an AbsSmtSolver.

Solver Factories. A solver factory defines a single static method: create. Each
backend solver implementation defines a corresponding factory in a dedicated
header file. The create function produces an SmtSolver for its correspond-
ing backend. It takes a single Boolean parameter called logging, which specifies
whether to add a layer to keep track of the structure of terms being created. This
is useful if the underlying solver does not preserve term structure (e.g., if it per-
forms on-the-fly rewriting of created terms) and the user needs the invariant that
if you create a term with a given Op and children and then query the Op and chil-
dren of the new term, you get back the Op and children you started with (note
that this is the inverse of the invariant mentioned in the AbsTerm section above).
Smt-Switch currently has backends for Boolector [18], Bitwuzla [17],
CVC4 [3], MathSAT [5], Yices2 [6], and Z3 [16]. It also provides two more
special implementations of AbsSmtSolver: i) PrintingSolver – a wrapper
around a backend that logs all API calls and dumps them as an SMT-LIB script
to an output stream – especially useful for debugging as it provides a way to
reproduce a behavior seen in Smt-Switch using just the underlying solver with
an SMT-LIB file; and ii) GenericSolver – communicates interactively with
an arbitrary SMT-LIB-compliant solver binary through pipes.

2.2 Additional Features

Analysis. Smt-Switch provides utility functions for i) gathering all sub-
terms matching some given criteria in a term; ii) reducing an unsatisfiable
core; iii) returning a flat list of all the arguments of a commutative and
associative operator (e.g., Boolean and or or); iv) manipulating disjoint sets
(union-find data structures) of Smt-Switch Terms; and v) traversing and
rewriting Smt-Switch Terms – by inheriting from the IdentityWalker or
TreeWalker classes. In the former, each sub-term is visited once, regardless of
how many times it occurs in the formula. In the latter, every occurrence of every
sub-term is visited.

Term Translation. The TermTranslator class can be used to copy terms
from one backend solver to another. The only requirement for this to work is

Smt-Switch 381

that the source solver must implement the term traversal interface methods. This
functionality makes it easy to communicate information among several solvers.

Portfolio Solving. Smt-Switch provides infrastructure for using a portfolio
of backend solvers to solve a single problem in parallel (i.e., the first to finish
reports the answer).

Additional Frontends. In addition to its C++ library, Smt-Switch provides
a Flex [20] and Bison [8] parser for the SMT-LIB language, and a Python module
for translating between PySMT [9] terms and Smt-Switch terms.

3 Example

In this section, we demonstrate the Smt-Switch API with a simple example.
Figure 2 (left) uses Smt-Switch with the CVC4 backend to solve simple queries
over bitvectors and uninterpreted functions. It starts by including C++ and
Smt-Switch headers and invoking the relevant using declarations. The main
function then begins by creating a backend SmtSolver using CVC4 without
logging. Note that changing the backend solver can easily be done by only chang-
ing this line and the factory being included. The logic is set to quantifier-free
formulas over bitvectors and uninterpreted functions (QF UFBV), and solver
options are used to enable incremental solving, models, and the production of
“unsat assumptions” (an SMT-LIB variant of unsatisfiable core functionality, in
which the core is taken from a specified set of assumptions). This is followed by
creating two sorts: a bitvector sort of width 32, and a function sort with that
sort as both domain and codomain. The next three lines create two bitvector
symbolic constants and an uninterpreted function. Next, the terms x0 and y0
are created, corresponding to the least significant half of the bitvectors x and
y, respectively, by applying the bitvector extract operator with upper index 15
and lower index 0.

We then assert that applying the function to x and y results in different
values and push a new context, in which we assert that the bottom halves of x
and y are equal. This is followed by a successful satisfiability check, after which
we print the value assigned to x and pop to the top level context. The query is
satisfiable because x and y can have different most significant bits, and thus the
function applications could return different values.

We then create a term that represents the bit-wise and of x and y and
three Boolean terms built in various ways from x and y. The final satisfiability
check is done with these terms as assumptions and is unsatisfiable, because the
assumptions entail that x equals y, contradicting the top-level assertion that f
applied to x is different from f applied to y. Finally, we extract a subset of the
assumptions that (together with existing assertions) is sufficient for unsatisfi-
ability. The output of the program is shown at the top right-hand side of the
figure. Looking at the output, we can see that only the last two assumptions are
needed for unsatisfiability.

The remainder of the right-hand side of Fig. 2 shows the corresponding SMT-
LIB commands for the C++ code. An artifact containing the example in both

382 M. Mann et al.

Fig. 2. Left: C++ API Example. Right: the output from running the program, as well
as the SMT-LIB script that corresponds to the C++ example.

C++ and Python (as well as scripts for reproducing the results in Sect. 5) is
available at https://doi.org/10.6084/m9.figshare.14566449.v1.

https://doi.org/10.6084/m9.figshare.14566449.v1

Smt-Switch 383

4 Related Work

The most closely related tools are smt-kit [11] and metaSMT [19], other C++
APIs for SMT solving. Both utilize templates to be solver agnostic and have
term representations that are separate from the underlying solver, as opposed
to Smt-Switch which provides an abstract interface and only a light wrapper
around the term representations of the underlying solvers. This design choice
reduces overhead and keeps maintenance simple. metaSMT makes clever use of
C++ template meta-programming to help reduce its overhead. Furthermore, it
provides several features including bit-blasting and infrastructure for portfolio
solving. However, metaSMT only supports bitvectors, arrays, and uninterpreted
functions. Adding new theories to either smt-kit or metaSMT would likely be
a bigger undertaking than in the comparatively simple Smt-Switch. Neither
smt-kit nor metaSMT appear to be under active development since 2014 and
2016, respectively.

Two other related tools are PySMT [9] and sbv [7]. PySMT is a solver-agnostic
SMT solving API for Python. PySMT has its own term representation and trans-
lates formulas to the underlying solvers dynamically once they are asserted. It
also uses a class hierarchy to support different solvers. sbv is a solver-agnostic
SMT-based verification tool for Haskell. It provides its own datatypes for repre-
senting various SMT queries and communicates with solvers through SMT-LIB
with pipes. A similar related tool in the context of SAT-solving is PySAT [12],
which provides a solver-agnostic Python interface to SAT-solvers.

5 Evaluation

We evaluate Smt-Switch by comparing several state-of-the-art SMT solvers
with Smt-Switch (using backends for those same solvers). We use default
options for the (underlying) solvers in both cases.1 We compare on SMT-LIB [2]
divisions with bitvectors and arrays, because all solvers support these theories
(we use the SMT-LIB frontend for Smt-Switch). We ran on all combinations
of incremental vs. non-incremental, and quantified vs. quantifier-free for those
theories.2 We sampled benchmarks from other divisions and obtained compara-
ble results. All experiments were run on a 3.5 GHz Intel Xeon E5-2637 v4 CPU
with a timeout of 20 min and a memory limit of 8 Gb.

Our results are shown for non-incremental and incremental benchmarks in
Figs. 3 and 4, respectively. The total number of benchmarks in the division is
shown next to the logic in the top row. The tables display the number solved

1
GitHub Commit or Version
Smt-Switch: 17c57ac0f0574cf76125ead56a598fce15c56004
Boolector: 95859db82fe5b08d063a16d6a7ffe4a941cb0f7d
CVC4: 3dda54ba7e6952060766775c56969ab920430a8a
MathSAT: 5.6.4 (697e45d7ef56)
Yices2: 98fa2d882d83d32a07d3b8b2c562819e0e0babd0
Z3: 6cc52e04c3ea7e2534644a285d231bdaaafd8714

.

2 Note that ABV – incremental, quantified arrays and bitvectors does not have any
benchmarks in SMT-LIB.

384 M. Mann et al.

solver QF BV (41713) QF ABV (15084) BV (5846) ABV (169)
btor 41313 (6.1s) 15045 (1.2s) 5544 (3.8s) -
ss-btor 41298 (6.0s) -1.8% 15045 (1.2s) 3.5% 5543 (3.7s) -4.0% -
bitwuzla 41366 (5.8s) 15046 (1.0s) 5557 (4.5s) -
ss-bitwuzla 41357 (6.2s) 5.8% 15046 (1.0s) 2.2% 5559 (4.5s) 0.6% -
cvc4 38424 (14.2s) 14480 (8.5s) 5465 (1.1s) 17 (0.1s)
ss-cvc4 38425 (15.2s) 6.9% 14618 (4.4s) -48.1% 5472 (1.0s) -13.6% 17 (0.1s) 6.2%
msat 39609 (17.3s) 14940 (2.7s) - -
ss-msat 39598 (18.5s) 6.7% 14937 (2.9s) 6.1% - -
yices2 40707 (5.8s) 15015 (2.1s) - -
ss-yices2 40695 (6.1s) 4.7% 15007 (2.2s) 9.1% - -
z3 40261 (15.6s) 14916 (3.0s) 5522 (1.5s) 44 (2.4s)
ss-z3 40092 (15.9s) 1.7% 14915 (2.8s) -5.3% 5523 (1.8s) 22.5% 44 (1.5s) -40.3%

Fig. 3. Results on non-incremental SMT-LIB benchmarks.

and average runtime on commonly solved instances. The number solved for incre-
mental benchmarks is the sum of all completed satisfiability checking calls. An
incremental benchmark is counted as commonly solved for the average runtime
calculation if both solvers completed all queries. The Smt-Switch rows also
show the percent increase in runtime when using Smt-Switch.

The data are a rough approximation of the overhead incurred when using
Smt-Switch. It is rough because our experiment measures parsing time as
well as expression construction and solving time. CVC4, for example, uses an
ANTLR-based parser, which is a bit slower than other parsers. There is also some
noise due to differences in how a solver’s API performs relative to its standalone
binary. For example, one outlier in the incremental MathSAT QF BV results
skews the overhead significantly for that dataset, though this is due to some
difference in the search rather than parsing or expression-building overhead.
When Smt-Switch solves fewer benchmarks, it is often due to benchmarks
that were already close to the timeout with the standalone solver. Overhead is
most pronounced on large files, where both parsing and expression-building are
exercised more often. Still, the data over many benchmarks and solvers does
suggest that the overhead of using Smt-Switch is low, generally less than 10%
(and some of this is due to parsing differences). Given the flexibility provided by
Smt-Switch, this level of overhead should be acceptable for many applications.

solver QF BV (2589) QF ABV (1272) BV (18)
btor 52375 (6.5s) 3243 (21.5s) -
ss-btor 52395 (6.9s) 5.8% 3247 (21.1s) -1.8% -
bitwuzla 52366 (7.1s) 3247 (22.4s) 12445 (1.6s)
ss-bitwuzla 52366 (7.3s) 2.8% 3246 (22.9s) 2.2% 12445 (0.8s) -49.8%
cvc4 51262 (17.5s) 2504 (22.1s) 36097 (54.4s)
ss-cvc4 51252 (15.4s) -12.2% 2740 (2.3s) -89.6% 35852 (26.0s) -52.3%
msat 52333 (8.4s) 3121 (5.7s) -
ss-msat 52255 (10.0s) 19.4% 3119 (6.3s) 10.5% -
yices2 52538 (6.2s) 3242 (6.3s) -
ss-yices2 52490 (6.7s) 7.0% 3243 (6.7s) 6.0% -
z3 52347 (18.1s) 2911 (31.3s) 37433 (33.6s)
ss-z3 52238 (18.2s) 0.6% 2871 (30.0s) -4.2% 37231 (25.0s) -25.6%

Fig. 4. Results on incremental SMT-LIB benchmarks.

Smt-Switch 385

6 Conclusion

We presented Smt-Switch, a solver-agnostic C++ API for SMT solving. This
system is open-source, supports a variety of solvers and theories, and has already
been used in several projects [15,21]. Future work includes i) further reducing
the overhead with additional performance tuning; ii) support for more theories
(e.g., the floating point and string theories); and iii) providing additional utility
functions and classes.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech-
nical Report, Department of Computer Science, The University of Iowa (2017).
www.SMT-LIB.org

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2021). www.SMT-LIB.org

3. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

4. Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K.: Cython:
The best of both worlds. Comput. Sci. Eng. 13(2), 31–39 (2011)

5. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

6. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

7. Erkok, L.: SBV: SMT Based Verification in Haskell (2019). http://leventerkok.
github.io/sbv/

8. Free Software Foundation: bison (2021). https://www.gnu.org/software/bison/
9. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of

SMT-based algorithms. In: Proceedings of the 13th International Workshop on
Satisfiability Modulo Theories (SMT), pp. 373–384 (2015)

10. Google: GoogleTest. https://github.com/google/googletest
11. Horn, A.: Smt-kit: C++11 library for many sorted logics. http://ahorn.github.io/

smt-kit/
12. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for proto-

typing with sat oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018.
LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94144-8 26

13. KitWare: CMake. https://cmake.org
14. Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher, B., Bruhin,

F.: pytest 5.4.2 (2004). https://github.com/pytest-dev/pytest
15. Mann, M., et al.: Pono: a flexible and extensible SMT-based model checker. In:

CAV. Lecture Notes in Computer Science, Springer (2021)
16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
http://leventerkok.github.io/sbv/
http://leventerkok.github.io/sbv/
https://www.gnu.org/software/bison/
https://github.com/google/googletest
http://ahorn.github.io/smt-kit/
http://ahorn.github.io/smt-kit/
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://cmake.org
https://github.com/pytest-dev/pytest
https://doi.org/10.1007/978-3-540-78800-3_24

386 M. Mann et al.

17. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR abs/2006.
01621 (2020). https://arxiv.org/abs/2006.01621

18. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC and Boolector 3.0.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 587–
595. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 32

19. Riener, H., et al.: metaSMT: focus on your application and not on solver integra-
tion. Int. J. Softw. Tools Technol. Transf. 19(5), 605–621 (2017)

20. Vern Paxson: flex (2021). https://github.com/westes/flex
21. Zohar, Y., Irfan, A., Mann, M., Nötzli, A., Reynolds, A., Barrett, C.: lazybv2int

at the SMT Competition 2020. https://github.com/yoni206/lazybv2int (2020)

https://arxiv.org/abs/2006.01621
https://doi.org/10.1007/978-3-319-96145-3_32
https://github.com/westes/flex
https://github.com/yoni206/lazybv2int

The MERGESAT Solver

Norbert Manthey(B)

TU Dresden, Dresden, Germany
nmanthey@conp-solutions.com

Abstract. Successful SAT solvers in recent competitions are typically
based on the winner of the previous competition. Due to this procedure,
for multiple years relevant features like incremental solving have not
been supported by winning solvers anymore. Furthermore, bug fixes in
one solver do not evolve into predecessors. This work presents MergeSat,
a SAT solver that is also based on leading solvers of the past years. How-
ever, MergeSat can replace MiniSat or Glucose, as relevant features have
been added back. Also, new techniques from other solvers of the commu-
nity have been adapted, and implementation issues have been identified
and fixed. These issues did not surface in an original solver or its suc-
cessor during competitions. Finally, we provide a mechanism to easily
incorporate changes of other solver, as well as a development and test
environment to identify potential issues when merging techniques early.
With this setup, MergeSat is a good starting point for future research
development and integration into other solvers.

1 Introduction

An emerging pattern in top SAT solvers of recent SAT competitions is the fol-
lowing: a winning or top solver of the current year is typically based on a top
performing solver of the previous year. Unfortunately, most solvers do not share
the same code base continuously, nor are maintained by the same research team.
Consequently, fixes and patches to a solver of last year are lost, as they do not
make it into next years variant of that solver. Furthermore, abandoned features
like incremental solving are hard to bring back, and hence, novel development
cannot make it into tools that are based on SAT solvers easily.

On the other hand, the modification between solver versions is rather small,
and can be identified by comparing the formatted code for the given solver
versions. Many tools that deal with other logics, e.g. CBMC [16], MonoSat [9],
still use older SAT solvers, such as MiniSat [17] or Glucose [2] and their
interface. These facts and the potential to positively influence a broad range of
tools motivated the development of MergeSat.

The solver is based on the winning solver of the SAT competition 2018,
namely the tool Maple LCM Dist ChronoBT [42]. The major improvements
are that the solver is deterministic again, supports incremental SAT solving,
implements runtime checkers for satisfiability and DRAT proofs, as well as pro-
vides a development environment that checks for these features continuously.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 387–398, 2021.
https://doi.org/10.1007/978-3-030-80223-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_27

388 N. Manthey

Furthermore, techniques presented in the 2020 competition have been added.
Implementation issues in these extensions have been identified, reported to the
original authors, and fixed in the implementation. MergeSat implements the
extensions in a configurable way, and supports automated configuration tools,
also when being used as a solver library. On the SAT 2020 benchmark, Merge-
Sat performance outperforms all participating MiniSat based solver engines.

New Contribution and Goal of MergeSat

The goal of MergeSat is to encapsulate recent developments in SAT research
into a tool that can be integrated easily into tools that currently use MiniSat [17]
or Glucose [2]. This goal should be achieved with low maintenance effort, also
providing an easy starting point for collaboration and future research. For easy
integration, a script is provided to identify the diff of two MiniSat based solvers.
This diff can then be integrated into MergeSat. Furthermore, the integrity
of the implemented features and the solver itself are tested continuously, to
make sure the solver can be used widely. Only a few solvers come with such a
development environment.

Beyond Maple LCM Dist ChronoBT, the solver implements more tech-
niques: MiniSat’s incremental solving interface has been activated again and
the IPASIR interface [4] is supported. Next, MergeSat can be used as engine
in the parallel solver Hordesat [6]. Furthermore, conflict refinement [33] has
been extended to be used adaptively. Similarly, assumption prefetching (simi-
larly to [24,32] is used in an adaptive way, depending on whether the last solver
call ended in � or ⊥. Trail saving [25], polarity rephasing and SLS solving have
been adapted from [46], as well as removing good learned (core) clauses from [31]
have been integrated.

Structure

This paper describes how the solver development is setup, and how the solver
has evolved since 2018. Furthermore, the list of relevant fixes to existing solvers,
as well as brief experimental results are presented.

2 Recent SAT Competitions

SAT competitions are an annual event, with different tracks, scoring systems and
varying settings. Besides the plain satisfiability track, there have been incremen-
tal tracks and even minimal unsatisfiability tracks. Various research teams sub-
mit SAT solvers to these competitions, as well as solver descriptions. After the
event, the solver sources and proceedings are published, e.g. [3–5,7,8,10,22,23].
Recently, top solvers of the main track of the competition do not participate in
the incremental track, likely due to missing support for multiple solver calls.

The MergeSat Solver 389

2.1 Benchmark Selection

The annual solver competitions are an independent snapshot of the development
of solving technology and implementation details. The used benchmarks are
a collection of user submitted formulas of the participants, or selected CNFs
from a pool of previously known formula sets. In some years, the benchmarks
have been separated into categories, such as crafted or application. Benchmark
selection approaches like [27] or analysis along the ideas of [38] are currently not
considered.

Still, the annual competitions help to boost the solver performance, even
when running on a different benchmark. General comparisons between solvers are
difficult, as solvers might be specialized for applications or benchmark categories.
Hence, typically new solvers evolve from the best solvers of the previous year.

2.2 Winning Solvers and Top Solvers

The following Table 1 shows the for MergeSat relevant top performing solvers
of the most recent five SAT competitions, as well as the solver variant of the
previous year these solvers are based on.

Table 1. For MergeSat relevant winners and top solvers of recent SAT competition,
sorted by year, and showing the previous solver variant as well as the relevant tool
description. The table shows the history of the solver development.

Year Top solver Based on

2020 Relaxed LCMDCBDL newTech [46] MapleLCMDiscChronoBT-DL-v3 [44]

2019 MapleLCMDiscChronoBT-DL-v3 [44] Maple LCM Dist ChronoBT [42]

2018 Maple LCM Dist ChronoBT [42] Maple LCM Dist [19]

2017 Maple LCM Dist [19] MapleCOMSPS [29]

2016 MapleCOMSPS [29] COMiniSatPS [41]

The solvers in the list typically add one or two techniques to the existing
solver. The initial solver COMiniSatPS is based on MiniSat [17] and imple-
ments ideas of Glucose [1], as well as [41]. To show-case a relevant solver
extension, research groups seem to pick the winner or a close top performing
solver of the previous year to extend it with their current research idea1. This
leads to a chain of solvers with varying author teams.

2.3 SAT Solver Evolution

Independently of the history of the top solver of a given year, there are other
forks in the solver evolution tree. For example, in 2011 partial restarts have been

1 Such a chain might likely be related to publications that aim at improving the current
state of the art.

390 N. Manthey

presented to reduce the cost of unit propagation, but this change was not added
to MiniSat or Glucose, nor COMiniSatPS. To the best of my knowledge,
feature relevance analysis like [30] has not been repeated since 2011, although
solvers like CryptoMiniSat [43] or CaDiCaL [14] implement a large amount
of techniques in one solver. Hence, for each year of a solver competition, it is
hard to tell which solver extension is relevant with respect to performance. For
the solvers presented in Sect. 2.2, the current solver evolution only selects the
improvements of one solver, and ignores all other proposed modifications. Follow-
up improvements of a previous-year solver are not incorporated back into the
main solver. As solvers are produced as research prototype, the implementation
of the solver meets the requirements for publications and competitions, but might
lack best implementation practices, like for example memory usage.

There are a few solvers that are independent from the above evolution tree,
for example Lingeling [12], CaDiCaL [13] or KissSat [14] as well as Cryp-
toMiniSat [43]. These systems try to keep up with the broader development of
techniques, at the cost of a higher maintenance effort. Most solving techniques
have to be re-implemented to fit into the correspondent eco system. Older solvers
like Lingeling by Biere et al. do not receive updates with new techniques.

3 Development Model of MergeSat

MergeSat bridges the gap between research prototypes that are based on the
previous years top solver, as well as the independent systems that try to maintain
more relevant solving techniques. The development of the solver is moved forward
by incorporating solver modifications of submissions to the SAT competition, e.g.
the IPASIR interface from the incremental competition track. The solver itself
is then continuously tested to meet expected standards and not break features.

3.1 Supported Features and Selected Techniques

MergeSat provides the same features well established SAT solvers like MiniSat
or Glucose. Besides solving plain and compressed CNF formulas from files in
DIMACS format, MergeSat can emit proofs in the commonly used DRUP
format [21]. MergeSat also supports incremental SAT solving via MiniSat’s
interface, and implements the IPASIR [4] interface. The solver was already used
as SAT backend in the MaxSAT solver open-wbo [36]. Furthermore, MergeSat
implements the required hooks to be used as Hordesat SAT engine [6], which
allows to use the solver for multi-core and multi-machine parallel SAT solving.

3.1.1 Additionally Implemented Solving Techniques
The following major techniques are implemented in the solver, and are not
present in MiniSat or Glucose.

� Simplifying learned clauses with Learnt clause minimization [35], and addi-
tionally repeat successful simplifications in reverse order [33].

The MergeSat Solver 391

� Chronological backtracking [39], which allows to reduce repetitive unit prop-
agations by maintaining an unordered search stack.
� Reduce the simplification time on large formulas by using step limits for
simplification and search, similarly to [12].
� Faster simplification by using linear resolution for clause simplification,
along [18] instead of the quadratic default implementation.
� Deleting learned clauses from the most relevant set of learned clauses [31],
but skipping every second attempt when not removing more than 5% of the
clauses.
� Avoiding duplicate clauses, by using a small cache of recent new
clauses instead of a full hashmap of all learned clauses as in [44].
MapleLCMDiscChronoBT-DL-v3 keeps all learned clauses in a hash
map. To avoid this additional memory, and still be able to get a partial bene-
fit, MergeSat uses a cache of the most recently added 20 simplified clauses
during LCM. Clauses present in this set are used to reject new simplified
clauses.
� Simplification during search (inprocessing) [11], using self-subsuming reso-
lution and subsumption.
� Switching between VSIDS and LRB/Distance decision heuristic frequently,
along [44], using a single heap structure to implement the priority queue.
� Exploiting hardware features by using prefetching watchlists [26] and sup-
porting use transparent huge pages [20], when being compiled with the pro-
vided docker infrastructure.
� Partial restarts, that allow to safe effort when restarting the search [45].
� Use SLS solving to participate in the solving process and use phase saving
rephasing to guide the search [46].
� Trail saving, i.e. saving the propagation information during backtracking to
re-use it during the next search [25].

3.1.2 Incremental SAT Solving
Most successful solvers of recent competitions do not participate in the incremen-
tal track of these competitions – likely because the lack of support for incremen-
tal solving in recent successful solvers. MergeSat supports incremental solving
again, and improves it as follows:

� Instead of assigning all assumption literals and alternating these assign-
ments with propagation, assumption prefetching is used. All assumptions
are assigned before propagation is executed [32].
� To improve judging the quality of learned clauses, ignore LBD levels of
assumption literals, similarly to Glucose [1].
� For unsatisfiable formulas, the set of unsatisfiable assumption literals is sim-
plified adaptively [33], by running vivification in reversed order; and disabling
this simplification for a call in case the attempt in the previous attempt was
not successful.
� The SLS engine in initialized lazily. Instead of the eager initialization, as
done in [46], the SLS engine is called just before data for rephasing is required
for rephasing or attempting to solve the formula.

392 N. Manthey

3.1.3 Parameter Configuration
As the default setup might not fit a certain application best, MergeSat allows
to tune the implemented techniques via the tool command line. To adapt the
solver better to a given use case, the PCS configuration file format is supported.
This file format allows to use tools like SMAC3 [37] or ParamILS [28] to tune
the configuration. Furthermore, the configuration debugging tool SpyBug [34]
can be used. As MergeSat can generate the PCS file itself, future parameters
can be integrated into the process easily.

In contrast to other tools, the configuration can also be specified via an
environment variable. This setup allows to also tune the SAT engine when it is
used as a SAT backend as part of another tool.

3.2 Incorporating Patches

Today, solvers that are submitted to the SAT competition typically do not come
with a version controlled source code. Consequently, solver dependencies have
to be found manually. The source code difference between solvers have to be
detected manually. To reduce the manual effort, the following steps are used:

1. Move the relevant solver versions to separate branches in MergeSat’s repos-
itory

2. Format the source code of all solvers with the same coding style
3. Create a patch that corresponds to the difference that was introduced by the

new solver
4. Eventually split the difference along features into multiple patches
5. Cherry-pick feature patches and apply them to MergeSat

The above steps allow to apply a solver diff to MergeSat, which likely carries
changes that are not present in the other solver variants. Splitting patches into
chunks allows to reduce conflicts during applying patches, as well as improves
the quality of the history of the changes in the solver. Finally, with all solvers
being present in the repository, reasoning about their differences can be done
by using tools. To simplify the process, a script is provided with MergeSat to
extract the difference between two solvers.

3.3 Provided Implementation Improvements

MergeSat has been tested with memory sanitizer, undefined behavior sanitizer
and the Coverity code analysis tool. This testing revealed non-critical memory
issues when initializing data structures for new variables, as well as when pars-
ing compressed formulas. The memory consumption of the solver has also been
reduced slightly. Besides picking features from existing solvers, the following
issues in feature implementations have been addressed to improve the solver
further. The issues have also been reported to the author of the original imple-
mentation.

The MergeSat Solver 393

Avoid Clause Header Expansion. The implementation of learnt clause min-
imization (LCM) [35] introduces an additional bit per stored clause to indicate
whether a clause has been used for LCM already. In contrast to recommendations
of [26], this additional bit results in an increased clause header size, which leads
to slower unit propagation. This issue has been spotted by manually investigat-
ing the code. While the authors of the initial implementation in [35] have been
notified, the bit is still present in the winning solver of 2019 and its successors2.

Avoid Resource Leaks. In case a MiniSat based solver is used as a SAT
backend in another tool, and MiniSat internal realloc implementation fails, e.g.
when hitting a memory limit, the tool might leak memory in case it can recover
from the SAT solvers memory failure. MergeSat carries a fix for this behavior,
to avoid this resource leak. This issue has been found by testing MergeSat as
a SAT backend of a MaxSAT solver in a low-memory situation and by using the
valgrind tool [40].

Avoid Unsoundness Due To Decision Heuristic Switch. The solver
MapleCOMSPS introduced switching decision heuristics from VSIDS for ini-
tialization to LRB [29]. As this solver initialized all data structures for all deci-
sion heuristics, simply switching from one implementation to another results in
sound behavior. However, when re-activating incremental solving together with
this heuristic switch implementation, switching heuristics by just using other
data structures without synchronizing their state can lead to unsound behavior.
Successor solvers frequently switch between the two heuristics, which also carry
the risk of unsound behavior. To not result in unsound behavior, MergeSat
moves the full state from one heuristic to another. As a follow up modification,
the three decision heaps of predecessors have been merged into a single one. This
issue has been found by using MergeSat as a SAT backend in the MaxSAT
solver open-wbo [36]. Without the fix, open-wbo produced incorrect answers
for certain input.

Cyclic Search in Chronological Backtracking. During chronological back-
tracking [39], conflict clauses detected during unit propagation might be spu-
rious, because they would be entailed clauses on a previous level. The original
implementation updates the watch list of this conflict, and re-tries propagation.
There exist input formulas, that undo this watch list update, and next hit the
same spurious conflict again. MergeSat jumps back higher in case such a cycle
is detected, to resolve the situation properly.

Combining Trail Saving with Chronological Backtracking. Trail sav-
ing [25] stores the literals and the clauses that imply them for all backtracked
assignments. Next, during propagation, this information is used to speedup prop-
agation and conflict detection. However, solver invariants – like always storing
the asserting variable on the first position – are neglected. When combining trail
saving with chronological backtracking, the invariants can be violated. Hence,
MergeSat checks the invariants, and aborts trail saving in case of violation.
2 See http://sat-race-2019.ciirc.cvut.cz/solvers/MapleLCMDiscChronoBT-DL-v3.

zip.

http://sat-race-2019.ciirc.cvut.cz/solvers/MapleLCMDiscChronoBT-DL-v3.zip
http://sat-race-2019.ciirc.cvut.cz/solvers/MapleLCMDiscChronoBT-DL-v3.zip

394 N. Manthey

3.4 Development Environment

To improve confidence into the tool, model validation has been implemented.
This technique stores a read-only copy of the parsed formula, and checks whether
the given model satisfies this copy of the formula. Similarly, a runtime DRAT
proof checker is integrated. This checker allows to verify each modification of the
proof during runtime, and interrupt execution as soon as a proof modification
is invalid. Both checkers are disabled by default, but can be enabled from the
command line.

MergeSat is developed as an open source tool on github3, and features
can be extended via pull requests. Each pull request runs through continuous
integration checks. These test make sure that the starexec package can be con-
structed, the IPASIR integration works, as well as whether CNF files are solved
as expected by using the cnfuzz tool suite [15], as well as the two additional
checkers mentioned above.

The continuous integration checks are executed via TravisCI 4 and github
workflows5.

4 Tool Comparison

To demonstrate the performance of the tool, we use the benchmark of the SAT
competition 2020 [5]. A cluster of Intel(R) Xeon(R) CPU E5-2680 CPUs has
been user. From the 24 core CPU, every fourth core is used to reduce impact
from resource sharing. Run time is limited to 1 h, and the memory consumption
is limited to 6 GB.

MergeSat and state-of-the-art solvers have been compared on this setup.
Besides KissSat [14], the winning solver of the 2020 competition, the
base solver CaDiCaL [14] for the hack-track of the 2021 competition has
been added. As further reference, the best MiniSat based solvers for solv-
ing satisfiable and unsatisfiable formulas have been added to the compari-
son, Relaxed LCMDCBDL newTech [44] and MLCDBT-DL-f2trc [31],
respectively.

Table 2 shows the number of solved instances, and the overall PAR2 time.
Next, it also reports the number of solved formulas that are known to be satis-
fiable and unsatisfiable, as well as the time it took to solve these subsets.

In the given set, MergeSat is the best MiniSat based solver. Furthermore,
MergeSat outperforms CaDiCaL. The current setup of MergeSat is stronger
on satisfiable formulas. With the support for tool configuration also for libraries,
a fitting configuration for other applications can be found as well.

3 https://github.com/conp-solutions/mergesat.
4 https://travis-ci.org.
5 https://help.github.com/en/actions.

https://github.com/conp-solutions/mergesat
https://travis-ci.org
https://help.github.com/en/actions

The MergeSat Solver 395

Table 2. This table compares the performance of recent top performing SAT solvers
with MergeSat. The table shows the solver as well as its variant, either as git commit
or competition year. Next, the number of solved formulas and the related PAR2 value
is given. Finally, the solved instances and the sum of time it took to solve them is
presented for satisfiable and unsatisfiable formulas separately.

Solver Variant Solved PAR2 Solved�
∑�

t Solved⊥
∑⊥

t

KissSat 59813ad 253 1215310 131 72618 122 84291

CaDiCaL f726e9a 237 1362661 127 105244 110 83816

MergeSat d208424 248 1278947 142 83582 106 100964

R LCMDCBDL nT SC2020 243 1279091 147 72836 96 75854

MLCDBT-DL-f2trc SC2020 206 1566977 102 100468 104 69709

5 Conclusion and Future Work

MergeSat in its current form is a SAT solver that provides recent SAT tech-
nology with the interface of the widely used solvers MiniSat and Glucose.
With the workflow to easily integrate solver modifications, the solver allows to
easily combine the contributions of several research groups in a single solver.
Combined with the offered – and widely used – MiniSat-interface, as well as
supporting IPASIR, MergeSat is an attractive target for both new research
as well as tools that utilize SAT backends. Tools that currently use a MiniSat
based SAT backend today might consider experimenting and benchmarking with
MergeSat.

Future work includes to support more solver extensions, as well as to exchange
the SAT backend in tools that still rely on MiniSat or Glucose to MergeSat.
Additionally, multi-core parallel SAT solving should be implemented within the
same MiniSat solver interface, to allow other tools to use an even more powerful
solver. Finally, given that MergeSat implements many recently published tech-
niques for SAT solving, this solver can be used to repeat the relevance analysis
of components as done in [30].

Acknowledgement. MergeSat is combination of the research ideas and implemen-
tation of many other research groups. Without this input, the solver would not exist
in its form. These research groups own a big part of the success of the solver.

References

1. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5 23

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: Proceedings of the 21st International Jont Conference on Artifical Intelligence,
IJCAI’09, pp. 399–404. Morgan Kaufmann Publishers Inc., San Francisco (2009)

https://doi.org/10.1007/978-3-642-39071-5_23

396 N. Manthey

3. Balint, A., Belov, A., Heule, M.J., Järvisalo, M. (eds.): Proceedings of SAT Chal-
lenge 2013, Department of Computer Science Series of Publications B, vol. B-2013-
1. University of Helsinki, Helsinki, Finland (2013)

4. Balyo, T., Biere, A., Iser, M., Sinz, C.: SAT race 2015. Artif. Intell. 241, 45–65
(2016)

5. Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.): Depart-
ment of Computer Science Report Series B, vol. B-2020-1. University of Helsinki
(2020)

6. Balyo, T., Sanders, P., Sinz, C.: HordeSat: a massively parallel portfolio SAT solver.
In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 156–172. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 12

7. Balyo, T., Heule, M., Järvisalo, M.: Proceedings of SAT Competition 2017: Solver
and Benchmark Descriptions, Series of Publications B, vol. B-2017-1. Department
of Computer Science, University of Helsinki, Finland (2017)

8. Balyo, T., Heule, M.: Proceedings of SAT Competition 2016: Solver and Benchmark
Descriptions. Department of Computer Science Series of Publications B, University
of Helsinki, Finland (2016)

9. Bayless, S., Bayless, N., Hoos, H.H., Hu, A.J.: Sat modulo monotonic theories.
In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAI’15, pp. 3702–3709. AAAI Press (2015)

10. Belov, A., Diepold, D., Heule, M.J., Järvisalo, M. (eds.): Proceedings of SAT Com-
petition 2014, Department of Computer Science Series of Publications B, vol. B-
2014-2. University of Helsinki, Helsinki, Finland (2014)

11. Biere, A.: PrecoSAT system description (2009). http://fmv.jku.at/precosat/
preicosat-sc09.pdf

12. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV
Report Series Technical Report 10/1, Johannes Kepler University, Linz, Austria
(2010)

13. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT
competition 2017. In: Balyo, T., Heule, M., Järvisalo, M. (eds.) Proceedings of SAT
Competition 2017 - Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, vol. B-2017-1, pp. 14–15. University of Helsinki
(2017)

14. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, kissat, paracooba, plin-
geling and treengeling entering the SAT competition 2020. In: Balyo, T., Froleyks,
N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT Competi-
tion 2020 - Solver and Benchmark Descriptions. Department of Computer Science
Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

15. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Workshop
SMT 2010, pp. 1–5. ACM (2009)

16. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

18. Ehlers, T., Nowotka, D.: Tuning parallel sat solvers. In: Berre, D.L., Järvisalo, M.
(eds.) Proceedings of Pragmatics of SAT 2015 and 2018. EPiC Series in Computing,
vol. 59, pp. 127–143. EasyChair (2019). https://easychair.org/publications/paper/
NkG7

https://doi.org/10.1007/978-3-319-24318-4_12
http://fmv.jku.at/precosat/preicosat-sc09.pdf
http://fmv.jku.at/precosat/preicosat-sc09.pdf
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24605-3_37
https://easychair.org/publications/paper/NkG7
https://easychair.org/publications/paper/NkG7

The MergeSat Solver 397

19. Xiao, F., Luo, M., Li., C.M., Manya F., Lü, Z.: MapleLRB LCM, Maple LCM,
Maple LCM Dist, MapleLRB LCMoccRestart and Glucose-3.0+width in SAT
Competition (2017)

20. Fichte, J.K., Manthey, N., Stecklina, J., Schidler, A.: Towards faster reasoners by
using transparent huge pages (2020). https://arxiv.org/abs/2004.14378

21. Heule Jr, M., Warren, A.H., Wetzler, N.: Trimming while checking clausal proofs.
In: FMCAD (2013)

22. Heule, M., Järvisalo, M., Suda, M. (eds.): Proceedings of SAT Competition 2018:
Solver and Benchmark Descriptions, Department of Computer Science Series of
Publications B, vol. B-2018-1. Department of Computer Science, University of
Helsinki, Finland (2018)

23. Heule, M., Järvisalo, M., Suda, M. (eds.): Proceedings of SAT Race 2019: Solver
and Benchmark Descriptions, Department of Computer Science Report Series B,
vol. B-2019-1. Department of Computer Science, University of Helsinki, Finland
(2019)

24. Hickey, R., Bacchus, F.: Speeding up assumption-based SAT. In: Janota, M., Lynce,
I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 164–182. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24258-9 11

25. Hickey, R., Bacchus, F.: Trail saving on backtrack. In: Pulina, L., Seidl, M. (eds.)
SAT 2020. LNCS, vol. 12178, pp. 46–61. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-51825-7 4

26. Hölldobler, S., Manthey, N., Saptawijaya, A.: Improving resource-unaware SAT
solvers. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp.
519–534. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-
8 37

27. Hoos, H.H., Kaufmann, B., Schaub, T., Schneider, M.: Robust benchmark set
selection for boolean constraint solvers. In: Nicosia, G., Pardalos, P. (eds.) LION
2013. LNCS, vol. 7997, pp. 138–152. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-44973-4 16

28. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic
algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

29. Liang, J.H., Chanseok Oh, V.G.K.C., Poupart, P.: MapleCOMSPS, MapleCOM-
SPS LRB, MapleCOMSPS CHB. In: Proceedings of SAT Competition 2016 (2016).
http://hdl.handle.net/10138/164630

30. Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy of
modern sat solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol.
6695, pp. 343–356. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21581-0 27

31. Kochemazov, S.: Improving implementation of SAT competitions 2017–2019 win-
ners. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 139–148.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7 11

32. Kottler, S.: Description of the sapperlot, sartagnan and moussaka solvers for the
sat-competition 2011 (2011)

33. Manthey, N.: Refining unsatisfiable cores in incremental SAT solving. Technical
report, TU Dresden (2015)

34. Manthey, N., Lindauer, M.: Spybug: Automated bug detection in the configuration
space of sat solvers. In: SAT, pp. 554–561 (2016)

35. Luo, M., Li, C.M., Xiao, F., Manya, F., Lü, Z.: An effective learnt clause mini-
mization approach for CDCL SAT solvers. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 703–711
(2017). https://doi.org/10.24963/ijcai.2017/98

https://arxiv.org/abs/2004.14378
https://doi.org/10.1007/978-3-030-24258-9_11
https://doi.org/10.1007/978-3-030-24258-9_11
https://doi.org/10.1007/978-3-030-51825-7_4
https://doi.org/10.1007/978-3-030-51825-7_4
https://doi.org/10.1007/978-3-642-16242-8_37
https://doi.org/10.1007/978-3-642-16242-8_37
https://doi.org/10.1007/978-3-642-44973-4_16
https://doi.org/10.1007/978-3-642-44973-4_16
http://hdl.handle.net/10138/164630
https://doi.org/10.1007/978-3-642-21581-0_27
https://doi.org/10.1007/978-3-642-21581-0_27
https://doi.org/10.1007/978-3-030-51825-7_11
https://doi.org/10.24963/ijcai.2017/98

398 N. Manthey

36. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

37. ML4AAD Group: SMAC v3 project. https://github.com/automl/SMAC3 (2017),
version visited last on August 2017

38. Möhle, S., Manthey, N.: Better evaluations by analyzing benchmark structure, pp.
1–10 (2016). http://www.pragmaticsofsat.org/2016/reg/POS-16 paper 4.pdf

39. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8 7

40. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (2007). https://doi.org/10.1145/
1273442.1250746

41. Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In:
Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 23

42. Ryvchin, V., Nadel, A.: Maple LCM Dist ChronoBT: featuring chronological back-
tracking. In: Proceedings of SAT Competition 2018 (2018). http://hdl.handle.net/
10138/237063

43. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

44. Kochemazov, S., Oleg Zaikin, V.K., Semenov, A.: Maplelcmdistchronobt-dl, dupli-
cate learnts heuristic-aided solvers at the sat race 2019 (2019)

45. van der Tak, P., Ramos, A., Heule, M.: Reusing the assignment trail in cdcl solvers.
JSAT 7(4), 133–138 (2011)

46. Zhang, X., Cai, S.: Relaxed backtracking with rephasing. In: Balyo, T., Froleyks,
N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Compe-
tition 2020 - Solver and Benchmark Descriptions. Department of Computer Science
Report Series B, vol. B-2020-1, pp. 15–15. University of Helsinki (2020)

https://doi.org/10.1007/978-3-319-09284-3_33
https://github.com/automl/SMAC3
http://www.pragmaticsofsat.org/2016/reg/POS-16_paper_4.pdf
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1007/978-3-319-24318-4_23
http://hdl.handle.net/10138/237063
http://hdl.handle.net/10138/237063
https://doi.org/10.1007/978-3-642-02777-2_24

Proof Complexity of Symbolic QBF
Reasoning

Stefan Mengel1,2 and Friedrich Slivovsky3(B)

1 CNRS, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL),
62300 Lens, France

2 Univ. Artois, UMR 8188, 62300 Lens, France
3 TU Wien, Vienna, Austria

Abstract. We introduce and investigate symbolic proof systems for
Quantified Boolean Formulas (QBF) operating on Ordered Binary Deci-
sion Diagrams (OBDDs). These systems capture QBF solvers that per-
form symbolic quantifier elimination, and as such admit short proofs of
formulas of bounded path-width and quantifier complexity. As a conse-
quence, we obtain exponential separations from standard clausal proof
systems, specifically (long-distance) QU-Resolution and IR-Calc.

We further develop a lower bound technique for symbolic QBF proof
systems based on strategy extraction that lifts known lower bounds from
communication complexity. This allows us to derive strong lower bounds
against symbolic QBF proof systems that are independent of the vari-
able ordering of the underlying OBDDs, and that hold even if the proof
system is allowed access to an NP-oracle.

1 Introduction

Unlike in SAT solving, which is dominated by Conflict-Driven Clause Learning
(CDCL), in QBF solving there is no single approach that is clearly dominant
in practice. Instead, modern solvers are based on variety of techniques, such as
(quantified) CDCL [29,32,40], expansion of universal variables [9,10,25], and
abstraction [26,35,38].

In practice, these techniques turn out to be complementary, each having
strengths and weaknesses on different classes of instances [23,30,34]. This com-
plementarity of solvers can be analyzed theoretically by considering proof com-
plexity. Essentially, the different paradigms used in solvers can be formalized as
proof systems for QBF, which then can be analyzed with mathematical methods.
Then, by separating the strength of different proof systems, one can show that
the corresponding solvers are unable to solve problems efficiently that can be
dealt with by other solvers. This motivation has led to a great interest in QBF

S. Mengel—Partially supported by the PING/ACK project of the French National
Agency for Research (ANR-18-CE40-0011).
F. Slivovsky—Supported by the Vienna Science and Technology Fund (WWTF) under
grant ICT19-060.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 399–416, 2021.
https://doi.org/10.1007/978-3-030-80223-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_28

400 S. Mengel and F. Slivovsky

proof complexity over the last few years and resulted in a good understanding
of common QBF proof systems and how they relate to each other (see [7,8] and
the references therein).

In this paper, we focus on a symbolic approach to QBF solving that was
originally implemented in the QBDD system [31]. Its underlying idea is to use
OBDDs to represent constraints inside the solver, instead of clauses as used by
most other SAT and QBF solvers. We formalize QBDD as a proof system in
which the lines are OBDDs. More specifically, we consider QBF proof systems
that are obtained from propositional OBDD-proof systems by adding ∀-reduction
(cf. [7]). Propositional proof systems using OBDDs as lines have been studied
intensively since the introduction of this model in [1], see e.g. [12]. We thus
consider lifting these systems to QBF by adding ∀-reduction as very natural.

Analyzing the strength of OBDD-refutations, we first show that, even for a
weak propositional system that allows only conjunction of lines and forgetting of
variables, the resulting QBF proof system, which we refer to as OBDD(∧,∃,∀)
and which corresponds to traces of QBDD, p-simulates QU-resolution. We also
show that OBDD(∧,∃,∀), and in fact also QBDD, can make use of structural
properties of QBF in the sense that instances of bounded pathwidth and bounded
quantifier alternation can be solved efficiently. We do this by using a recent
result on variable elimination for OBDDs from [13] to show that the interme-
diate OBDDs in QBDD are not too big in this setting. We then observe that
other QBF proof systems from the literature have hard instances of bounded
pathwidth and bounded quantifier alternation. This shows that OBDD(∧,∃,∀)
can efficiently refute QBFs that are out of reach for many other systems. In
particular, it is exponentially separated from (long-distance) QU-resolution [3]
and the expansion based IR-calc [8]. It follows that, at least in principle, QBDD
can solve instances that other, more modern solvers cannot.

The main technical contribution of this work is a lower bound technique for
OBDD-refutations. Here, we consider the strongest possible propositional sys-
tem, which is semantic entailment of OBDDs. We first show that this system
admits efficient strategy extraction of decision lists whose terms are OBDDs.
Functions that can be succinctly encoded in this way have short protocols in a
communication model from [24] for which it is known that lower bounds can be
obtained by proving that a function does not have large monochromatic rectan-
gles. To the best of our knowledge, such bounds are only known for fixed variable
partitions. To prove lower bounds for OBDD-refutations that are independent
of the variable order chosen for the OBDDs, we lift classical bounds on the inner
product function to a graph-based generalization which we show has essentially
the same properties as the inner product function, but for all variable partitions.

2 Preliminaries

2.1 Propositional Logic and Quantified Boolean Formulas

We assume an infinite set of propositional variables and consider propositional
formulas built up from variables and the constants true (1) and false (0) using

Proof Complexity of Symbolic QBF Reasoning 401

conjunction (∧), disjunction (∨), and negation (¬). We write var(ϕ) for the set
of variables occurring in a formula ϕ. In particular, we are interested in formulas
in conjunctive normal form (CNF). A formula is in CNF if it is a conjunction of
clauses. A clause is a disjunction of literals, and a literal is variable x or a negated
variable ¬x. An assignment of a set X of variables is a mapping τ : X → {0, 1}
of variables to truth values. We write [X] for the set of assignments of X. Given
assignments τ : X → {0, 1} and σ : Y → {0, 1} such that X and Y are disjoint,
we let τ ∪σ denote the assignment of X ∪Y such that (τ ∪σ)(x) = τ(x) if x ∈ X
and (τ ∪ σ)(x) = σ(x) if x ∈ Y . Furthermore, we write τ |X′ for the restriction
of τ to X ′ ⊆ X. The result of applying an assignment τ to formula ϕ and
propagating constants is denoted ϕ[τ]. If ϕ[τ] = 1 we say that τ satisfies ϕ, and
if ϕ[τ] = 0, the assignment τ falsifies ϕ. A Quantified Boolean Formula (QBF) is
a pair Φ = Q.ϕ consisting of a quantifier prefix Q and a propositional formula ϕ,
called the matrix of Φ. If the matrix is in CNF, then Φ is in Prenex Conjunctive
Normal Form (PCNF). The quantifier prefix is a sequence Q = Q1x1 . . . Qnxn

where the Qi ∈ {∀,∃} are quantifiers and the xi are propositional variables such
that {x1, . . . , xn} = var(ϕ). We write DΦ(xi) = {x1, . . . , xi−1} for the set of
variables that come before xi in the quantifier prefix, and say xi left of xj and
xj is right of xi if i < j. A variable xi is existential if Qi = ∃, and universal
if Qi = ∀. We write var∃(Φ) for the set of existential variables, var∀(Φ) for the
set of universal variables, and var(Φ) for the set of all variables occurring in Φ.
Let Φ be a QBF. A universal strategy for Φ is a family f = {fu}u∈var∀(Φ) of
functions fu : [var(Φ)] → {0, 1} such that fu(τ) = fu(σ) for any assignments τ
and σ that agree on DΦ(u). If f is a universal strategy and τ : var∃(Φ) → {0, 1}
and assignment of existential variables, we write τ ∪ f(τ) for the assignment of
var(Φ) such that (τ ∪ f(τ))(x) = τ(x) for existential variables x ∈ var∃(Φ) and
(τ ∪ f(τ))(u) = fu(τ ∪ f(τ)) for universal variables u ∈ var∀(Φ). A universal
strategy f is a universal winning strategy for Φ if τ ∪f(τ) falsifies the matrix of
Φ for every assignment τ of the existential variables. A QBF is false if it has a
universal winning strategy, and true otherwise.

2.2 Graphs and Pathwidth of Formulas

Let G = (V,E) a graph and for every set V ′ ⊆ V let N [V ′] denote the open
neighborhood of V , i.e., the set of all vertices in V \ V ′ that have a neighbor
in V ′. The expansion of G is then defined as minV ′⊆V,|V ′|≤|V |/2

|N(V ′)|
|V ′| .

A path decomposition of a graph G = (V,E) is a pair (P, λ) where P =
p1, . . . , pn is a sequence of nodes pi, and λ : {p1, . . . , pn} → 2V maps nodes pi to
subsets λ(pi) ⊆ V of vertices called bags, subject to the following constraints:

1. Each vertex appears in some bag, that is, V ⊆ ⋃n
i=1 λ(pi),

2. For each edge vw ∈ E there is a node pi such that {v, w} ⊆ λ(pi).
3. If v ∈ λ(pi) and v ∈ λ(pj) for 1 ≤ i < j ≤ n, then v ∈ ⋂j

k=i λ(pk).

The width of a path decomposition is maxn
i=1 |λ(pi)| − 1, and the pathwidth of a

graph G is the minimum width of any path decomposition of G. The pathwidth

402 S. Mengel and F. Slivovsky

of a CNF formula ϕ is the pathwidth of its primal graph, which is the graph
with vertex set var(ϕ) and edge set {xy | ∃C ∈ ϕ s.t. x, y ∈ var(C)}, and the
pathwidth of a PCNF formula is the pathwidth of its matrix.

2.3 OBDD

We only give a short introduction into ordered binary decision diagrams (short
OBDDs), a classical representation of Boolean functions [11]; see [39] for a text-
book treatment.

Let X be a set of variables and π an ordering of X. A π-OBDD on variables X
is defined to be a directed acyclic graph B with one source s and two sinks
labeled 0 and 1, called the 0- and 1-sink respectively. All non-sink nodes are
labeled with variables from X such that on every path P in B the variables
appear in the order π. Moreover, all non-sink nodes have two outgoing edges,
one labeled with 0, the other with 1. The size of B, denoted by |B|, is defined
as the number of nodes in B. Given an assignment a ∈ {0, 1}, the OBDD B
computes a value B(a) as follows: starting in the root, we construct a path by
taking for every node v labeled be a variable x the edge labeled with a(x). We
continue until we end up in a sink, and the label of the sink is the value of B on
a denoted by B(a). This way B computes a Boolean function and every Boolean
function can be computed by an OBDD. The OBDD B is called complete if on
every source-sink path P all variables in X appear as node labels. The width of
a complete OBDD B is defined as the maximal number of nodes that are labeled
with the same variable.

Observation 1. There is a polynomial time algorithm that, given an OBDD B,
computes an equivalent complete OBDD B′. Moreover, |B′| ≤ (|X| + 1)|B|.

Binary Boolean functions can be efficiently applied to OBDDs as stated in
the following result.

Lemma 2. Let f : {0, 1}2 → {0, 1} be a binary Boolean function. Then there is
an algorithm that, given two π-OBDDs B1 and B2, computes in time polynomial
in |B1|+ |B2| a π-OBDD B such that B computes on input a ∈ {0, 1}X the value
B(a) := f(B1(a), B2(a)). In particular, the size of B is polynomial in that of B1

and B2.

OBDDs are well-known to be canonical in the sense that, for fixed variable
order π, there is a unique representation of any Boolean function f by a π-OBDD.

Lemma 3. Let f be a Boolean function on variables X and let π be a variable
order of X. Then there is a unique π-OBDD of minimal size (up to isomorphism)
computing f . Moreover, given a π-OBDD representing f , this unique OBDD can
be computed in polynomial time. The same is true for complete OBDDs.

Throughout this paper, we always assume that OBDDs are minimized with the
help of the algorithm of Lemma 3.

Proof Complexity of Symbolic QBF Reasoning 403

2.4 Combinatorial Rectangles

Let X be a set of variables and Π = (X1,X2) a partition of X. We call Π
balanced if min(|X1|, |X2|) ≥ �|X|/2
. More generally, for 0 < b ≤ 1/2 we say
that Π is b-balanced if min(|X1|, |X2|) ≥ �b|X|
. A combinatorial rectangle with
partition Π is a Boolean function R(X) = R1(X1) ∧ R2(X2). A dual way of
seeing R is defining A to be the models of R1 and B those of R2. Then the
models of R are exactly A × B and in a slight abuse of notation we then also
write R = A × B. The size of R is |A| · |B|. A function R is called a balanced
rectangle if and only if R is a combinatorial rectangle with a partition Π that
is balanced.

Let f be a Boolean function and let R be a combinatorial rectangle. We say
that R is monochromatic with respect to f if either all models of R are models
of f or no model of R is a model of f . When f is clear from the context, we
simply call R a monochromatic rectangle without remarking f explicitly. We
also say that f has the monochromatic rectangle R. The color of a monochro-
matic rectangle R with respect to f is the value f(x) taken by the function on
x ∈ R. We will use the following well-known connection between OBDD and
rectangles [28].

Theorem 4. Let g be a function in variables X computed by a π-OBDD of
width w. Let X1 be a prefix of the variable order π and let X2 := X \ X1. Then
g(X) =

∨w
i=1 Ri(X), where every Ri is rectangle with partition (X1,X2).

3 Symbolic QBF Proof Systems

We consider line-based QBF proof systems for PCNF formulas where each line
is an OBDD. Each derivation begins with a sequence of OBDDs corresponding
to the clauses in the matrix of the PCNF formula. New OBDDs are derived by
propositional reasoning or universal reduction (cf. Frege systems with universal
reduction [7]). Formally, let Φ = Q1x1 . . . Qnxn.C1∧. . .∧Cm be a PCNF formula.
An OBDD derivation of Lk from Φ is a sequence L1, . . . , Lk of OBDDs—all with
the same variable order π—such that each Li represents clause Ci for 1 ≤ i ≤ m,
or is derived using one of the following rules:

1. conjunction (∧): Li represents Lj ∧ Lk for j, k < i.
2. projection (∃): Li represents ∃x.Lj for some x ∈ var(Lj) and j < i.
3. entailment (|=): Li is entailed by Li1 , . . . , Lik

, for i1, . . . ik < i.1

4. universal reduction (∀): Li represents Lj [u/c], where j < i, u is a uni-
versally quantified variable that is rightmost among variables in Lj and
c ∈ {0, 1}.

Here, Lj [u/c] denotes the OBDD obtained from L by removing each node labeled
with variable u and rerouting all incoming edges to its neighbor along the c-
labeled edge (effectively substituting c for u). The size of an OBDD derivation
1 Note that OBDD derivations using the entailment rule do not lead to proof systems

in the sense of Cook and Reckhow [15], since checking entailment is coNP-hard.

404 S. Mengel and F. Slivovsky

is the sum of the sizes of the OBDDs in the derivation, and the width of an
OBDD derivation is the maximum width of any OBDD in the derivation.

With the exception of entailment, each of these proof rules can be checked in
polynomial time by applying an operation or transformation to the OBDDs in
the premises, and verifying that the result—which is unique due to canonicity—
matches the OBDD in the conclusion. Moreover, the entailment rule does not
trivialize OBDD proofs since it only considers propositional entailment, and a
QBF can be false without its matrix being unsatisfiable. Finally, it is not difficult
to see that OBDD derivations are sound.

Proposition 5. Let L1, . . . , Lk be an OBDD derivation from Φ. If Φ is true
then .L1 ∧ . . . ∧ Lk is true.

An OBDD-refutation of Φ is an OBDD derivation of an OBDD represent-
ing 0. A π-OBDD derivation is an OBDD derivation where all OBDDs use
variable order π. We sometimes explicitly mention the derivation rules used in
a proof. For instance, an OBDD(∧,∃,∀) derivation is OBDD derivation using
only conjunction, projection, and universal reduction.

A Proof System for Symbolic Quantifier Elimination

We can use symbolic QBF proof systems to study the QBF solver QBDD pro-
posed by Pan and Vardi [31]. Given a PCNF formula Φ = Q1x1 . . . Qnxn.ϕ,
QBDD maintains buckets S1, . . . , Sn of OBDDs such that xi is the rightmost
variable (with respect to the quantifier prefix) occurring in the OBDDs of Si.
Initially, the Si are the sets of clauses in ϕ that have xi as their rightmost vari-
able, represented as OBDDs. QBDD proceeds by eliminating variables from the
inside out, starting with the variable xn. To eliminate the variable xi, it com-
putes the conjunction of OBDDs in bucket Si, then removes xi from the result
by quantifying either existentially or universally, depending on the quantifier Qi.
The resulting OBDD is then added to the correct bucket. The procedure termi-
nates with a constant 1 or constant 0 OBDD, depending on whether the QBF Φ
is true or false. Since any universal variable is innermost upon elimination, a run
of QBDD corresponds to an OBDD(∧,∃,∀)-derivation.

Let tower(k, 0) := 2k and tower(k, q + 1) := tower(2k, q). In this subsection,
we prove the following result:

Proposition 6. QBDD solves PCNF formulas Φ with q quantifier blocks and
pathwidth k in time tower(k, q + 1) poly(|Φ|).

Since, as stated above, the runs of QBDD are proofs in OBDD(∧,∃,∀), we
directly get the following result on the strength of OBDD(∧,∃,∀).

Corollary 7. Every false PCNF Φ with q quantifier width and pathwidth k has
an OBDD(∧,∃,∀)-refutation of size tower(k, q + 1)poly(|Φ|).

As the basic tool, we use the following variable elimination result for OBDDs.

Proof Complexity of Symbolic QBF Reasoning 405

Lemma 8 ([13]). Let B be an OBDD of width w and let X be a subset of the
variables in B. Then there is an OBDD B′ of width 2w that encodes ∃X.B with
the same variable order as B. Moreover B′ can be computed in time 2wpoly(|B|).

Note that since OBDD can be negated without increase of the representation
size, we get that the same result is true for ∀-elimination. Iterating this result
directly yields the following corollary.

Corollary 9. Let B be an OBDD of width w and let Q = Q1X1 . . . QqXq a
quantifier prefix with q blocks. Then the QBF Q1X1 . . . QqXq.B has an OBDD
representation B′ of width tower(w, q). Moreover, B′ can be computed in time
tower(w, q)poly(|B|).
An analogous construction for the more general representation of structured
DNNF [33] is at the heart of the treewidth based QBF-algorithm in [13].

We can now proceed with the proof of Proposition 6.

Proof (of Proposition 6). Let Φ = Q1X1 . . . QqXq.ϕ, and let (P, λ) be a path
decomposition of width k of the primal graph of ϕ. In [20] it is shown that there
is a variable order π depending only on (P, λ) such that there is a complete
OBDD B of width 2k computing ϕ. Let Pi :=

∧
j∈[i] Si. Then Pi is the conjunc-

tion of some clauses of ϕ, so (P, λ) yields a path decomposition of Pi of width at
most k. It follows that for every i ∈ [q], there is a complete OBDD representation
of Pi with order π and width at most 2k.

We claim that all OBDDs that are computed by QBDD have width at most
tower(k, q + 1). Note first that all Si have pathwidth at most k as above, so we
can compute all of them by only conjoining OBDDs with order π and of width
at most 2k. Now whenever we eliminate a variable, the result is a a function
that we get from Pi by eliminating some variables. But since these variables are
only in q quantifier blocks and we eliminate from the inside out, we have by
Corollary 9 that the width of the result is at most tower(2k, q) = tower(k, q +1).
Noting that a complete OBDD of width w in n variables has size at most wn
and using canonicity and Lemma 2 in all steps completes the proof. ��

4 Relation to Other Proof Systems

In this section, we show that OBDD(∧,∃,∀) is separated from several clausal
QBF proof systems. These results are obtained by identifying classes of QBFs
that are hard for these proof systems but having bounded pathwidth and a fixed
number of quantifier blocks.

We first consider Q-Resolution [27], QU-Resolution [21], and Long-Distance
Q-Resolution [2,19], which can be further generalized and combined into Long-
Distance QU-Resolution [3].2 QU-Resolution allows resolution on universal piv-
ots, Long-Distance Q-Resolution can derive tautological clauses in certain cases,

2 This system is typically referred to as LQU+-Resolution.

406 S. Mengel and F. Slivovsky

and Long-Distance QU-Resolution additionally permits the derivation of tauto-
logical clauses by resolution on universal pivots.

For all the proof systems above, we define the size of a refutation to be the
number of clauses in it. As usual, we say a proof system P p-simulates another
proof system P′ if for every proof Π ′ in P′ there is a proof Π in P such that the
length of Π is polynomial in that of Π ′.

Proposition 10. OBDD(∧,∃,∀) p-simulates QU-Resolution.

Proof. We simulate QU-resolution line by line, using the fact that all clauses
have small OBDD representations. An application of universal reduction in QU-
resolution that removes literal l corresponds to an application of universal reduc-
tion in an OBDD derivation that replaces l by 0. Resolution of clauses C1 ∨ x
and ¬x ∨ C2 can be simulated by first computing an OBDD L′ representing
(C1 ∨ x) ∧ (¬x ∨ C2). Each clause C can be represented by an OBDD of size
O(|C|), for any variable ordering, so by Lemma 2, the OBDD L′ can be com-
puted in time polynomial in the size of the premises. To obtain an OBDD L
representing the resolvent C1 ∨ C2, we simply project out the pivot x, that is,
L = ∃x.L′.

��
Lower bounds against QU-Resolution can be obtained by lifting lower bounds

against bounded-depth circuits and decision lists [6,8]. This is because a deci-
sion list [36] encoding a universal winning strategy can be efficiently extracted
from QU-Resolution refutations [2], and decision lists can be succinctly repre-
sented by bounded-depth circuits. For instance, the class QParity of formulas
with the parity function as a unique universal winning strategy is hard for QU-
Resolution [8]. This class was modified so as to also demonstrate hardness for
Long-Distance QU-Resolution, resulting in the class of formulas defined below.

QUParityn := ∃x1 . . . ∃xn∀z1∀z2∃t2 . . . ∃tn.

xoru(x1, x2, t2, z1, z2) ∧ xoru(x1, x2, t2,¬z1,¬z2) ∧
n∧

i=3

(xoru(ti−1, xi, ti, z1, z2) ∧ xoru(ti−1, xi, ti,¬z1,¬z2)) ∧

(z1 ∨ z2 ∨ tn) ∧ (¬z1 ∨ ¬z2 ∨ ¬tn),

where

xoru(o1, o2, o, l1, l2) := (l1 ∨ l2 ∨ ¬o1 ∨ o2 ∨ o) ∧ (l1 ∨ l2 ∨ o1 ∨ ¬o2 ∨ o) ∧
(l1 ∨ l2 ∨ ¬o1 ∨ ¬o2 ∨ ¬o) ∧ (l1 ∨ l2 ∨ o1 ∨ o2 ∨ ¬o).

We restate the following result without a proof.

Theorem 11 ([8]). QUParityn requires exponential-size refutations in Long-
Distance QU-Resolution.

At the same time, the QUParity formulas have a very simple structure that
can be exploited by symbolic proof systems.

Proof Complexity of Symbolic QBF Reasoning 407

Lemma 12. The class {QUParityn}n∈N has bounded pathwidth.

Proof. Let n ∈ N and consider the path P = p1, . . . , pn and node labeling λ such
that λ(p1) = {x1, x2, t2, z1, z2}, λ(pi) = {ti, xi+1, ti+1, z1, z2} for 2 ≤ i < n, as
well as λ(pn) = {z1, z2, tn}. It is straightforward to verify that (P, λ) is a path
decomposition of QUParityn, and its width is 4. ��

Since QUParityn only has three quantifier blocks, we obtain the following
results by Proposition 6 and Theorem 11.

Corollary 13. The formulas QParityn have polynomial-size OBDD(∧,∃,∀)
refutations.

Theorem 14. QU-Resolution does not p-simulate OBDD(∧,∃,∀).

Next, we look at the expansion-based proof system IR-calc [8]. For classes of
formulas with a bounded number of quantifier blocks, lower bounds against IR-
calc can be obtained by considering the strategy size, which is the minimum
range of any universal winning strategy (as a function mapping assignments of
existential variables to assignments of universal variables) [4].

Definition 15 (Strategy Size [4]). The strategy size S(Φ) of a false QBF Φ
is the minimum cardinality of the range of a universal winning strategy for Φ.

Theorem 16 ([4]). A false PCNF formula Φ with at most k universal quantifier
blocks requires IR-calc proofs of size k

√
S(Φ).

We use this correspondence to establish a proof size lower bound for the following
class of formulas, which is a variant of the equality formulas [5] obtained by
splitting the “long” clause (t1 ∨ . . . ∨ tn) into smaller clauses using auxiliary
variables ei:

EQ′
n :=∃x1 . . . ∃xn∀u1 . . . ∀un∃t1 . . . ∃tn∃e1 . . . ∃en.

n∧

i=1

((xi ∨ ui ∨ ¬ti) ∧ (¬xi ∨ ¬ui ∨ ¬ti)) ∧

(t1 ∨ e1) ∧
n−1∧

i=2

(¬ei−1 ∨ ti ∨ ei) ∧ (¬en−1 ∨ tn)

Lemma 17. EQ′
n is false and the function f : σ �→ f(σ) with f(σ)(ui) = σ(xi)

for 1 ≤ i ≤ n is the unique universal winning strategy.

Proof. Given any assignment σ of the existential variables xi, applying the joint
assignment σ ∪ f(σ) results in unit clauses

∧n
i=1(¬ti), and unit propagation

derives a contradiction. Thus f is a universal winning strategy and EQ′
n is false.

Consider an assignment σ of the xi together with an assignment τ of the ui such
that σ(xi) �= τ(ui) for some i. It is not difficult to see that the formula obtained
by applying σ∪τ can be satisfied by assigning the ti and ei appropriately, so the
universal player can only win the evaluation game if they play according to f .

��

408 S. Mengel and F. Slivovsky

Proposition 18. Any IR-calc refutation of EQ′
n has size Ω(2n).

Proof. By Lemma 17 the function f is the unique universal winning strategy for
EQ′

n, and the cardinality of its range is 2n. Thus 2n = S(EQ′
n) is a proof size

lower bound for IR-calc by Theorem 16. ��
Lemma 19. The class {EQ′

n}n∈N has bounded pathwidth.

Proof. For n ∈ N, we construct a path decomposition (P, λ) of EQ′
n as follows.

We let P = p1, . . . , pn and define the labeling λ as λ(p1) = {x1, u1, t1, e1},
λ(pi) = {ei−1, xi, ui, ti, ei} for 2 ≤ i ≤ n − 1, and λ(pn) = {en−1, xn, un, tn}. ��
Corollary 20. The formulas EQ′

n have polynomial-size OBDD(∧,∃,∀) refuta-
tions.

Theorem 21. IR-calc does not p-simulate OBDD(∧,∃,∀).

5 A Lower Bound on OBDD Refutations

In this section, we present a technique for proving lower bounds on the size of
OBDD-proofs even with the entailment (|=) rule. We first show that such proofs
admit efficient extraction of universal winning strategies as OBDD-decision lists,
a model which can in turn be efficiently transformed into rectangle decision lists.
We then use a result by Impagliazzo and Williams [24] to show that lower bounds
for such decision lists reduce to size bounds of rectangles for Boolean functions.

While the variable order must be the same for all OBDDs appearing in an
OBDD-proof, it can be chosen arbitrarily so as to minimize proof size. To derive
a lower bound using the method sketched above, we thus have to construct a
function that does not have large monochromatic rectangles with respect to any
balanced partition of its arguments. We obtain such a function as a generalization
of the well-known inner product function.

5.1 From OBDD Proofs to Rectangle Decision Lists

Definition 22. Let C be a class of Boolean functions. A C-decision list of
length s is a sequence (L1, c1), . . . , (Ls, cs) where the ci ∈ {0, 1} are truth values
and the Li ∈ C are circuits, and Ls computes the constant function 1. Let V
be the set of variables occurring in the circuits Li. The decision list computes a
function f : {0, 1}V → {0, 1} as follows. Given an assignment τ : V → {0, 1},
let i = min{1 ≤ j ≤ s | Lj(τ) = 1}. The we have f(τ) = ci.

A (w, π)-OBDD-decision list is a C-decision list where C is the class of Boolean
functions computed by π-OBDDs of maximum width w. Similarly, for a partition
(X,Y) of a set V of variables, an (X,Y)-rectangle decision list is a C-decision
list where C is the class of rectangles with respect to (X,Y).

The next result states that OBDD-decision lists can be efficiently extracted
from OBDD-proofs. Due to space constraints, we omit the proof.

Proof Complexity of Symbolic QBF Reasoning 409

Theorem 23 (Strategy Extraction [2,7]). There is a linear-time algorithm
that takes a π-OBDD-refutation of a PCNF formula Φ and outputs a family
of (w, π)-OBDD-decision lists computing a universal winning strategy for Φ,
where w is the width of the refutation.

Lemma 24. If there is a (w, π)-OBDD-decision list of length s computing a
function f : {0, 1}V → {0, 1}, and (X,Y) is a bipartition of V such that X is
the set of variables appearing in a prefix of π, then there is an (X,Y)-rectangle
decision list of length w(s − 1) + 1 computing f .

Proof. Let (L1, c1), . . . , (Ls, cs) be a (w, π)-OBDD-decision list computing func-
tion f : {0, 1}V → {0, 1}, and let (X,Y) be a bipartition of V such X corresponds
to the variables in a prefix of π. By Theorem 4, each OBDD Li for 1 ≤ i < s
is equivalent to a disjunction

∨w
j=1 Rij(V) of rectangles with respect to (X,Y).

We construct an (X,Y)-rectangle decision list by replacing each pair (Li, ci) for
1 ≤ i < s by the sequence (Ri1, ci), . . . , (Riw, ci). We can simply append (Ls, cs)
to this sequence since the constant Ls trivially is a rectangle. The resulting
(X,Y)-rectangle decision list computes f and has length w(s − 1) + 1. ��

5.2 From Rectangle Decision Lists to Communication Complexity

We next use a result of Impagliazzo and Williams [24] to prove lower bounds for
rectangle decision lists. The following definition has been slightly simplified for
our setting.

Definition 25. Let f be a Boolean function on variables V and let Π = (X,Y)
be a partition of V . An AND-protocol for f with partition Π is the following: two
players are given an assignment to X and Y , respectively, and want to compute f
on the joint assignment. To this end, they play in several rounds. In each round,
they deterministically compute one bit each and send it to a third party. The
third party computes the conjunction of the two bits and sends it to the players.
If the conjunction evaluates to 1, then the protocol ends and the players have to
output the value of f on the given input.

The length of the AND-protocol is the maximal number of rounds the players
have to play to compute f taken over all possible inputs for f .

AND-protocols are interesting for us because of the following simple connec-
tion already observed without proof by Chattopadhyay et al. [14].

Proposition 26. Let f be a function in variables V and let Π be a partition
of V . If f is computed by a rectangle decision list of length s in which all rect-
angles have the partition Π, then there is an AND-protocol for ϕ with partition
Π of length at most s.

Proof. The players simply evaluate the rectangle decision list: for every line
(Ri, ci) where Ri = Ri,1(X1) ∧ Ri,2(X2), the players evaluate Ri,1 and Ri,2

on their part of the input individually. Then the third party gives them the

410 S. Mengel and F. Slivovsky

conjunction, so the value of the rectangle on the input. If it is 1, then the players
know that f evaluates to ci on their input. ��

Lower bounds on the length of AND-protocols can be shown thanks to the
following result from [24].

Theorem 27. Let f be a function in variables V and let Π be a balanced par-
tition of V . If f has an AND-protocol with partition Π of length s, then there
is a monochromatic rectangle with respect to f with partition Π of size at least
1

4es2|V |.

5.3 A Function with only Small Monochromatic Rectangles

With Theorem 27, showing lower bounds for rectangle decision lists, and
thus for OBDD-refutations, boils down to showing that functions do not have
larger monochromatic rectangles. Such function are known in the literature, see
e.g. [28], but all results that we are aware of are for a fixed partition of the vari-
ables. However, since we want to show lower bounds independent of the choice
of the variable order used in the OBDD-refutation, we need functions that have
no big monochromatic rectangles for any balanced partition of their variables.
We will construct such functions in this section.

The following result will be a building block in our construction.

Proposition 28. Let F :=
⊕

i∈[n] gi(xi, yi) where every function gi is either
gi = xi∧yi, gi = ¬xi∧yi, gi = xi∧¬yi, or gi = xi∨yi. Then every monochromatic
rectangle of F has size at most 2n.

To show Proposition 28, we will use the following well known result from
communication complexity: Let IP(x1, . . . , xn, y1, . . . , yn) be the inner product
function defined as IP(x1, . . . , xn, y1, . . . , yn) :=

⊕
i∈[n] xi · yi where · denotes

the multiplication over {0, 1} or equivalently conjunction. The following is well
known, see e.g. [28].

Lemma 29. All monochromatic rectangles of IP(x1, . . . , xn, y1, . . . , yn) have
size at most 2n.

It is easy to see that the function F from Proposition 28 is a generalization
of the inner product function. We will see that one can easily lift the bound on
monochromatic rectangles.

Proof (of Proposition 28). First observe that xi ∨ yi = 1 ⊕ (¬xi ∧ ¬yi), so sub-
stituting every occurrence of xi ∨ yi by ¬xi ∧ ¬yi will only change the color but
not the size of any monochromatic rectangle. So in the remainder, we assume
that there is no gi = xi ∨ yi in F .

In a next step, we substitute all occurrences of negated variables by the
respective variables without the negation. Call the resulting formula F ′. This
substitution is clearly a bijection σ between assignments that maintains the
value, i.e., F (X,Y) = F ′(σ(X,Y)). Since σ acts on the variables independently,

Proof Complexity of Symbolic QBF Reasoning 411

we have that for every monochromatic rectangle A × B of F , the set σ(A × B)
is a monochromatic rectangle as well and A × B and σ(A × B) have the same
size. Now observing that F ′ is in fact the inner product function completes the
proof using Lemma 29. ��

We now introduce a generalization of IP with respect to an underlying graph
structure. So let X be a set of Boolean variables and let G be a graph with
vertex set X and edge set E. Then we define

IPG(X) =
⊕

xy∈E

x · y.

Note that with this definition IP = IPMn
where Mn is a matching with n edges.

For the statement of the following lemma, recall that a matching is induced if it
can be obtained as the subgraph induced by the endpoints of its edges.

Lemma 30. Let G = (X,E) be a graph with n variables. Let {e1, . . . , em} be an
induced matching of G and let (X1,X2) be a partition of X such that for every ei

one of the end points is in X1 and one is in X2. Then every monochromatic
rectangle for IPG respecting the partition (X1,X2) has size at most 2n−m.

Proof. Let X ′ be the variables that are no end point in any of the ei. Fix an
assignment a : X ′ → {0, 1}. Let ei = xiyi and assume that xi ∈ X1 while
yi ∈ X2. Let IPG,a be the function in X ′′ := {xi, yi | i ∈ [m]} that we get from
IPG by plugging a into the variables X ′. Let gi be the function that, given an
assignment ai to xi and yi, counts the number of edges e modulo 2 that are
incident to at least one of xi and yi and such that ai ∪ a assigns 1 to both end
points of e. Clearly, IPG,a =

⊕
i∈[m] gi(xi, yi)⊕ca where ca ∈ {0, 1} is a constant

depending only on a. We will show that, up to the constant ca which does not
change the size of monochromatic rectangles, the function IPG,a has the form
required by Proposition 28.

To this end, let us analyze gi. Let N ′(xi) be the neighbors of xi different
from yi and let N ′(yi) be the neighbors of yi different from xi. Let pa(xi) be the
parity of variables in N ′(xi) that are assigned 1 by a and let pa(yi) be defined
analogously for yi. Then gi = (pa(xi)∧xi)⊕ (pa(yi)∧ yi)⊕ (xi ∧ yi). We analyze
the different cases:

– If pa(xi) = 0 and pa(yi) = 0, then gi(xi, yi) = xi ∧ yi.
– If pa(xi) = 1 and pa(yi) = 0, then gi(xi, yi) = xi⊕(xi∧yi). If xi = 0, then this

term is 0, so in all models we must have xi = 1. But gi(1, yi) = 1 ⊕ yi = ¬yi,
so gi(xi, yi) = xi ∧ ¬yi.

– If pa(xi) = 0 and pa(yi) = 1, then gi(xi, yi) = ¬xi ∧ yi is obtained by a
symmetric argument.

– Finally, if pa(xi) = 1 and pa(yi) = 1 then gi(xi, yi) = xi⊕yi⊕(xi∧yi). Clearly,
if xi = yi = 0, then gi evaluates to 0. Moreover, all other assignments evaluate
to 1. So gi(xi, yi) = xi ∨ yi.

Thus, in any case, gi is of the form required by Proposition 28. It follows
that every monochromatic rectangle of IPG,a has size at most 2m.

412 S. Mengel and F. Slivovsky

Now consider a monochromatic rectangle R in IP. Then, for every assign-
ment a : X ′ → {0, 1}, restricting the variables X ′ according to a must give a
monochromatic rectangle Ra as well. It follows that

|R| =
∑

a:X′→{0,1}
|Ra|.

But as we have seen, |Ra| ≤ 2m. Moreover, there are 2|X′| = 2n−2m assignments
to X ′ and thus |R| ≤ 2n−2m2m = 2n−m as claimed. ��
Theorem 31. Let G = (X,E) be a graph with expansion d, degree Δ and n
vertices. Let (X1,X2) be a b-balanced partition of X. Then all monochromatic

(X1,X2)-rectangles have size at most 2n
(
1− nbd2

Δ2

)
.

Proof. We show that there is an induced matching of size nbd2

Δ2 as in Lemma 30.
Then the result follows directly.

Assume w.l.o.g. that |X1| ≤ |X2|. Then, by the expansion property of G,
there are at least d|X1| neighbors of X1 in X2. Call these neighbors X ′

2. Note
that X ′

2 has at least d min(|X|
2 , |X ′

2|) ≥ d2|X1| neighbors in X1 where the latter
inequality is true because d ≤ 1. Denote the set of vertices in X1 that have a
neighbor in X ′

2 by X ′
1. Then |X ′

1| ≥ d2|X1|.
We now construct a matching between X ′

1 and X ′
2. To this end, first delete

all vertices not in X ′
1 ∪ X ′

2 from G. We then choose a matching iteratively as
follows: pick a vertex xi ∈ X1 that has not been eliminated and that still has a
neighbor yi in X2. We add xiyi to the matching and delete xi and yi and all their
neighbors from G. If there are now any vertices in Xi that have no neighbors
outside of Xi anymore, we delete those as well. We continue until G is empty.

We now analyze how many rounds we can make at least. First note that we
delete at most 2Δ − 2 neighbors of xi and yi. Moreover, each of them can result
in at most Δ−1 vertices that have no neighbor on the other side of the partition
anymore. So overall we delete at most 2Δ+(2Δ−2)(Δ−1) = 2Δ2−2Δ+2 ≤ 2Δ2

vertices. Since we start with at least 2d2|X1| ≥ 2nbd2 vertices, we can make 2nbd2

2Δ2

iterations before running out of vertices. ��

5.4 Putting It All Together

In this section, we will finally show the promised lower bound for OBDD-
refutations by putting together the results of the last sections.

Theorem 32. There is an infinite sequence (Φn) of false PCNF formulas such
that |Φn| = O(n) and every OBDD-refutation of Φn has size 2Ω(n).

Proof. Choose a family of graphs of degree at most Δ and expansion d for some
constants Δ and d. Such families are well known to exist, see e.g. [22]. Out of
this family, choose a sequence (Gn) such that Gn has n vertices Xn. Now let
ϕ′

n = ¬IPGn
. Clearly, ϕ′

n can be computed by a Boolean circuit Cn of size O(n).

Proof Complexity of Symbolic QBF Reasoning 413

We apply Tseitin-transformation on that circuit to get a CNF formula ϕn that
has as satisfying assignments exactly the values of all gates in Cn under an
assignment to inputs. Note that ϕn has variables for all non-inputs of Cn and
thus in particular also for the output; let z be the variable corresponding to the
output of Cn and let Y denote the remaining variables of ϕn introduced in the
Tseitin-transformation. Then var(ϕn) = Xn ∪ Y ∪ {z}. Moreover, ϕn has size
O(n). Now define

Φn = ∃Xn∀z∃Y ϕn.

Then the only universal winning strategy fz is to return for every assignment a
to Xn the negation of the value that Cn evaluates to under a. But then, using
Theorem 23 and Lemma 24, from every refutation of size s and width w of Φn,
we get a rectangle decision list of length s′ = w(s−1)+1 for ¬Cn = IPGn

. Using
Proposition 26 and Theorem 27, we get that IPGn

has a monochromatic rectangle
of size 1

4es′ 2|Xn| = 1
4es′ 2n. But all monochromatic rectangles in IPGn

have size

at most 2n
(
1− nbd2

Δ2

)
by Theorem 31. Since d, b and Δ are positive constants, it

follows that s′ = 2Ω(n). But then at least one of s and w are in 2Ω(n), which
gives the desired size bound. ��

6 Conclusion

We have introduced OBDD-refutations that model symbolic OBDD-based rea-
soning for QBF. We have shown that these systems, already in the form that was
used (implicitly) in a symbolic QBF solver [31], are surprisingly strong as they
allow solving instances that are hard for the proof systems underlying state-
of-the-art QBF solvers. In view of this, it may be worthwhile to revisit these
techniques in practice. There has been considerable progress in the computation
of tree decompositions over the last few years (see e.g. [17]) that could benefit a
symbolic approach. Moreover, it could be interesting to use progress in knowl-
edge compilation on generalizations of OBDDs that have similar properties but
can be exponentially more succinct [16]. While we consider it unlikely that such
an approach would strictly beat current solvers, it might be sufficiently com-
plementary to substantially improve the performance of a portfolio, much like
the recently developed ADD-based symbolic model counter ADDMC has been
shown to be highly complementary to DPLL-based state-of-the-art solvers [18].

We have also demonstrated limitations of OBDD-refutations by proving
exponential lower bounds. Our results require that all OBDDs appearing in
a proof have the same variable order, but practical OBDD libraries such as
CUDD [37] allow for dynamic variable reordering. While it is not clear how to
use this to give more efficient refutations in an implementation of a QBF solver,
it would be interesting to see if we can still show lower bounds in this gener-
alized setting. For refutations with variable reordering, the strategy extraction
step and the transformation to rectangle decision lists go through unchanged,
but there seems to be no equivalent of Theorem 27 for rectangle decision lists
with varying partitions. It would be interesting to develop new techniques to
show lower bounds in this setting.

414 S. Mengel and F. Slivovsky

References

1. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30201-8 9

2. Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications. For-
mal Methods Syst. Des. 41(1), 45–65 (2012)

3. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 12

4. Beyersdorff, O., Blinkhorn, J.: Lower bound techniques for QBF expansion. Theory
Comput. Syst. 64(3), 400–421 (2020)

5. Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: A semantic
technique for hard random QBFs. Log. Methods Comput. Sci. 15(1) (2019)

6. Beyersdorff, O., Blinkhorn, J., Mahajan, M.: Hardness characterisations and size-
width lower bounds for QBF resolution. In: Hermanns, H., Zhang, L., Kobayashi,
N., Miller, D. (eds.) LICS 2020: 35th Annual ACM/IEEE Symposium on Logic
in Computer Science, Saarbrücken, Germany, 8–11 July 2020, pp. 209–223. ACM
(2020)

7. Beyersdorff, O., Bonacina, I., Chew, L., Pich, J.: Frege systems for quantified
boolean logic. J. ACM 67(2), 9:1–9:36 (2020)

8. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theory 11(4), 26:1–26:42 (2019)

9. Biere, A.: Resolve and expand. In: SAT 2004 - The Seventh International Confer-
ence on Theory and Applications of Satisfiability Testing, Vancouver, BC, Canada,
10–13 May 2004, Online Proceedings (2004)

10. Bloem, R., Braud-Santoni, N., Hadzic, V., Egly, U., Lonsing, F., Seidl, M.:
Expansion-based QBF solving without recursion. In: Bjørner, N., Gurfinkel, A.
(eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin,
TX, USA, 30 October–2 November 2018, pp. 1–10. IEEE (2018)

11. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

12. Buss, S., Itsykson, D., Knop, A., Sokolov, D.: Reordering rule makes OBDD proof
systems stronger. In: Servedio, R.A. (ed.) 33rd Computational Complexity Con-
ference, CCC 2018, San Diego, CA, USA, 22–24 June 2018, vol. 102 of LIPIcs, pp.
16:1–16:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

13. Capelli, F., Mengel, S.: Tractable QBF by knowledge compilation. In: Niedermeier,
R., Paul, C. (eds.) 36th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2019, 13–16 March 2019, vol. 126 of LIPIcs, pp. 18:1–18:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

14. Chattopadhyay, A., Mahajan, M., Mande, N.S., Saurabh, N.: Lower bounds for
linear decision lists. Chic. J. Theor. Comput. Sci. 2020 (2020)

15. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symb. Log. 44(1), 36–50 (1979)

16. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16–22 July 2011,
pp. 819–826. IJCAI/AAAI (2011)

https://doi.org/10.1007/978-3-540-30201-8_9
https://doi.org/10.1007/978-3-319-09284-3_12

Proof Complexity of Symbolic QBF Reasoning 415

17. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameterized
algorithms and computational experiments challenge: the second iteration. In: Lok-
shtanov, D., Nishimura, N. (eds.) 12th International Symposium on Parameterized
and Exact Computation, IPEC 2017, Vienna, Austria, 6–8 September 2017, vol.
89 of LIPIcs, pp. 30:1–30:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017)

18. Dudek, J.M., Phan, V., Vardi, M.Y.: ADDMC: weighted model counting with
algebraic decision diagrams. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February
2020, pp. 1468–1476. AAAI Press (2020)

19. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and
strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp,
A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291–308. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-45221-5 21

20. Ferrara, A., Pan, G., Vardi, M.Y.: Treewidth in verification: local vs. global. In:
Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 489–
503. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191 34

21. van Gelder, A.: Contributions to the theory of practical quantified boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 47

22. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Am. Math. Soc. 43(4), 439–561 (2006)

23. Hoos, H.H., Peitl, T., Slivovsky, F., Szeider, S.: Portfolio-based algorithm selection
for circuit QBFs. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 195–209.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9 13

24. Impagliazzo, R., Williams, R.: Communication complexity with synchronized
clocks. In: Proceedings of the 25th Annual IEEE Conference on Computational
Complexity, CCC 2010, Cambridge, Massachusetts, USA, 9–12 June 2010, pp.
259–269. IEEE Computer Society (2010)

25. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

26. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Yang, Q.,
Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July
2015, pp. 325–331. AAAI Press (2015)

27. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

28. Eyal, K., Noam, N.: Communication Complexity. Cambridge University Press,
Cambridge (1997)

29. Lonsing, F., Biere, A.: Depqbf: a dependency-aware QBF solver. J. Satisf. Boolean
Model. Comput. 7(2–3), 71–76 (2010)

30. Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. In:
Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 276–294. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98334-9 19

31. Pan, G., Vardi, M.Y.: Symbolic decision procedures for QBF. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 453–467. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30201-8 34

32. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell.
Res. 65, 180–208 (2019)

https://doi.org/10.1007/978-3-642-45221-5_21
https://doi.org/10.1007/11591191_34
https://doi.org/10.1007/978-3-642-33558-7_47
https://doi.org/10.1007/978-3-319-98334-9_13
https://doi.org/10.1007/978-3-319-98334-9_19
https://doi.org/10.1007/978-3-540-30201-8_34
https://doi.org/10.1007/978-3-540-30201-8_34

416 S. Mengel and F. Slivovsky

33. Pipatsrisawat, K., Darwiche, A.: New compilation languages based on structured
decomposability. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
13–17 July 2008, pp. 517–522. AAAI Press (2008)

34. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified boolean
formulas. Constraints An. Int. J. 14(1), 80–116 (2009)

35. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Kaivola, R., Wahl, T.
(eds.) Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas,
USA, 27–30 September 2015, pp. 136–143. IEEE (2015)

36. Ronald, L.: Rivest. Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)
37. Somenzi, F.: CUDD: CU decision diagram package-release 2.4. 0. University of

Colorado at Boulder (2009)
38. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre,

D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 24

39. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000)
40. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability

solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM
International Conference on Computer-aided Design, ICCAD 2002, San Jose, Cal-
ifornia, USA, 10–14 November 2002, pp. 442–449. ACM/IEEE Computer Society
(2002)

https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-319-40970-2_24

XOR Local Search for Boolean Brent
Equations

Wojciech Nawrocki1(B) , Zhenjun Liu1, Andreas Fröhlich2 , Marijn J.H.
Heule1 , and Armin Biere2

1 Carnegie Mellon University, Pittsburgh, USA
wnawrock@andrew.cmu.edu, zhenjunl@andrew.cmu.edu, mheule@andrew.cmu.edu

2 Johannes Kepler University, Linz, Austria
andreas.froehlich@jku.at, biere@jku.at

Abstract. Combining clausal and XOR reasoning has been studied for
almost two decades, in particular in the context of CDCL and look-
ahead, but not in classical local search. To stimulate research in this
direction, we propose to standardize a hybrid format, called XNF, which
allows both clauses and XORs. We implemented a tool to extract XOR
constraints from a CNF, simplify them, and produce an XNF formula.
The usefulness of XNF formulas is demonstrated by focusing on the
impact of combined clausal and XOR reasoning on local search. Native
support for XOR facilitates satisfying any falsified long XOR using a
single flip, similarly to satisfying a falsified clause. When combined with
XOR-based heuristics, local search performance is significantly improved
on matrix multiplication challenges which are hard for CDCL.

1 Introduction

Two of the most successful approaches to SAT solving are Conflict-Driven Clause
Learning (CDCL) and Stochastic Local Search (SLS). Modern CDCL solvers
are very sophisticated and able to efficiently solve a broad range of problems.
In contrast, the idea of SLS is simple yet works well on certain formulas. Also
look-ahead solvers have been quite successful in the past, but suffer from having
few applications that are not already successfully covered by CDCL.

These solving paradigms usually operate on conjunctive normal form (CNF)
and thus expect their input to be a set of clauses. While in principle all problems
can be translated into pure CNF, additionally allowing the use of XOR con-
straints can provide a more natural representation, which in turn can possibly
lead to more efficient solving approaches. Examples include problems from cryp-
tography, with corresponding formulas often originally denoted in algebraic nor-
mal form, but also all formulas that simply contain parity constraints [4,5,18,31].
Similarly, XOR constraints are important for approximate model counting [13].
As a result, the combination of clausal and XOR reasoning has been consid-
ered an interesting topic and has been studied [37] as well as applied in several
algorithms—usually in the context of CDCL and look-ahead solvers [14,20], with

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 417–435, 2021.
https://doi.org/10.1007/978-3-030-80223-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_29&domain=pdf
http://orcid.org/0000-0002-8839-0618
http://orcid.org/0000-0002-0698-3621
http://orcid.org/0000-0002-5587-8801
http://orcid.org/0000-0001-7170-9242
https://doi.org/10.1007/978-3-030-80223-3_29

418 W. Nawrocki et al.

CryptoMiniSAT probably being the most prominent example [38]. Nevertheless,
most state-of-the-art solvers still do not support XOR reasoning.

Research on XOR constraints in the context of SLS is sparse and, aside
from loosely related work on gates [6,33], satisfiability modulo theories [17],
and continuous local search [29,30], there have been few successful attempts on
improving SLS solvers by incorporating support for non-CNF representations. In
particular, up-to-date there is no SLS algorithm that combines clausal and XOR
reasoning during the search process by supporting native XOR constraints.

Moreover, SLS solvers have different strengths than other types of solvers.
For instance, they are considered to work well on random k−SAT and satis-
fiable, hard combinatorial problems. On some crafted combinatorial problems
such as VanDerWaeden pd 3k and battleship, the SLS solver Swcca outper-
forms the CDCL solver Glucose in both success rate and average time [12].
Another well-known example is the boolean Pythagorean Triples problem [23]:
the satisfiable [1, 7824] instance can be solved using DDFW local search [24] in
one CPU minute, while complete methods can take years.

A recent problem of interest on which SLS performed particularly well is
related to matrix multiplication [21] expressed as a SAT problem using Boolean
Brent equations [22]. The corresponding matrix multiplication (challenge 1)
benchmarks1, MM-Challenge-1, turn out to be hard for CDCL solvers, but could
be solved by the SLS solver YalSAT. This is particularly surprising since the
benchmark formulas contain a large number of XOR constraints which, encoded
into CNF, should (and actually do) hinder the performance of SLS solvers.

Why do we consider CNF-encoded XOR constraints to be problematic for
SLS solvers? To avoid combinatorial explosion in the number of clauses, the
Tseitin transformation has to be used, particularly for long XOR constraints.
While shortening the formula, this encoding introduces a large number of aux-
iliary variables which, roughly speaking, obscure the XOR constraint from the
solver’s view and drastically affect the neighbourhood of assignments visited dur-
ing the local search. We will give a detailed explanation in Sect. 2. This observa-
tion, together with the already good performance of SLS on MM-Challenge-1,
provides even more reason to assume that it might be possible to further push
the state-of-the-art by incorporating native XOR support into SLS.

Our Contribution. The core observation on which we base our work is
that XOR constraints fit quite naturally into SLS algorithms. Every time a lit-
eral is flipped, the truth values of all XOR constraints containing the literal get
flipped as well, and the core solver loop can be adapted to do this. To support
this, we extended our input format from CNF to XNF, allowing XORs to exist
as another type of constraint alongside the usual disjunctive clauses. We also
developed a tool cnf2xnf, which extracts XOR constraints from a formula given
in CNF and saves the result in XNF format, as well as a related tool extor which
reconstructs solutions for the original CNF from solutions for the XNF. Both
algorithms are described in Sect. 3. Our main contribution is xnfSAT, an SLS
solver based on the state-of-the-art YalSAT [8] solver—we outline its implemen-

1 https://github.com/marijnheule/matrix-challenges.

https://github.com/marijnheule/matrix-challenges

XOR Local Search for Boolean Brent Equations 419

tation in Sect. 4. We then present experimental results in Sect. 5 and show that
xnfSAT achieves significant performance improvements on all benchmarks within
MM-Challenge-1, thus confirming the usefulness of our combined representation
and pushing the state-of-the-art on these challenging instances.

2 XOR Constraints

An SLS solver starts with a complete assignment of truth values to variables.
While the formula is not satisfied, it loops flipping literals chosen according to
some probability distribution. The choice of this distribution forms the heart of
an SLS solver [2].

To see why CNF-encoded XOR constraints can negatively impact the per-
formance of SLS solvers, let us first summarize briefly a simplified version of the
SLS algorithm as used in YalSAT [8].

Algorithm 1 outlines the high-level structure of YalSAT, omitting certain
details such as restarts and corresponding strategy changes. The basic loop orig-
inates from WalkSAT [34]. The solver first builds up internal data structures,
preprocesses the formula via unit propagation, and sets an initial truth-value
assignment. It then loops until a solution is found. On each iteration, it picks a
falsified clause and flips the truth value of a literal in it. Details of this process
will be outlined in Sect. 4—for now, a bird’s eye view suffices.

Algorithm 1. Outline of a typical WalkSAT-based solver
1: for clause in input file do
2: parse and store clause to data structure
3: end for
4: preprocess formula
5: α ← complete initial assignment of truth values
6: while there exists a clause falsified by α do
7: C ← pickUnsatClause()
8: x ← pickV ar(C)
9: α ← α with x flipped

10: update solver state
11: end while

CNF Encodings

Let us now look at how this algorithm interacts with the CNF encoding of XOR
constraints. The direct encoding of an XOR constraint on k variables uses 2k−1

clauses of length k, where each clause consists of variables x1, . . . , xk with an
even number of them negated:

XOR d(x1, x2, . . . , xk) =
∧

even #¬
(±x1 ∨ ±x2 ∨ · · · ∨ ±xk)

420 W. Nawrocki et al.

To avoid an exponential growth in the number of clauses, it is common to use
the Tseitin transformation [40] instead, which recursively translates arbitrary
formulas into CNF by introducing fresh auxiliary variables for its sub-formulas:

f(g(x1, . . . , xk)) = f(y) ∧ (y ↔ g(x1, . . . , xk))

The resulting formula is equisatisfiable to the original one. Due to its recursive
nature and the associative property of certain binary operations, the final CNF
representation can differ in the number of variables and clauses depending on
the structure of the original formula.

We consider two different parameters that describe this structure in the case
of pure XOR constraints and, thus, influence the final CNF representation: the
cutting number and the mode.

The cutting number, roughly speaking, defines the size of the individual slices
that are cut out of an XOR constraint and then encoded in a direct fashion [4].
The smaller the slices (with a minimum of size n = 3), the shorter and fewer the
resulting clauses, since each slice will be encoded into 2n−1 clauses of length n.
However, with larger n, fewer slices are required and, thus, fewer auxiliary vari-
ables need to be introduced.

It is not clear whether there is a universally optimal setting for the cutting
number. Soos and Meel [37] argue that a cutting number of 4 experimentally
turned out to be optimal for their use case in approximate model counting.
In contrast, for some problems in cryptography, it is suggested that a cutting
number of 6 would be the optimal setting for the respective applications [5,10].
In Sect. 5, we analyze results for xnfSAT on CNF benchmarks constructed using
several cutting numbers.

The second parameter, which we call the mode of translation, influences the
fashion in which the XOR constraint is recursively traversed. For the mode, we
distinguish between linear and pooled encodings. While the linear mode might
be considered the standard approach and has been used before [5], we are not
aware of any previous work using the pooled mode—however, a similar approach
for at-most-one constraints has been contributed to Knuth’s book “The Art of
Computer Programming, Volume 4, Fascicle 6: Satisfiability” [27] (p. 134, Ex.
12) by the fourth author.

From an implementational point of view, the difference between the two
modes basically boils down to whether a stack or a queue is used when removing
a chunk of variables from the XOR constraint and adding fresh auxiliary variables
during translation. In particular, a stack will lead to a linear translation, whereas
a queue will produce a pooled one. We can assume k > n, with k being the length
of the XOR constraint and n denoting the cutting number. If this were not the
case, we could simply use the direct encoding. Let XOR l n and XOR p n denote
the linear and the pooled encoding, respectively, with cutting number n:

XOR l n(x1, . . . , xk) = XOR d(x1, . . . , xn−1, y) ∧ XOR l n(y, xn, . . . , xk)
XOR p n(x1, . . . , xk) = XOR d(x1, . . . , xn−1, y) ∧ XOR p n(xn, . . . , xk, y)

Note that XOR chunks (with length n − 1) are always sliced from the left. The
new auxiliary variable in linear mode or pooled mode is then added to the left or

XOR Local Search for Boolean Brent Equations 421

the right of the remaining XOR constraint, respectively. For the sliced chunks,
the position of y does not matter since the direct encoding is not affected by
variable order. To illustrate the practical difference of the two modes, let us take
a closer look at a short example for an XOR constraint of length 6 (for simplicity,
using a fixed cutting number of 3).

Example 1.

XOR l 3(x1, x2, x3, x4, x5, x6)
= XOR d(x1, x2, y1) ∧ XOR l 3(y1, x3, x4, x5, x6)
= XOR d(x1, x2, y1) ∧ XOR d(y1, x3, y2) ∧ XOR l 3(y2, x4, x5, x6)
= XOR d(x1, x2, y1) ∧ XOR d(y1, x3, y2) ∧ XOR d(y2, x4, y3) ∧ XOR l 3(y3, x5, x6)
= XOR d(x1, x2, y1) ∧ XOR d(y1, x3, y2) ∧ XOR d(y2, x4, y3) ∧ XOR d(y3, x5, x6)

XOR p 3(x1, x2, x3, x4, x5, x6)
= XOR d(x1, x2, y1) ∧ XOR p 3(x3, x4, x5, x6, y1)
= XOR d(x1, x2, y1) ∧ XOR d(x3, x4, y2) ∧ XOR p 3(x5, x6, y1, y2)
= XOR d(x1, x2, y1) ∧ XOR d(x3, x4, y2) ∧ XOR d(x5, x6, y3) ∧ XOR p 3(y1, y2, y3)
= XOR d(x1, x2, y1) ∧ XOR d(x3, x4, y2) ∧ XOR d(x5, x6, y3) ∧ XOR d(y1, y2, y3)

While the structure of the resulting CNF formula (for different modes) as well
as the number of variables and clauses (for different cutting numbers) will vary,
all combinations are effective in reducing the number of clauses at the expense
of adding linearly more variables—a relatively small price to pay. Nevertheless,
this translation can greatly hinder the performance of local search solvers.

To see this, consider XOR l n(x1, . . . , xk). For original variables x1, . . . , xk,
the encoding introduces auxiliary variables y1, . . . , yr (with r ∈ Θ(k)) and r − 1
XOR constraints of length n < k. For simplicity, let us again assume n = 3:

XOR l 3(x1, .., xk) = XOR d(x1, x2, y1)∧XOR d(y1, x3, y2)∧· · ·∧XOR d(yr, xk−1, xk)

Observe that for each assignment of x1, . . . , xk satisfying XOR d(x1, . . . , xk),
there exists a unique assignment of y1, . . . , yr that satisfies XOR l 3(x1, . . . , xk).
This is because, given an assignment of x1, . . . , xk satisfying XOR d(x1, . . . , xk),
there is only one assignment of y1 satisfying XOR d(x1, x2, y1), which subsequently
forces the assignment of y2 in order to satisfy XOR(y1, x3, y2), and so on. The same
kind of argument holds for the general encodings XOR l n and XOR p n.

We say that an assignment satisfies the CNF-encoded XOR constraint (by
XOR l n or XOR p n) on a high level if an odd number of x1, . . . , xk are set to true
(i.e., if the original XOR constraint would be satisfied). However, even when the
constraint is satisfied on a high level, it is possible that the auxiliary variables
do not have the correct unique values. In this way, an XOR constraint can be
satisfied on a high level but falsified in the (low-level) Tseitin CNF encoding.

422 W. Nawrocki et al.

For the SLS solver to move from a falsifying assignment of x1, . . . , xk to
a satisfying assignment of x1, . . . , xk, it additionally needs to flip the correct
auxiliary variables to match the corresponding assignment of y1, . . . , yr. However,
there is only one assignment of y1, . . . , yr satisfying the Tseitin-encoded CNF
representation of (x1 ⊕ · · · ⊕ xk) out of 2r many. While this might not be a big
issue for CDCL solvers (since corresponding values could be propagated), this is
particularly difficult for the probabilistic approach taken by SLS solvers.

Hence, after the XOR constraint becomes satisfied on a high level, the prob-
ability of an SLS solver flipping the correct auxiliary variables and satisfying the
low-level Tseitin-encoded clauses is small. Worse still, it may end up flipping one
of the original variables xi and invalidating the XOR constraint.

Another issue with the Tseitin encoding of XOR constraints that particularly
affects SLS solvers is the change in neighbourhood of assignments within the
search space. If we look at an XOR constraint (x1 ⊕ · · · ⊕ xk) that just got
falsified under a certain assignment by flipping x1, we could easily fix this by
flipping an arbitrary variable in this constraint using a single step, including xk.
This does not hold for the Tseitin-encoded CNF version of the XOR constraint
anymore. Once again, consider XOR l 3: If the CNF version of the constraint is
falsified due to x1, this can only be fixed by x2 or y1. In order to flip xk, we
first would have to take r intermediate steps by flipping all y1, . . . , yr. This can
be particularly problematic with probabilistic algorithms, considering that the
correct variable has to be chosen in each step, decreasing the overall probability
for xk being reached exponentially. Similar arguments have been made in the
context of configuration checking [32] and might have contributed to the success
of CCA-based solvers, such as CCAnr [11].

It is possible to trade off some auxiliary variables for an increased clause
count by increasing the cutting number. However, as the number of clauses
grows exponentially, this explodes quickly. Using pooled mode, the exponential
decrease in probability can be avoided since the resulting structure will roughly
be tree-like, i.e., O(log(r)) steps are sufficient for possibly reaching any other
variable from the original XOR constraint. Nevertheless, the overall probability
distribution is still skewed heavily towards “close” variables and the high-level
vs low-level satisfiability issue is not resolved either. Thus, we can only expect
small improvements compared to the linear version.

XNF Format

Overall, the currently widely-used Tseitin encoding of XOR constraints is inef-
fective in SLS solvers. Thus, our goal is to avoid this conversion by including
XOR constraints natively as part of the input format. This would enable an SLS
solver to handle XOR constraints more effectively, and we hope to standardize
this format to facilitate research on SAT solvers with XOR reasoning.

We use the following extension of the existing CNF format that is compatible
with XOR constraints. For simplicity, we will call this format XNF. This format
is in the spirit of the DIMACS format, which makes it natural to standardize.
An XOR constraint is denoted as a sequence of literals preceded by the symbol

XOR Local Search for Boolean Brent Equations 423

x; OR constraints are denoted the same as in the original CNF format. The
header is changed slightly to “p xnf #variables #constraints”. For example,
the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ⊕ x2) is denoted by the following XNF input:

p xnf 3 2

1 2 -3 0

x -1 2 0

While we came up with this format independently, we later stumbled upon a
blog post2 that briefly mentions CryptoMiniSAT’s [38] support of a very similar
input format3. Support for inputs in XNF also was recently added to the CDCL
solver Satch4, which is CNF-based and uses the pooled encoding presented in
Sect. 2 to encode XOR constraints into CNF. This extension to Satch turned out
very useful for testing the tools discussed in the next section.

3 Extracting XORs

Existing propositional problems do have XOR constraints but are usually only
available in CNF. Therefore, we have implemented a stand-alone extraction tool
cnf2xnf which allows to extract an XNF file from a given CNF in DIMACS
format. We implemented this tool to make sure that our approach for hybrid
local search also works, in a practical sense, with benchmarks given in CNF. The
more general goal of this tool is to promote the XNF format and thus further
encourage research into hybrid XNF solving.

The SAT solver CryptoMiniSAT [38] contains an internal procedure for
extracting XORs [37] in order to take advantage of sophisticated XOR rea-
soning [35] for applications in approximate model counting [13]. The aim of
that extractor is to recover XORs after encoding them into CNF and running
CNF-based inprocessing. It takes shortened clauses into account—a common
side-effect of CNF-level preprocessing. In earlier work by the fourth author [19],
XORs were found by sorting the CNF, which fails to extract XORs with short-
ened clauses. Our new extractor cnf2xnf5 shares the same problem for prepro-
cessed formulas, but otherwise follows the same principles as used by Soos and
Meel [37], apart from not using Bloom filters. In addition to extracting directly
encoded XORs, our tool also finds XORs encoded in a Tseitin encoding of And-
Inverter-Graphs (AIGs) [28]. Our algorithm is simpler and has successfully been
used for gate-extraction to improve bounded variable elimination [15] and to
implement Gaussian-elimination in some of the last author’s SAT solvers [7,9].

Our extraction algorithm works as follows. We go over all clauses (including
binary clauses) and as soon as we find a clause of length k with at most one
positive literal, called “base clause”, we check whether we can find all 2k−1

2 https://www.msoos.org/xor-clauses/.
3 We are not aware of any formal publication about this format.
4 https://github.com/arminbiere/satch.
5 https://github.com/arminbiere/cnf2xnf.

https://www.msoos.org/xor-clauses/
https://github.com/arminbiere/satch
https://github.com/arminbiere/cnf2xnf

424 W. Nawrocki et al.

target clauses obtained from the base clause by negating an even number of
literals. As in subsumption algorithms [15], we only traverse the occurrence list
of a single literal in a target clause with the smallest number of occurrences. If
all clauses are found, they are marked as garbage and the corresponding XOR
constraint is added. Extracting ternary XORs from AIGs starts with a ternary
base clause which, together with two binary clauses, encodes an AND gate. For
each of the two inputs of that outer AND gate, we then try to find another three
clauses encoding an inner AND gate, which share the same inputs but negated.
The implied XOR constraint is extracted. If the variables encoding the output
of the two inner AND gates occur exclusively in these nine clauses, the clauses
are then marked as garbage.

After extracting all XOR constraints, we eliminate variables which only occur
in XOR constraints through substitution, simulating Gaussian elimination. The
resulting XNF is written to the output file. Optionally, the user can request
to produce an “extension stack”, listing all the eliminated XOR constraints as
well as those sets of nine clauses for XORs extracted from AIGs. This extension
stack can be used to map a satisfying assignment of the XNF back to the original
CNF. This is implemented in another tool called extor6. It takes a satisfying
assignment of the XNF in the output format of the SAT competition together
with the extension stack as inputs and produces a satisfying assignment for the
original CNF—again in the SAT competition output format. The algorithm is
exactly the same as for reconstructing solutions for CNF preprocessing [16,25,
26], except for the semantics of XOR constraints: for those, the value of the first
literal of a processed constraint on the stack is flipped if it has an even number
of true literals. For regular clauses, the value is only flipped if all literals are
false.

As mentioned above, XNF parsing was also added to the new SAT solver
Satch, which was then used to test the cnf2xnf extractor as well as solution
reconstruction with extor. For 235 benchmarks of the main track of the SAT
competition 2020, we were able to find and extract XORs successfully. From
those, a subset of 118 allowed to eliminate variables by Gaussian elimination.
This reduced the number of variables substantially—often to less than 50%.
However, note that extracting binary XORs partially simulates equivalent literal
substitution. Thus, it is difficult to give a precise account of the effectiveness of
this flow as a preprocessing technique, which is available in other SAT solvers
anyhow and not the target of this paper. Without any bounds, running XOR
extraction until completion was able to extract all XORs of 224 benchmarks
within one second and all XORs of 333 benchmarks within 10 s. For only 30
benchmarks, it took more than 100 s.

While these experiments are successful in showing that XNF extraction is
feasible on standard competition instances, running Satch on the extracted XNF
benchmarks had almost identical performance to running it on the original CNF
versions. Furthermore, none of the satisfiable benchmarks was solved through
local search, neither before nor after XNF extraction—however, the focus of

6 also available at https://github.com/arminbiere/cnf2xnf.

https://github.com/arminbiere/cnf2xnf

XOR Local Search for Boolean Brent Equations 425

this paper is to improve local search on specific benchmarks where local search
already has an advantage. We consider it a challenge and future work to improve
XOR-based reasoning on competition benchmarks.

4 Implementation

To support the XNF format which natively encodes XOR constraints, we mod-
ified YalSAT [8], a state-of-the-art SLS solver. We call our modified solver
xnfSAT.7

Recall the structure of the YalSAT algorithm as outlined in Algorithm 1.
Most of the modifications are natural analogies to XOR constraints. The bulk of
our modifications concerns the internal data structures and the implementation
of pickV ar (line 8). To perform preprocessing efficiently, we adapted this step
to carry out unit propagation on XOR constraints. We did not significantly
change pickUnsatClause (line 7), as the existing code was sufficient to handle
the newly added XOR constraints. For formulas that are encoded in pure CNF,
our modification does not change the behavior of YalSAT.

For preprocessing, we carry out two rounds of unit propagation on clauses
as YalSAT does, including also unitary XOR constraints. After unit propagation
terminates, we want to utilize the partial assignment forced by unit propagation
on XOR constraints. To deduce contradiction is easy, by examining whether
there is a falsified XOR constraint. However, to remove satisfied literals, an
XOR constraint should have its parity flipped: initially, an XOR constraint is
satisfied iff an odd number of its literals are set to true; if one of its literals is
forced to true by unit propagation, then the XOR constraint is true iff an even
number of its remaining literals are set to true. As a result, we need an array to
keep track of the parity of each XOR constraint.

Define parity of an XOR to be 0 if the constraint is satisfied when an odd
number of its literals are set to true, and define parity to be 1 otherwise. This
definition has the convenient property that it is precisely the “base truth value”
of the XOR, so that the actual truth value of the constraint in a local search
step can be calculated by comparing its current value to its parity. Using this
definition, we only need to store the variables (but not whether they are negated)
appearing in each XOR constraint and initialize its parity to the number of
negations modulo 2.

Next to basically being a WalkSAT-based algorithm, YalSAT, more specifically,
is also a probSAT-based algorithm. In probSAT [3], the probability that a variable
x is picked is proportional to c

−break(x)
b , where cb is a constant, called the break

coefficient, and break(x) denotes the number of clauses that would be falsified
when x was flipped. A key extension of YalSAT compared to probSAT is that it
uses a weighted version of break instead. In YalSAT [8], the probability of choos-
ing a variable x is proportional to c

−breakw(x)
b , with breakw(x) =

∑
C∈B(x) w(C),

where B(x) is the set of clauses that would be falsified by flipping x, and w(C) is

7 https://github.com/Vtec234/xnfsat.

https://github.com/Vtec234/xnfsat

426 W. Nawrocki et al.

the weight of a particular clause C. In its current implementation within YalSAT,
w(C) is not specific to each single clause though, but defined as a function of its
length—we will get back to that later.

For xnfSAT, we first extend the definition of break and breakw by also taking
into account the XORs that would be falsified. This is straightforward from
a theoretic perspective, but requires to address the concrete implementation as
part of an efficient SLS solver architecture. In the original YalSAT [8], calculating
breakw values using critical literals is crucial to its performance. A literal in
a clause C is critical if flipping it falsifies C. Say a clause is k-satisfied if k
literals in this clause are set to true. Then a clause contains a critical literal iff
it is 1-satisfied. Since break(x) is equal to the number of clauses in which x is
critical, break(x) can be cached and updated efficiently by tracking the number of
true literals in each clause. Whenever a literal is flipped, this can be efficiently
updated while looping through each clause where the corresponding variable
occurs [1]. This is also where weighting is addressed when implementing breakw
in YalSAT [8]—instead of just increasing or decreasing the cached value by 1, it
can be increased or decreased by w(C), respectively. To generalize this idea to
XORs, note that each time a literal in an XOR constraint is flipped, the truth
value of the XOR constraint changes. Thus, in a satisfied XOR constraint, every
literal is critical. When an XOR constraint C becomes satisfied or unsatisfied,
increase or decrease breakw(x) by w(C), respectively, for all its literals x.

In YalSAT [8], the weight w(C) is a function of the length of the clause C.
However, this is not necessarily a good heuristic to measure the importance
of an XOR compared to a clause, especially when XOR constraints are signif-
icantly longer. For example, in MM-Challenge-1, all XORs are more than six
times longer than all the clauses. To simplify the algorithm and not to overtune
on specific parameters, we assign a fixed weight wX to all XOR constraints.
Similarly, we will write wk for w(C) when C is a clause of length k.

Finally, a good choice for cb is very important and has been extensively
studied in the context of distribution-based SLS solvers [1–3]—however, mainly
on random k−SAT problems. With hard combinatorial formulas usually not
having uniform clause lengths, the original YalSAT [8] automatically configures
cb as a function of the maximum length of all clauses. This is no longer suitable
when XOR constraints are added: For one thing, it is not clear whether the length
of native XORs should be considered in the same way as the one of clauses. For
another, when translated into CNF, the length of the resulting clauses depends
on the encoding. To facilitate a thorough evaluation, we thus decided to re-expose
cb as a parameter in xnfSAT.

Now there is one remaining issue with YalSAT, which initially was very helpful
to show the general usefulness of SLS on the MM-Challenge-1 benchmarks [21],
but would prevent a clear analysis of the contribution of native XORs to the
algorithm. In its original version [8], YalSAT changes strategy after each restart
interval8. This can help find good settings for a broad range of instances and thus
is supposed to increase overall robustness. On the negative side, it obfuscates

8 A detailed explanation of strategies in YalSAT is out of the scope of this paper.

XOR Local Search for Boolean Brent Equations 427

what exactly contributes to a successful run by possibly causing hard to pre-
dict, unknown interactions. In preliminary experiments, we still had strategies
switched on. Implementing XOR support in xnfSAT with strategies significantly
improved performance (cf. Fig. 1), but we soon realized that it is hard to tell
if this effect was really just because of the XORs and not due to some hidden
interaction with a complex strategy—this could then prevent the same app-
roach to work with other solvers. We thus decided to disable all strategies and
to instead figure out which were the individual components that contributed to
the good performance on MM-Challenge-1. As a side effect, the resulting version
of xnfSAT became much faster. However, note that our goal was not to overtune
to a specific benchmark class nor should this be considered our contribution—
instead, the aim was to simplify the algorithm. As our results in Table 1 show,
adding native XOR support on top of this much simpler, strategy-free version,
still significantly improves performance and we can now conjecture that this is
indeed due to our hybrid implementation. The changes we made by switching
off strategies:

– Caching is always on, i.e. after a restart the algorithm will pick a previous
local minimum. (Had a small effect.)

– cb is now fixed and never modified during run. (Had a medium effect.)
– Weights wk for different clause lengths are now exposed as a parameter and

never modified during run. (Had a large effect.)
– The initial assignment is now always 0 . . . 0. (Had the largest effect.)

5 Experiments

We benchmark xnfSAT on MM-Challenge-1. These instances are hard for CDCL,
and best known performance on them has been achieved by SLS [21]. We compare
several encodings:

– original, handcrafted XNF (before conversion to CNF)
– CNF with linear XOR l n constraints and cutting number n ∈ [3, 8]
– CNF with pooled XOR p n constraints and cutting number n ∈ [3, 8]
– reconstructed XNF as extracted from CNF by cnf2xnf9

Running on different CNF variants allows us to observe the impact of the
choice of XOR encoding on performance. Running on both handcrafted and
extracted XNF allows us to verify that the cnf2xnf outputs perform adequately
compared to hand-written formulas. Note that the runtime of cnf2xnf on these
instances is negligible, around 0.3 s per formula. All benchmark formulas involve
a significant amount (more than 700) of XORs or their clausal encodings.

Parameter choices are crucial to the performance of SLS solvers. We optimize
parameter classes outlined in Sect. 4: the break coefficient cb, the weight wX

assigned to XOR constraints, and the weights wk assigned to clauses of length k.

9 The CNF encoding was generated by using XOR p 4 on the handcrafted XNF.

428 W. Nawrocki et al.

In preliminary experiments with the strategy-based version described in
Sect. 4, we first searched for optimal values of cb and wX on the 4-cut pooled
CNF (recall that it was conjectured optimal [37]) and on the original XNF. On
both formulas, we sampled cb in the range [1.5, 5.5]. On XNF, we also sampled
wX in [2, 8]. These ranges were observed to contain most acceptable values. On
CNF, the break constant was sampled with a step size of 0.25—on XNF, a step
size of 1.0 was used for both parameters due to the higher computational resource
requirements of the two-dimensional (cb, wX) grid. We found that the average
best-performing cb value for all instances is around 2.5. Interestingly, this does
not change with the addition of XOR constraints. The best-performing wX is
around 5.0. The strategy-based versions will not be discussed in detail, but the
runtime CDF of the best configuration (with cb = 2.5, wX = 5.0) on CNF and
XNF is plotted in Fig. 1 for comparison.

For our full experiments, we then switched off strategies and fixed cb = 2.5
as well as wX = 5.0, next sampling wk for k ∈ [2, 8] (there are no clauses
of other lengths) on every variant of the instances. The sampled ranges varied
as we analyzed preliminary experiments but tended to be within [2, 5]. This
roughly corresponds to the range that was previously used by the strategies in
the original YalSAT. However, these values are now fixed and do not change
after each restart, making the solver much simpler. Having sampled a broad
range of values for wk, we decided to go for w2 = w3 = 2, w4 = w5 = 4.5,
and w6 = w7 = w8 = 5.0 for all encodings, aside from the 3-cut one, where
we chose w3 = 4.5 for reasons that we will explain later. While this setting was
not necessarily optimal for each instance, the overall results were solid10—recall
that our goal was not to perfectly tune every single formula, but to show that
the underlying algorithm profits from adding native XOR support. Note that
we invested significant computational resources into optimizing CNF weights in
order to ensure that our results persist even against well-tuned CNF encodings.

We ran all benchmarks on the Lonestar 5 cluster of Texas at Texas Advanced
Computing Center, which has Xeon E5-2690 processors with 24 hardware threads
per node. Each variant of each instance was attempted 8 × 24 = 192 times (for
192 runs) with a timeout of 1000 s. Performance is measured by three met-
rics: the percentage of instances solved within our timeout, the average number
of variable megaflips (flips×106) before reaching the solution, and the average
time to solution (in seconds). In Table 1, these are abbreviated by frac, Mflips
and time, respectively. In addition, to gain more insights into how the specific
encoding of XOR constraints impacts performance, we measured the percentage
of flips spent on auxiliary variables (aux) for the CNF instances.

Results

Figure 1 shows the overall results of our experiments, plotting a runtime CDF of
what we consider to be the most interesting configurations. For each encoding, we
show the configuration (i.e., choice of parameters) that performed best regarding

10 In the final version, we will replace this note by a link to the full experimental data.

XOR Local Search for Boolean Brent Equations 429

the overall number of solved instances with that encoding. In general, hardness
of the individual instances did not differ a lot among the various encodings and
parameter configurations, i.e., easy instances or hard instances for one setting
were also easy or hard, respectively, for all other settings.

We can see that the XNF-based solver outperforms all CNF versions by a
huge margin for both the handcrafted encoding as well as the reconstructed XNF.
In particular, it takes only 200 s for the XNF version to solve approximately the
same number of instances as the best CNF configuration.

Furthermore, both XNF versions perform roughly equally—this confirms that
cnf2xnf was successful in extracting the XORs and shows that the resulting
structure is not negatively affected in any way.

Next, we can take a closer look at the different CNF encodings. One trend
seems to be that performance on MM-Challenge-1 increases with larger cutting
numbers, reaching peak at 6. In particular, the 4-cut encoding that we initially
conjectured to be optimal turned out to perform worse than higher cutting
numbers, with just the 3-cut encoding being worse. Note that the 4-cut encoding
was used for initially creating the publicly available CNF representation of the
MM-Challenge-1 benchmark set and for first solving it using YalSAT [21]. This
points towards another central benefit of our native XOR representation, which
we have not explicitly discussed so far: while the optimal cutting number turned
out to be 6, we do not need to care about finding that out since XNF still
outperforms it.

0 200 400 600 800 1,000
0

200

400

600

800

1,000

1,200

runtime

so
lv
ed

in
st
an

ce
s

Extracted XNF
Manual XNF
Manual XNF w/ strategies
Pooled, 6-cut CNF
Pooled, 8-cut CNF
Pooled, 7-cut CNF
Pooled, 5-cut CNF
Linear, 5-cut CNF
Linear, 8-cut CNF
Pooled, 4-cut CNF
Linear, 7-cut CNF
Linear, 6-cut CNF
Pooled, 4-cut CNF w/ strategies
Linear, 3-cut CNF
Pooled, 3-cut CNF
Linear, 4-cut CNF

Fig. 1. Runtime CDF of xnfSAT performance on various encodings and solver versions.

Regarding CNF encodings, there is some mild evidence that the proposed
pooled mode is generally better than the linear mode. While this is not true for

430 W. Nawrocki et al.

the 3-cut encoding, we think that this might be a special case that could also be
influenced by other factors. Notably, the original XNFs only contain clauses of
length 2 and 3. After encoding the instances into CNF, new clauses of length n
will be introduced for the n-cut encoding. As a result, the 3-cut encoding is the
only one having to use the same weight for original 3-clauses as well as for clauses
representing CNF-encoded XORs. Yet again, this points to another benefit of
using native XORs: for formulas other than in MM-Challenge-1, it may well be
the case that clauses in the original XNF have lengths above 3. Thus, even for
n-cut encodings with n > 3, there is no guarantee that the clauses representing
CNF-encoded XORs can be weighted differently from the original clauses.

Looking at Table 1, we can see a detailed analysis of the best-performing
linear CNF, pooled CNF, and the XNF version. We chose to display the extracted
XNF version because in problems without handcrafted XNF, this could still be
obtained using cnf2xnf. The XNF version outperforms both CNF encodings
across all benchmarks.

6 Conclusion

Combining clausal and XOR reasoning has frequently been looked at in the past.
However, rarely so in the context of SLS solvers. With many possible applica-
tions, particularly in the domain of cryptography [4,5,18,31] or for approximate
model counting [37], progress in this area is certainly of interest.

We argued why CNF encodings of XOR constraints can hinder the perfor-
mance of SLS solvers and, next to presenting the pooled CNF encoding, advo-
cate for a hybrid representation that allows clauses as well as native XOR con-
straints. We thus proposed to standardize a format that we call XNF, being
a natural extension of the CNF DIMACS format, in order to further support
research in that direction. To enable broader use, we also developed the tools
cnf2xnf and extor to find and extract XOR constraints in CNF formulas, con-
vert them into XNF, and to allow reconstructing the solution for the original
formula afterwards. We then proceeded by presenting our main contribution, a
hybrid SLS solver called xnfSAT. Our detailed experimental evaluation on the
matrix multiplication challenge benchmarks [21] showed that xnfSAT solves XNF
representations way faster than the corresponding CNF representations, thereby
confirming the benefit of supporting native XOR constraints and pushing the
state-of-the-art on these instances. As further side results, we presented several
other evaluations, providing insights into possible effects that various different
CNF encodings as well as parameter settings might have on the performance of
SLS solvers.

We hope that our contributions further spark community interest in hybrid
SAT solving for clauses and XORs, and expect our results to generalize to other
instances with XOR constraints. There are certainly many possible directions of
relevance, some of those related to the present work:

While xnfSAT implements support for various clause selection heuristics [1],
we sticked to the default setting, using unfair breadth first search during our

XOR Local Search for Boolean Brent Equations 431

T
a
b
le

1
.

P
er

fo
rm

a
n
ce

o
f
x
n
f
S
A
T

o
n

b
en

ch
m

a
rk

ed
in

st
a
n
ce

s
a
t

th
e

o
p
ti

m
a
l

se
tt

in
g
s:

C
N

F
(c

b
=

2
.5

,w
2

=
w

3
=

2
,w

6
=

5
)

a
n
d

X
N

F
(c

b
=

2
.5

,w
2

=
w

3
=

2
,w

X
=

5
).

M
M
-
2
3
-
*

f
r
a
c

a
u
x

M
f
l
i
p
s

t
i
m
e

f
r
a
c

a
u
x

M
f
l
i
p
s

t
i
m
e

f
r
a
c

M
f
l
i
p
s

t
i
m
e

4
-
4
-
4
-
4
-
1

7
6
.6

7
.8

2
8
0
.8

6
7
.4

9
9
.5

1
9
.8

3
1
.3

8
.2

1
0
0
.0

0
.4

0
.1

2
-
2
-
2
-
2
-
A

9
4
.3

4
.1

6
0
2
.6

1
5
4
.6

1
0
0
.0

1
2
.0

2
4
5
.3

7
2
.7

1
0
0
.0

5
5
.9

1
5
.6

2
-
2
-
2
-
2
-
D

7
9
.2

3
.2

1
1
7
1
.8

2
9
9
.6

9
9
.0

1
0
.0

3
4
5
.7

1
0
5
.7

1
0
0
.0

7
7
.1

2
2
.0

2
-
2
-
2
-
3
-
4

8
5
.4

3
.8

9
6
7
.1

2
3
4
.6

9
9
.5

1
1
.1

4
3
0
.0

1
2
2
.3

1
0
0
.0

2
6
9
.0

7
3
.1

2
-
2
-
2
-
2
-
C

6
0
.4

3
.4

1
1
7
4
.1

2
9
7
.6

8
5
.4

9
.7

6
5
2
.9

1
9
2
.8

9
8
.4

3
3
2
.6

9
0
.9

2
-
2
-
2
-
4
-
B

1
2
.5

4
.5

2
0
2
0
.1

4
8
7
.9

3
0
.7

1
1
.2

1
7
4
8
.8

5
1
5
.0

4
2
.7

1
6
4
8
.9

4
3
2
.6

2
-
2
-
2
-
2
-
B

2
.1

4
.8

2
7
0
3
.6

6
7
6
.0

1
2
.5

1
3
.3

1
7
5
6
.5

5
2
9
.5

4
1
.1

1
5
7
4
.6

4
2
9
.7

2
-
2
-
2
-
2
-
M

0
.5

3
.1

1
1
8
2
.2

3
1
6
.3

0
–

–
–

2
9
.2

1
5
1
6
.4

4
5
0
.3

2
-
2
-
2
-
2
-
3

1
.6

3
.8

1
5
4
3
.5

3
8
5
.6

5
.7

1
1
.3

2
1
1
8
.0

6
1
2
.8

2
3
.4

1
4
3
9
.7

3
9
2
.3

2
-
2
-
2
-
4
-
A

0
–

–
–

0
–

–
–

2
.1

2
9
4
3
.1

8
3
5
.0

F
o
rm

u
la

L
in

ea
r,

6
-c

u
t

C
N

F
P
o
o
le

d
,
6
-c

u
t

C
N

F
E

x
tr

a
ct

ed
X

N
F

432 W. Nawrocki et al.

evaluation. Note that all those clause selection heuristics were originally devel-
oped for pure CNF-based solvers. Nevertheless, preliminary experiments showed
that changing the clause selection heuristic can affect the performance of our
solver. For future work, it might be interesting to look in more detail at new
heuristics which allow treating clauses and XORs in a different manner.

We also noted that using a starting assignment of 0 . . . 0 was important and
performed much better than random initialization for the benchmarks we con-
sidered. However, this does not necessarily mean that 0 . . . 0 is already optimal.
Besides, other problem classes could benefit from different initial assignments.
Thus, another interesting direction of research could go into the direction of
combining the approach used by NLocalSAT [41] with xnfSAT or with hybrid
representations in general.

As we saw in Sect. 5, the CNF encoding using a cutting number of 3 performed
worse compared to the other CNF representations. One reason might be due to
the fact that the formulas originally already contain clauses of length 3, but also
the XOR constraints are mapped to clauses of this length. While it is likely that
the two kinds of clauses should be treated differently, both are assigned the same
weight w3. To address this, individual clause weighting heuristics as part of other
solvers [2,39] could be of use. Beyond that, more sophisticated approaches [36]
could potentially also be adapted to find individual weights.

Finally, it would also be interesting to look at whether pure CNF-based
CDCL solvers can profit from different encodings of XOR constraints, e.g., using
the pooled mode in contrast to a standard linear encoding.

Acknowledgements. The authors acknowledge the Texas Advanced Computing Cen-
ter (TACC) at The University of Texas at Austin for providing HPC resources that
have contributed to the research results reported within this paper. The work is also
supported by the National Science Foundation (NSF) under grant CCF-2010951, Aus-
trian Science Fund (FWF), NFN S11408-N23 (RiSE), and the LIT AI Lab funded by
the State of Upper Austria.

References

1. Balint, A., Biere, A., Fröhlich, A., Schöning, U.: Improving implementation of SLS
Solvers for SAT and new Heuristics for k -SAT with long clauses. In: Sinz, C., Egly,
U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 302–316. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-09284-3 23

2. Balint, A., Fröhlich, A.: Improving stochastic local search for SAT with a new
probability distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 10–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14186-7 3

3. Balint, A., Schöning, U.: Choosing probability distributions for stochastic local
search and the role of make versus break. In: Cimatti, A., Sebastiani, R. (eds.)
SAT 2012. LNCS, vol. 7317, pp. 16–29. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31612-8 3

4. Bard, G.V.: Introduction: How to Use this Book, pp. 1–6. Springer, US, Boston,
MA (2009). https://doi.org/10.1007/978-0-387-88757-9 1

https://doi.org/10.1007/978-3-319-09284-3_23
https://doi.org/10.1007/978-3-319-09284-3_23
https://doi.org/10.1007/978-3-642-14186-7_3
https://doi.org/10.1007/978-3-642-14186-7_3
https://doi.org/10.1007/978-3-642-31612-8_3
https://doi.org/10.1007/978-3-642-31612-8_3
https://doi.org/10.1007/978-0-387-88757-9_1

XOR Local Search for Boolean Brent Equations 433

5. Bard, G.V., Courtois, N.T., Jefferson., C.: Efficient methods for conversion and
solution of sparse systems of low-degree multivariate polynomials over GF(2) via
SAT-solvers. Cryptology ePrint Archive, Report 2007/024 (2007), https://eprint.
iacr.org/2007/024

6. Belov, A., Järvisalo, M., Stachniak, Z.: Depth-driven circuit-level stochastic local
search for SAT, pp. 504–509 (2011)

7. Biere, A.: Lingeling and friends entering the SAT challenge 2012. In: Balint, A.,
Belov, A., Diepold, D., Gerber, S., Järvisalo, M., Sinz, C. (eds.) Proceedings of SAT
Challenge 2012: Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, vol. B-2012-2, pp. 33–34. University of Helsinki
(2012)

8. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT
competition 2017. In: Balyo, T., Heule, M., Järvisalo, M. (eds.) Proceedings of SAT
Competition 2017 - Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, vol. B-2017-1, pp. 14–15. University of Helsinki
(2017)

9. Biere, A.: CaDiCaL at the SAT Race 2019. In: Heule, M., Järvisalo, M., Suda,
M. (eds.) Proceedings of SAT Race 2019 - Solver and Benchmark Descriptions.
Department of Computer Science Series of Publications B, vol. B-2019-1, pp. 8–9.
University of Helsinki (2019)

10. Bulygin, S., Buchmann, J.: Algebraic cryptanalysis of the round-reduced and side
channel analysis of the Full PRINTCipher-48. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 54–75. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25513-7 6

11. Cai, S., Luo, C., Su, K.: CCAnr: a configuration checking based local search solver
for non-random satisfiability. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol.
9340, pp. 1–8. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-
4 1

12. Cai, S., Su, K.: Local search for Boolean satisfiability with configuration checking
and subscore. Artif. Intell. 204, 75–98 (2013)

13. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40627-0 18

14. Chen, J.: Building a Hybrid SAT solver via conflict-driven, look-ahead and XOR
reasoning techniques. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 298–
311. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 29

15. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause
Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 5

16. Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In:
Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 136–154. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 9

17. Fröhlich, A., Biere, A., Wintersteiger, C.M., Hamadi, Y.: Stochastic local
search for satisfiability modulo theories. In: Proceedings of AAAI. AAAI, Jan-
uary 2015. https://www.microsoft.com/en-us/research/publication/stochastic-
local-search-for-satisfiability-modulo-theories/

18. Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. In:
Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 409–420. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-04921-2 33

https://eprint.iacr.org/2007/024
https://eprint.iacr.org/2007/024
https://doi.org/10.1007/978-3-642-25513-7_6
https://doi.org/10.1007/978-3-319-24318-4_1
https://doi.org/10.1007/978-3-319-24318-4_1
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-3-642-02777-2_29
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-030-24258-9_9
https://www.microsoft.com/en-us/research/publication/stochastic-local-search-for-satisfiability-modulo-theories/
https://www.microsoft.com/en-us/research/publication/stochastic-local-search-for-satisfiability-modulo-theories/
https://doi.org/10.1007/978-3-319-04921-2_33
https://doi.org/10.1007/978-3-319-04921-2_33

434 W. Nawrocki et al.

19. Heule, M.J.H.: SmArT solving: tools and techniques for satisfiability solvers. Ph.D.
thesis, Delft University of Technology, Netherlands (2008). http://resolver.tudelft.
nl/uuid:d41522e3-690a-4eb7-a352-652d39d7ac81

20. Heule, M., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: Hoos,
H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 145–156. Springer,
Heidelberg (2005). https://doi.org/10.1007/11527695 12

21. Heule, M.J.H., Kauers, M., Seidl, M.: Local search for fast matrix multiplication.
CoRR abs/1903.11391 (2019). http://arxiv.org/abs/1903.11391

22. Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply 3 × 3-matrices. J.
Symb. Comput. 104, 899–916 (2021). https://doi.org/10.1016/j.jsc.2020.10.003

23. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. CoRR abs/1605.00723 (2016).
http://arxiv.org/abs/1605.00723

24. Ishtaiwi, A., Thornton, J., Sattar, A., Pham, D.N.: Neighbourhood clause weight
redistribution in local search for SAT. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 772–776. Springer, Heidelberg (2005). https://doi.org/10.1007/
11564751 62

25. Järvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination.
In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 340–345.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7 30

26. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 28

27. Knuth, D.E.: The Art of Computer Programming, vol. 4, Fascicle 6: Satisfiability.
Addison-Wesley Professional, 1st edn. (2015)

28. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reason-
ing for equivalence checking and functional property verification. IEEE Trans.
Comput.-Aided Des. Integr. Circ. Syst. 21(12), 1377–1394 (2002)

29. Kyrillidis, A., Shrivastava, A., Vardi, M.Y., Zhang, Z.: FourierSAT: a Fourier
expansion-based algebraic framework for solving hybrid Boolean constraints (2020)

30. Kyrillidis, A., Vardi, M.Y., Zhang, Z.: On continuous local BDD-based search for
hybrid SAT solving (2020)

31. Leventi-Peetz, A., Zendel, O., Lennartz, W., Weber, K.: CryptoMiniSat switches-
optimization for solving cryptographic instances. In: Berre, D.L., Järvisalo, M.
(eds.) Proceedings of Pragmatics of SAT 2015 and 2018. EPiC Series in Computing,
vol. 59, pp. 79–93. EasyChair (2019). https://easychair.org/publications/paper/
5g6S

32. Luo, C., Cai, S., Wu, W., Su, K.: Double configuration checking in stochastic local
search for satisfiability, pp. 2703–2709 (2014)

33. Pham, D.N., Thornton, J., Sattar, A.: Building structure into local search for
SAT. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, 6–12 January 2007, Hyderabad, India,
pp. 2359–2364 (2007). http://ijcai.org/Proceedings/07/Papers/380.pdf

34. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability test-
ing. Cliques, Coloring, and Satisfiability DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pp. 521–531 (1996). https://doi.org/10.1090/
dimacs/026/25

35. Soos, M., Gocht, S., Meel, K.S.: Tinted, Detached, and Lazy CNF-XOR Solving
and Its Applications to Counting and Sampling. In: Lahiri, S.K., Wang, C. (eds.)
CAV 2020. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 22

http://resolver.tudelft.nl/uuid:d41522e3-690a-4eb7-a352-652d39d7ac81
http://resolver.tudelft.nl/uuid:d41522e3-690a-4eb7-a352-652d39d7ac81
https://doi.org/10.1007/11527695_12
http://arxiv.org/abs/1903.11391
https://doi.org/10.1016/j.jsc.2020.10.003
http://arxiv.org/abs/1605.00723
https://doi.org/10.1007/11564751_62
https://doi.org/10.1007/11564751_62
https://doi.org/10.1007/978-3-642-14186-7_30
https://doi.org/10.1007/978-3-642-31365-3_28
https://easychair.org/publications/paper/5g6S
https://easychair.org/publications/paper/5g6S
http://ijcai.org/Proceedings/07/Papers/380.pdf
https://doi.org/10.1090/dimacs/026/25
https://doi.org/10.1090/dimacs/026/25
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22

XOR Local Search for Boolean Brent Equations 435

36. Soos, M., Kulkarni, R., Meel, K.S.: CrystalBall: gazing in the Black box of SAT
solving. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 371–387.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 26

37. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and
its applications to approximate model counting. In: AAAI, pp. 1592–1599. AAAI
Press (2019). http://dblp.uni-trier.de/db/conf/aaai/aaai2019.html#SoosM19

38. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

39. Thornton, J., Pham, D.N., Bain, S., Jr, V.F.: Additive versus multiplicative clause
weighting for SAT. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of the
Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference
on Innovative Applications of Artificial Intelligence, 25–29 July 2004, San Jose,
California, USA, pp. 191–196. AAAI Press/The MIT Press (2004). http://www.
aaai.org/Library/AAAI/2004/aaai04-031.php

40. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Automa-
tion of Reasoning, pp. 466–483 (1983)

41. Zhang, W., Sun, Z., Zhu, Q., Li, G., Cai, S., Xiong, Y., Zhang, L.: NLocalSAT:
boosting local search with solution prediction. In: Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, July 2020

https://doi.org/10.1007/978-3-030-24258-9_26
http://dblp.uni-trier.de/db/conf/aaai/aaai2019.html#SoosM19
https://doi.org/10.1007/978-3-642-02777-2_24
http://www.aaai.org/Library/AAAI/2004/aaai04-031.php
http://www.aaai.org/Library/AAAI/2004/aaai04-031.php

A Fast Algorithm for SAT in Terms
of Formula Length

Junqiang Peng and Mingyu Xiao(B)

School of Computer Science and Engineering, University of Electronic Science

and Technology of China, Chengdu, China

Abstract. In this paper, we prove that the general CNF satisfiability
problem can be solved in O∗(1.0646L) time, where L is the length of
the input CNF-formula (i.e., the total number of literals in the formula),
which improves the current bound O∗(1.0652L) given by Chen and Liu 12
years ago. Our algorithm is a standard branch-and-search algorithm ana-
lyzed by using the measure-and-conquer method. We avoid the bottle-
neck in Chen and Liu’s algorithm by simplifying the branching operation
for 4-degree variables and carefully analyzing the branching operation for
5-degree variables. To simplify case-analyses, we also introduce a general
framework for analysis, which may be able to be used in other problems.

Keywords: Parameterized algorithms · Satisfiability ·
Measure-and-conquer

1 Introduction

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables for
which that formula evaluates to true. By SAT, we mean the problem of propo-
sitional satisfiability for formulas in conjunctive normal form (CNF) [5]. The
SAT problem is the first problem proved to be NP-complete [4] and it plays an
important role in computational complexity and artificial intelligence [1]. There
are numerous investigations on this problem in different fields, such as approxi-
mation algorithms, randomized algorithms, heuristic algorithms, and exact and
parameterized algorithms. In this paper, we study parameterized algorithms for
SAT parameterized by the input length.

To measure the running time bound for the SAT problem, there are three
frequently used parameters: the number of variables n, the number of clauses m,
and the input length L. The input length L is defined as the sum of the number
of literals in each clause. The number of variables n should be the most basic
parameter. The simple brute force algorithm to try all 2n possible assignments
of the n variables will get the running time bound of O∗(2n).1 After decades of
1 The O∗ notation supervises all polynomial factors, i.e., f(n) = O∗(g(n)) means

f(n) = O(g(n)nO(1)).

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 436–452, 2021.
https://doi.org/10.1007/978-3-030-80223-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_30&domain=pdf
http://orcid.org/0000-0002-1012-2373
https://doi.org/10.1007/978-3-030-80223-3_30

A Fast Algorithm for SAT in Terms of Formula Length 437

Table 1. Previous and our upper bound for SAT

Running time bounds References

O∗(1.0927L) Van Gelder 1988 [16]

O∗(1.0801L) Kullmann and Luckhardt 1997 [12]

O∗(1.0758L) Hirsch 1998 [9]

O∗(1.074L) Hirsch 2000 [10]

O∗(1.0663L) Wahlström 2005 [17]

O∗(1.0652L) Chen and Liu 2009 [2]

O∗(1.0646L) This paper 2021

hard work, no one can break this trivial bound. The Strong Exponential Time
Hypothesis conjectures that the SAT problem cannot be solved in time O∗(cn) for
some constant c < 2 [11]. For a restricted version, the k-SAT problem (the length
of each clause in the formula is bounded by a constant k), better results have been
developed. For example, 3-SAT can be solved in O∗(1.3279n) time [13], 4-SAT
can be solved in O∗(1.4986n) time [13], and k-SAT can be solved in O∗(c(k)n)
time for some value c(k) depending on k [13]. When it comes to the parameter
m, Monien et al. first gave an algorithm with time complexity O∗(1.260m) in
1981 [14]. Later, the bound was improved to O∗(1.239m) by Hirsch in 1998 [9],
and then improved to O∗(1.234m) by Yamamoto in 2005 [19]. Now the best
result is O∗(1.2226m) obtained by Chu, Xiao, and Zhang [3].

The input length L is another important and frequently studied parameter.
It is probably the most precise parameter to describe the input CNF-Formula.
From the first algorithm with running time bound O∗(1.0927L) by Van Gelder
in 1988 [16], the result was improved several times. In 1997, the bound was
improved to O∗(1.0801) by Kullmann and Luckhardt [12]. In 1998, the bound
was improved to O∗(1.0758L) by Hirsch [9], and improved again by Hirsch to
O∗(1.074L) in 2000 [10]. Then Wahlström gave an O∗(1.0663L)-time algorithm
in 2005 [17]. In 2009, Chen and Liu [2] used the measure-and-conquer method to
analyze the running time bound and further improved the result to O∗(1.0652L).
We list the major progress and our result in Table 1.

Our algorithm, as well as most algorithms for the SAT problem, is based
on the branch-and-search process. The idea of branch-and-search is simple and
practical: for a given CNF-formula F , we iteratively branch on a variable or
literal x into two branches by assigning value 1 or 0 to it. Let Fx=1 and Fx=1 be
the resulted CNF-formula by assigning value 1 and 0 to x, respectively. It holds
that F is satisfiable if and only if at least one of Fx=1 and Fx=1 is satisfiable.
To get a running time bound, we need to analyze how much the parameter L
can decrease in each branch. To break some bottlenecks in direct analysis, some
references [2,17] analyzed the algorithm based on some other measures and gave
the relation between the new measure and L. The current best result [2] was
obtained by using the measure-and-conquer method, which is also to use a new

438 J. Peng and M. Xiao

measure. This is the first time to bring the measure-and-conquer method to
this research line. In this paper, we further improve the running time bound
by still using the measure-and-conquer method. Similar to many measure-and-
conquer algorithms, our algorithm and the algorithm in [2] deal with variables
from high degree to low degree. The algorithm in [2] carefully analyzed branching
operations for variables of degree 4. Our algorithm will simplify the branching
operation for 4-degree variables and carefully analyze the branching operation
for 5-degree variables. Finally, we can improve the bound to O∗(1.0646L).

Due to the limited space, the proofs of some lemmas marked with (*) are
omitted, which can be found in the full version of this paper [15].

2 Preliminaries

Let V = {x1, x2, ..., xn} denote a set of n boolean variables. Each variable xi

(i ∈ {1, 2, ..., n}) has two corresponding literals: positive literal xi and negative
literal xi (we use x to denote the negation of a literal x, and x = x). A clause
on V consists of some literals on V . Note that we allow a clause to be empty. A
clause {z1, z2, . . . , zq} is also simply written as z1z2 . . . zq. Thus, we use zC to
denote the clause containing literal z and all literals in clause C. We also use
C1C2 to denote the clause containing all literals in clauses C1 and C2. We use C
to denote a clause that contains the negation of every literal in clause C. That
is, if C = z1z2...zq, then C = z1z2...zq. A CNF-formula on V is the conjunction
of a set of clauses F = {C1, C2, ..., Cm}. When we say a variable x is contained
in a clause (or a formula), it means that the clause (at least one clause of the
formula) contains a literal x or its negative x.

An assignment for V is a map A : V → {0, 1}. A clause Cj is satisfied by
an assignment if and only if there exists at least one literal in Cj such that the
assignment makes its value 1. A CNF-formula is satisfied by an assignment A if
and only if each clause in it is satisfied by A. We say a CNF-formula is satisfiable
if it can be satisfied by at least one assignment. We may assign value 0 or 1 to a
literal, which is indeed to assign a value to its variable to make the corresponding
literal 0 or 1.

A literal z is called an (i, j)-literal (resp., an (i+, j)-literal or (i−, j)-literal)
in a formula F if z appears i (resp. at least i or at most i) times and z appears
j times in the formula F . Similarly, we can define (i, j+)-literal, (i, j−)-literal,
(i+, j+)-literal, (i−, j−)-literal, and so on. Note that literal z is an (i, j)-literal
if and only if literal z is a (j, i)-literal. A variable x is an (i, j)-variable if the
positive literal x is an (i, j)-literal. For a variable or a literal x in formula F ,
the degree of it, denoted by deg(x), is the number of x appearing in F plus the
number of x appearing in F , i.e., deg(x) = i + j for an (i, j)-variable or (i, j)-
literal x. A d-variable (resp., d+-variable or d−-variable) is a variable with the
degree exactly d (resp., at least d or at most d). The degree of a formula F is
the maximum degree of all variables in F . For a clause or a formula C, the set
of variables whose literal appears in C is denoted by var(C).

The length of a clause C, denoted by |C|, is the number of literals in C. A
clause is a k-clause or k+-clause if the length of it is k or at least k. We use

A Fast Algorithm for SAT in Terms of Formula Length 439

L(F) to indicate the length of a formula F . It is the sum of the lengths of all
clauses in F , which is also the sum of the degrees of all variables in F . A formula
F is called k-CNF formula if each clause in F has a length of at most k.

In a formula F , a literal x is called a neighbor of a literal z if there is a clause
containing both z and x. The set of neighbors of a literal z in a formula F is
denoted by N(z,F). We also use N (k)(x,F) (resp., N (k+)(z,F)) to denote the
neighbors of z in k-clauses (resp., k+-clauses) in F , i.e., for any z′ ∈ N (k)(z,F)
(resp., z′ ∈ N (k+)(z,F)), there exists a k-clause (resp., k+-clause) containing
both z and z′.

3 Branch-and-Search and Measure-and-Conquer

Our algorithm is a standard branch-and-search algorithm, which first applies
some reduction rules to reduce the instance as much as possible and then searches
for a solution by branching. The branching operations may exponentially increase
the running time. We will use a measure to evaluate the size of the search
tree generated in the algorithm. For the SAT problem, the number of variables
or clauses of the formula is a commonly used measure. More fundamentals of
branching heuristics about the SAT problem can be found in [1].

We use T (μ) to denote the maximum size or number of leaves of the search
tree generated by the algorithm for any instance with the measure being at
most μ. For a branching operation that branches on the current instance into l
branches with the measure decreasing by at least ai in the i-th branch, we get a
a recurrence relation

T (μ) ≤ T (μ − a1) + T (μ − a2) + · · · + T (μ − al).

The recurrence relation can also be simply represented by a branching vector
[a1, a2, . . . , al]. The largest root of the function f(x) = 1 − ∑l

i=1 x−ai is called
the branching factor of the recurrence. If the maximum branching factor for
all branching operations in the algorithm is at most γ, then T (μ) = O(γµ). If
on each node of the search tree, the algorithm runs in polynomial time, then
the total running time of the algorithm is O∗(γµ). For two branching vectors
a = [a1, a2, . . . , al] and b = [b1, b2, . . . , bl], if ai ≥ bi holds for all i = 1, 2 . . . , l,
then the branching factor of a is not greater than that of b. For this case, we
say b dominates a. This property will be used in many places to simplify some
arguments in the paper. More details about analyzing recurrences can be found
in the monograph [8].

The measure-and-conquer method [7] is a powerful tool to analyze branch-
and-search algorithms. The main idea of the method is to adopt a new measure
in the analysis of the algorithm. For example, instead of using the number of
variables as the measure, it may set weights to different variables and use the
sum of all variable weights as the measure. This method may be able to catch
more structural properties and then get further improvements. Nowadays, the
fastest exact algorithms for many NP-hard problems were designed by using this
method. In this paper, we will also use the measure-and-conquer method.

440 J. Peng and M. Xiao

We introduce a weight to each variable in the formula according to the degree
of the variable, w : Z+ → R

+, where Z
+ and R

+ denote the sets of nonnegative
integers and nonnegative reals, respectively. Let wi denote the weight of a vari-
able with degree i. A variable with lower degree will not receive a higher weight.
i.e., wi ≥ wi−1. In our algorithm, the measure of a formula F is defined as

μ(F) =
∑

x

wdeg(x). (1)

In other words, μ(F) is the sum of the weight of all variables in F . Let ni denote
the number of i-variables in F . Then we also have that μ(F) =

∑
i wini.

One important step is to set the value of weight wi. Different values of wi

will generate different branching vectors and factors. We need to find a good
setting of wi so that the worst branching factor is as small as possible. We
will get the value of wi by solving a quasiconvex program after listing all our
branching vectors. However, we pre-specify some requirements of the weights to
simplify arguments. Some similar assumptions were used in previous measure-
and-conquer algorithms. We set the weight such that

w1 = w2 = 0,

0 < w3 < 2, w4 = 2w3, and
wi = i for i ≥ 5.

(2)

We use δi to denote the difference between wi and wi−1 for i > 0, i.e., δi =
wi − wi−1. By (2), we have

w3 = δ3 = δ4. (3)

We also assume that
δi ≤ δi−1 for i ≥ 3, and
w3 ≥ δ5.

(4)

Under these assumptions, it holds that wi ≤ i for each i. Thus, we have

μ(F) ≤ L(F). (5)

This tells us that if we can get a running time bound of O∗(cµ(F)) for a real
number c, then we also get a running time bound of O∗(cL(F)) for this prob-
lem. To obtain a running time bound in terms of the formula length L(F), we
consider the measure μ(F) and show how much the measure μ(F) decreases in
the branching operations of our algorithm and find the worst branching factor
among all branching vectors.

4 The Algorithm

We will first introduce our algorithm and then analyze its running time bound
by using the measure-and-conquer method. Our algorithm consists of reduc-
tion operations and branching operations. When no reduction operations can be
applied anymore, the algorithm will search for a solution by branching. We first
introduce our reduction rules.

A Fast Algorithm for SAT in Terms of Formula Length 441

4.1 Reduction Rules

We have ten reduction rules. They are well-known and frequently used in the
literature (see [2,17] for examples). So we may omit the proofs of the correctness
of some rules. We introduce the reduction rules in the order as stated and a
reduction rule will be applied in our algorithm only when all previous reduction
rules can not be applied on the instance.

R-Rule 1 (Elimination of duplicated literals). If a clause C contains
duplicated literals z, remove all but one z in C.

R-Rule 2 (Elimination of subsumptions). If there are two clauses C and
D such that C ⊆ D, remove clause D.

R-Rule 3 (Elimination of tautology). If a clause C contains two opposite
literals z and z, remove clause C.

R-Rule 4 (Elimination of 1-clauses and pure literals). If there is a 1-
clause {x} or a (1+, 0)-literal x, assign x = 1.

Davis-Putnam Resolution, proposed in [6], is a classic and frequently used
technology for SAT. Let F be a CNF-formula and x be a variable in F . Assume
that clauses containing literal x are xC1, xC2, ..., xCa and clauses containing lit-
eral x are xD1, xD2, ..., xDb. A Davis-Putnam resolution on x is to construct a
new CNF-formula DPx(F) by the following method: initially DPx(F) = F ;
add new clauses CiDj for each 1 ≤ i ≤ a and 1 ≤ j ≤ b; and remove
xC1, xC2, ..., xCa, xD1, xD2, ..., xDb from the formula. It is known that

Proposition 1 ([6]). A CNF-formula F is satisfiable if and only if DPx(F) is
satisfiable.

In the resolution operation, each new clause CiDj is called a resolvent. A resol-
vent is trivial if it contains both a literal and the negation of it. Since trivial
resolvents will always be satisfied, we can simply delete trivial resolvents from the
instance directly. So when we do resolutions, we assume that all trivial resolvents
will be deleted.

R-Rule 5 (Trivial resolution). If there is a variable x with at most one
non-trivial resolvent, then apply resolution on x.

R-Rule 6 ([2]). If there are a 2-clause z1z2 and a clause C containing both z1
and z2, then remove z2 from C.

R-Rule 7. If there are two clauses z1z2C1 and z1z2C2, where literal z2 appears
in no other clauses, then remove z1 from clause z1z2C1.

Lemma 1. (*) Let F be a CNF-formula and F ′ be the resulting formula after
applying R-Rule 7 on F . Then F is satisfiable if and only if F ′ is satisfiable.

R-Rule 8 ([2]). If there is a 2-clause z1z2 and a clause z1z2C such that literal
z1 appears in no other clauses, remove the clause z1z2 from F .

442 J. Peng and M. Xiao

R-Rule 9 ([2]). If there is a 2-clause z1z2 such that either literal z1 appears
only in this clause or there is another 2-clause z1z2, then replace z1 with z2 in
F and then apply R-Rule 3 as often as possible.

R-Rule 10 ([2]). If there are two clauses CD1 and CD2 such that |D1|, |D2| ≥ 1
and |C| ≥ 2, then remove CD1 and CD2 from F , and add three new clauses xC,
xD1, and xD2, where x is a new 3-variable.

This is like the Davis-Putnam resolution in reverse and thus it is correct.

Definition 1 (Reduced formulas). A CNF-formula F is called reduced, if
none of the above reduction rules can be applied on it.

Our algorithm will first iteratively apply above reduction rules in the order
to get a reduced formula. We will use R(F) to denote the resulting reduced
formula obtained from F . Next, we show some properties of reduced formulas.

Lemma 2. (*) In a reduced CNF-formula F , all variables are 3+-variables.

Lemma 3. (*) In a reduced CNF-formula F , if there is a 2-clause xy, then no
other clause in F contains xy, xy, or xy.

Lemma 4. (*) In a reduced CNF-formula F , if there is a clause xyC, then

(i) no other clause contains xy;
(ii) no other clause contains xy or xy if x is a 3-variable.

Lemma 5. (*) In a reduced CNF-formula F , if there is (1, i)-literal x and xC
is the only clause containing x, then

(i) |C| ≥ 2;
(ii) all variables in C are different from all variables in N (2)(x, F), that is, if

y ∈ N (2)(x, F), then y, y /∈ C.

4.2 Branching Rules and the Algorithm

After getting a reduced formula, we will search for a solution by branching. In a
branching operation, we will generate two smaller CNF-formulas such that the
original formula is satisfiable if and only if at least one of the two new formulas
is satisfiable. The two smaller formulas are generated by specifying the value of
a set of literals in the original formula.

The simplest branching rule is that we pick up a variable or literal x from
F and branch into two branches Fx=1 and Fx=0, where Fx=1 and Fx=0 are the
formulas after assigning x = 1 and x = 0 in F , respectively. When the picked
literal x is a (1, 1+)-literal, we will apply a stronger branching. Assume that xC
is the only clause containing x. Then we branch into two branches Fx=1 & C=0

and Fx=0, where Fx=1 & C=0 is the resulting formula after assigning 1 to x and
0 to all literals in C in F . The correctness of this branching operation is also
easy to observe. Only when all literals in C are assigned 0, we need to assign 1
to x.

A Fast Algorithm for SAT in Terms of Formula Length 443

Algorithm 1: SAT(F)
Input: a CNF-formula F
Output: 1 or 0 to indicate the satisfiability of F
Step 1. If F = ∅, return 1. If F contains an empty clause, return 0.
Step 2. If F is not a reduced CNF-formula, iteratively apply the reduction
rules to reduce it.
Step 3. If there is a d-variable x with d ≥ 6, return SAT(Fx=1)∨SAT(Fx=0).
Step 4. If there is a (1, 4)-literal x (assume xC is the only clause containing x),
return SAT(Fx=1 & C=0)∨SAT(Fx=0).
Step 5. If there is a 5-variable x contained in a 2-clause, return
SAT(Fx=1)∨SAT(Fx=0).
Step 6. If there is a 5-variable x contained in a 4+-clause, return
SAT(Fx=1)∨SAT(Fx=0).
Step 7. If there is a clause containing both a 5-variable x and a 4−-variable,
return SAT(Fx=1)∨SAT(Fx=0).
Step 8. If there are still some 5-variables, then F = F∗ ∧ F ′, where F∗ is a
3-CNF with var(F∗) be the set of 5-variables in F and var(F∗) ∩ var(F ′) = ∅.
We return SAT(F∗) ∧ SAT(F ′) and solve F∗ by using the 3-SAT algorithm by
Liu [13].
Step 9. If there is a (1, 3)-literal x (assume xC is the only clause containing x),
return SAT(Fx=1 & C=0)∨SAT(Fx=0).
Step 10. If there is a (2, 2)-literal x, return SAT(Fx=1)∨SAT(Fx=0).
Step 11. Apply the algorithm by Wahlström [18] to solve the instance.

The main steps of our algorithm for the SAT problem are given in Algo-
rithm 1. The algorithm will execute one step only when all previous steps can
not be applied. In Step 2, the algorithm first reduces the formula by applying
the reduction rules. Step 3 will branch on a variable of degree ≥ 6 if it exists.
Steps 4–8 deal with 5-variables. Note that if Steps 1–7 do not apply, then F can
be written as F = F∗ ∧ F ′, where F∗ is a 3-CNF with var(F∗) be the set of
5-variables in F and var(F∗) ∩ var(F ′) = ∅. So we can do Step 8. Steps 9–10
deal with 4-variables. When the algorithm comes to the last step, all variables
must have a degree of 3 and the algorithm deals with this special case.

We compare our algorithm with the previous algorithm by Chen and Liu [2].
We can see that they used a simple and uniform branching rule to deal with vari-
ables of degree at least 5 and used careful and complicated branching rules for 4-
variables. Their bottlenecks contain one case of branching on (2, 3)-variables (or
(3, 2)-variables) and one case of dealing with 4-variables. To get further improve-
ments, we carefully design and analyze the branching rules for 5-variables to
avoid one previous bottleneck, and also refine the branching rules for 4-variables.

5 Framework of the Analysis

We use the measure-and-conquer method to analyze the running time bound
of our algorithm, and adopt μ(F) defined in (1) as the measure to construct

444 J. Peng and M. Xiao

recurrence relations for our branching operations. Before analyzing each detailed
step of the algorithm, we first introduce the general framework of our analysis.

In each sub-branch of a branching operation, we assign value 1 or 0 to some
literals and remove some clauses and literals. If we assign value 1 to a literal x in
the formula F , then we will remove all clauses containing x and all x literals from
the clauses containing x. The assignment and removing together are called an
assignment operation. We may assign values to more than one literal and we do
assignment operations for each literal. Let S be a subset of literals. We use FS=1

to denote the resulting formula after assigning 1 to each literal in S and doing
assignment operations. Note that FS=1 may not be a reduced formula and we
will apply our reduction rules to reduce it. We use F ′

S=1 to denote the reduced
formula obtained from FS=1, i.e., F ′

S=1 = R(FS=1). We analyze how much we
can reduce the measure in each branch by establishing some lower bounds for

ΔS = μ(F) − μ(F ′
S=1).

We also define
ξ
(1)
S = μ(F) − μ(FS=1);

ξ
(2)
S = μ(FS=1) − μ(F ′

S=1).

Thus, ΔS = ξ
(1)
S + ξ

(2)
S .

In a branching operation, we will branch into two sub branches. Assume that
the set of literals in S1 are assigned the value in the first sub branch and the set
of literals in S2 are assigned the value in the second sub branch. If we can show

min(ΔS1 ,ΔS2) ≥ a and ΔS1 + ΔS2 ≥ b,

then we can always get a branching vector covered by one of

[a, b − a] and [b − a, a].

This technique will be frequently used in our analysis.

5.1 Some Lower Bounds

Next, we show some detailed lower bounds for ΔS (as well as for ΔS1 + ΔS2).
We first consider ξ

(1)
S and ξ

(2)
S .

According to the assignment operation, we know that all variables of the
literals in S will be deleted in FS=1. So we have a trivial bound

ξ
(1)
S ≥

∑

v∈S

wdeg(v). (6)

To get better bounds, we first define some notations. For a literal x in a
reduced formula F , we define:

– ni(x): the number of i-variables whose literals appear in N(x,F);

A Fast Algorithm for SAT in Terms of Formula Length 445

– n′
i(x): the number of i-variables whose literals appear in N (2)(x,F);

– n′′
i (x): the number of i-variables whose literals appear in N (3+)(x,F).

Note that by the definition, we always have that ni(x) = n′
i(x) + n′′

i (x).
Next, we give some lower bounds on ξ

(1)
S , ξ

(2)
S , and ΔS1 + ΔS2 , which will be

used to prove our main results.

Lemma 6. (*) Assume that F is a reduced CNF-formula. Let S = {x}, where
x is a literal in F . It holds that

ξ
(1)
S ≥ wdeg(x) +

∑

i≥3

ni(x)δi. (7)

Lemma 7. (*) Assume that F is a reduced CNF-formula of degree d. Let S =
{x}, where x is a (j, d − j)-literal in F . It holds that

ξ
(1)
S ≥ wd + jδd. (8)

Lemma 8. (*) Assume that F is a reduced CNF-formula of degree d. Let S =
{x}, where x is a literal in F . It holds that

ξ
(2)
S ≥ n′

3(x)w3 +
∑

4≤i≤d

n′
i(x)wi−1. (9)

Lemma 9. (*) Assume that F is a reduced CNF-formula of degree d. Let S1 =
{x} and S2 = {x}, where the corresponding variable of x is a d-variable in F .
It holds that

ΔS1+ΔS2 ≥ 2wd+2dδd+(n′
3(x)+n′

3(x))(2w3−2δd)+
∑

4≤i≤d

(n′
i(x) + n′

i(x))(wi − 2δd). (10)

Lemma 10. (*) Assume that F is a reduced CNF-formula of degree d. Let x be
a (1, d−1)-literal and xC be the only clause containing x in F . Let S = {x}∪C.
It holds that

ΔS ≥ wd + 2w3 +
∑

3≤i≤d

n′
i(x)wi. (11)

Lemma 11. (*) Assume that F is a reduced CNF-formula of degree d. Let x be
a (1, d−1)-literal and xC be the only clause containing x in F . Let S1 = {x}∪C
and S2 = {x}. It holds that

ΔS1 + ΔS2 ≥ 2wd + 2w3 + 2(d − 1)δd. (12)

Lemma 12. (*) Assume that F is a reduced CNF-formula of d = 5. Let S1 =
{x} and S2 = {x}, where the corresponding variable of x is a 5-variable in F . If
all clauses containing x or x are 3+-clauses, it holds that

ΔS1 + ΔS2 ≥ 2w5 + (
∑

3≤i≤5

(ni(x) + ni(x)))δ5 + (
∑

3≤i≤4

(ni(x) + ni(x)))(w3 − δ5).

(13)

446 J. Peng and M. Xiao

6 Step Analysis

Equipped with the above lower bounds, we are ready to analyze the branching
vector of each step in the algorithm.

6.1 Step 2

In this step, we do not branch and only apply reduction rules to reduce the for-
mula. However, it is still important to show that the measure will never increase
when applying reduction rules, and reduction operations use only polynomial
time.

Lemma 13. (*) For any CNF-formula F , it holds that

μ(R(F)) ≤ μ(F).

Lemma 14. (*) For any CNF-formula F , we can apply the reduction rules in
polynomial time to transfer it to R(F).

6.2 Step 3

In this step, we branch on a variable x of degree at least 6. The two sub-branches
are: S1 = {x}; S2 = {x}. We have the following result:

Lemma 15. The branching vector generated by Step 3 is covered

[w6 + δ6, w6 + 11δ6] or [w6 + 11δ6, w6 + δ6]. (14)

Proof. Since R-Rule 4 is not applicable, both x and x are (1+, 1+)-literals. By
the condition of this case, we have d ≥ 6 and δd = δ6 by (2).

By Lemma 7, we can get that ΔS1 ≥ ξ
(1)
S1

≥ wd + jδd ≥ w6 + δ6 since x is a
(j, d−j)-literal with j ≥ 1. Also, we can get ΔS2 ≥ w6 +δ6 by the same method.

By Lemma 9, we have that ΔS1 +ΔS2 ≥ 2wd +2dδd +(n′
3(x)+n′

3(x))(2w3 −
2δd) +

∑
4≤i≤d (n′

i(x) + n′
i(x))(wi − 2δd) ≥ 2w6 + 12δd since w3 > δd and wi >

2δd for 4 ≤ i ≤ d.
With min(ΔS1 ,ΔS2) ≥ w6 + δ6 and ΔS1 + ΔS2 ≥ 2w6 + 12δ6, we can know

that the branching vector of this case is covered by [w6 + δ6, w6 + 11δ6] or
[w6 + 11δ6, w6 + δ6]. ��

6.3 Step 4

In this step, the algorithm will consider a (1, 4)-literal x. Assume that xC is the
only clause containing x. The two sub-branches are: S1 = {x} ∪ C; S2 = {x}.
We have the following result:

Lemma 16. The branching vector generated by step 4 is covered by

[w5 + 2w3, w5 + 8δ5] or [w5 + 8δ5, w5 + 2w3]. (15)

A Fast Algorithm for SAT in Terms of Formula Length 447

Proof. By Lemma 10, we get that ΔS1 ≥ wd+2w3+
∑

3≤i≤d n′
i(x)wi ≥ w5+2w3.

By Lemma 7, we have that ΔS2 ≥ ξ
(1)
S2

≥ wd + jδd = w5 + 4δ5 since x is a (4, 1)-
literal.

By Lemma 11, we can get that ΔS1 + ΔS2 ≥ 2wd + 2w3 + 2(d − 1)δd =
2w5 + 2w3 + 8δ5.

Since w3 < 2 and w5 = 5 by (2), we have 2w5 > 5w3, i.e., 2w5 − 4w3 >
w3. Since w4 = 2w3 by (4), we have 2w5 − 2w4 > w3 ⇒ 2δ5 > w3. So
min(ΔS1 ,ΔS2) ≥ w5 + 2w3. Since ΔS1 + ΔS2 ≥ 2w5 + 2w3 + 8δ5, we know
that the branching vector of this case is covered by [w5 + 2w3, w5 + 8δ5] or
[w5 + 8δ5, w5 + 2w3]. ��

6.4 Step 5

In this step, we branch on a 5-variable x such that either x or x is in a 2-clause.
The two sub-branches are: S1 = {x}; S2 = {x}. We have the following result:

Lemma 17. The branching vector generated by step 5 is covered by one of

[w5 + 2δ5, w5 + 4w3 + 4δ5], [w5 + 4w3 + 4δ5, w5 + 2δ5],
[w5 + 3δ5, w5 + 2w3 + 5δ5], and [w5 + 2w3 + 5δ5, w5 + 3δ5].

Proof. We will consider two subcases:
Case 1. There are at least two 2-clause containing literal x or x. Now it

holds that
∑

3≤i≤d n′
i(x) + n′

i(x) ≥ 2. By Lemma 7, we get that ΔS1 ≥ ξ
(1)
S1

≥
wd + jδd ≥ w5 + 2δ5 since x is a (2, 3)-literal or (3, 2)-literal. In a similar way,
we can get that ΔS2 ≥ w5 + 2δ5.

By Lemma 9, we have ΔS1 + ΔS2 ≥ 2wd + 2dδd + (n′
3(x) +

n′
3(x))(2w3 − 2δd) +

∑
4≤i≤d (n′

i(x) + n′
i(x))(wi − 2δd) ≥ 2w5 + 10δ5 +∑

3≤i≤5 (n′
i(x) + n′

i(x))(2w3 − 2δ5) ≥ 2w5+10δ5+2(w3−2δ5) ≥ 2w5+4w3+6δ5
since w4, w5 ≥ 2w3 and

∑
3≤i≤5 n′

i(x) + n′
i(x) ≥ 2.

By min(ΔS1 ,ΔS2) ≥ w5 + 2δ5 and ΔS1 + ΔS2 ≥ 2w5 + 4w3 + 6δ5, we know
that the branching vector of this case is covered by [w5 + 2δ5, w5 + 4w3 + 4δ5]
or [w5 + 4w3 + 4δ5, w5 + 2δ5].

Case 2. There is only one 2-clause containing literal x or x. Note that∑
3≤i≤d n′

i(x) + n′
i(x) = 1. For literal x, it is contained in at least two clauses

and at most one of them is 2-clause. So
∑

3≤i≤d ni(x) ≥ 3 holds.

By Lemma 6, we get that ΔS1 ≥ ξ
(1)
S1

≥ w5 +
∑

3≤i≤d ni(x)δi ≥
w5 + (

∑
3≤i≤d ni(x))δ5 ≥ w5 + 3δ5. Similarly, we also can get that ΔS2 ≥

w5 + 3δ5. By Lemma 9, we get that ΔS1 + ΔS2 ≥ 2wd + 2dδd +
(n′

3(x) + n′
3(x))(2w3 − 2δd) +

∑
4≤i≤d (n′

i(x) + n′
i(x))(wi − 2δd) ≥ 2w5 + 10δ5 +∑

3≤i≤5 (n′
i(x) + n′

i(x))(2w3 − 2δ5) ≥ 2w5+10δ5+(2w3−2δ5) ≥ 2w5+2w3+8δ5
since w4, w5 ≥ 2w3 and

∑
3≤i≤d n′

i(x) + n′
i(x) = 1.

Since min(ΔS1 ,ΔS2) ≥ w5 +3δ5 and ΔS1 +ΔS2 ≥ 2w5 +2w3 +8δ5, we know
that the branching vector of this subcase is covered by [w5 +3δ5, w5 +2w3 +5δ5]
or [w5 + 2w3 + 5δ5, w5 + 3δ5].

These two cases complete the proof. ��

448 J. Peng and M. Xiao

6.5 Step 6

In this step, all clauses containing a 5-variable are 3+-clauses now. We branch
on a 5-variable x contained in a 4+-clause. The two sub-branches are: S1 = {x};
S2 = {x}. We have the following result:

Lemma 18. The branching vector generated by step 6 is covered by

[w5 + 4δ5, w5 + 7δ5] or [w5 + 7δ5, w5 + 4δ5]. (16)

Proof. Literal x is contained in at least two 3+-clauses. So
∑

3≤i≤d ni(x) ≥ 4

holds. By Lemma 6, we get that ΔS1 ≥ ξ
(1)
S1

≥ w5+(
∑

3≤i≤d ni(x))δd ≥ w5+4δ5.
Similarly, we get that ΔS2 ≥ w5 + 4δ5.

Let m4 be the number of 4+-clauses containing x. We have that∑
3≤i≤5 ni(x) + n′

i(x) ≥ 2(5 − m4) + 3m4 ≥ 10 + m4 ≥ 11 since m4 ≥ 1.
By Lemma 12, We get that ΔS1 + ΔS2 ≥ 2w5 + (

∑
3≤i≤5 (ni(x) + ni(x)))δ5 +

(
∑

3≤i≤4 (ni(x) + ni(x)))(w3 − δ5) ≥ 2w5 + 11δ5 since w3 ≥ δ5.
Since min(ΔS1 ,ΔS2) ≥ w5 + 4δ5 and ΔS1 + ΔS2 ≥ 2w5 + 11δ5, we know

that the branching vector of this case is covered by [w5 + 4δ5, w5 + 7δ5] or
[w5 + 7δ5, w5 + 4δ5]. ��

6.6 Step 7

In Step 7, all clauses containing a 5-variable are 3-clauses. We branch on a 5-
variable x whose literal and a literal of a 4−-variable are in the same clause. The
two sub-branches are: S1 = {x}; S2 = {x}. We have that

Lemma 19. The branching vector generated by step 7 is covered by

[w5 + 4δ5, w5 + w3 + 5δ5] or [w5 + w3 + 5δ5, w5 + 4δ5]. (17)

Proof. There is at least one 4−-variable whose literal is in N(x,F) ∪ N(x,F).
So it holds that

∑
3≤i≤4(ni(x) + ni(x)) ≥ 1.

For literal x, it is contained in at least two 3-clauses, which means that
∑

3≤i≤d ni(x) ≥ 4 holds. By Lemma 6, we get that ΔS1 ≥ ξ
(1)
S1

≥ w5 +∑
3≤i≤5 ni(x)δi ≥ w5 + (

∑
3≤i≤d ni(x))δ5 = w5 + 4δ5. Similarly, we can get

that ΔS2 ≥ w5 + 4δ5.
By Lemma 12, we get that ΔS1 +ΔS2 ≥ 2w5 +(

∑
3≤i≤5 (ni(x) + ni(x)))δ5 +

(
∑

3≤i≤4 (ni(x) + ni(x)))(w3−δ5) ≥ 2w5+w3+9δ5 since
∑

3≤i≤4 ni(x)+ni(x) ≥
1.

Since min(ΔS1 ,ΔS2) ≥ w5 +4δ5 and ΔS1 +ΔS2 ≥ 2w5 +2w3 +8δ5, we know
that the branching vector is covered by [w5 + 4δ5, w5 + w3 + 5δ5] or [w5 + w3 +
5δ5, w5 + 4δ5]. ��

A Fast Algorithm for SAT in Terms of Formula Length 449

6.7 Step 8

In Step 8, the literals of all 5-variables form a 3-SAT instance F∗. We apply
the O∗(1.3279n)-time algorithm in [13] for 3-SAT to solve our problem, where
n is the number of variables in the instance. Since w5 = 5, we have that n =
μ(F∗)/w5 = μ(F∗)/5. So the running time for this part will be

O∗(1.3279µ(F
∗)/w5) = O∗(1.0584µ(F

∗)).

6.8 Step 9

In this step, we branch on a (1, 3)-literal x. The two sub-branches are: S1 = {x};
S2 = {x}. We have the following result:

Lemma 20. (*) The branching vector generated by step 9 is covered by

[w4 + 2w3, w4 + 6δ4] or [w4 + 6δ4, w4 + 2w3]. (18)

6.9 Step 10

In this step, we branch on a (2, 2)-literal x. The two sub-branches are: S1 = {x};
S2 = {x}. We have the following result:

Lemma 21. The branching vector generated by step 10 is covered by

[w4 + 2δ4, w4 + 6δ4] or [w4 + 6δ4, w4 + 2δ4]. (19)

Proof. By Lemma 7, we get that ΔS1 ≥ ξ
(1)
S1

≥ wd + jδd = w4 + 2δ4 since x is a
(2, 2)-literal. Similarity, we can get that ΔS2 ≥ w4 + 2δ4.

By Lemma 9, we have ΔS1 + ΔS2 ≥ 2wd + 2dδd + (n′
3(x) + n′

3(x))(2w3 −
2δd) +

∑
4≤i≤d (n′

i(x) + n′
i(x))(wi − 2δd) = 2w4 + 8δ4 + (n′

3(x) + n′
3(x))(2w3 −

2δ4) + (n′
4(x) + n′

4(x))(w4 − 2δ4) = 2w4 + 8δ4.
Since min(ΔS1 ,ΔS2) ≥ w4 + 2δ4 and ΔS1 + ΔS2 ≥ 2w4 + 8δ4, we know that

the branching vector is covered by [w4 + 2δ4, w4 + 6δ4] or [w4 + 6δ4, w4 + 2δ4].
��

6.10 Step 11

All variables are 3-variables now. We apply the O∗(1.1279n)-time algorithm by
Wahlström [18] to solve this special case, where n is the number of variables.
For this case, we have that n = μ(F)/w3. So the running time of this part is

O∗((1.12791/w3)µ(F)).

450 J. Peng and M. Xiao

7 The Final Result

Each one of the branching vectors above will generate a constraint in our quasi-
convex program to solve the best value for w3 and w4. Let αi denote the branch-
ing factor for branching vector (i) where 14 ≤ i ≤ 21. We want to find the mini-
mum value α such that α ≤ αi and α ≤ 1.12791/w3 (generated by Step 11) under
the assumptions (2) and (4). By solving this quasiconvex program, we get that
α = 1.0646 by letting w3 = 1.9234132344759123 and w4 = 3.8468264689518246.
Note that α = 1.0646 is greater than 1.0584 the branching factor generated in
Step 8. So 1.0646 is the worst branching factor in the whole algorithm. By (5),
we get the following result.

Theorem 1. Algorithm 1 solves the SAT problem in O∗(1.0646L) time.

Table 2. The weight setting

w1 = w2 = 0

w3 = 1.9234132344759123 δ3 = 1.9234132344759123

w4 = 3.8468264689518246 δ4 = 1.9234132344759123

w5 = 5 δ5 = 1.1531735310481754

wi = i(i ≥ 6) δi = 1(i ≥ 6)

Table 3. The branching vector and factor for each step

Steps Branching vectors Branching factors

Step 3 [w6 + δ6, w6 + 11δ6] 1.0636

Step 4 [w5 + 2w3, w5 + 8δ5] 1.0632

Step 5 [w5 + 3δ5, w5 + 2w3 + 5δ5] 1.0618

[w5 + 2δ5, w5 + 4w3 + 4δ5] 1.0636

Step 6 [w5 + 4δ5, w5 + 7δ5] 1.0636

Step 7 [w5 + 4δ5, w5 + 5δ5 + w3] 1.0646

Step 8 O∗((1.32791/w5)µ) 1.0584

Step 9 [w4 + 2w3, w4 + 6δ4] 1.0646

Step 10 [w4 + 2δ4, w4 + 6δ4] 1.0646

Step 11 O∗((1.12791/w3)µ) 1.0646

We also show the whole weight setting in Table 2 and the branching vector
of each step under the setting in Table 3. From Table 3, we can see that we have
four bottlenecks: Steps 7, 9, 10, and 11. In fact, Steps 9, 10, and 11 have the
same branching vector [4w3, 8w3] under the assumption that w4 = 2w3 (for Step
11, the worst branching vector in [18] is [4, 8]). The branching factor for these

A Fast Algorithm for SAT in Terms of Formula Length 451

three steps will decrease if the value of w3 increases. On the other hand, the
branching factor for Step 7 will decrease if the value of w3 decreases. We set the
best value of w3 to balance them. If we can either improve Step 7 or improve
Steps 9, 10, and 11 together, then we may get a further improvement. However,
the improvement is very limited and several other bottlenecks will appear.

8 Concluding Remarks

In this paper, we show that the SAT problem can be solved in O∗(1.0646L) time,
improving the previous bound in terms of the input length obtained more than 10
years ago. Nowadays, improvement becomes harder and harder. However, SAT
is one of the most important problems in exact and parameterized algorithms,
and the state-of-the-art algorithms are frequently mentioned in the literature.
Furthermore, in order to give a neat and clear analysis, we introduce a general
analysis framework, which can even be used to simplify the analysis for other
similar algorithms based on the measure-and-conquer method.

Acknowledgements. The work is supported by the National Natural Science Foun-
dation of China, under grant 61972070.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

2. Chen, J., Liu, Y.: An improved SAT algorithm in terms of formula length. In:
Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol.
5664, pp. 144–155. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03367-4 13

3. Chu, H., Xiao, M., Zhang, Z.: An improved upper bound for SAT. Proc.
AAAI Conf. Artif. Intell. 35(5), 3707–3714 (2021). https://ojs.aaai.org/index.php/
AAAI/article/view/16487

4. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A.,
Banerji, R.B., Ullman, J.D. (eds.) Proceedings of the 3rd Annual ACM Symposium
on Theory of Computing, Shaker Heights, Ohio, USA, 3–5 May 1971, pp. 151–158.
ACM (1971). https://doi.org/10.1145/800157.805047

5. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfiability problem:
a survey. In: Du, D., Gu, J., Pardalos, P.M. (eds.) Satisfiability Problem: Theory
and Applications, Proceedings of a DIMACS Workshop, Piscataway, New Jersey,
USA, 11–13 March 1996. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 35, pp. 1–17. DIMACS/AMS (1996). https://doi.org/10.
1090/dimacs/035/01

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

7. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009). https://doi.org/10.
1145/1552285.1552286

https://doi.org/10.1007/978-3-642-03367-4_13
https://doi.org/10.1007/978-3-642-03367-4_13
https://ojs.aaai.org/index.php/AAAI/article/view/16487
https://ojs.aaai.org/index.php/AAAI/article/view/16487
https://doi.org/10.1145/800157.805047
https://doi.org/10.1090/dimacs/035/01
https://doi.org/10.1090/dimacs/035/01
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1145/1552285.1552286

452 J. Peng and M. Xiao

8. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

9. Hirsch, E.A.: Two new upper bounds for SAT. In: Karloff, H.J. (ed.) Proceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco,
California, USA, 25–27 January 1998, pp. 521–530. ACM/SIAM (1998). http://dl.
acm.org/citation.cfm?id=314613.314838

10. Hirsch, E.A.: New worst-case upper bounds for SAT. J. Autom. Reason. 24(4),
397–420 (2000). https://doi.org/10.1023/A:1006340920104

11. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

12. Kullmann, O., Luckhardt, H.: Deciding propositional tautologies: Algorithms and
their complexity. preprint 82 (1997)

13. Liu, S.: Chain, generalization of covering code, and deterministic algorithm for
k-sat. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th
International Colloquium on Automata, Languages, and Programming, ICALP
2018, Prague, Czech Republic, 9–13 July 2018. LIPIcs, vol. 107, pp. 88:1–88:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.
4230/LIPIcs.ICALP.2018.88

14. Monien, B., Speckenmeyer, E., Vornberger, O.: Upper bounds for covering prob-
lems. Methods Oper. Res. 43, 419–431 (1981)

15. Peng, J., Xiao, M.: A fast algorithm for SAT in terms of formula length (2021).
https://arxiv.org/abs/2105.06131

16. Van Gelder, A.: A satisfiability tester for non-clausal propositional calculus. Inf.
Comput. 79(1), 1–21 (1988). https://doi.org/10.1016/0890-5401(88)90014-4

17. Wahlström, M.: An algorithm for the SAT problem for formulae of linear length.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 107–118.
Springer, Heidelberg (2005). https://doi.org/10.1007/11561071 12

18. Wahlström, M.: Faster exact solving of SAT formulae with a low number of occur-
rences per variable. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569,
pp. 309–323. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 23

19. Yamamoto, M.: An improved Õ(1.234m)-time deterministic algorithm for SAT. In:
Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 644–653. Springer,
Heidelberg (2005). https://doi.org/10.1007/11602613 65

https://doi.org/10.1007/978-3-642-16533-7
http://dl.acm.org/citation.cfm?id=314613.314838
http://dl.acm.org/citation.cfm?id=314613.314838
https://doi.org/10.1023/A:1006340920104
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.4230/LIPIcs.ICALP.2018.88
https://doi.org/10.4230/LIPIcs.ICALP.2018.88
https://arxiv.org/abs/2105.06131
https://doi.org/10.1016/0890-5401(88)90014-4
https://doi.org/10.1007/11561071_12
https://doi.org/10.1007/11499107_23
https://doi.org/10.1007/11602613_65

MedleySolver: Online SMT Algorithm
Selection

Nikhil Pimpalkhare1, Federico Mora1(B), Elizabeth Polgreen1,2,
and Sanjit A. Seshia1

1 University of California, Berkeley, USA
fmora@cs.berkeley.edu

2 University of Edinburgh, Edinburgh, Scotland

Abstract. Satisfiability modulo theories (SMT) solvers implement a
wide range of optimizations that are often tailored to a particular class
of problems, and that differ significantly between solvers. As a result,
one solver may solve a query quickly while another might be flummoxed
completely. Predicting the performance of a given solver is difficult for
users of SMT-driven applications, particularly when the problems they
have to solve do not fall neatly into a well-understood category. In this
paper, we propose an online algorithm selection framework for SMT
called MedleySolver that predicts the relative performances of a set of
SMT solvers on a given query, distributes time amongst the solvers, and
deploys the solvers in sequence until a solution is obtained. We evaluate
MedleySolver against the best available alternative, an offline learning
technique, in terms of pure performance and practical usability for a typ-
ical SMT user. We find that with no prior training, MedleySolver solves
93.9% of the queries solved by the virtual best solver selector achieving
59.8% of the par-2 score of the most successful individual solver, which
solves 87.3%. For comparison, the best available alternative takes longer
to train than MedleySolver takes to solve our entire set of 2000 queries.

1 Introduction and Motivation

State-of-the-art Satisfiability Modulo Theory (SMT) solvers employ highly opti-
mized and unique techniques to efficiently solve queries. One example of differen-
tiation between solvers is in quantifier reasoning, where the number of different
algorithms implemented is reflected in the wide spectrum of literature on the
subject, e.g. [7,16,23,27,34]. In the same vein, solvers use very different tech-
niques for different theories; for example, there are various techniques that can
be used for bit-precise reasoning, e.g. [6,9,10,14,15,17,20,22,30,31].

SMT solvers are becoming more widely used across various applications
including verification, automated software testing, and policy verification, e.g.
[4,8,24], making them particularly useful to industry practitioners and non-SMT
researchers. Given the performance differential between solvers, a key question
for such practitioners wishing to apply SMT solving to a problem in a specific

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 453–470, 2021.
https://doi.org/10.1007/978-3-030-80223-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_31&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_31

454 N. Pimpalkhare et al.

domain is “which solver should I use?” In this work, we endeavor to provide a
simple answer to this question: “Let MedleySolver choose for you!”

MedleySolver frames the problem of choosing an SMT-solver as a modified
Multi-Armed Bandit (MAB) problem, a classic reinforcement learning formula-
tion in which an agent must repeatedly pick from several different choices with
unknown reward distributions, minimizing overall regret. This agent must trade-
off between exploitation (choosing a solver that is already believed to be fast)
and exploration (testing out other solvers). For a given SMT query, MedleySolver
selects a sequence of solvers to run, running the solver it believes is most likely
to solve the query first and the solver that is least likely last. MedleySolver also
predicts the time it should spend running each solver before it should give up
and move onto the next solver in the sequence.

We apply classic algorithm selection techniques from the domain of Multi-
Armed Bandit problems to the order selection problem. In this paper, we high-
light Thompson Sampling and k-Nearest-Neighbor (k-NN) classification. We
select these two as high-performing instances of a non-contextual and a con-
textual algorithm respectively but perform a more extensive comparison with a
variety of other Multi-Armed Bandit algorithms for completeness. These algo-
rithms traditionally predict one optimal action, but we use them to rank SMT
solvers on a given query based on the behavior observed on previous queries and,
in the case of the contextual bandit algorithms, a feature vector. This ranking
allows the algorithm to explore and exploit in a single round.

Non-contextual multi-armed bandit algorithms have been directly applied
to selecting search heuristics and variable orderings for constraint satisfaction
problems [39,43], and to implementing co-operative sharing of clauses in parallel
SAT solving [25]. Our use of a contextual multi-armed bandit framework to select
a sequence of SMT solvers for a given SMT query is novel.

We pair these order selection algorithms with two runtime prediction algo-
rithms. The first runtime prediction algorithm estimates the time each solver
should be run by modeling its performance as exponential distributions with a
parameter that is updated dynamically. The second fits a linear model using
stochastic gradient descent (SGD). Runtime estimation helps reduce the cost of
exploratory solver choices that do not produce rewards by stopping solvers when
we are confident they will not finish before the overall timeout.

Our work is inspired by recent work showing machine learning techniques can
be used to solve SMT queries faster. For example, FastSMT [5] is a tool that uses
machine learning to find an optimal sequence of tactics, or query transformations,
for SMT solvers to use on queries from a given domain. One issue with such
approaches is that the complexity of the learning methods leads to training times
grossly larger than the time spent solving. In this paper, we achieve comparable
performance boosts with no pre-training or additional burden on the SMT end-
user. To meet this goal, we approached the problem of algorithm selection for
SMT solvers in a dynamic, or “online,” manner. This ensures the cost of our
training remains small, proportional, and justified by how SMT practitioners use
SMT solvers. For example, techniques such as counterexample-guided inductive
synthesis (CEGIS) [38] produce long sequences of similar SMT queries that are
not easy to obtain prior to solving for offline training.

MedleySolver: Online SMT Algorithm Selection 455

Contributions. The key contributions of this work are:

1. An adaptation of standard regression techniques to predicting when a given
solver will timeout on a query, and a novel approach for the same time alloca-
tion problem that models runtime as exponential distributions and estimates
timeouts dynamically and with context.

2. A framing of the SMT solver selection problem as a Multi-Armed Bandit
(MAB) problem combined with a timeout prediction scheme. Specifically, we
extend the MAB problem to selecting sequences of solvers per query instead
of a single solver and use the timeout prediction scheme to allocate time to
each solver in the sequence. This interaction lets us use lightweight techniques
for both problems that do not require pre-training while retaining comparable
performance to pre-trained techniques.

3. An empirical evaluation on a set of 2000 benchmarks representing a typical
user’s workload. Our approach solves 1813 queries on this set; 128 more than
the next best solver in 3/5th of the time, with no pre-training.

2 Related Work

MedleySolver is most related to algorithm selection techniques for SAT and
SMT. Our motivation, however, is similar to portfolio-based approaches.

Algorithm/Solver Selection. Early approaches to learning-based algorithm selec-
tion in solvers included picking between different encodings of SMT to SAT in
the UCLID solver [11,36] and selecting input parameters for SAT solvers [19].
SatZilla [44] used empirical-hardness models to map queries to SAT solvers.
Models are learned offline, then combined with a fixed order of “pre-solvers”—
solvers that are called before featurization with a short timeout—when online.
MedleySolver differs from SATZilla in that it targets SMT, learns solver orders,
distributes time among solvers, and does not require training. ArgoSmArT
k-NN [32] applies a pre-trained k-Nearest-Neighbor algorithm to portfolio SAT
solving. Given a query, they deploy the most successful solver on the k near-
est neighbors. Although one algorithm we apply is k-NN, we use it to select
sequences of solvers and apply it in combination with the time-prediction algo-
rithm. MachSMT [35] is a pre-trained tool like SatZilla but for SMT. Like
SatZilla, MachSMT pre-trains to learn an empirical hardness model, then used to
predict solving time for a given query. This is related to our timeout estimation,
however, our version requires no pre-training. We achieve similar performance to
MachSMT without pre-training by decoupling solver choice from time allocation
and allowing for mistakes by selecting a sequence of solvers to run, instead of a
single solver. Where4 [18] is a portfolio-based SMT solver that uses regression
models to select which solver to run. It extracts features from WhyML programs
rather than SMT queries and does not allocate time between solvers. CPHy-
dra [33] does allocate time between solvers but does so by solving an NP-Hard
problem (knapsack). CPHydra also ignores solver order, requires offline training,
and is aimed at CSP, which is related to, but different from, SMT. FastSMT [5]

456 N. Pimpalkhare et al.

is a pre-trained learning tool for speeding up the Z3 SMT solver that works by
selecting algorithmic “tactics” or strategies inside the solver itself. FastSMT is
interesting because it produces an interpretable strategy that can often be sig-
nificantly faster than Z3 out-of-the-box. MedleySolver differs from FastSMT in
that it learns to combine solvers, rather than to combine the tactics of a single
solver. FastSMT also requires significant training time.

Parallel Portfolio Solvers. Parallel portfolio solvers execute sets of solving pro-
cesses in parallel for each query. Our approach is complementary in that we
focus on speeding up sequential computation: different configurations of Medley-
Solver could be run in parallel with a portfolio approach. Nevertheless, portfolio
approaches share a similar goal, so we highlight related works in this space.
PAR4 [40] is a basic portfolio parallel SMT solver that won several tracks
in the SMT-competition in 2019. Wintersteiger et al. [42] implement Parallel
Z3, a portfolio solver for SMT with the additional feature that learned clauses
are shared between processes. Menouer and Baarir [28] combine search space-
splitting with portfolio solving by using EXP3 to dynamically allocate cores to
each search space splitting solver from a set. Our approach differs in that we
focus on SMT, not SAT; we allocate time, not cores; and we use bandit algo-
rithms (like EXP3) to pick the order of solvers, not the number of cores.

3 Problem Statement and Approach Overview

SMT users rarely aim to solve a single query in isolation and usually care about
resource consumption. For example, verification engines generate many verifica-
tion queries for one verification problem and aim to solve these queries in the
least amount of time. As such, we define the practical SMT problem as that of
taking a set of SMT queries Q = {q1, ..., qm}, a set of SMT algorithms (usu-
ally solvers) S, and producing a set of answers A = {a1, ..., am}, where each ai

corresponds to the matching qi, while using the least computational resources.
Our approach to the practical SMT problem, MedleySolver, is a program

that takes Q, S, and a timeout T per query, and aims to maximize the number
of instances solved while minimizing the cumulative time spent. We decompose
our approach into two parts. For each query q ∈ Q, we predict 1. which solvers
are most likely to solve a given query and return a list of solvers ordered by
chance of success; and 2. the time each solver is likely to take to solve a given
query and distribute the timeout T to the solvers in the sequence accordingly.

Given a query qi, MedleySolver generates a sequence of solvers σ, and a
sequence of time-allocations t1, ..., tn, so that the solver in σ1 is run for t1 seconds
and so on. If a solver in the sequence successfully solves the query, we do not
run the rest of the solver sequence on that query and instead move onto the
next query. For the remainder of the paper, we use σ to denote a sequence
of solvers and σi to denote the ith solver in the sequence σ. We process each
query q1, ..., qm in order and our solver selection algorithms learn as we go, so
the solver selection for qm uses information from queries q1, ..., qm−1. In practice,

MedleySolver: Online SMT Algorithm Selection 457

Featurize

Time
Predictor

Solver
Selector

Deploy
Solvers

solver sequence
σ = {σi, σj , ..}

time allocations
{t1, .., tn}

rewards {r1, .., rn}
observed solving times

Query q

feature vector
v

v

Fig. 1. Overview of one iteration of our approach.

this historical information can be reset whenever and in our experimental results,
we reset it when confronting a new set of queries (for instance, a new category
of the SMT competition). An overview of our approach is shown in Fig. 1. We
describe the three main components of Fig. 1: the solver selector, the timeout
predictor, and the featurization of queries, in detail in the next two sections.

4 Dynamic Solver Selection

In the multi-armed bandit (MAB) problem [13] an agent sequentially selects
between choices with unknown associated reward distributions, aiming to maxi-
mize the reward achieved over time. The agent must trade off exploration (trying
new actions and learning about them) and exploitation (deploying actions we
know have the potential for high reward).

We frame the solver selection problem as a MAB problem. The agent is select-
ing the solver to use and the payout is based on successfully solving queries. We
assume that running a solver for a randomly selected SMT query is equivalent
to sampling from some unknown distribution that we seek to approximate. Con-
textual MABs extend the problem by giving agents access to a feature vector
before each round. This allows us to add information about the characteristics
of the SMT query we are trying to solve in each round, as described in Sect. 4.2.

We modify the MAB problem in one key way: we select a sequence of solvers
to run (with corresponding time allocations that we consider later), instead
of selecting a single solver. This contribution allows solver selection to per-
form exploration on each query until it observes a reward, has tried all solvers,
or reaches the time-out per query. We also use a time-prediction algorithm,
described in Sect. 5 which predicts the time it is worth running a solver on a
given query, allowing us to perform “partial exploration” instead of committing
to running a single solver until time-out or termination. Both of these exten-
sions to the MAB algorithms allow the solver selection to correct incorrect solver
choices, reducing the cost of exploration vs exploitation. In the following sub-
sections, we adapt one non-contextual algorithm and one contextual algorithm
(i.e., algorithms that use the feature vector) from the literature to our domain.
We choose the algorithms based on their popularity in the classic literature for

458 N. Pimpalkhare et al.

0 queries solved
0 queries failed

8 queries solved
1 query failed

8 queries solved
29 queries failed

0 0.2 0.4 0.6 0.8 1
0

2

4

6

θ

p
(θ
)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

θ

0 0.2 0.4 0.6 0.8 1
0

2

4

6

θ

Fig. 2. Updating the distribution of θ according to Bayes’ rule. A distribution for a
solver that has failed on more queries than it has solved will have a θ < 0.5.

MAB, and the compatibility of the assumptions the algorithm makes with our
domain (for instance, we omit algorithms such as LinUCB [26], which assumes
that the reward is linearly correlated with the feature vector). In Sect. 6 we
evaluate our choices against other MAB algorithms for completeness.

Rewards. We use a binary reward structure where a solver receives a reward of
1 if it is observed solving a query and 0 if it is observed failing to solve a query,
which decouples solving time from rewards. We also explored an exponential
reward structure where a solver receives a reward of (1 − t/T)4 if it solves a
query in time t, but found the binary reward more effective which we believe is
due to its ability to differentiate more clearly between benchmarks that are slow
to solve and benchmarks that are not solved.

4.1 Thompson Sampling

Thompson Sampling [1,2] uses Bayes’ rule to choose an action, or arm in the
MAB problem, that maximizes the expected reward. Each round of the MAB in
this context is picking a random query from the set of queries and trying to solve
it with a specific solver σi. To adapt non-contextual Thompson Sampling to our
SMT solver selection problem, we model the outcome of an experiment with a
Bernoulli distribution where the solver solves the query with a probability θi

and fails to solve it within the time-out with a probability 1 − θi. In Thompson
Sampling, the agent does not know the value of each θi but begins with some
prior belief over each one. These priors are beta-distributed: the prior for θi is

p(θi) =
Γ (αi + βi)
Γ (αi)Γ (βi)

θαi−1
i (1 − θi)βi−1.

We initially take this distribution to be uniform i.e., αi = βi = 1. That is, we
assume a prior that, for a random query, each solver has a 50% chance of solving
the query and a 50% chance of failing to solve the query within the timeout.

To select a solver to deploy, Thompson Sampling takes a sample from each
distribution p(θi) corresponding to a solver. Note that, because Thompson Sam-
pling takes a sample from the distributions p(θ1)...p(θn), it is more likely to
pick solvers that we are uncertain about instead of simply returning the solvers

MedleySolver: Online SMT Algorithm Selection 459

(a) Solver performance on Uclid5 queries as
the number of array operations increases.

0 0.5 1 1.5 2 2.5
0

100

200

300

400

500

time(s)

#
un

so
lv
ed

be
nc

hm
ar
ks

Bitwuzla
CVC4
Z3

(b) Three solver’s runtime over a sam-
ple of bit-vector queries.

Fig. 3. Empirical intuition for features and time predictors.

in order of the p(θ) with the highest mean, allowing exploration. Conventional
Thompson Sampling returns the solver with the highest valued sample. Our
algorithm returns a sequence of solvers in descending order of these sampled
values i.e., the solver with the θ closest to 1 is first.

After deploying the solvers and observing the results, the distributions over
θ1, .., θn are updated according to Bayes’s rule. Each time a solver σi is run, a
reward ri is observed. The posterior distribution for the beta distribution [12] is
obtained by adding the reward ri to αi and 1 − ri to βi, as illustrated in Fig. 2.

Thompson Sampling assumes events are independent, i.e., the probability of
a solver being able to solve a query is independent of all queries the solver has
seen before. This could be true if our time-out prediction algorithm is perfect
so that if a solver can solve a query within the timeout T , the solver will also
always be able to solve that query within the time t allocated to the solver.

4.2 Features for Contextual Approaches

Contextual approaches depend on the assumption that queries with similar char-
acteristics will cause SMT solvers to perform similarly. We capture the charac-
teristics of each SMT query qi in a feature vector vi ∈ V . We use these feature
vectors both in contextual bandit algorithms (described next) and in our con-
textual time-prediction (described in Sect. 5).

We identify a list of 24 features that are quick to extract and that we believe
correlate with solving time for specific solvers. These features include context-
free qualities like counts for specific operators (e.g. array store operators), the
maximum value of literals, the sum of literal values, and so on. The features also
include context-sensitive qualities like quantifier nesting and alternations, as well
as the size of a given queries’ abstract-syntax-tree as a minimal graph (we refer
to this representation as a term graph). All feature extraction procedures run
in O(n) where n is the size of the term graph. The term graph construction is
efficient and the term graph itself is often exponentially smaller than the input
query. Therefore, the cost of extracting features is relatively small.

460 N. Pimpalkhare et al.

0 50 100 150
40

60

80

100

120

140

Largest Constant

Q
ue

ry
Si
ze

(a) Fourth Query

0 50 100 150
40

60

80

100

120

140

Largest Constant

(b) Fifth Query

0 50 100 150
40

60

80

100

120

140

Largest Constant

(c) Sixth Query

Fig. 4. Example k-NN run with k = 1, solvers A, B, C, and 2 features. A, B, and
C are represented by a square, a triangle, and a circle, respectively; the new query is
represented by a diamond. A and B fail on the new query in (a); solver B fails on the
new query in (b); and solver C succeeds on both.

As a heuristic, we try to build features that can differentiate solver perfor-
mance on their own. For example, Fig. 3a shows the performance of three differ-
ent SMT solvers as the number of array operations in the term graph increases
accompanied by an exponential regression fit. For this example, intuitively, we
would want to favor the use of Z3 as the number of array operations increases.
While we did not do any empirical feature selection, we did use our prior knowl-
edge of SMT solvers to decide which feature extractors to build, and we evaluate
the impact of our decisions in Sect. 6.3.

4.3 k-Nearest-Neighbor

The k-Nearest-Neighbor algorithm(k-NN) is a simple contextual approach.
Viewed from the perspective of a MAB problem, given solvers s1, ..., sn, k-NN
classifies SMT queries into n classes: queries where solver s1 is the best choice,
queries where solver s2 is the best choice, and so on. We extend the standard
k-NN algorithm to return a sequence of solvers.

Given a query, q, the basic k-NN algorithm looks at the k nearest queries
to q, tallies the number solved by each solver, and orders the solvers by their
tallies. We calculate the distance between two queries—how “near” two queries
are—by computing the Euclidean distance between their feature vectors. The
idea behind this algorithm is that if a solver succeeded on many queries similar
to q, then it is likely to succeed on q. If any solvers in the solver set are not
included in the neighbors, we randomly shuffle these solvers and append them
to the end of the sequence—we make an exception for the k = 1 case: when
k = 1 we return the solver that solved the nearest neighbor, followed by the
solver that solved the next nearest neighbor and so on, without replacement.

Once an order is selected, we run the solvers in sequence. If a solver s in this
sequence succeeds, we add the feature vector of that query to our data-set of
previously solved queries along with the label s. See Fig. 4 for three steps of a
hypothetical 1-nearest neighbor example.

MedleySolver: Online SMT Algorithm Selection 461

5 Runtime Prediction

The second component of our approach comprises time predictors, which we use
to split the per-query timeout T into sub-timeouts per solver t1 . . . tn. We train a
time-predictor for each solver. Our goal is to find a time ti such that we can stop
running the ith solver in the sequence and be highly confident it was unlikely
to solve the current query after this point. Formally, we are trying to find the
minimum ti such that P (ti < ui < T) ≤ δ, where ui is the true runtime of σi

on qi and δ is the accepted error probability. We consider this event the only
relevant error scenario because it implies if we had allocated more time to solver
σi we could have solved the current query.

To calculate each ti, we model each solver’s runtime as an exponential distri-
bution, justified by our experimental observations illustrated in Fig. 3b: solvers
usually succeed early or not at all. We employ Maximum Likelihood Esti-
mation (MLE) [29] to fit an exponential distribution to the runtime samples
which we have gathered up to that point. In MLE, we find minλ P (u1 . . . um|λ),
where u1 . . . um are the observed runtime samples we have seen, which we
assume are drawn from Exponential(λ). We use the exponential’s probabil-
ity distribution function as a measure of likeliness, so this problem is equal to
minλ n ln λ − λ(

∑
i ui), leading to the following minimizer:

λ∗ =
n

∑
i ui

Applying the cumulative distribution function and using the memoryless prop-
erty of the exponential distribution, we can calculate ti as follows:

ti =
− ln(δ + e−λ∗T)

λ∗

We split T into sub-timeouts greedily; we use the above process to allocate time
for solvers starting from the beginning of our ordering and stop once we reach
the overall timeout, allocating zero time to the remaining solvers in the order.
If we reach the end of the ordering and still have time remaining, we give the
remaining timeout to the last solver.

k-NN Runtime Prediction. We present a contextual runtime prediction sys-
tem based on the k-NN algorithm. Instead of using every past sample point
to estimate λ∗, we limit our estimation scheme to the k nearest data-points.
As with the k-NN based solver selection, the distance between two queries is
the Euclidean distance between their feature vectors. The rest of the estimation
scheme remains identical to the non-contextual scheme.

Linear Regression Runtime Prediction. Finally, we present a contextual
runtime prediction system that finds a linear relationship between our feature
vector and the associated runtime. To do so, it minimizes the L2-regularized
squared loss of the linear model using stochastic gradient descent, solving:

462 N. Pimpalkhare et al.

min
w,b

∑

i

(wT xi + b − ui) + α||w||2,

where w is the learned weight of our features, b is a learned coefficient, xi is the
feature vector of the ith query, ui is the true runtime of the ith query, and α is
a regularization constant.

6 Empirical Evaluation

We implemented a prototype of MedleySolver in Python.1 The input is a direc-
tory of queries, and the output is the result, solver used, and time elapsed per
query. In this section, we evaluate this prototype and aim to answer the follow-
ing research questions: 1. How does MedleySolver compare to individual solvers
on the practical SMT problem? 2. How does MedleySolver compare to the best
available alternatives on the practical SMT problem? 3. How do the individual
components of MedleySolver affect the overall performance?

Subjects and Methods. We equip MedleySolver with six SMT solvers (CVC4
v1.8 [6], MathSAT v5.6.3 [9], Z3 v4.8.7 [14], Boolector v2.4.1 [31], Bitwuzla
v.0.9999 [30] and Yices v2.6.2 [15]) and run on four benchmark sets, each with
500 queries. Some SMT solvers do not support all needed syntax. For exam-
ple, the BV set includes quantifiers that Boolector cannot handle. We expect
MedleySolver to learn to avoid solvers that fail on specific kinds of queries.

The benchmark queries simulate a typical user’s workload in that they are
similar in nature, i.e. use related logical theories and come from similar appli-
cations, but are diverse enough to expose issues a normal user will encounter,
i.e. deviations in SMT-LIB conformance. We selected a random sample of 500
queries from an existing benchmark set, Sage2, derived from a test generation
tool; 500 queries from 140 Uclid5 [37] verification tasks; and 500 queries each
from the BV and QF ABV theory SMT-COMP tracks, respectively.

We ran every individual solver with a timeout of 60 s for every query on a
Dell PowerEdge C6220 server blade equipped with two Intel Xeon 10-core Ivy
Bridge processors running Scientific Linux 7 at 2.5 GHz with 64 GB of 1866
Mhz DDR3 memory. We saved these results and used them to simulate runs
of MedleySolver. This helped ensure results are deterministic, reproducible, and
lowered our carbon emissions. The overhead of running MedleySolver on all 2000
queries varies between learning algorithms and features used but is always less
than two minutes for the full set of queries, and is therefore negligible.

6.1 RQ1: Comparison with Individual Solvers

To evaluate the utility of MedleySolver for a typical user, we ran k-NN and
Thompson with the three timeout predictors on every set individually and then

1 Code and data: https://github.com/uclid-org/medley-solver/tree/SAT2021.

https://github.com/uclid-org/medley-solver/tree/SAT2021

MedleySolver: Online SMT Algorithm Selection 463

Table 1. Par-2 score (lower is better) and the number of queries solved for each solver
across benchmarks. MedleySolver configurations are selectors (e.g. 10-NN) over time
predictors (e.g. Linear time prediction). Learning algorithms use binary reward and
every query is given a 60 s timeout. ‘Split’ refers to the sum over all individual bench-
mark sets where the learning algorithms are restarted between sets, while ‘Combined’
refers to the aggregated set with no resets. Individual sets contain 500 queries; ‘Com-
bined’ and ‘Split’ contain 2000.

Benchmark set

Solver BV QFABV Sage2 Uclid5 Split Combined

10-NN 2081.8 1208.2 14855.4 5386.9 23532.3 29111.2

Expo 484 492 396 457 1829 1799

10-NN 2857.7 1039.7 17558.2 5386.9 26842.5 25133.8

10-Nearest-Expo 477 493 367 457 1794 1813

10-NN 4229.1 824.4 13789.0 8136.4 26978.9 87898.4

Linear 468 496 409 452 1825 1308

Thompson 2986.4 1308.5 15323.1 5540.9 25158.9 51757.3

Expo 480 491 401 456 1828 1676

Thompson 2840.8 1105.1 17949.7 5536.0 27431.6 27555.9

10-Nearest-Expo 479 493 365 456 1793 1816

Thompson 4291.1 1474.1 15661.3 4344.6 25771.1 45267.7

Linear 466 489 392 473 1820 1658

Boolector 60000.0 1408.7 31502.3 60000.0 152911.1

0 491 265 0 756

Bitwuzla 3872.3 822.9 22316.4 60000.0 87011.7

471 496 349 0 1316

CVC4 3332.1 5874.1 49161.5 7395.5 65763.3

477 459 117 459 1512

MathSat 11455.0 1724.0 34159.4 50783.3 98121.7

406 488 232 77 1203

Yices 7244.3 922.1 13544.4 60000.0 81710.9

442 494 411 0 1347

Z3 2888.6 1202.0 35279.2 2637.2 42007.1

477 492 232 484 1685

Virtual best 964.6 530.8 9006.2 2192.1 12786.5

493 497 453 476 1931

over the combined set. The combined set represents a realistic combination of
queries a typical user might want to solve.

Table 1 reports the results of our experiment in terms of Par-2 score,2 where
“virtual best” is calculated by using the best-performing individual solver for each
query. On individual sets where one solver dominates, like Z3 on Uclid5, Med-
leySolver approaches the best solver but does not reach it. Conversely, on sets
where no one solver is close to the virtual best, like BV, we find the MedleySolver
can exploit this performance differentiation and approach the virtual best solver.

2 Sum of all runtimes for solved instances + 2∗timeout for unsolved instances [41].

464 N. Pimpalkhare et al.

Fig. 5. Par-2 score over queries solved in the combined set.

The combined set, which is less uniform than BV but less dominated than Uclid5,
demonstrates the power of MedleySolver: with no training, MedleySolver solves
94.5% of the queries solved by the virtual best using only 72.3% of the time taken
by the most successful individual solver, Z3, which solves 87.3%. Figure 5 shows
the performance of every solver over the number of queries processed, and visu-
ally depicts the proximity of MedleySolver to the virtual best. Together, Table 1
and Fig. 5 answer RQ3: MedleySolver outperforms every individual solver on the
practical SMT problem.

The Thompson MAB selector generally does better when summing up indi-
vidual sets than when running on the combined set, while the k-NN selector
is the opposite. This suggests contextual approaches can effectively carry over
lessons between sets, and non-contextual approaches benefit from being used in
the context of a benchmark.

6.2 RQ2: Comparison with State-of-the-Art

We now compare MedleySolver to alternative portfolio approaches, including
those based on pre-trained machine learning techniques. Parallel portfolio solvers
like PAR4 [40] run multiple solvers in parallel and stop all solvers when the first
one solves the query. We can calculate the hypothetical performance of such a
solver by multiplying the virtual best solver time by the number of solvers we
run. This would give a Par-2 score of 65481, in comparison to 10-NN’s better
score of 32632 over the combined benchmark set.

MachSMT [35] uses a neural network to select which solver to run on a given
query. Table 2 shows the performance of MachSMT and MedleySolver on the
same benchmarks as in Table 1 but with 2/5 of the queries set aside for MachSMT
to train on per set. Although MachSMT slightly outperforms MedleySolver on

MedleySolver: Online SMT Algorithm Selection 465

Table 2. Par-2 score (lower is better) and training time for MedleySolver, MachSMT,
and the Virtual Best of all individual solvers. Individual benchmarks consist of 200
training queries and 300 test queries; ‘Combined’ consists of 800 training queries and
1200 test queries. Only MachSMT uses the training queries.

Benchmark Set

Solver BV QFABV Sage2 Uclid5 Combined

MedleySolver 1638.7 310.5 9245.3 4248.0 18565.5

N/A N/A N/A N/A N/A

MachSMT 1458.3 919.2 8516.1 2430.9 12539.1

33895.5 s 4498.9 s 55115.5 s 276419.8 s 300072.8 s

Virtual best 801.7 184.3 5204.2 1464.7 6746.0

N/A N/A N/A N/A N/A

the test sets, the training time required by MachSMT is orders of magnitude
larger than the time required to solve, particularly because, to have training data
on which to train, MachSMT must run all the solvers on all the queries in the
training set which takes a considerable amount of time. So, on the practical SMT
problem, MedleySolver achieves similar results with significantly less resource
consumption and we argue the cost of training is not worth it if online learning
can achieve competitive performance. Preiner et al. do make a trained model
available that could eliminate training time for a user. However, this pre-trained
model is trained on specific versions of a specific set of SMT solvers running on a
specific system. In practice and in our example, the user’s specifics do not match
and local training is required.

FastSMT [5] is an offline approach that synthesizes strategies for the Z3
SMT solver. FastSMT requires significant training time and needs to be trained
per benchmark set. We can run the pre-trained FastSMT model on the Sage2
benchmark set, where it solves 358 queries in 12766s (par-2 score of 29806). This
is a substantial performance gain over Z3, but all MedleySolver configurations
still outperform this without any pre-training. FastSMT improves on Z3 but
it is limited to one single solver and, unlike MedleySolver, is not able to take
advantage of the range of different SMT solvers implementing different heuristics.

6.3 RQ3: Impact of Individual Components

In this section, we evaluate the performance of the individual pieces of Med-
leySolver. Specifically, we aim to answer the following questions. 1. How do our
learning algorithms compare to other well-known MAB algorithms? 2. How well
do our order selectors perform? 3. What is the impact of selecting an order
instead of a single solver on performance? 4. Which query features are most
responsible for MedleySolver’s performance?

Performance of Other Multi-Armed Bandit Algorithms. We have highlighted the
results from Thompson Sampling and k-NN but we also adapted and evaluated

466 N. Pimpalkhare et al.

the following Multi-Armed Bandit algorithms: the classic non-contextual epsilon-
greedy bandit algorithm [21]; LinUCB [26], an upper-confidence bound algorithm
that assumes a linear relationship between the rewards and the feature vector;
Exp3 [3]: an adversarial bandit algorithm; and an adaptation of a neural network
classification based bandit [45]. All of these bandits performed comparably or bet-
ter than the best individual solver, but no non-contextual algorithm performed
as well as Thompson Sampling, and no contextual algorithm performed as well as
k-NN.

Order Selection Accuracy. To better understand MedleySolver’s performance,
we measure how frequently it selects the best solver as the first solver to try.
Over our five case-study benchmarks, the best performing selector is k-Nearest-
Neighbor with k = 10 (10-NN), which correctly picks the best solver 74.3% of
the time. The highest success rate is on the BV benchmark, where 10-NN is
92.0% accurate. The lowest success rate is on the QF ABV benchmark, where
10-NN is 52.0% accurate. This difference demonstrates MedleySolver’s accuracy
is proportional to the cost of mistakes: solvers are much better overall on the
QF ABV category so MedleySolver can frequently pick a sub-optimal solver that
will still terminate quickly; on the other hand, in BV, picking the wrong solver
will often lead to a timeout.

Timeout Prediction Impact. To better understand MedleySolver’s performance,
we measure the impact of selecting an order of solvers instead of a single solver.
To do this we run MedleySolver without timeout prediction, giving the entire
time per query to the first solver in the sequence. We find, all else equal, on the
combined set, selecting a single solver produces a par-2 score 350% worse than
our best MedleySolver configuration. This difference is due to the direct cost of
mispredictions and because, without the time prediction, MedleySolver is unable
to learn from mistakes on a given query.

Feature Evaluation. In this section, we aim to interpret what our results tell
us about SMT solvers and optimize performance through feature analysis. To
better understand the SMT solvers we use, we measure how well each feature
correlates with solver performance differentiation. Specifically, for every feature
f , for every pair of solvers (si, sj) ∈ S × S, we measure the Pearson correlation
coefficient between f and time(si) − time(sj). Using this technique we found,
on the BV benchmark set, the most distinguishing features were the number of
universal quantifiers for Bitwuzla and MathSat5; the number of free variables for
Yices and Boolector; the number of bound variables for Boolector and Bitwuzla;
and the size of the term graph for Bitwuzla and Z3.

To optimize performance, we search for the subset of features that induce
the best performance from MedleySolver. Specifically, we use backward step-wise
feature selection (BSFS) to iteratively remove features from our feature vector
whose removal does not negatively affect performance. Using this technique we
found that, all else equal, using only three features on the BV benchmark (num-
ber of quantifiers, number of variables, and term graph size) improves the par-2

MedleySolver: Online SMT Algorithm Selection 467

score of the best configuration of MedleySolver by 30%. We observe a similar
reduction in feature vector size across benchmarks and an average par-2 perfor-
mance improvement of 11%. Interestingly, BSFS often removes the feature with
the smallest correlation score, as described above.

6.4 Threats to Validity

We evaluated MedleySolver on a set of benchmarks and a combination of solvers
we believe represent a real user’s SMT workload, but we understand these
results may not generalize. To mitigate this possibility, we evaluated the SMT-
Competition data curated by the MachSMT authors. On the QF UFBV bench-
mark, the best individual solver was Bitwuzla with a score of 2614.6 while Med-
leySolver scored 2600.5; on the QF LIA benchmark, the best individual solver
was Yices with a score of 45871.2 while MedleySolver scored of 25737.2; on the
QF BVFPLRA benchmark, the best individual solver was MathSAT5 with a
score of 3015.2 while MedleySolver scored 567.7; and on the NRA benchmark,
the best individual solver was Z3 with a score of 1455.6 while MedleySolver
scored 1068.6. In all cases, MedleySolver outperformed every individual solver
while using no pre-training–often by margins greater than those observed in our
case study–suggesting our results do generalize.

The queries MedleySolver has seen in the past affect the prediction Medley-
Solver makes for the current query, and thus the order MedleySolver receives the
queries could affect the overall performance on the full dataset. MAB algorithms
such as Thompson Sampling use random sampling and choice of random seed
could also affect the results. To gain confidence in our claims, we repeated our
experiments with 20 different random seeds and found the standard deviation in
MedleySolver’s overall par-2 score to be approximately 1% of its average score.
The margins between MedleySolver and any individual solver are significantly
larger than 1% and so MedleySolver is consistently comfortably better than any
individual solver in our evaluation regardless of deviation.

7 Conclusions and Future Work

We presented MedleySolver, an online learning algorithm for SMT that uses a
novel application of multi-armed bandits to predict the best order in which to
deploy a sequence of SMT solvers, in combination with a novel time-prediction
algorithm, allowing the solver selection to recover from mistakes. Our approach
solves more queries in less time per query than any individual solver on a set
of benchmarks taken from the SMT-competition and verification tasks. Unlike
offline techniques, MedleySolver requires no pre-training.

In the future, we intend to explore white-box techniques for solver termina-
tion prediction. We hypothesize that monitoring a solver’s execution can help
identify when the solver is unlikely to terminate. We are also interested in explor-
ing online feature selection techniques.

468 N. Pimpalkhare et al.

Acknowledgments. This work was supported in part by NSF grants CNS-1739816
and CCF-1837132, by the DARPA LOGiCS project under contract FA8750-20-C-0156,
by the iCyPhy center, and by gifts from Intel, Amazon, and Microsoft.

References

1. Agrawal, S., Goyal, N.: Analysis of Thompson sampling for the multi-armed bandit
problem. In: COLT. JMLR Proceedings, vol. 23, pp. 39.1–39.26. JMLR.org (2012)

2. Agrawal, S., Goyal, N.: Thompson sampling for contextual bandits with linear
payoffs. In: ICML (3). JMLR Workshop and Conference Proceedings, vol. 28, pp.
127–135. JMLR.org (2013)

3. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

4. Backes, J., et al.: Semantic-based automated reasoning for AWS access policies
using SMT. In: FMCAD, pp. 1–9. IEEE (2018)

5. Balunovic, M., Bielik, P., Vechev, M.T.: Learning to solve SMT formulas. In:
NeurIPS, pp. 10338–10349 (2018)

6. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

7. Barth, M., Dietsch, D., Fichtner, L., Heizmann, M.: Ultimate eliminator: a quan-
tifier upgrade for smt solvers at smt-comp 2019 (2019)

8. Bjørner, N.: SMT solvers for testing, program analysis and verification at microsoft.
In: SYNASC, p. 15. IEEE Computer Society (2009)

9. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-
SAT 4 SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
299–303. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-
1 28

10. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71209-1 28

11. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 7

12. Castillo, E.F., Hadi, A.S., Solares, C.: Learning and updating of uncertainty in
dirichlet models. Mach. Learn. 26(1), 43–63 (1997)

13. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, Cambridge (2006)

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

15. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

16. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/3-540-45657-0_7
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25

MedleySolver: Online SMT Algorithm Selection 469

17. Hansen, T.: A constraint solver and its application to machine code test generation.
Ph.D. thesis, University of Melbourne, Australia (2012). http://hdl.handle.net/
11343/37952

18. Healy, A., Monahan, R., Power, J.F.: Predicting SMT solver performance for soft-
ware verification. In: F-IDE@FM. EPTCS, vol. 240, pp. 20–37 (2016)

19. Hutter, F., Babic, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: 7th International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 27–34 (2007)

20. Jha, S., Limaye, R., Seshia, S.A.: Beaver: engineering an efficient SMT solver for
bit-vector arithmetic. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 668–674. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02658-4 53

21. Johnson, J.D., Li, J., Chen, Z.: Reinforcement Learning: An Introduction: Sutton,
R.S., Barto, A.G. MIT press, Cambridge, MA 1998, 322, ISBN 0-262-19398-1.
Neurocomputing 35(1-4), 205–206 (2000)

22. Jonáš, M., Strejček, J.: Solving quantified bit-vector formulas using binary decision
diagrams. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
267–283. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 17

23. Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified rea-
soning. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, pp. 260–270 (2017)

24. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Texts in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-540-74105-3

25. Lazaar, N., Hamadi, Y., Jabbour, S., Sebag, M.: BESS: Bandit Ensemble for
parallel SAT Solving. Research Report RR-8070 (2012). https://hal.inria.fr/hal-
00733282

26. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to per-
sonalized news article recommendation. In: Proceedings of the 19th international
conference on World Wide Web, pp. 661–670. ACM (2010)

27. Löding, C., Madhusudan, P., Peña, L.: Foundations for natural proofs and quan-
tifier instantiation. In: Proceedings of the ACM on Programming Languages, vol.
2, no. POPL, pp. 1–30 (2017)

28. Menouer, T., Baarir, S.: Parallel learning portfolio-based solvers. Procedia Comput.
Sci. 108, 335–344 (2017)

29. Myung, I.J.: Tutorial on maximum likelihood estimation. J. Math. Psychol. 47(1),
90–100 (2003). https://doi.org/10.1016/S0022-2496(02)00028-7

30. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020 (2020). CoRR
abs/2006.01621, https://arxiv.org/abs/2006.01621

31. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Com-
put. 9(1), 53–58 (2014). https://doi.org/10.3233/sat190101

32. Nikolic, M., Maric, F., Janicic, P.: Simple algorithm portfolio for SAT. Artif. Intell.
Rev. 40(4), 457–465 (2013)

33. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science, pp. 210–216 (2008)

34. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21668-3 12

http://hdl.handle.net/11343/37952
http://hdl.handle.net/11343/37952
https://doi.org/10.1007/978-3-642-02658-4_53
https://doi.org/10.1007/978-3-642-02658-4_53
https://doi.org/10.1007/978-3-319-40970-2_17
https://doi.org/10.1007/978-3-540-74105-3
https://hal.inria.fr/hal-00733282
https://hal.inria.fr/hal-00733282
https://doi.org/10.1016/S0022-2496(02)00028-7
https://arxiv.org/abs/2006.01621
https://doi.org/10.3233/sat190101
https://doi.org/10.1007/978-3-319-21668-3_12

470 N. Pimpalkhare et al.

35. Scott, J., Niemetz, A., Preiner, M., Nejati, S., Ganesh, V.: Machsmt: a machine
learning-based algorithm selector for SMT solvers. In: Groote, J.F., Larsen, K.G.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 27th
International Conference, TACAS 2021, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City,
Luxembourg, 27 March–1 April 2021, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 12652, pp. 303–325. Springer, Heidelberg (2021). https://doi.
org/10.1007/978-3-030-72013-1 16

36. Seshia, S.A.: Adaptive Eager Boolean Encoding for Arithmetic Reasoning in Ver-
ification. Ph.D. thesis, Carnegie Mellon University (2005)

37. Seshia, S.A., Subramanyan, P.: UCLID5: integrating modeling, verification, syn-
thesis and learning. In: MEMOCODE, pp. 1–10. IEEE (2018)

38. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006)

39. Wattez, H., Koriche, F., Lecoutre, C., Paparrizou, A., Tabary, S.: Learning variable
ordering heuristics with multi-armed bandits and restarts. In: ECAI. Frontiers in
Artificial Intelligence and Applications, vol. 325, pp. 371–378. IOS Press (2020)

40. Weber, T.: Par4 system description. https://smt-comp.github.io/2019/system-
descriptions/Par4.pdf

41. Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.: The
SMT competition 2015–2018. J. Satisf. Boolean Model. Comput. 11(1), 221–259
(2019)

42. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: A concurrent portfolio approach to
SMT solving. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
715–720. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 60

43. Xia, W., Yap, R.H.C.: Learning robust search strategies using a bandit-based app-
roach. In: AAAI, pp. 6657–6665. AAAI Press (2018)

44. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

45. Zhou, D., Li, L., Gu, Q.: Neural contextual bandits with upper confidence bound-
based exploration (2019). CoRR abs/1911.04462

https://doi.org/10.1007/978-3-030-72013-1_16
https://doi.org/10.1007/978-3-030-72013-1_16
https://smt-comp.github.io/2019/system-descriptions/Par4.pdf
https://smt-comp.github.io/2019/system-descriptions/Par4.pdf
https://doi.org/10.1007/978-3-642-02658-4_60
https://doi.org/10.1007/978-3-642-02658-4_60

Leveraging GPUs for Effective Clause
Sharing in Parallel SAT Solving

Nicolas Prevot1, Mate Soos2, and Kuldeep S. Meel2(B)

1 London, United Kingdom
2 School of Computing, National University of Singapore, Singapore, Singapore

meel@comp.nus.edu.sg

Abstract. The past two decades have witnessed an unprecedented
improvement in runtime performance of SAT solvers owing to clever
software engineering and creative design of data structures. Yet, most
entries in the annual SAT competition retain the core architecture of
MiniSat, which was designed from the perspective of single core CPU
architectures. Since 2005, however, there has been a significant shift
to heterogeneous architectures owing to the impending end of Dennard
scaling.

The primary contribution of this work is a novel multi-threaded
CDCL-based framework, called GPUShareSat, designed to take advan-
tage of CPU+GPU architectures. The core underlying principle of our
approach is to divide the tasks among the CPU and the GPU so as to
attempt to achieve the best of both worlds. We observe that bit-vector
based operations can allow a GPU to efficiently determine the usefulness
of a learnt clause to different threads and accordingly notify the thread
of the presence of relevant clauses. This approach of checking all clauses
against all assignments from different threads allows the GPU to exploit
its potential for massive parallelism through clever group-testing strat-
egy and bitwise operations.

Our detailed empirical analysis shows practical efficiency of our app-
roach: in particular, GPUShareSat augmented with the state-of-the-art
single-threaded solver Relaxed LCMDCBDL newTech solved 19 more
instances than the winner of the 2020 SAT competition’s parallel track,
P-MCOMSPS-STR.

1 Introduction

Given a Boolean formula ϕ over the set of variables v, the problem of Boolean
Satisfiability (SAT) is to determine whether there exists an assignment A such
that ϕ evaluates to True under A. SAT is a fundamental problem in computer
science with applications in various domains ranging from computational biol-
ogy, automated theorem proving, spectrum allocations, and the like. The past

The accompany open source library is available at https://github.com/nicolasprevot/
GpuShareSat.
N. Prevot—Independent Researcher.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 471–487, 2021.
https://doi.org/10.1007/978-3-030-80223-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_32&domain=pdf
https://github.com/nicolasprevot/GpuShareSat
https://github.com/nicolasprevot/GpuShareSat
https://doi.org/10.1007/978-3-030-80223-3_32

472 N. Prevot et al.

25 years have witnessed the development of efficient SAT solvers allowing mod-
ern solvers to handle problems involving millions of variables. Such an unprece-
dented improvement in the runtime performance of SAT solvers is often dubbed
as the SAT revolution. Quoting Knuth, “The story of satisfiability is the tale of
a triumph of software engineering, blended with rich doses of beautiful mathe-
matics” [16].

From the perspective of software engineering and the creative design of data
structures, Een and Sorrenson’s MiniSat [13], first introduced in 2005, taking
concepts from both Chaff [17] and GRASP, has remained a cornerstone for the
design of modern SAT solvers. Even fifteen years later, most of the entries in the
annual SAT competition continue to retain the architecture proposed by MiniSat.
It is worth noting that the design of data structures of MiniSat was primarily
targeted for single-core CPUs. Since 2006, however, the end of Dennard scal-
ing [10] has prompted the leading hardware designers to explore multi-core and
heterogeneous architectures. The SAT community acknowledged the importance
of multi-core architectures since the early days, and there has been a consistent
interest in the design of parallel SAT solvers.

Returning to the hardware landscape, among a wide array of hardware
architectures proposed over the years, one of the dominant architectures is
CPU+GPU, wherein the CPU consist of a small number of fat cores while
GPUs consist of a large number of thin cores, and the general computational
paradigm is to perform complex computational tasks on CPUs while employing
GPUs to perform embarrassingly parallel computational tasks, often involving
matrix-based arithmetic operations. The crucial importance of CPU+GPU to
unprecedented advances in machine learning [9] serves as a strong motivator for
the design of frameworks in other domains to take advantage of heterogeneous
architectures. While there have been recent efforts in the context of SAT to
take advantage of GPUs as well as the CPUs, such efforts have not materialized
in achieving runtime performance improvements. To summarize, a major chal-
lenge in the community is the design of an efficient framework for heterogeneous
architectures.

The primary contribution of this work is a novel CDCL-based framework
called GPUShareSat, designed to take advantage of CPU+GPU heterogeneous
architectures. Our aim is to divide the tasks in CDCL to CPU and GPU so as to
achieve the best of both worlds. To this end, we focus on the major Achilles
heel of parallel SAT solvers: identifying which clauses to import from other
threads. We observe that efficient bit-vector-based operations can allow a GPU
to efficiently determine the usefulness of a learnt clause to different threads
and accordingly notify the thread of the presence of these relevant clauses. The
identification of relevance of a clause for a thread is based on the assumption of
the locality of assignments. Furthermore, based on the observation that a clause
is often not useful to most threads, we design a group testing-based strategy to
perform efficient checks of usefulness.

To demonstrate the practical efficiency of our framework, we augment
two state of the art SAT solvers, one multi-threaded, glucose-syrup [3], and

Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving 473

one single-threaded, Relaxed LCMDCBDL newTech [1], with GPUShareSat
and perform detailed analysis on benchmarks from the 2020 SAT compe-
tition on a high-performance single-GPU multi-core CPU computing clus-
ter. Our empirical analysis demonstrates that glucose-syrup, when augmented
with GPUShareSat, solves 11 more instances than glucose-syrup alone. Simi-
larly, Relaxed LCMDCBDL newTech, augmented with GPUShareSat, solves 19
instances more than P-MCOMSPS-STR, the winner of the parallel track of the
2020 SAT competition.

To encourage adoption, we sought to perform minimal changes to
the MiniSat-based architecture of glucose-syrup and Relaxed LCMDCBDL
newTech. To this end, we achieved adding GPUShareSat to the respective solvers
by keeping largely intact the source code running CDCL on CPU threads, mod-
ifying only the code responsible for sharing clauses.

2 Definitions

We will use lowercase to represent variables and boldface to represent (possibly,
multi-dimensional) sets/vectors. For a vector x, we use xi to represent the i-th
coordinate of x. Let v = {v1, v2, . . . vn} be the set of Boolean variables. A literal
� is a variable v or its negation ¬v. A clause C of size s is a disjunction of s
literals, i.e., C = (�1∨�2 . . . �k). A formula ϕ in Conjunctive Normal Form (CNF)
is represented as conjunction of finitely many clauses.

We define a truth value as a member of the set {T, F, U} where T stands
for True, F for False, and U for unassigned. The negation of a truth value w is
denoted as ¬w, with ¬T = F , ¬F = T , ¬U = U . An assignment A is a function
that maps a variable to a truth value. Given an assignment A and a literal �,
A(l) = A(v) if l = v and A(l) = ¬A(v) if l = ¬v. An assignment A is complete
when each variable is mapped to either T or F . We say that A satisfies ϕ if A
is complete and ϕ evaluates to T under A.

In rest of the text, we assume the reader is familiar with the standard termi-
nology such as conflict, propagation related to Conflict Driven Clause Learning
(CDCL) paradigm; the interested reader is referred to [19] for details.

Bitwise Representation of Assignments. A vector x of truth values of size k can
be represented using two size k bit-vectors (Se,Tr) wherein xi is represented by
(Se[i],Tr[i]). Se[i] is set if xi �= U . Tr[i] is set if xi = T , not set if xi = F , and
may be set or not if xi = U

We now define three functions, isFalse, isUndef, and isTrue, which are
employed in our algorithmic descriptions. For a given vector x, isFalse(x)
returns a bit-vector of size k whose i-th bit is set to 1 if xi = F . Observe
that isFalse(x) can be obtained from bitwise operations over Se and Tr, i.e.,
isFalse(x) = Se& ∼ Tr wherein & represents the bitwise AND, which operates
over k bits, and ∼ represents the bitwise negation. Similarly, isUndef(x) returns
a bit-vector such that isUndef(x)= ∼ Se. Finally, isTrue(x) is a size k bit-vector
which can be computed as Se&Tr.

474 N. Prevot et al.

3 Related Work

Our work touches on two separate topics within the area of SAT solving: (1)
multi-threaded SAT solving and (2) using GPGPUs for improving the speed of
SAT solving.

Multithreaded SAT Solving. There are two main categories of parallel SAT
solving strategies: one called divide-and-conquer [28] that divides the problem
into always non-overlapping, and hopefully equal parts, and one called portfo-
lio [14] that does not attempt to divide the problem, and instead relies on the
cooperation of the different solver threads to attack the problem from different
angles thanks to their differing configurations. This latter is the approach we
take in this paper.

The original divide-and-conquer method by Zhang et al. [28] relied on so-
called guiding paths to cut the problem into smaller chunks. A more modern and
performant version of this approach by van der Tak et al. is called concurrent
cube-and-conquer [27] that uses a lookahead solver to cut the problem into many
smaller chunks that are expected to be of equivalent complexity.

ManySAT [14] pioneered the so-called portfolio approach that uses a CDCL
system configured differently for each thread, each sharing some information
with the other. The different configurations used by the threads are such as
using different restart strategies [5,25] or different variable polarity policies [24].
The different threads in ManySAT share certain clauses with each other using
lockless queues: if the CDCL algorithm’s learnt clause is less than eight long,
the clause is shared with other threads. Modern portfolio method SAT solvers
use a number of heuristics to decide which clauses to share. In glucose-syrup [3]
and Plingeling [6], clauses are shared only if their size and LBD (Literal Block
Distance) is smaller than a constant. Finally, Vallade et al. [26] improved on these
results by using a metric based on both community structure [7] and LBDs in
their winning parallel SAT solver of the 2020 SAT competition, P-MCOMSPS-
STR.

GPU Aided SAT Solving. The state-of-the-art SAT solving approach of
CDCL SAT solvers does not translate well from the CPU to the GPGPU domain.
One difficulty is that although the GPU can run many times more threads at
once than the CPU, the memory and cache available per thread is much smaller
on the GPU, and a group of threads not following the same decision path (i.e.,
diverging threads) cause all other threads in the same so-called ‘warp’ to stall.
Running CDCL using the well-known watched literal scheme requires both a
large amount of memory and a highly non-uniform decision path for each thread.
This would make running the CDCL procedure separately in each GPU thread
too slow.

Various approaches have been proposed to take advantage of GPUs to speed
up SAT solving but have not yet seen widespread adoption. In [23], the GPU is
used to perform unit propagation. In [21,22], the GPU is used for pre-processing

Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving 475

the formula with techniques such as Bounded Variable Elimination and subsump-
tion [12]. In [18], the GPU is used to perform survey propagation [8]. Finally,
in [4] the authors use the GPU to execute a version of the Tabu Search algo-
rithm [20] while the CPU is executing a multi-threaded CDCL algorithm.

4 GPUShareSat: GPU-Based Parallel SAT Solving

We now present the primary technical contribution of this paper, GPUShareSat,
a GPU-based framework for parallel SAT solving. GPUShareSat bears similarity
to the traditional parallel SAT solvers in its reliance on several CPU threads,
wherein each thread runs its own CDCL algorithm. GPUShareSat differs cru-
cially from its contemporaries in its usage of a dedicated CPU thread, hence-
forth referred to as MasterThread, to which all CPU threads export and import
learnt clauses. MasterThread, in turn, relies on the adjoining GPU to inform
the threads on the clauses that they should import. We present the high-level
overview of GPUShareSat in Fig. 1.

CPU thread 1

CPU thread N

MasterThread GPU

Reported clauses

Learned clauses

Assignments

Assignments

Learned clauses

Reported clauses

Reported clause positions

Learned clauses

Assignments

Fig. 1. Interactions between CPU threads and with the GPU

In our design of GPUShareSat, we sought to minimize modification to the
overall CDCL architecture so as to ease adoption to other solvers. To this end, we
only modified the subroutine for importing clauses in the context of CPU clauses
wherein instead of only importing clauses at toplevel (i.e. decision level 0), we
enable the solver to import clauses at the highest decision level possible while
keeping the watched literal scheme consistent. Another significant modification
lies in the export of the current assignment trails to MasterThread since the
MasterThread decides on exporting clauses to CPU threads based on their recent

476 N. Prevot et al.

Algorithm 1. CPUSolver
1: while noOtherThreadHasFoundAnAnswer() do
2: importFromGPU()
3: if propagate() == conflict then
4: c ← ConflictAnalysis()
5: if level == 0 then
6: return UNSAT
7: SendtoGPU(c)
8: addClauseToDatabase(c)
9: backtrack

10: else
11: if allVariablesAreSet() then
12: return SAT
13: sendCurrentAssignToGpu()
14: decide()

assignments. We present the simplified pseudocode for the CPU thread’s solver
in Algorithm 1 in Appendix. The pseudocode follow the standard CPU solver
along with three additions: (1) The CPU thread seeks to eagerly import the
clauses from GPU (line 2), (2) the CPU thread sends the learnt clause to GPU
(line 7), (3) the CPU thread send the current assignment to the GPU thread
(line 13).

4.1 Usefulness of Clauses

From the perspective of a CPU thread, a natural desiderata would be to import
clauses that will be useful in its search in the future. To this end, we hypoth-
esize that clauses that would have been useful recently are likely to be useful
in the future since the search space of CDCL tends to be local. To this end,
MasterThread needs to decide how to determine whether a clause cl would be
useful to a given thread, say Thread. Consider an assignment of a thread where
unit propagation completed without conflict, and a clause cl which this thread
does not have. If all literals of this clause are false except for one which is undef,
then this clause would have implied this undef literal. So it would have been
used in unit propagation. If all literals of this clause are false, then this clause
would have been in conflict, so it would have been useful as well.

We formalize the above observation via the notion of triggering: let A be
a partial assignment. We say that cl would trigger A if cl would result in unit
propagation with respect to A or trigger a conflict with respect to A. We capture
the notion of trigger, formally, in the following definition:

Definition 1. A clause cl of size s triggers on an assignment A if both of the
following conditions hold true:

1. For each literal � in cl, A(�) �= T
2. For at least s - 1 literals � ∈ cl, A(�) = F

Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving 477

Therefore, we view that a clause cl would have been useful to Thread, if
it would have triggered on a recent assignment trail of Thread. Informally, the
presence of such a clause cl would have influenced the recent state of the solver
in Thread. It is worth remarking that Audemard and Simon had also put forth a
similar thesis in the context of glucose solver [2] in that they measured a clause
usefulness by how often it is used in unit propagation or conflict analysis. At
this point, a natural question is to determine the partial assignments for which
we should determine if a given clause would trigger them or not. While on one
end of the spectrum, we could perform such a check for every partial assignment
but this would overwhelm MasterThread. Therefore, a given thread Thread only
sends partial assignment where unit propagation completed without conflict.

4.2 Assignment Trigger Check

We now discuss how to perform an efficient check whether a clause triggers
on the assignments sent from different CPU threads. To this end, we focus on
the efficient bitwise operations for checking whether a clause triggers on the
assignments, which were first proposed in [15]. We consider that we are given
the k assignments A; we use Ai for 1 ≤ i ≤ k to represent the i-th assignment.
Recall, for every variable v, we represent A(v) with two bit-vectors of size k.
Their i-th bit will represent Ai(v). For a literal � = ¬v, A(�) is computed as
the negation of A(v). These representations allows us to check if a clause cl of
size s triggers over k assignments at once using bitwise operations. We present
the pseudocode of assignmentTrigger in Algorithm 2. assignmentTrigger returns
a bit-vector res of size k, where res[i] is set to 1 if the clause cl triggers on the
assignment Ai. In this algorithm, & represent the bitwise AND. | represents the
bitwise OR. They operate over k bits at once and are executed in only one clock
cycle on the GPU provided that k ≤ 32.

Algorithm 2. assignmentTrigger(A, cl)
1: allFalse ← [1, · · · 1] � bit-vector of size k with each bit initialized to 1
2: oneUndef ← [0, · · · , 0] � bit-vector of size k with each bit initialized to 0
3: for � ∈ cl do
4: oneUndef ← (allFalse&isUndef(A(�))) | (oneUndef&isFalse(A(�)))
5: allFalse ← allFalse&isFalse(A(�))

6: res ← oneUndef | allFalse
7: return res

All the clauses can be tested in parallel from each other, so assignmentTrigger
is massively parallelisable, it fits well with the GPU.

4.3 Pooling-Based Efficient Trigger Check

While the standard GPU-based implementations allow us to perform check for
k up to 32 assignments in parallel, the latency of each check is not sufficient to

478 N. Prevot et al.

handle the rate of assignments sent by CPU threads. Observe that a CPU thread
sends an assignment for every decision that did not result in conflict upon unit
propagation. In this context, one wonders whether we need to perform a check
for every assignment. To this end, we relied on two preliminary analyses:

Locality. We performed a preliminary evaluation on 100 instances randomly
chosen from the SAT 2020 competition, and for each variable, we compute the
set of all the values taken between 32 conflicts. Our preliminary evaluation results
are presented in Table 1

Table 1. Behavior of successive assignments

Set of values {T} {F} {T, F} {U} {T, U} {F, U} {T, F, U}
Fraction of variables 0.063 0.182 0.000 0.588 0.031 0.085 0.048

The first row of Table 1 lists the set of values while the second row indicates
the fraction of variables with the corresponding set of values. For example, the
entry, {T,U} indicates that 3.1% of the variables were assigned the values T and
U at least once, but not F, between the 32 conflicts. The entry {U} tells us that
58.8% of variables only took the value U between the 32 conflicts. Therefore,
we observe that the successive assignments coming from the same CPU thread
share a significant similarity.

Sparsity. The second key observation, based on preliminary evaluation, is that,
on average, less than 1% assignments are triggered by a given clause.

The observations of locality and sparsity lead us to draw parallels to a funda-
mental problem in information theory: group testing, pioneered by Dorfman [11].
In the context of the second world war, the task under consideration was to deter-
mine the relatively small fraction of sick soldiers in a large army by performing
as few tests as possible. Dorfman suggested a simple but effective idea: pool the
blood samples of soldiers into groups and perform individualized testing only for
the groups that test positive.

We seek to design a similar strategy in the context of determining assignments
triggers by a clause. To this end, we aim to capture the concept of pooling by
defining the notion of an pooled assignment.

Definition 2. Given the assignments (Ai)1≤i≤k , the pooled assignment P :
V �→ 2{T,F,U} is defined by P (v) =

⋃
1≤i≤k{Ai(v)}. Similarly, for a literal �, we

define P (�) as
⋃

1≤i≤k{Ai(�)}
Definition 3. For p ⊆ {T, F, U}, we denote ¬p={¬x | x ∈ p}
Proposition 1. Given the assignments (Ai)1≤i≤k, P their pooled assignments
and a literal � = ¬v, P (�) = ¬P (v)

Proof. P (�) = P (¬v) =
⋃

1≤i≤k{Ai(¬v)} =
⋃

1≤i≤k{¬Ai(v)} = ¬⋃
1≤i≤k

{Ai(v)} = ¬P (v)

Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving 479

Example 1. Given the assignments (v1 �→ T, v2 �→ F, v3 �→ U) and (v1 �→
T, v2 �→ U, v3 �→ T), their pooled assignment is (v1 �→ {T}, v2 �→ {F,U}, v3 �→
{U, T})

Remark 1. The value of a pooled assignment for a variable is a set of truth value
p. It can be represented using three Boolean variables (t, f, u), where t (resp. f ,
u) indicates if T ∈ p (resp. F ∈ p, U ∈ p).

Remark 2. Given a vector of m pool assignments P and a variable v, we
can represent the vector values for v as (canBeTrue(P (v)), canBeFalse(P (v)),
canBeUndef(P (v))). (canBeTrue(P (v)), canBeFalse(P (v)) and canBeUndef
(P (v))) are bit-vectors of size m. For a literal � = ¬v, we have canBeTrue(P (�)) =
canBeFalse(P (v)), canBeFalse(P (�)) = canBeTrue(P (v)), canBeUndef(P (�)) =
canBeUndef(P (v))

Akin to group testing, we seek to first determine whether a clause cl triggers
a polled assignment. To this end, we extend the definition of trigger.

Definition 4. A clause cl of size s triggers on an pooled assignment P if both
of the following conditions hold true:

1. For each literal � in cl, P (�) ∩ {U,F} �= ∅
2. For at least s - 1 literals � ∈ cl, F ∈ P (�)

Next we make a simple but crucial observation:

Theorem 1. Given the assignments (Ai)1≤i≤k and their associated pooled
assignment P , if there exists an assignment Ai such that a clause cl triggers
on Ai, then cl triggers on P .

Proof. Let (Ai)1≤i≤k be assignments, P their associated pooled assignment, 1 ≤
i ≤ k, and cl a clause of size s which triggers (Ai).

From condition 1 of Definition 1, for each literal � in cl, Ai(�) �= T , so Ai(�) ∈
{F,U}. In addition, Ai(�) ∈ P (l). So condition 1. of Definition 4 P (�)∩{U,F} �=
∅ is met. From condition 2 of Definition 1, there are at least s - 1 literals in cl
with Ai(�) = F . For all of these, since Ai(�) ∈ P (l), condition 2. of Definition 4:
F ∈ P (�) is met.

By contraposition of this theorem: if a clause does not trigger on a pooled
assignment, it does not trigger on all the individual assignments.

Example 2. Given the assignments (v1 �→ F, v2 �→ T) and (v1 �→ T, v2 �→ F),
The clause v1 ∨ v2 does not trigger on either of them. It does trigger on their
associated pooled assignment (v1 �→ {T, F}, v2 �→ {T, F}) though. This example
shows that a clause may trigger on a pooled assignment without triggering on
any individual assignment.

480 N. Prevot et al.

We now discuss how the notion of pooling can be efficiently employed to
determining assignments triggered by a clause. We previously proposed an algo-
rithm that tested which clause triggered over k assignments (with k ≤ 32). We
propose a new algorithm that returns whether a clause triggers over up to k×m
assignments, where in practice, we choose m = 32.

To this end, we employ a two-step process: we first check which pooled
assignment a clause triggers. For each pooled assignment it triggers, we employ
assignmentTrigger to locate the corresponding assignments, if any. The successive
assignments from a CPU solver thread are pooled together by the MasterThread
into m pools (in practice, we choose m = 32). If the number of CPU threads is
lower than m, then we can also create several pools for each CPU solver thread.

The assignments are: (Aij)1≤i≤m,1≤j≤k where i represents the groups and j
the assignment within the pool. While it is possible in practice not to have the
same number of assignments within a pool, we will assume that they all have k
assignments for simplicity. Note that each assignment maps a variable to a truth
value. For each 1 ≤ i ≤ m, Pi will be the pooled assignment associated with the
assignments (Aij)1≤j≤k, that is for every variable v, Pi(v) =

⋃
1≤j≤k{Aij(v)}.

Algorithm 3. poolTrigger(A = (Aij)1≤i≤m,1≤j≤k,P = (Pi)1≤i≤m, cl)
1: allFalse ← [1, · · · 1] � bit-vector of size m with each bit initialized to 1
2: oneUndef ← [0, · · · , 0] � bit-vector of size m with each bit initialized to 0
3: for � ∈ cl do
4: oneUndef ← (allFalse&canBeUndef(P (�)) | (oneUndef&canBeFalse(P (�))
5: allFalse ← allFalse&canBeFalse(P (�))

6: agTrigger ← oneUndef | allFalse
7: for bit position i set in agTrigger do
8: assigTrigger ← assignmentTrigger((Aij)1≤j≤k, cl)
9: if assigTrigger �= 0 then

10: report(i, assigTrigger)

We present the pseudocode of the pooling-based trigger check procedure,
called poolTrigger, in Algorithm 3. We now discuss the pseudocode of poolTrigger
in detail. The algorithm first performs the check to determine the pooled assign-
ments {Pi} such that the clause cl triggers Pi. The check is similar to that of
assignmentTrigger, wherein we substitute the usage of bit-vector(isSet, isUndef)
with bit-vectors (canBeTrue, canBeFalse, canBeUndef) to account for the need for
3 bits to represent a pooled assignment. Observe that the bit-vectors (canBeTrue,
canBeFalse, canBeUndef) represent the set of m pooled assignments, and there-
fore, are of the size n × m. The bit-vector agTrigger stores which of the pooled
assignments are triggered by cl. Observe that even though a pooled assignment
Pi may be triggered by cl, it does not necessarily imply that there exists an
assignment Ai,j in the assignments associated with Pi such that cl triggers
Ai,j . Therefore, for each of the pooled assignments triggered by cl, we employ
assignmentTrigger to determine whether there exists an assignment triggered by

Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving 481

cl and whenever such an assignment exists, the corresponding thread is notified
of the clause cl, which is encapsulated in the subroutine report.

4.4 GPU Implementation

The representation on the GPU of the assignments is as follows: for each solver
thread, we have an array of size n (number of variables), whose elements are
the two bit-vectors of size k (Se,Tr) which represent the values of this variable
for the assignments of this solver. In addition, there is another array of size
n representing the pooled assignments. Its elements are the three bit-vectors
(canBeTrue, canBeFalse, canBeUndef).

During a GPU run, we start by updating the assignments on the GPU with
the new values of the assignments sent by the CPU threads. Only the modi-
fications with the previous assignments are sent. The pooled assignments are
updated at the same time as the assignments. A precise description of the algo-
rithm to update the assignments and pooled assignments is not in scope for this
paper.

Then, the GPU finds which clauses trigger on which assignments, using the
Algorithm 3. Finally, the clauses that did trigger are reported to the CPU threads,
which can then import them. We then start the next GPU run.

Similar to CPU solvers, MasterThread needs to regularly delete clauses to
avoid running out of memory and becoming too slow. So, MasterThread performs
memory management via activity-based clause deletion. We bump the activity
of a clause whenever the clause triggers an assignment. Thus, similar to CPU
solvers, we try to keep good clauses and delete bad ones on the GPU.

Assignment of GPU Clauses to GPU Threads. In our implementation, during
a GPU run, each clause is looked at by only one GPU thread. In the CUDA
computation model, GPU threads are grouped into warps of fixed size, which,
in practice, is 32. Therefore, in our case, the 32 threads in a warp will look at
32 different clauses and find which ones trigger by also reading assignments and
pooled assignments. Once they are done with these, they will look at the next
set of 32 clauses and so on. The GPU is most efficient if all the threads in a warp
execute the same instructions at the same time. If divergence happens and only
some threads take an execution path, then the others will have to wait. Some
instructions have to be executed at the beginning of execution over a clause and
at the end. So, it is better if all threads in a warp execute these instructions at
the same time. We also chose to have all the threads in a warp look at clauses
of the same size. This avoids the case where a single thread looks at a very long
clause and blocks the entire warp from moving to the next set of clauses. To
achieve this, we chose to group all the clauses on the GPU by their size. Each
warp will only look at clauses of a given size.

Using Memory Coalescing in CUDA. Reading the GPU memory is most
efficient if the reads are coalesced, which happens, for example, if successive

482 N. Prevot et al.

threads in a warp read successive 4-byte words in memory. We chose to coalesce
reading the clauses by reordering how we represent them in memory to how they
are accessed. Firstly, all the threads in a warp will read the first literal of their
clauses. Then, they will read their second literal, and so on. So, we chose to
order clauses in memory following this pattern. The first 32 4-bytes words will
represent the first 32 literals of the clauses of a warp. The next 32 4-bytes words
will represent the next 32 literals of the clauses of a warp, and so on.

Thanks to this coalescing, reading the clauses can be performed efficiently.
Whenever a literal from a clause is read, we need to read the value of that literal
for the pooled assignments or assignments. That variable might be anywhere
in memory, so the access pattern for reading the assignments is not as efficient.
However, they might be cached, especially if there are fewer variables.

Whenever a GPU thread finds a clause that triggers, it needs to report the
clause to the CPU. We chose to only report an identifier of the clause (its size and
position within that size), as well as the assignment it triggers on. By keeping
a copy of all the clauses on the CPU, we can reconstruct the full clause just
from this clause identifier. The clause reported is added to a queue. We use an
atomic operation to increment the position in the queue by one and write to
that position. This avoids having two threads writing to the same position in
the queue at the same time.

Avoiding Clause Duplication on the CPU. We aim to avoid a CPU thread
having the same clause multiple times in its database, as it slows down the
thread due to unit propagation overhead and uses up memory. If a CPU thread
has a clause cl in its database, then cl will not trigger on assignments sent by
this thread to MasterThread, so cl will not be reported again. However, after
a thread sends an assignment to MasterThread, the thread does not wait to
receive clauses before sending more assignments. Therefore, it is possible for a
thread to send two assignments to MasterThread and for a clause cl to trigger
on both the assignments. Therefore, in order to avoid reporting cl multiple times
to the same thread, MasterThread keeps for every thread a set of GPU clause
identifiers that have been reported recently.

5 Evaluation

We developed a prototype implementation of GPUShareSat in the form of a
library, and we augmented two state-of-the-art award-winning SAT solvers with
GPUShareSat1. The objective of our empirical evaluation was two-fold: runtime
performance comparison of solvers augmented with GPUShareSat vis-a-vis state
of the art parallel solvers, and an in-depth investigation of the inner working of
GPUShareSat. In particular, we sought to answer the following questions:

1 The accompanying artefact consisting of detailed statistics is available at https://
doi.org/10.5281/zenodo.4764813.

https://doi.org/10.5281/zenodo.4764813
https://doi.org/10.5281/zenodo.4764813

Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving 483

RQ 1. How does the runtime performance of solvers augmented with
GPUShareSat compare to that of the winners of parallel track in recent SAT
competitions?

RQ 2. How effective is the pooling-based strategy?
RQ 3. What are the characteristics of the workload on the GPU?

Experimental Setup. Our empirical evaluation seeks to follow the recently
released SAT practitioner manifesto. We use the standard 5000 s wall-clock time-
out on the benchmarks from SAT competition 2020. All experiments were con-
ducted on a high-performance computer cluster, each node consisting of nodes
with 2×E5-2690v3 CPUs containing 2×12 real cores, 96 GB of RAM, and an
NVidia K40 GPU.

To answer RQ 1, we integrated GPUShareSat with Relaxed LCMDCBDL
newTech, which scored 2nd place at the 2020 SAT Competition’s main (i.e.
single-core) track, and called the resulting implementation Relaxed-Gpu. In
Relaxed-Gpu, we removed the duplicate learnt clause detection (is duplicate)
and associated data structures, as they could use up to 50 GB of memory for
a single thread. We used the same parameters and search strategy for all CPU
threads to isolate the performance improvement to our system. The diversity of
search came only from the fact that clause exchange is non-deterministic due to
scheduling differences. If we were to use differing parameters for the threads, as
solvers taking the portfolio approach usually do, we would expect performance
to improve.

We perform a runtime performance comparison of Relaxed-Gpu vis-a-vis P-
MCOMSPS-STR, the winner of the SAT competition 2020 parallel track. We
analyzed the performance of P-MCOMSPS-STR for 12 and 24 threads, and
surprisingly, the implementation of P-MCOMSPS-STR with 12 threads outper-
formed P-MCOMSPS-STR with 24 threads by 14 more problems solved and 10%
better PAR-2 score and therefore, we perform a comparison of Relaxed-Gpu for
12 threads.

Furthermore, for RQ 2 and RQ 3, we augmented GPUShareSat with glucose-
syrup given the ease of collection of detailed statistics from glucose-syrup. We
refer to the augmented version by glucose-syrup-gpu. Since the objective of RQ 3
is to understand the workload with as many CPU threads as possible, we run
the experiments with 24 threads. We report the average of all the statistics over
all the benchmark instances.

Summary of the Results

We observe that Relaxed-Gpu significantly outperforms P-MCOMSPS-STR, the
winning parallel SAT solver of the 2020 SAT competition, both in terms of the
number of solved instances and PAR-2 score. In particular, while P-MCOMSPS-
STR could only solve 276 instances with a PAR-2 score of 3493, Relaxed-Gpu
could solve 296 instances with a PAR-2 score of 3164. In the context of RQ 2,
we observe that usage of pooling allows us to skip invoking of assignmentTrigger

484 N. Prevot et al.

for over 99.8% of the assignments. Finally, GPUShareSat managed to keep up
with as many as 24 CPU threads both in clauses checked per second and in
the number of clauses kept in memory, enabling GPUShareSat to efficiently and
effectively inform the CPU threads of the clauses they should import. Observe
that the GPU employed in our experiments, the NVidia K40, would be classified
as a relatively slow GPU from the perspective of GPUs typically employed by
the deep learning community. A more modern GPU such as an NVidia RTX
3080 has ≈ 10x the performance relative to the K40.

Overall, our results demonstrate that GPUShareSat can be used either as a
drop-in tool to improve already parallel SAT solvers, or to make single-threaded
SAT solvers into powerful, multi-threaded SAT solvers that can outperform state
of the art parallel SAT solvers.

RQ 1: Relaxed-Gpu vis-a-vis P-MCOMSPS-STR. Figure 2 presents the run-
time performance comparison of Relaxed-Gpu vis-a-vis P-MCOMSPS-STR in
form of a cactus plot. A point (x, y) represents the corresponding solver solved
x instances in less than y seconds. The figure clearly shows the performance
improvement achieved by Relaxed-Gpu in comparison to P-MCOMSPS-STR.
In particular, Relaxed-Gpu solved 296 instances with a PAR-2 score of 3164,
while P-MCOMSPS-STR could only solve 276 instances with a PAR-2 score
of 3493. In particular, P-MCOMSPS-STR solved 143 SAT and 133 UNSAT
instances while Relaxed-Gpu solved 175 SAT and 121 UNSAT instances. Note
that Relaxed LCMDCBDL newTech was significantly stronger on SAT than
UNSAT instances in the SAT Competition of 2020; hence the slanted distri-
bution towards SAT in the case of Relaxed-Gpu is expected.

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

T
im

e
(s

)

Solved instances

 P-MCOMSPS-STR 12 threads
 Relaxed-Gpu 12 threads

Fig. 2. Relaxed-Gpu vis-a-vis P-MCOMSPS-STR.

RQ 2: Impact of Pooling-Based Trigger Check. The primary rationale
behind the usage of pooling-based trigger check was the potential benefits due to
avoidance of the redundant invocation for assignmentTrigger for a large number
of assignments when their associated pooled assignment does not trigger the
clause of interest. To this end, we computed no-triggers, defined as the fraction

Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving 485

of tuples (P, cl) such that the clause cl did not trigger the pooled assignment P
over the set of all possible tuples. Our evaluation indicated no-triggers, averaged
over the entire set of instances, is 0.9984, which represents a significant reduction
in the number of invocations of assignmentTrigger. The primary reason behind
a surprisingly high value of no-triggers is that the average learnt clause size
for glucose-syrup was 54.43 literals/learnt clauses. For such large learnt clauses,
there is a high likelihood of a learnt clause containing two unassigned literals
with respect to a given pooled assignment.

RQ 3: Characteristics of the Workload of GPU. Since our analysis of the
characteristics appeals to the performance improvement due to GPUShareSat in
the context of glucose-syrup, we first present the corresponding cactus plot in
Fig. 3. It is worth remarking that while glucose-syrup solved 252 instances with
a PAR-2 score of 4208, glucose-syrup-gpu solved 263 instances with a PAR-2
score of 3853.

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

T
im

e
(s

)

Solved instances

glucose-syrup 24 threads
glucose-syrup-gpu 24 threads

Fig. 3. Glucose-syrup vis-a-vis glucose-syrup-gpu. glucose-syrup solved 124 SAT and
127 UNSAT instances. Glucose-syrup-gpu solved 132 SAT and 131 UNSAT instances.

We now delve deeper into analyzing the characteristics of the workload of the
GPU. The average number of clauses imported per thread was 0.120 per conflict
or 0.210 per assignment sent to the GPU. In the case of glucose-syrup, the
corresponding number was 1.27 clauses per conflict, which is 10.6 times higher.
Therefore, glucose-syrup-gpu is able to import fewer but useful clauses.

The number of clauses checked by the GPU in glucose-syrup-gpu was 160.3
million clauses/s on average. Clause checks were performed over a number of
assignments at once, and the number of clause tests on individual assignments
was 18.66 billion per second on average. Note that most of these clause tests did
not require a call to assignmentTrigger thanks to the pool checks. To put this num-
ber into perspective, glucose-syrup propagated 0.850 million literals/thread/s
and checked for propagation 16.69 million clauses/thread/s. Therefore, from the
perspective of checking clauses, a single 12 core E5-2690v3 CPU performed on
a much lower scale than a single NVidia K40 GPU.

When it comes to learnt clauses kept in memory, we see a similar pattern.
glucose-syrup-gpu kept an average of 1.50 million learnt clauses in the GPU

486 N. Prevot et al.

during solving, while a single thread of glucose-syrup kept 77,436, amounting to
1.85 million learnt clauses for 24 threads.

6 Conclusion

We design an efficient framework, called GPUShareSat, to take advantage of
heterogeneous architectures. We identified that GPUs can efficiently determine
the clauses that a CPU thread should import from other threads. We observed
that GPUShareSat integrated with Relaxed LCMDCBDL newTech significantly
outperforms the parallel track’s winning solver from the 2020 SAT competition.
We have released GPUShareSat as an open source library and we hope our results
will encourage the community to integrate GPUShareSat into existing solvers.

Acknowledgments. This work was supported in part by National Research Founda-
tion Singapore under its NRF Fellowship Programme [NRF-NRFFAI1-2019-0004] and
Sung Kah Kay Assistant Professorship Endowment. The computational work for this
article was performed on resources of the National Supercomputing Centre, Singapore
https://www.nscc.sg.

References

1. Relaxed backtracking with rephasing. In Proceedings of SAT Competition 2020:
Solver and Benchmark Descriptions, Department of Computer Science Report
Series B 2020–1, pp. 15–16. University of Helsinki (2020)

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, pp. 399–404 (2009)

3. Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers. In:
Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 197–205. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09284-3 15

4. Beckers, S., De Samblanx, G., De Smedt, F., Goedeme, T., Struyf, L., Vennekens,
J.: Parallel hybrid SAT solving using OpenCL. In: Benelux Conference on Artificial
Intelligence. Springer (2012)

5. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-79719-7 4

6. Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition 2013.
In: Proceedings of SAT Competition 2013, vol. B-2013-1 of Department of Com-
puter Science Series, pp. 51–52. University of Helsinki (2013)

7. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)

8. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for
satisfiability. Random Struct. Algorithms 27(2), 201–226 (2005)

9. Coates, A., Huval, B., Wang, T., Wu, D.J., Catanzaro, B., Andrew, Y.N.: Deep
learning with COTS HPC systems. In: Proceedings of the 30th International Con-
ference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16–21 June 2013, vol-
ume 28 of JMLR Workshop and Conference Proceedings, pp. 1337–1345. JMLR.org
(2013)

https://www.nscc.sg
https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1007/978-3-540-79719-7_4

Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving 487

10. Dennard, R.H., Gaensslen, F.H., Yu, H., Rideout, V.L., Bassous, E., LeBlanc, A.R.:
Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J.
Solid-State Circuits 9(5), 256–268 (1974)

11. Dorfman, R.: The detection of defective members of large populations. Ann. Math.
Stat. 14(4), 436–440 (1943)

12. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 5

13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

14. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. J. Satisf. Boolean
Model. Comput. 6(4), 245–262 (2009)

15. Heule, M., van Maaren, H.: Parallel SAT solving using bit-level operations. J. Satisf.
Boolean Model. Comput. 4(2–4), 99–116 (2008)

16. Knuth, D.E.: The Art of Computer Programming, vol. 4, Fascicle 6: Satisfiability,
1st edn. Addison-Wesley Professional, Boston (2015)

17. Malik, S., Zhao, Y., Madigan, C.F., Zhang, L., Moskewicz, M.W.: Chaff: engineer-
ing an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)

18. Manolios, P., Zhang, Y.: Implementing survey propagation on graphics processing
units. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 311–324.
Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 30

19. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning sat solvers.
In: Handbook of Satisfiability, pp. 131–153. IOS Press (2009)

20. Mazure, B., Sais, L., Grégoire, É.: Boosting complete techniques thanks to local
search methods. Ann. Math. Artif. Intell. 22(3–4), 319–331 (1998)

21. Osama, M., Wijs, A.: Parallel SAT simplification on GPU architectures. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019, Part I. LNCS, vol. 11427, pp. 21–40. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17462-0 2

22. Osama, M., Wijs, A., Biere, A.: Sat solving with GPU accelerated inprocessing. In:
Proceedings of TACAS (2021)

23. Dal Palù, A., Dovier, A., Formisano, A., Pontelli, E.: Cud@sat: SAT solving on
GPUs. J. Exp. Theor. Artif. Intell. 27(3), 293–316 (2015)

24. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72788-0 28

25. Ryvchin, V., Strichman, O.: Local restarts. In: Kleine Büning, H., Zhao, X. (eds.)
SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-79719-7 25

26. Vallade, V., Le Frioux, L., Baarir, S., Sopena, J., Ganesh, V., Kordon, F.: Commu-
nity and LBD-based clause sharing policy for parallel SAT solving. In: Pulina, L.,
Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 11–27. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51825-7 2

27. van der Tak, P., Heule, M., Biere, A.: Concurrent cube-and-conquer. CoRR,
abs/1402.4465 (2014)

28. Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover
and its application to quasigroup problems. J. Symb. Comput. 21(4), 543–560
(1996)

https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/11814948_30
https://doi.org/10.1007/978-3-030-17462-0_2
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-79719-7_25
https://doi.org/10.1007/978-3-540-79719-7_25
https://doi.org/10.1007/978-3-030-51825-7_2

A Proof Builder for Max-SAT

Matthieu Py(B), Mohamed Sami Cherif, and Djamal Habet

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{matthieu.py,mohamed-sami.cherif,djamal.habet}@univ-amu.fr

Abstract. Complete Max-SAT solvers are able to return the optimal
value of an input instance but they do not provide any certificate of
its validity. In this paper, we introduce for the first time a Max-SAT
proof builder, called MS-Builder, which generates Max-SAT proofs under
the particular form of a sequence of Max-SAT equivalence-preserving
transformations. To generate a Max-SAT proof, MS-Builder iteratively
calls a SAT oracle to get a SAT refutation which is handled and adapted
into a sound refutation for Max-SAT. We also propose an extendable
tool, called MS-Checker, able to verify the validity of any proof using
Max-SAT inference rules.

Keywords: Max-SAT · Proof · Max-SAT resolution

1 Introduction

Given a Boolean formula in Conjunctive Normal Form (CNF), the Maximum
Satisfiability (Max-SAT) problem consists in determining the maximum number
of clauses that it is possible to satisfy by an assignment of the variables. Max-SAT
is an optimization extension of the Satisfiability (SAT) problem and a natural
way to model many real world and crafted problems [12,15,32] making it a
well studied problem in theory as well as in practice. Different complete solving
paradigms for Max-SAT have seen the day in recent years including Branch and
Bound algorithms [1,18,23], SAT-based algorithms [2,26,27] and reduction to
other problems (such as ILP [13], Max-ASP [3] and WCSP [14]).

Recent years have also witnessed a particular interest in proof systems for
Max-SAT [9–11,19–21,28]. In particular, Max-SAT resolution [10,11,19] was one
of the first known complete systems for Max-SAT and was later extensively
used in the context of Max-SAT solving [1,23,27]. However, generating proofs
establishing the optimum cost of Max-SAT formulas remains an unexplored topic
in practice. Indeed, current Max-SAT solvers are not able to output certificates as
it is the case for SAT solvers. This is in part due to the variety of paradigms and
techniques for Max-SAT solving which make it difficult to devise a generalized
approach to compute certificates.

In this paper, we devise an independent proof builder for Max-SAT, called
MS-Builder, which builds proofs for Max-SAT by iteratively calling a SAT oracle
to get a resolution refutation. The builder relies on recent work [28] to adapt the

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 488–498, 2021.
https://doi.org/10.1007/978-3-030-80223-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_33&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_33

A Proof Builder for Max-SAT 489

SAT refutation into a Max-SAT refutation which is then applied to the current
formula. Moreover, we introduce an extendable Max-SAT proof checker, called
MS-Checker, to verify the validity of any proof using Max-SAT inference rules.
Both tools are experimentally evaluated on the unweighted partial benchmark
of the 2020 Max-SAT Evaluation [4].

This paper is organized as follows. Section 2 includes some necessary defi-
nitions and notations. Section 3 recalls related work on the adaptation of SAT
refutations to Max-SAT refutations. MS-Builder and MS-Checker are respec-
tively presented in Sects. 4 and 5 and their experimental evaluation is detailed
in Sect. 6. Finally, we conclude and discuss future work in Sect. 7.

2 Preliminaries

2.1 Definitions and Notations

Let X be a set of propositional variables. A literal l is a variable x ∈ X or its
negation x. A clause c is a disjunction of literals (l1∨ l2∨· · ·∨ lk). A formula φ in
Conjunctive Normal Form (CNF) is a conjunction of clauses φ = c1∧c2∧· · ·∧cm.
An assignment I : X −→ {true, false} maps each variable to a boolean value
and can be represented as a set of literals. A literal l is satisfied (resp. falsified)
by I if l ∈ I (resp. l ∈ I). A clause c is satisfied by I if at least one of its literals
is satisfied by I, otherwise it is falsified by I. The empty clause � contains zero
literals and is always falsified. A clause c opposes a clause c′ if c contains a
literal whose negation is in c′, i.e. ∃l ∈ c, l ∈ c′. For a given CNF formula,
solving the Satisfiability (SAT) problem consists in determining whether there
exists an assignment I (called model) that satisfies it. The cost of an assignment
I is the number of clauses falsified by I. For a given CNF formula φ, solving
the (plain) Max-SAT problem consists in determining the maximum number of
satisfied clauses in φ.

2.2 Resolution Refutations in SAT

To certify that a CNF formula is satisfiable, it is sufficient to exhibit a model of
the formula. On the other hand, to prove that a CNF formula is unsatisfiable,
we need to refute the existence of a model. A well-known SAT refutation system
is based on an inference rule for SAT called resolution [29]. The resolution rule,
defined below, deduces a clause called resolvent which can be added to the
formula from two opposed clauses.

Definition 1 (Resolution [29]). Given two clauses c1 = (x ∨ A) and c2 =
(x ∨ B), the resolution rule is defined as follows:

c1 = (x ∨ A) c2 = (x ∨ B)
c3 = (A ∨ B)

490 M. Py et al.

A resolution refutation is a sequence of resolutions leading to an empty clause.
Many restricted classes of resolution refutations have been studied in the liter-
ature namely linear resolution [24], unit resolution [16], input resolution [16],
regular resolution [31], read-once resolution [17] and tree (or tree-like) resolution
refutations [5] among others. In particular, a resolution refutation is tree-like if
every intermediate clause, i.e. resolvent, is used at most once in the proof. Sim-
ilarly, a resolution refutation is read-once if each clause is used at most once in
the proof. Clearly, read-once resolution refutations are also tree-like since they
form a restricted class of tree resolution refutations. It was shown in [17] that
there exists unsatisfiable CNF formulas which cannot be refuted using read-once
resolution. Finally, a resolution is regular if each branch (path from a clause of
the initial formula to the empty clause) contains at most one resolution per
variable.

Example 1. We consider the CNF formula φ = (x1 ∨ x3) ∧ (x1) ∧ (x1 ∨ x2) ∧
(x2 ∨ x3). The resolution refutation of φ, represented in Fig. 1, is tree-like (and)
regular, but not read-once because of clause (x1).

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x2

x3

�

Fig. 1. Resolution refutation

2.3 Proofs for Max-SAT

In the last fifteen years, the study of inference rules for Max-SAT has led to
major results in Max-SAT theory and solving. In particular, one of the first proof
systems for Max-SAT is based on an inference rule called Max-SAT resolution,
which is an extension of the resolution rule. Max-SAT resolution was shown
sound and complete for Max-SAT, i.e. it is sufficient to prove the optimum cost
of a given CNF formula.

Definition 2 (Max-SAT resolution [10,11,19]). Given two clauses c1 = x ∨
a1 ∨ · · ·∨as and c2 = x∨ b1 ∨ · · ·∨ bt with A = a1 ∨ · · ·∨as and B = b1 ∨ · · ·∨ bt,
the Max-SAT resolution rule is defined as follows:

A Proof Builder for Max-SAT 491

c1 = x ∨ A c2 = x ∨ B
c3 = A ∨ B

cc1 = x ∨ A ∨ b1
. . .

cct = x ∨ A ∨ b1 ∨ · · · ∨ bt−1 ∨ bt
cct+1 = x ∨ B ∨ a1

. . .
cct+s = x ∨ B ∨ a1 ∨ · · · ∨ as−1 ∨ as

where c3 is the resolvent clause and cc1, . . . , cct+s are compensation clauses.

In recent work, Max-SAT resolution was augmented with other rules such as
the split rule [21,28] defined below or the extension rule [20]. It was shown that
the addition of such rules to Max-SAT resolution can improve its efficiency in
generating shorter proofs [20,21] or allow, given a resolution refutation for SAT,
to generate a Max-SAT resolution refutation [28].

Definition 3 (Split rule). Given a clause c1 = (A) where A is a disjunction
of literals and x a variable, the split rule is defined as follows:

c1 = (A)
c2 = (x ∨ A) c3 = (x ∨ A)

Remark 1. Unlike the resolution rule, the Max-SAT resolution rule and the split
rule replace the premise(s) by the conclusion(s).

To be more exhaustive, we must also mention that other Max-SAT proof
systems exist like the Clause Tableau Calculus [22]. If these proofs systems have
been extensively studied in theory, generating proofs remains an unexplored
topic in practice. Hence, this work aims to contribute to this topic by proposing
tools to build and check Max-SAT proofs.

3 Related Work

In this section, we briefly recall recent results established in [28] on the adapta-
tion of resolution refutations to Max-SAT refutations. One of the main results
deals with tree resolution refutations showing that a linear adaptation to a Max-
SAT refutation is possible in this case. Indeed, if the resolution refutation is
tree-like, it is possible to transform it into a smaller refutation which is tree-like
regular by iteratively eliminating irregularities (sequences of successive resolu-
tions whose first and last are on the same variable) [30]. To adapt tree regular
refutations, Max-SAT resolution is augmented with the split rule to fix the non-
read-once clauses, i.e. clauses which are used more than once in the proof. The
split rule is applied on a non-read-once clause to augment it with the variable
resolved on in the junction point of all the branches starting from it. Thus,
the obtained clauses can replace the non-read-once clause as a premise with-
out affecting the validity of the proof. The same treatment is applied until all

492 M. Py et al.

non-read-once clauses are fixed. Finally, when the proof becomes read-once, it is
sufficient to replace each resolution step by a Max-SAT resolution to get a valid
Max-SAT refutation [17]. An adaptation of tree regular resolution refutation is
showcased in Example 2.

Example 2. We consider the tree regular resolution refutation in Example 1,
represented in Fig. 1. We observe that the clause (x1) is used two times as a
premise of a resolution step. The junction point of the left and right branches
eliminates variable x3. Thus, we apply the split rule on clause (x1) to get (x1∨x3)
and (x1∨x3) and we replace (x1) by (x1∨x3) and (x1∨x3) respectively on the left
and right branches. Finally, we replace all resolutions by Max-SAT resolutions
to obtain the complete Max-SAT refutation represented in Fig. 2.

x1

x1 ∨ x3 x1 ∨ x3 x1 ∨ x3 x1 ∨ x2 x2 ∨ x3

x3

x2 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3 x3

�

Fig. 2. Adaptation of a tree-like regular resolution refutation

In the generic case where the resolution refutation is not tree-like, it is also
possible to adapt it into a Max-SAT refutation but with an exponential cost. To
adapt the refutation, the entire proof leading to each non-read-once intermediate
clause is duplicated, thus generating as many copies of the clauses as needed to
render the proof tree-like. Then, the tree refutation is adapted into a Max-SAT
refutation as explained above.

4 MS-Builder

In this section, we describe a Max-SAT proof builder, called MS-Builder based
on the adaptation of resolution refutations for Max-SAT recalled in Sect. 3. The
idea is to iteratively call a SAT oracle in order to get a resolution refutation
for the current formula, adapt it into a Max-SAT refutation and apply it to the
formula. The proof builder repeats this step until the SAT oracle returns a model
for the final formula.

A Proof Builder for Max-SAT 493

For practical reasons, we add an additional treatment to the Max-SAT proof
builder. If the resolution refutation is not read-once, we first try to fix the effect
of unit propagation in the non-read-once part of the proof. To do that, we discard
the non-read-once unit clauses and we re-inject them at the end of the resolution
refutation. Indeed, some resolution refutations are non-read-once simply because
of the effects of unit propagation. It is the case of the resolution refutation pro-
posed in Example 1, which is in fact read-once after fixing the unit propagation
as showcased in the following example.

Example 3. We consider the tree regular resolution refutation in Example 1
(represented in Fig. 1). We fix the unit propagation by discarding (x1) and re-
injecting it at the end of the resolution refutation to get the read-once resolution
refutation represented in Fig. 3.

x1 x1 ∨ x3 x1 ∨ x2 x2 ∨ x3

x1 ∨ x3

x1

�

Fig. 3. Fixing unit propagation to get a read-once resolution refutation

The adaptation of any resolution refutation into a Max-SAT refutation is
integrated into MS-Builder which can be seen as a core-based Max-SAT proof
builder whose correctness is guaranteed by the correctness of the adaptation
proposed in [28].

Example 4. Let φ = (x1∨x3)∧(x1)∧(x1∨x2)∧(x2∨x3). The SAT oracle returns
the resolution refutation in Fig. 1 which is adapted into the read-once one in
Fig. 3 and to a Max-SAT one (by replacing resolutions by Max-SAT resolutions)
and then applied to the formula. Now we have φ = �∧ (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨
x3) and the SAT oracle returns that the current formula (without considering
the empty clause) is satisfied by the assignment I(x1) = I(x2) = I(x3) = 0.
MS-Builder thus receives the formula described in Fig. 4 and returns the proof
described in Fig. 5.

5 MS-Checker

In this section, we present our extendable Max-SAT checker, called MS-Checker,
which requires two input files: a formula and a proof. The formula has to be
given in the standard WCNF format, either in the old or new format [4]. The

494 M. Py et al.

proof file must start with a sequence of Max-SAT transformation lines. A Max-
SAT transformation line must start with ‘t’ and must include the name of the
inference rule (msres for Max-SAT resolution and split for the split rule) and
its premise(s) (between ‘<>’). For the split rule, the variable to split on is
specified as a parameter after its name. Then, the proof file must contain a line
(starting with ‘o’) with the announced optimum cost of the formula. Finally, it
must contain a line (starting with ‘v’) with a truth assignment satisfying the
final formula (without the empty clauses).

Fig. 4. Formula file format Fig. 5. Proof file format

After reading the formula, MS-Checker verifies that the proposed inference
rules are correct and that the premises are still in the formula then applies
the transformation. Finally, it checks if the truth assignment satisfies the final
formula without considering the empty clauses.

6 Experiments

We have implemented MS-Builder and MS-Checker in C++1. Resolution Refu-
tations are computed using Booleforce [6] and Tracecheck [7,8]. We consider the
benchmark of the unweighted partiel track of the 2020 Max-SAT Evaluation
[4]. The experiments are performed on Dell PowerEdge M620 servers with Intel
XeonSilver E5-2609 processors (clocked at 2.5–2.6 GHz) under Ubuntu 18.04.
Each solving process is allocated a slot of 1 h and at most 16 GB of memory per
instance.

MS-Builder has succeeded to construct full proofs for 163 instance while MS-
checker has succeeded to check 575 complete or partial proofs over 576 in total.
The running time for building and checking instances are plotted respectively in
Figs. 6 and 7. Proof checking is obviously much easier than proof building except
on rare formulas with an important number of clauses (in the input file or after
applying some transformations) which can make difficult the linear operation of
extracting a premise to the formula used in MS-Checker.

1 The source code is available on https://pageperso.lis-lab.fr/matthieu.py/en/soft
ware.html.

https://pageperso.lis-lab.fr/matthieu.py/en/software.html
https://pageperso.lis-lab.fr/matthieu.py/en/software.html

A Proof Builder for Max-SAT 495

Fig. 6. Running time (in seconds) for
building complete proofs

Fig. 7. Running time (in seconds) for
checking proof

MS-Builder has also succeed to build at least half of the proofs (with respect
to the number of empty clauses) of 302 instances over 463 instances for which the
optimum cost is known. This is illustrated in Fig. 8 which reports the percentage
of empty clauses built per solved instance. The sizes of the computed proofs vary
from few bytes to 1 Gb as illustrated in Fig. 9. Notice how empty (incomplete)
proofs are computed for some very hard instances for which the timeout is not
sufficient to even compute the first Max-SAT refutation. On the other hand,
there are some instances, usually with an optimum cost of 1, which have very
small proofs.

Fig. 8. Percentage of proved � per
instance

Fig. 9. Size of proof per instance (in log-
arithmic scale)

Finally, we can observe in Table 1 that read-once resolution refutations and
resolution refutations which are read-once after fixing unit propagation appear
very often. However, there are many instances such that the last resolution
refutation met are the largest and the hardest (i.e. unrestricted) and that is
why the last resolution refutations are often the most difficult to adapt and the
timeout often stops on these resolution refutations.

496 M. Py et al.

Table 1. Encountered types of resolution refutations in the whole benchmark

Type of resolution refutation Number Percentage

Read-once 169,239 83.7%

Read-once after UP-fixing 24,556 12.1%

Tree-like regular 2,879 1.4%

Tree-like 1,795 0.9%

Unrestricted 3,799 1.9 %

7 Conclusion

In this paper, we proposed two tools, MS-Builder and MS-Checker, to respec-
tively generate and check Max-SAT proofs. MS-Builder builds proofs by itera-
tively calling a SAT oracle and adapting the obtained SAT refutations into Max-
SAT refutations. MS-Builder has succeeded in building a substantial amount of
proofs for unweighted partial instances of the 2020 Max-SAT Evaluation. How-
ever, unrestricted resolution refutations are usually hard to adapt due to the
exponential overhead caused by duplicating parts of the proofs.

As future work, it would be interesting to include more advanced techniques
such as core reduction or minimization [2,25] in order to improve the efficiency
of these tools. Furthermore, It would be relevant to study the possibility of
extending the UP-fixing mechanism to non-unit clauses. Finally, we are also
working on extending our tools to build and check proofs for weighted partial
Max-SAT formulas.

References

1. Abramé, A., Habet, D.: Ahmaxsat: description and evaluation of a branch and
bound max-SAT solver. J. Satisfiability Boolean Model. Comput. 9, 89–128 (2015)

2. Alexey Ignatiev, A.M., Marques-Silva, J.: RC2: an efficient maxsat solver. J. Sat-
isfiability Boolean Model. Comput. 11(1), 53–64 (2019)

3. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based opti-
mization in clasp. In: Technical Communications of The Twenty-eighth Interna-
tional Conference on Logic Programming (ICLP 2012) 17 (01 2012)

4. Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT Evaluation (2020). https://
maxsat-evaluations.github.io/2020/

5. Ben-sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-
like and general resolution. Combinatorica 24, 585–603 (2004)

6. Biere, A.: Booleforce. http://fmv.jku.at/booleforce/
7. Biere, A.: TraceCheck. http://fmv.jku.at/tracecheck/
8. Biere, A.: PicoSAT essentials. J. Satisfiability Boolean Model. Comput. 4(2–4),

75–97 (2008)
9. Bonet, M.L., Levy, J.: Equivalence between systems stronger than resolution. In:

Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 166–181. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51825-7 13

https://maxsat-evaluations.github.io/2020/
https://maxsat-evaluations.github.io/2020/
http://fmv.jku.at/booleforce/
http://fmv.jku.at/tracecheck/
https://doi.org/10.1007/978-3-030-51825-7_13

A Proof Builder for Max-SAT 497

10. Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for max-SAT. In: Biere, A.,
Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 240–251. Springer, Heidelberg
(2006). https://doi.org/10.1007/11814948 24

11. Bonet, M.L., Levy, J., Manyàb, F.: Resolution for Max-SAT. Artif. Intell. 171,
606–618 (2007)

12. D’Almeida, D., Grégoire, É.: Model-based diagnosis with default information
implemented through MAX-SAT technology. In: IEEE 13th International Con-
ference on Information Reuse & Integration, pp. 33–36. IEEE (2012)

13. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-23786-7 19

14. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-sat as weighted
csp. Principles Pract. Constraint Program. - CP 2003, 363–376 (2003)

15. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfi-
ability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 941–956. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 67

16. Hertel, A., Urquhart, A.: Algorithms and complexity results for input and unit
resolution. J. Satisfiability Boolean Model. Comput. 6, 141–164 (2009)

17. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of
Structure in Complexity Theory. Tenth Annual IEEE Conference (1995)

18. Küegel, A.: Improved exact solver for the weighted max-sat problem. In: POS-10.
Pragmatics of SAT. EPiC Series in Computing, vol. 8, pp. 15–27. EasyChair (2012)

19. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In: IJCAI International Joint Conference on Artificial Intelli-
gence - IJCAI 2005, pp. 193–198 (01 2005)

20. Larrosa, J., Rollon, E.: Augmenting the power of (Partial) MaxSat resolution with
extension. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)

21. Larrosa, J., Rollon, E.: Towards a better understanding of (Partial Weighted)
MaxSAT proof systems. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol.
12178, pp. 218–232. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51825-7 16

22. Li, C.M., Manyà, F., Soler, J.R.: A Clause Tableau Calculus for MaxSAT. In:
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intel-
ligence, IJCAI 2016, pp. 766–772 (2016)

23. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell.
Res. (JAIR) 30, 321–359 (2007)

24. Loveland, D.W.: A linear format for resolution. In: Laudet, M., Lacombe, D.,
Nolin, L., Schützenberger, M. (eds.) Symposium on Automatic Demonstration.
LNM, vol. 125, pp. 147–162. Springer, Heidelberg (1970). https://doi.org/10.1007/
BFb0060630

25. Marques-Silva, J.: Minimal unsatisfiability: Models, algorithms and applications
(invited paper). In: 2010 40th IEEE International Symposium on Multiple-Valued
Logic, pp. 9–14 (2010)

26. Martins, R., Manquinho, V.M., Lynce, I.: Open-WBO: a modular MaxSAT solver.
In: Theory and Applications of Satisfiability Testing - SAT 2014–17th International
Conference. Lecture Notes in Computer Science, vol. 8561, pp. 438–445 (2014)

27. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pp. 2717–2723 (2014)

https://doi.org/10.1007/11814948_24
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-33558-7_67
https://doi.org/10.1007/978-3-030-51825-7_16
https://doi.org/10.1007/978-3-030-51825-7_16
https://doi.org/10.1007/BFb0060630
https://doi.org/10.1007/BFb0060630

498 M. Py et al.

28. Py, M., Cherif, M.S., Habet, D.: Towards bridging the gap between sat and max-sat
refutations. In: 2020 IEEE 32nd International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 137–144 (2020)

29. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
Assoc. Comput. Mach. 12, 23–41 (1965)

30. Urquhart, A.: The complexity of propositional proofs. Bull. Symbolic Logic 1,
425–467 (1995)

31. Urquhart, A.: A near-optimal separation of regular and general resolution. SIAM
J. Comput. 40, 107–121 (2011)

32. Xu, H., Rutenbar, R.A., Sakallah, K.A.: Sub-SAT: a formulation for relaxed
Boolean satisfiability with applications in routing. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 22, 814–820 (2003)

Certified DQBF Solving by Definition
Extraction

Franz-Xaver Reichl, Friedrich Slivovsky(B), and Stefan Szeider

TU Wien, Vienna, Austria
{freichl,fs,sz}@ac.tuwien.ac.at

Abstract. We propose a new decision procedure for dependency quanti-
fied Boolean formulas (DQBFs) that uses interpolation-based definition
extraction to compute Skolem functions in a counter-example guided
inductive synthesis (CEGIS) loop. In each iteration, a family of candi-
date Skolem functions is tested for correctness using a SAT solver, which
either determines that a model has been found, or returns an assignment
of the universal variables as a counterexample. Fixing a counterexample
generally involves changing candidates of multiple existential variables
with incomparable dependency sets. Our procedure introduces auxiliary
variables—which we call arbiter variables—that each represent the value
of an existential variable for a particular assignment of its dependency
set. Possible repairs are expressed as clauses on these variables, and a
SAT solver is invoked to find an assignment that deals with all previously
seen counterexamples. Arbiter variables define the values of Skolem func-
tions for assignments where they were previously undefined, and may lead
to the detection of further Skolem functions by definition extraction.

A key feature of the proposed procedure is that it is certifying by
design: for true DQBF, models can be returned at minimal overhead.
Towards certification of false formulas, we prove that clauses can be
derived in an expansion-based proof system for DQBF.

In an experimental evaluation on standard benchmark sets, a pro-
totype implementation was able to match (and in some cases, surpass)
the performance of state-of-the-art-solvers. Moreover, models could be
extracted and validated for all true instances that were solved.

1 Introduction

Sustained progress in propositional satisfiability (SAT) solving [23] has resulted
in a growing number of applications in the area of electronic design automa-
tion [49], such as model checking [7], synthesis [43], and symbolic execution [5].
Efficient SAT solvers were essential for recent progress in constrained sampling
and counting [31], two problems with many applications in artificial intelligence.
In these cases, SAT solvers are used to deal with problems from complexity
classes beyond NP and propositional encodings that grow super-polynomially
in the size of the original instances. As a consequence, these problems are not
directly encoded in propositional logic but have to be reduced to a sequence of
SAT instances.
c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 499–517, 2021.
https://doi.org/10.1007/978-3-030-80223-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_34&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_34

500 F.-X. Reichl et al.

The success of SAT solving on the one hand, and the inability of proposi-
tional logic to succinctly encode problems of interest on the other hand, have
prompted the development of decision procedures for more succinct generaliza-
tions of propositional logic such as Quantified Boolean Formulas (QBFs). Eval-
uating QBFs is PSPACE-complete [45] and thus believed to be much harder
than SAT, but in practice the benefits of a smaller encoding may outweigh the
disadvantage of slower decision procedures [13]. A QBF is true if it has a model,
which is a family of Boolean functions (often called Skolem functions) that sat-
isfy the matrix of the input formula for each assignment of universal variables.
The arguments of each Skolem function are implicitly determined by the nest-
ing of existential and universal quantifiers. Dependency QBF (DQBF) explicitly
state a dependency set for each existential variable, which is a subset of universal
variables allowed as arguments of the corresponding Skolem function [3,4]. As
such, they can succinctly encode the existence of Boolean functions subject to a
set of constraints [34], and problems like equivalence checking of partial circuit
designs [19] and bounded synthesis [13] can be naturally expressed in this way.

Several decision procedures for DQBF have been developed in recent years
(see Sect. 5). Conceptually, these solvers either reduce to SAT or QBF by instan-
tiating [16] or eliminating universal variables [18,20,39,50], or lift Conflict-
Driven Clause Learning (CDCL) to non-linear quantifier prefixes by imposing
additional constraints [15,47].1 We believe these methods should be comple-
mented with algorithms that directly reason at the level of Skolem functions [35].
A strong argument in favor of such an approach is the fact that DQBF instances
often have a large fraction of unique Skolem functions that can be obtained by
definition extraction, but the current solving paradigms have no direct way of
exploiting this [40].

In this paper, we develop new decision procedures for DQBF designed around
computing Skolem functions by definition extraction. We first describe a simple
algorithm that proceeds in two phases. In the first phase, it introduces clauses to
make sure each existential variable is defined in terms of its dependency set and
auxiliary arbiter variables. In the second phase, it searches for an assignment
of the arbiter variables under which the definitions are a model. Runs of this
algorithm can degenerate into an exhaustive instantiation of dependency sets for
easy cases, so we propose an improved version in the Counter-Example Guided
Inductive Synthesis (CEGIS) paradigm [28,42,43].

We implemented the CEGIS algorithm in a system named Pedant. In an
experimental evaluation, Pedant performs very well compared to a selection of
state-of-the-art solvers—notably, it achieves good performance without the aid
of the powerful preprocessor HQSPre [51]. One of the benefits of its function-
centric design is that Pedant internally computes a family of Skolem functions,
and can output models of true instances at a negligible overhead. Using a sim-
ple workflow, we are able to validate models for all true instances solved by
Pedant. Towards validation of false instances, we prove that clauses introduced
by Pedant can be derived in the ∀Exp+Res proof system [6,27].

1 An approach that does not fit this simplified classification is the First-Order solver
iProver [29].

Certified DQBF Solving by Definition Extraction 501

The remainder of the paper is structured as follows. After covering basic
concepts in Sect. 2, we present the new decision algorithms for DQBF and prove
their correctness in Sect. 3. We describe the implementation and experimental
results in Sect. 4. We discuss related work in Sect. 5, before concluding with an
outlook on future work in Sect. 6.

2 Preliminaries

Propositional Logic. A literal is either a variable or the negation of a variable. A
clause is the disjunction of literals. A term is a conjunction of literals. A formula
is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses. Whenever
convenient, we identify a CNF with a set of clauses and clauses, respectively
terms, with sets of literals. We denote the set of variables occurring in a formula
ϕ by var(ϕ). We denote the truth value true by true and false by false. An
assignment of a set V of variables is a function mapping V to {true, false}.
We denote the set of all assignments for V by [V]. Moreover, we associate an
assignment σ with the term {x | x ∈ dom(σ), σ(x) = true} ∪ {¬x | x ∈
dom(σ), σ(x) = false}. Whenever convenient, we treat assignments as terms.
Let σ ∈ [V] and let W ⊆ V , then we denote the restriction of σ to W by
σ|W . For a formula ϕ and an assignment σ we denote the evaluation of ϕ by σ
with ϕ[σ]. A formula ϕ is satisfied by an assignment σ if ϕ[σ] = true and it
is falsified by σ otherwise. A formula ϕ is satisfiable if there is an assignment σ
that satisfies ϕ and it is unsatisfiable otherwise. Let ϕ and ψ be two formulae, ϕ
entails ψ, denoted by ϕ � ψ, if every assignment satisfying ϕ also satisfies ψ. A
definition for a variable x by a set of variables X in a formula ϕ is a formula ψ
with var(ψ) ⊆ X such that for every satisfying assignment σ of ϕ the equality
σ(x) = ψ[σ] holds [40].

Dependency Quantified Boolean Formulas. We only consider Dependency Quan-
tified Boolean formulas (DQBF) in Prenex Conjunctive Normal Form (PCNF).
A DQBF in PCNF is denoted by Φ = Q.ϕ, where (a) the quantifier prefix Q is
given by Q = ∀u1 . . . ∀un∃e1(D1) . . . ∃em(Dm). Here u1, . . . , un and e1, . . . , em

shall be pairwise different variables. We denote the set {u1, . . . , un} by UΦ and
the set {e1, . . . , em} by EΦ. Additionally, D1, . . . , Dm shall be subsets of UΦ. (b)
the matrix ϕ shall be a CNF with var(ϕ) ⊆ UΦ ∪ EΦ. For 1 ≤ i ≤ m we call
the set Di the dependencies of ei. We refer to the variables in UΦ as universal
variables and to the variables in EΦ as existential variables. For an existential
variable e we denote its dependencies by DΦ(e). If the underlying DQBF is clear
from the context we omit the subscript.

Let Φ be a DQBF and F be a set of functions {fe1 , . . . , fem
} such that for

1 ≤ i ≤ m, fei
: [Di] → {true, false}. For an assignment σ to the universal

variables we denote the existential assignment {fe1(σ|D1
), . . . , fem

(σ|Dm
)} by

F (σ). F is a model (or a winning ∃-strategy) for Φ if for each assignment σ to
the universal variables, the assignment σ ∪F (σ) satisfies the matrix ϕ. A DQBF
is true if it has a model and false otherwise.

502 F.-X. Reichl et al.

∀Exp+Res. The DQBF-∀Exp+Res [6] calculus is a proof system for DQBF, which
is based on the ∀Exp+Res calculus for QBF. It instantiates the matrix of a DQBF
with a universal assignment and uses propositional resolution on the instantiated
clauses. This proof system is sound and refutationally complete [6]. Since we are
interested in DQBF, we refer to DQBF-∀Exp+Res simply as ∀Exp+Res.

3 Solving DQBF by Definition Extraction

In this section, we describe two decision procedures for DQBF that leverage defi-
nition extraction. We start with an algorithm (Algorithm 1) that is fairly simple
but introduces some important concepts. Because this algorithm leads to the
equivalent of exhaustive expansion of universal variables on trivial examples, we
then introduce a more sophisticated algorithm based on CEGIS (Algorithm 2).
We also sketch correctness proofs for both algorithms.

Throughout this section, we consider a fixed DQBF Φ ..= Q. ϕ with quantifier
prefix Q ..= ∀u1 . . . ∀un∃e1(D1) . . . ∃em(Dm).

3.1 A Two-Phase Algorithm

The algorithm proceeds in two phases. In the first phase (GenerateDefini-
tions), it finds definitions ψDef for all existential variables. It maintains a set A
of auxiliary arbiter variables whose semantics are encoded in a set ϕA of arbiter
clauses, both of which are empty initially. If a variable ei is defined in terms
of its dependency set, the definition is computed using a SAT solver (line 15)
capable of generating interpolants [40]. Otherwise, the SAT solver returns an
assignment ξ of the dependency set Di and the arbiter variables A for which
the variable is not defined. In particular, ei is not defined under the restric-
tion σ = ξ|Di

to its dependency set. The algorithm then introduces an arbiter
variable eσ

i that determines the value of the Skolem function for ei under σ. In
subsequent iterations, we include these arbiter variables in the set of variables
that can be used in a definition of ei. The newly introduced clauses ensure that
ei and eσ

i take the same value under the assignment σ (line 13), so that ei is
defined by eσ

i and Di. Since the number of assignments σ of the dependency set
is bounded, we will eventually find a definition of ei in terms of its dependency
set Di and the arbiter variables A.

In the second phase (FindArbiterAssignment), a SAT solver (line 21) is
used to find an assignment of the arbiter variables under which the definitions
obtained in the first phase are a model. Starting with an initial assignment τ ,
we use a SAT solver to check whether the formula ψDef ∧ ¬ϕ consisting of the
definitions from the first phase and the negated matrix of the input DQBF is
unsatisfiable under τ (line 23). If that is the case, Algorithm 1 returns true.
Otherwise, the SAT solver returns an assignment σ as a counterexample. Since
the existential variables are defined in ϕ ∧ ϕA by the universal and arbiter vari-
ables, the formula ϕ ∧ ϕA must be unsatisfiable under the assignment τ ∧ σ|U
consisting of the arbiter assignment and counterexample restricted to universal

Certified DQBF Solving by Definition Extraction 503

variables. A core ρ of failed assumptions τ ∧ σU such that ρ |= ¬(ϕ ∧ ϕA) is
extracted using another SAT call. The assignment ρ|A represents a concise rea-
son for the failure of the arbiter assignment τ , and its negation ¬ρ|A is added
as a new clause to the SAT solver used to generate arbiter assignments, which
is subsequently invoked to find a new arbiter assignment.

This process continues until a model is found or the SAT solver cannot find
a new arbiter assignment, in which case the algorithm returns false.

Algorithm 1. Solving DQBF by Definition Extraction

1: procedure SolveByDefinitionExtraction(Φ)
2: (ϕA, A, ψDef) ← GenerateDefinitions(Φ)
3: return FindArbiterAssignment(Φ, ϕA, A, ψDef)

4: procedure GenerateDefinitions(Φ)
5: � Φ = ∀u1 . . . ∀un∃e1(D1) . . . ∃em(Dm).ϕ
6: A ← ∅, ψDef ← ∅, ϕA ← ∅
7: � A: arbiter variables, ψDef : definitions, ϕA: arbiter clauses
8: for i = 1, . . . , m do
9: isDefined , ξ ← isDefined(ei, A ∪ Di, ϕ ∧ ϕA)

10: while not isDefined do
11: σ ← ξ|Di

� ei is not defined under ξ ∈ [Di ∪ A]
12: A ← A ∪ {eσ

i }
13: ϕA ← ϕA ∧ (eσ

i ∨ ¬σ ∨ ¬ei) ∧ (¬eσ
i ∨ ¬σ ∨ ei)

14: isDefined , ξ ← isDefined(ei, A ∪ Di, ϕ ∧ ϕA)

15: ψi
Def ← getDefinition(ei, A ∪ Di, ϕ ∧ ϕA)

16: ψDef ← ψDef ∧ (ei ↔ ψi
Def)

17: return (ϕA, A, ψDef)

18: procedure FindArbiterAssignment(Φ, ϕA, A, ψDef)
19: τ ← ∧

a∈A a � initial assignment to the arbiter variables
20: validitySolver ← SatSolver(ψDef ∧ ¬ϕ)
21: arbiterSolver ← SatSolver(∅)
22: loop
23: if validitySolver .solve(τ) then
24: σ ← validitySolver .getModel()
25: ρ ← getCore(ϕ ∧ ϕA, τ ∧ σ|U)
26: arbiterSolver .addClause(¬ρ|A)
27: if arbiterSolver .solve() then
28: τ ← arbiterSolver .getModel()
29: else
30: return false
31: else
32: return true

504 F.-X. Reichl et al.

We now argue that Algorithm 1 is a decision procedure for DQBF. Due to
space constraints, some proofs are omitted. In the following, A shall denote a
set of arbiter variables and ϕA shall denote the associated set of arbiter clauses.

A DQBF has a model if, and only if, there is a propositional formula for each
existential variable that defines its Skolem functions using only variables from
the dependency set. This can be slightly generalized by allowing the definition
to contain existential variables whose dependency sets are a subset.

Lemma 1. Let Φ be a DQBF and <E a linear ordering of its existential vari-
ables. Then Φ is true if, and only if, for each e ∈ E there is a formula ψe with
var(ψe) ⊆ D(e) ∪ {x ∈ E | D(x) ⊆ D(e), x <E e} such that ¬ϕ ∧ ∧

e∈E(e ↔ ψe)
is unsatisfiable.

Theorem 1. If Algorithm 1 returns true for the DQBF Φ then Φ is true.

Proof. Let Φ′ ..= Q∃A(∅).ϕ, and let <E be any ordering of existential variables
in Φ′ in which the variables in A come before the remaining variables. If Algo-
rithm 1 returns true, we know that there is an arbiter assignment τ such that
¬ϕ∧ψDef ∧τ is unsatisfiable. For each arbiter variable eσ, we obtain a definition
ψσ

e as ψσ
e

..= τ(eσ). We can now replace the arbiter assignment τ with these def-
initions and apply Lemma 1 to conclude that Φ′ is true. But if Φ′ is true, then
necessarily also Φ is true. �

To show that the algorithm returns false only if the input DQBF is false, one
can prove that clauses on arbiter variables introduced by FindArbiterAssign-
ment can be derived (as clauses on annotated literals) in ∀Exp+Res.

Proposition 1. For each clause C added to the arbiter solver by Algorithm 1
(line 26), a clause C ′ ⊆ C can be derived from Φ in ∀Exp+Res.

Theorem 2. If Algorithm 1 returns false for the DQBF Φ then Φ is false.

Proof. If the algorithm returns false then the set C of clauses in the arbiter
solver is unsatisfiable. By Proposition 1 for each C ∈ C we can derive a clause
C ′ ⊆ C subsuming C in ∀Exp+Res, so there is a ∀Exp+Res refutation of Φ. As
∀Exp+Res is sound [6], this shows that Φ is false. �

Finally, Algorithm 1 terminates since at most one arbiter variable is introduced
for each existential variable and assignment of its dependency set in the first
phase, and there is a limited number of clauses on arbiter variables that can be
introduced in the second phase. In combination with Theorem 1 and Theorem 2,
we obtain the following result.

Corollary 1. Algorithm 1 is a decision procedure for DQBF.

3.2 Combining Definition Extraction with CEGIS

Discounting SAT calls, the running time of Algorithm 1 is essentially determined
by the number of assignments of a dependency set for which the corresponding
existential variable is not defined: it introduces an arbiter variable for each such

Certified DQBF Solving by Definition Extraction 505

assignment in the first phase, and the number of iterations in the second phase
is bounded by the number of arbiter assignments. As a result, even a single
existential variable that is unconstrained and has a large dependency set causes
the algorithm to get stuck enumerating universal assignments.

A key insight underlying the success of counter-example guided solvers for
QBF [25,26,46] is that it is typically overkill to perform complete expansion
of universal variables. Instead, they incrementally refine Skolem functions by
taking into account universal assignments that pose a problem for the current
solution candidate.2

Following this idea, we now present an improved algorithm (Algorithm 2)
in the style of Counter-Example Guided Inductive Synthesis (CEGIS) [28]. It
integrates the two phases of Algorithm 1 into a single loop. In each iteration,
it first tries to find definitions for existential variables in terms of their depen-
dency sets and the arbiter variables (FindDefinitions). The algorithm then
proceeds to a validity check of the definitions under the current arbiter assign-
ment (CheckArbiterAssignment). A key difference to Algorithm 1 is that
we may not have a definition for each variable at this point. In this case, we
can simply leave the existential variable unconstrained in the SAT call except
for arbiter clauses ϕA (and forcing clauses ϕF , which we discuss later). In the
implementation, we limit the SAT solver’s freedom to generate counterexamples
by substituting a default value or a heuristically obtained “guess” for the Skolem
function. Here, any function on variables from the dependency set can be used
without affecting correctness, one only has to make sure that counterexamples
are not repeated to guarantee termination.

If a counterexample σ is found, procedure CheckArbiterAssignment
returns it to the main loop. Otherwise, (line 25), we have to check whether the
SAT call in line 20 returned UNSAT because a model has been found, or whether
there is an inconsistency in the formula ϕA ∧ϕF comprised of arbiter and forcing
clauses under the current arbiter assignment τ . The procedure CheckConsis-
tency either finds that the model is consistent, in which case Algorithm 2
returns true, or else computes an assignment σ of the universal variables as a
counterexample. If CheckArbiterAssignment returns false, the main loop
resumes in line 14 with a call to AnalyzeConflict.

To see what this procedure does, let us first consider the simple case in which
the counterexample σ only contains an assignment of universal variables that
was returned by the consistency check. Then, the existential assignment ρ∃ = ∅
is empty, the for-loop is skipped and no new arbiter variables are introduced
(line 55), and the procedure only tries to further simplify the failed arbiter
assignment ρA in line 58, before adding its negation to the arbiter solver.

Now assume ρ∃ is nonempty but the case distinction in the body of the for-
loop between lines 43 and 54 always leads to line 51. Then notforced = ρ∃ and
the procedure NewArbiters creates new arbiter variables A′ and clauses ϕ′

A

for each existential variable e ∈ dom(ρ∃) and the universal counterexample σ∀

2 In these QBF solvers, Skolem functions are typically only indirectly represented by
trees of formulas (abstractions) that encode viable assignments.

506 F.-X. Reichl et al.

(restricted to the dependency set D(e) in each case). Since these arbiter variables
determine the assignment of the existential variables in dom(ρ∃) under σ∀, we
can replace ρ∃ with the assignment ρ′

A
..= {eξ ∈ A′ |e ∈ ρ∃}∪{¬eξ ∈ A′ |¬e ∈ ρ∃}

(line 57) and conclude that ϕ ∧ ϕA ∧ ϕF is unsatisfiable under the assignment
ρA ∪ ρ′

A ∪ σ∀, which only assigns arbiter variables and universal variables. A
clause forbidding the arbiter assignment ρA ∪ ρ′

A can now be added as before.
Finally, let us turn to the general case, which includes entailment checks for

each existential literal 	 ∈ ρ∃ in the minimized counterexample. These checks
are added to reduce the number of new arbiter variables created. If the literal 	
is entailed by the assignment σ∀ ∧ τ , we add further literals from τ to the failed
arbiter assignment ρA (if necessary) to ensure that 	 is entailed by σ∀ ∧ ρA. No
arbiter variable has to be introduced for var() in this case. Otherwise, if ¬	 is
entailed by σ∀ ∧ τ , then the counterexample is spurious since e = var() must
be assigned the opposite way under σ∀ ∧ τ by any Skolem function. To enforce
this in the next iteration, the algorithm adds a forcing clause C encoding the
implication σ∀ ∧ τ → ¬	 (which can be further strengthened by restricting σ∀ to
the dependency set of e) to ϕF . It also sets a flag oppositeForced , which causes
AnalyzeConflict to exit with true instead of adding new arbiter variables.

If AnalyzeConflict returns true, Algorithm 2 proceeds to the next iter-
ation of its main loop with the same arbiter assignment τ but additional forcing
clauses. Otherwise, AnalyzeConflict returns false after adding a clause to
the SAT solver arbiterSolver , and FindNewArbiterAssignment is called to
determine a new arbiter assignment τ that satisfies all previously added clauses.
Algorithm 2 terminates either when it discovers a model or when it cannot find
a new arbiter assignment.

We now sketch a proof that shows that Algorithm 2 is a decision procedure
for DQBF. As in Sect. 3.1, A denotes a set of arbiter variables and ϕA denotes
the associated set of arbiter clauses.

Definition 1 (Forcing Clause). Let 	 be an existential literal, ψ a formula
with var(ψ) ⊆ U ∪ E ∪ A and let σ be a (partial) assignment for U ∪ A. We say
that 	 is forced by σ in ψ if ψ ∧ σ ∧ ¬	 is unsatisfiable. If 	 is forced by σ then
¬σ|D(var(�))∪A ∨ l is a forcing clause.

In particular, if a literal 	 is forced by an assignment σ in a formula ϕ then
ϕ ∧ σ � 	 holds. Forcing clauses can be added to a DQBF without changing its
models. In particular, the resulting DQBF has the same truth value.

Lemma 2. Let C1, . . . , Ck be clauses such that for each index i, the clause Ci

is a forcing clause in ϕ ∧ ϕA ∧ ∧
1≤j<i Cj. Then the DQBF Q∃A(∅).ϕ ∧ ϕA ∧∧

1≤i≤k Ci is true if and only if Φ is true.

Theorem 3. If Algorithm 2 returns true for a DQBF Φ then Φ is true.

Proof. We assume that the algorithm returns true and show that the DQBF Φ
is true. We know that we have a set A of arbiter variables, a set ϕA of arbiter
clauses, a set ϕF of forcing clauses and a set E′ ⊆ E such that each e ∈ E′ has

Certified DQBF Solving by Definition Extraction 507

Algorithm 2. Solving DQBF by Definition Extraction (CEGIS Version)

1: procedure SolveByDefinitionExtractionCEGIS(Φ)
2: � Φ = ∀u1 . . . ∀un∃e1(D1) . . . ∃em(Dm).ϕ
3: � A: arbiter variables, ψDef : definitions, ϕA: arbiter clauses
4: A ← ∅, ψDef ← ∅, ϕA ← ∅
5: ϕF ← ∅ � forcing clauses
6: τ ← ∅ � arbiter assignment
7: arbiterSolver ← SatSolver(∅)
8: loop
9: ψDef ← FindDefinitions({e ∈ E | e undefined}, ϕ ∧ ϕA ∧ ϕF)

10: modelValid , σ ← CheckArbiterAssignment(τ)
11: if modelValid then
12: return true
13: � σ is a counterexample
14: if AnalyzeConflict(σ) then
15: � forcing clauses have been added to ϕF

16: continue
17: if not FindNewArbiterAssignment() then
18: return false

19: procedure CheckArbiterAssignment(τ)
20: checker ← SatSolver(¬ϕ ∧ ψDef ∧ ϕF ∧ ϕA)
21: if checker .solve(τ) then
22: σ ← checker .values(E ∪ U)
23: return false, σ
24: else
25: isConsistent , σ ← CheckConsistency(ϕA ∧ ϕF , τ)
26: if isConsistent then
27: return true, ∅
28: else
29: � σ ∈ [U] is such that ϕA ∧ ϕF ∧ τ ∧ σ is unsatisfiable
30: return false, σ

31: procedure FindNewArbiterAssignment()
32: if arbiterSolver .Solve() then
33: τ ← arbiterSolver .getModel()|A
34: return true
35: return false

a definition ψe in ϕ ∧ ϕA ∧ ϕF by D(e) ∪ A. Let ψDef
..=

∧
e∈E′(e ↔ ψe) and

Φ′ ..= Q∃A(∅).ϕ ∧ ϕA ∧ ϕF . By Lemma 2, we know that Φ is true if and only if
Φ′ is true. As the algorithm returns true, we know that ¬ϕ ∧ ϕA ∧ ϕF ∧ ψDef

is unsatisfiable. Using a mild generalization of Lemma 1, this implies that Φ′ is
true. Thus, Φ is true as well. �

As in the case of Algorithm 1, the correctness of false answers for
Algorithm 2 follows from a correspondence with ∀Exp+Res derivations.

508 F.-X. Reichl et al.

36: procedure AnalyzeConflict(σ)
37: σ∀ ← σ|U � σ∀ assigns all universal variables
38: ρ ← getCore(ϕ ∧ ϕA ∧ ϕF , σ ∧ τ)
39: ρ∃ ← ρ|E , ρA ← ρ|A
40: notForced ← ∅ � collect literals
 ∈ ρ∃ that are not implied
41: oppositeForced ← false
42: ψ ← ϕ ∧ ϕA ∧ ϕF

43: for
 ∈ ρ∃ do
44: if ψ ∧ σ∀ ∧ τ |=
 then
45: ρ ← getCore(ψ, σ∀ ∧ τ ∧ ¬
)
46: ρA ← ρA ∪ ρ|A � add reason for
 to failed arbiter assignment ρA

47: else if ψ ∧ σ∀ ∧ τ |= ¬
 then
48: ϕF ← ϕF ∧ getForcingClause(ψ, σ∀ ∧ τ, ¬
)
49: oppositeForced ← true
50: else
51: notForced ← notForced ∪ {
}
52: if oppositeForced then
53: return true
54: � no literal was forced to the opposite polarity
55: ϕ′

A, A′ ← newArbiters(notForced , σ∀)
56: ϕA ← ϕA ∧ ϕ′

A

57: ρA ← ρA ∧ setAssignment(A′, ρ∃)
58: ρA ← getCore(ψ, ρA ∧ σ∀)|A
59: arbiterSolver .addClause(¬ρA)
60: return false

Proposition 2. For each clause C added to the arbiter solver by Algorithm 2
(line 59), a clause C ′ ⊆ C can be derived from Φ in ∀Exp+Res.

Theorem 4. If Algorithm 2 returns false for a DQBF Φ then Φ is false.

Each iteration of Algorithm 2 introduces new forcing clauses or forbids
another arbiter assignment. Because there is a bound on the number of arbiter
variables that can be introduced, the number of such clauses can be bounded
as well, and the algorithm eventually terminates. Together with Theorem 3 and
Theorem 4, this gives rise to the following corollary.

Corollary 2. Algorithm 2 is a decision procedure for DQBF.

4 Experiments

We implemented Algorithm 2 as described in the previous section in a pro-
totype named Pedant.3 For definition extraction, it uses a subroutine from
Unique [40] that in turn relies on an interpolating version of MiniSat [12] bun-
dled with the ExtAvy model checker [22,48]. Further, CaDiCaL is used as a

3 Available at https://github.com/perebor/pedant-solver.

https://github.com/perebor/pedant-solver

Certified DQBF Solving by Definition Extraction 509

SAT solver [8] (we also tested with CryptoMiniSAT [44] and Glucose [2] but
saw no significant differences in overall performance). Pedant can read DQBF
in the standard DQDIMACS format and output models in the DIMACS format.

The implementation incorporates a few techniques not explicitly mentioned
in the above pseudocode. We identify unate existential literals (a generalization
of pure literals) [1], which can be used in any model of a DQBF. Moreover, we
set a (configurable) default value for existential variables that applies when there
is no forcing clause propagating a different value. This is to limit the freedom
of the SAT solver used in the validity check in coming up with counterexam-
ples. Moreover, when checking for definability of an existential variable, we use
extended dependencies that include existential variables with dependency sets
that are contained in the dependencies of the variable that is checked.

For all experiments described below we use a cluster with Intel Xeon E5649
processors at 2.53 GHz running 64-bit Linux.

4.1 Performance on Standard Benchmark Sets

We compare Pedant with other DQBF solvers on standard benchmark sets in
terms of instances solved within the timeout and their PAR2 score.4 Specifically,
we choose the solvers dCAQE [47], iDQ [16], HQS [20], and the recently intro-
duced DQBDD [39]. Both HQS and DQBDD internally use HQSPre [51] as
a preprocessor. For dCAQE and iDQ, we call HQSPre with a time limit of
300 seconds (the time for preprocessing is included in the total running time).
By default, Pedant is run without preprocessing.

The results are based on a single run with a time and memory limit of 1800
seconds and 8 GB, respectively, which are enforced using RunSolver [36].5

We report results for two benchmark sets. The first—which we refer to as the
“Compound” set—has been used in recent papers on HQS [18]. It is comprised
of instances encoding partial equivalence checking (PEC) [14,16,19,37] and con-
troller synthesis [10], as well as succinct DQBF representations of propositional
satisfiability [4]. Results are summarized in Table 1. Pedant solved the most
instances overall and for 4 out of 5 families (the “Balabanov” family being the
exception), with DQBDD coming in a close second. The performance of Pedant
on the PEC instances in the “Finkbeiner” family is particularly encouraging.

Next, we consider the instances from the DQBF track of QBFEVAL’20 [33].
Results are shown in Table 2. Here, Pedant falls behind the other solvers, with
the exception of iDQ. In particular, significantly fewer instances from the “Kull-
mann” and “Tentrup” families are solved.

For the autarky finding benchmarks in the “Kullmann” family [30], we
noticed that most dependencies can be removed by preprocessing with the reflex-
ive resolution-path dependency scheme [41,52]. The resulting instances are much
4 The Penalized Average Runtime (PAR) is the average runtime, with the time for

each unsolved instance calculated as a constant multiple of the timeout.
5 Due to the heavy-tailed runtime distribution of DQBF solvers, run-to-run variance

rarely affects the number of solved instances. However, PAR2 scores should be taken
with a grain of salt and only used to compare orders of magnitude.

510 F.-X. Reichl et al.

Table 1. Results for the “Compound” benchmark set.

Family(Total) dCAQE DQBDD HQS iDQ Pedant

Sol/PAR2 Sol/PAR2 Sol/PAR2 Sol/PAR2 Sol/PAR2

Balabanov(34) 21/1.5·103 13/2.3·103 19/1.8·103 21/1.5·103 13/2.3·103
Biere(1200) 1200/1.6·10−1 1197/9.0·100 1200/6.4·10−2 1184/6.6·101 1200/1.0·10−1

Bloem(461) 85/2.9·103 82/3.0·103 82/3.0·103 50/3.2·103 98/2.9·103
Finkbeiner(2000) 32/3.5·103 1999/1.1·101 1799/3.9·102 6/3.6·103 2000/1.7·100
Scholl(1116) 568/1.8·103 793/1.1·103 676/1.4·103 345/2.5·103 854/8.7·102
All(4811) 1906/2.2·103 4084/5.5·102 3776/7.9·102 1606/2.4·103 4165/4.9·102

easier to solve for Pedant, and models can still be validated against the original
DQBFs. In general, we found that preprocessing with HQSPre can have both
positive and negative effects on Pedant. The rightmost columns of Table 2 show
results when preprocessing is enabled.6 Overall, performance is clearly improved,
but fewer instances from the “Bloem” and “Scholl” families are solved. In prior
work, it was observed that preprocessing can destroy definitions [40], and this
appears to be the case here as well.

For the instances from the “Tentrup” family, we discovered that the per-
formance of Pedant is sensitive to which counterexamples are generated by
CaDiCaL. With the right sequence of counterexamples, false instances can be
refuted quickly, while otherwise the solver is busy introducing arbiter variables
for minor variations of previously encountered cases. Curiously, this also appears
to be the case for true instances. We believe that the algorithm can be made
more robust against such “adversarial” sequences of counterexamples by achiev-
ing better generalization (see Sect. 6).

Table 2. Results for the QBFEVAL’20 DQBF benchmark set.

Family(Total) dCAQE DQBDD HQS iDQ Pedant PedantHQ

Sol/PAR2 Sol/PAR2 Sol/PAR2 Sol/PAR2 Sol/PAR2 Sol/PAR2

Balabanov(34) 21/1.5·103 13/2.3·103 19/1.8·103 21/1.5·103 14/2.3·103 13/2.4·103
Bloem(90) 31/2.4·103 32/2.3·103 33/2.3·103 14/3.1·103 37/2.2·103 25/2.7·103
Kullmann(50) 35/1.1·103 50/1.5·101 41/6.9·102 50/3.4·100 34/1.3·103 40/7.3·102
Scholl(90) 52/1.5·103 78/4.9·102 77/5.3·102 15/3.0·103 82/3.3·102 65/1.2·103
Tentrup(90) 77/5.5·102 84/2.8·102 78/5.1·102 17/2.9·103 15/3.0·103 84/2.9·102
All(354) 216/1.4·103 257/1.0·103 248/1.1·103 117/2.4·103 182/1.8·103 227/1.4·103

6 With options --resolution 1 --univ exp 0 --substitute 0.

Certified DQBF Solving by Definition Extraction 511

4.2 Distribution of Defined Existential Variables

The main design goal for Pedant was to create a solver that benefits from
unique Skolem functions given by propositional definitions. We thus expect
Pedant to do well on instances where a large proportion of existential vari-
ables is defined. Figure 1 shows the distribution of defined existential variables
(i.e., unique Skolem functions) as computed by Unique [40]. These definitions
are also found by Pedant without the introduction of arbiter variables. Com-
paring Table 1 and Table 2 with Fig. 1, we see that Pedant performed better for
instance families with a larger fraction of defined variables. This makes sense: the
fewer variables are undefined, the fewer arbiter variables need to be introduced.

Compound QBFEval'20

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

0%

25%

50%

75%

100% Family

Balabanov

Biere

Bloem

Finkbeiner

Kullmann

Scholl

Tentrup

Fig. 1. Distribution of defined variables by benchmark set and family. For a given per-
centage x0 on the x-axis, the y-axis shows the fraction of instances from each bench-
mark family for which x0 percent of existential variables are defined. For example, the
instances in the “Balabanov” family have no defined variables, while the fraction of
defined variables for instances in the “Finkbeiner” family ranges from 75% to 100%.

4.3 Solution Validation

When running Pedant without preprocessing (the default), we had it trace
and output models in DIMACS format. We implemented a simple workflow for
validating these models in Python 3 using the PySAT library [24]. First, a
simple syntactic check is performed to make sure the encoding of each Skolem
function only mentions variables in the dependency set of the corresponding
variable. Then, a SAT solver is used to verify that substituting the model ψ for
existential variables in the matrix ϕ of the input DQBF is valid, by testing for
each clause C ∈ ϕ whether ψ∧¬C is unsatisfiable (cf. Lemma 1). In this manner,
we are able to validate models for all 648 true DQBFs in the two benchmark sets
that were solved by Pedant without preprocessing. The maximum validation
time was 237 s, with a mean of 4.3 s and a median of 0.5 s.

512 F.-X. Reichl et al.

The current validation process is intended as a proof of concept. Since models
constructed by Pedant are circuits, we plan to support the AIGER format [9]
in the near future, and provide a workflow along the lines of QBFCert [32].

5 Related Work

The DQDPLL algorithm lifts the CDCL algorithm to DQBF [15]. While CDCL
solvers are free to assign variables in any order, in DQBF a variable may be
assigned only after the variables in its dependency set have been assigned. More-
over, its assignment must not differ between branches in the search tree that agree
on the assignment of the dependency set. In DQDPLL, this is enforced by tem-
porary Skolem clauses that fix the truth value of a variable for a given assign-
ment of its dependencies. The solver dCAQE lifts clausal abstraction from QBF
to DQBF [47]. QBF solvers based on abstraction maintain a propositional formula
for each quantifier level that characterizes eligible moves in the evaluation game.
These abstractions are refined by forbidding moves that are known to result in a
loss. Abstractions are linked to each other through auxiliary variables that indi-
cate which clauses are satisfied at different levels. dCAQE organizes variables in
a dependency lattice that determines the order in which their abstractions may be
solved. This can lead to variables being assigned after variables that do not appear
in their dependency sets, and additional consistency checks have to be applied to
ensure that Skolem functions do not exploit such spurious dependencies. dCAQE
uses fork resolution as its underlying proof system [34].

Expansion of universal variables can be successively applied to transform a
DQBF into a propositional formula that can be passed to a SAT solver [11]. In
practice, the space requirements of fully expanding a DQBF are prohibitive. This
can be addressed by only expanding some universal variables, as well as consid-
ering only a subset of the clauses generated by expansion. Even though such
approaches degenerate into full expansion in the worst case, they can be quite
effective. The solver iDQ [16] successively expands a DQBF in a counterexample-
guided abstraction refinement (CEGAR) loop. Initially, universal variables in
each clause are expanded separately. Satisfiability of the resulting propositional
formula is checked by a SAT solver. If it is unsatisfiable, so is the original DQBF.
Otherwise, iDQ checks whether any pair of literals with consistent annotations
are assigned different truth values in the satisfying assignment. If there are no
such literals, a model of the DQBF has been found. Otherwise, clauses containing
the corresponding clashing literals are further expanded. The system is inspired
by the Inst-Gen calculus, the proof system underpinning the First-Order solver
iProver [29]. Originally designed for the effectively propositional fragment of
first-order logic (EPR), iProver also accepts DQBF as input.

The solver HQS seeks to keep the memory requirements of expansion in
check by operating on And-Inverter Graph (AIG) representations of input for-
mulas [20]. It uses expansion alongside several other techniques to transform a
DQBF into an equivalent QBF and leverage advances in QBF solving [18,50].
HQS is paired with a powerful preprocessor named HQSPre that provides

Certified DQBF Solving by Definition Extraction 513

an arsenal of additional simplification techniques [51], including an incomplete
but efficient method for refuting DQBF by reduction to a QBF encoding [14].
HQSpre is also used in the recently developed solver DQBDD [39], which is
similar to HQS but relies on Binary Decision Diagrams (BDDs) instead of AIGs
to represent formulas and perform quantifier elimination.

Evaluating DQBF is NEXPTIME complete [3] in general, but some tractable
subclasses have been identified in recent work [17,38].

6 Conclusion

We presented a decision algorithm for DQBF that relies on definition extraction
to compute Skolem functions inside a CEGIS loop, and evaluated it in terms of
the prototype implementation Pedant. While the initial results are very promis-
ing, we see significant room for improvement and various directions to pursue in
future research. Generally, the approach works well when Skolem functions can
be computed by definition extraction for a large fraction of existential variables
without introducing too many arbiter variables. During testing, we encountered
multiple instances for which conflict analysis was occupied dealing with minor
variations of a small number of counterexamples. We believe that this is partly
due to arbiter variables being introduced for complete assignments of dependency
sets. Even if the assignment of some universal variables in the dependency set
is irrelevant for a given counterexample, the newly introduced arbiter variables
only deal with the counterexample as represented by the complete assignment,
and each counterexample obtained by varying the assignment of irrelevant uni-
versal variables requires a new set of arbiter variables. To avoid this, we plan to
experiment with a variant of the algorithm that introduces arbiter variables for
partial assignments [16,29].

A different approach to generalizing from counterexamples—one that does
not require changes in the underlying proof system—is the use of machine learn-
ing. By predicting the pattern common to a sequence of counterexamples, it
is possible to deal with it wholesale and avoid an exhaustive enumeration [25].
Moreover, recent work on Boolean Synthesis demonstrates the viability of learn-
ing Skolem functions by sampling satisfying assignments [21].

Finally, we plan to explore further applications of interpolation-based defini-
tion extraction within our algorithm. Currently, its use is limited to existential
variables that are defined by their dependency sets in the input DQBF, or are
undefined only in a small number of cases. In addition to that, one could search
for “partial” definitions under assignments of the dependency set characterized
by formulas, or introduce definitions that are valid under assumptions [35].

Acknowledgements. Supported by the Vienna Science and Technology Fund
(WWTF) under the grants ICT19-060 and ICT19-065, and the Austrian Science Fund
(FWF) under grant W1255.

514 F.-X. Reichl et al.

References

1. Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: What’s hard about
boolean functional synthesis? In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018.
LNCS, vol. 10981, pp. 251–269. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96145-3 14

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, pp. 399–404 (2009)

3. Azhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative
games of incomplete information. J. Comput. Math. Appl. 41, 957–992 (2001)

4. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and boolean formulae:
a certification perspective of DQBF. Theor. Comput. Sci. 523, 86–100 (2014)

5. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018)

6. Beyersdorff, O., Blinkhorn, J., Chew, L., Schmidt, R.A., Suda, M.: Reinterpret-
ing dependency schemes: soundness meets incompleteness in DQBF. J. Autom.
Reason. 63(3), 597–623 (2019)

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

8. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT
Competition 2020 - Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

9. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. Rep.
11/2, Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria (2011)

10. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4 1

11. Bubeck, U., Büning, H.K.: Dependency quantified horn formulas: models and com-
plexity. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 198–211.
Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 21

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

13. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
354–370. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-
5 20

14. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 243–251. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-09284-3 19

15. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF
(2012). http://fmv.jku.at/papers/FroehlichKovasznaiBiere-POS12.pdf, presented
at Workshop on Pragmatics of SAT (POS)

https://doi.org/10.1007/978-3-319-96145-3_14
https://doi.org/10.1007/978-3-319-96145-3_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-54013-4_1
https://doi.org/10.1007/11814948_21
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-319-09284-3_19
https://doi.org/10.1007/978-3-319-09284-3_19
http://fmv.jku.at/papers/FroehlichKovasznaiBiere-POS12.pdf

Certified DQBF Solving by Definition Extraction 515

16. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: idq: instantiation-based DQBF
solving. In: Berre, D.L. (ed.) POS-14. Fifth Pragmatics of SAT workshop, a work-
shop of the SAT 2014 conference, part of FLoC 2014 during the Vienna Summer
of Logic,Vienna, Austria, 13 July 2014. EPiC Series in Computing, vol. 27, pp.
103–116. EasyChair (2014)

17. Ganian, R., Peitl, T., Slivovsky, F., Szeider, S.: Fixed-parameter tractability
of dependency QBF with structural parameters. In: Calvanese, D., Erdem, E.,
Thielscher, M. (eds.) Proceedings of the 17th International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR 2020, pp. 392–402 (2020)

18. Ge-Ernst, A., Scholl, C., Wimmer, R.: Localizing quantifiers for DQBF. In: Barrett,
C.W., Yang, J. (eds.) Formal Methods in Computer Aided Design, FMCAD 2019,
pp. 184–192. IEEE (2019)

19. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence
checking of partial designs using dependency quantified boolean formulae. In: IEEE
31st International Conference on Computer Design, ICCD 2013, pp. 396–403. IEEE
Computer Society (2013)

20. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: Nebel, W., Atienza, D. (eds.) Proceed-
ings of the 2015 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2015, pp. 1617–1622. ACM (2015)

21. Golia, P., Roy, S., Meel, K.S.: Manthan: a data-driven approach for boolean func-
tion synthesis. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
611–633. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 31

22. Gurfinkel, A., Vizel, Y.: Druping for interpolates. In: FMCAD 2014, pp. 99–106.
IEEE (2014)

23. Heule, M.J.H., Järvisalo, M., Suda, M.: SAT competition 2018. J. Satisf. Boolean
Model. Comput. 11(1), 133–154 (2019)

24. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for proto-
typing with SAT oracles. In: SAT, pp. 428–437 (2018)

25. Janota, M.: Towards generalization in QBF solving via machine learning. In: McIl-
raith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, (AAAI-18), pp. 6607–6614. AAAI Press (2018)

26. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

27. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5 7

28. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Informatica 54(7), 693–726 (2017)

29. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 24

30. Kullmann, O., Shukla, A.: Autarkies for DQCNF. In: Barrett, C.W., Yang, J.
(eds.) 2019 Formal Methods in Computer Aided Design, FMCAD 2019, pp. 179–
183. IEEE (2019)

31. Meel, K.S., et al.: Constrained sampling and counting: Universal hashing meets
SAT solving. In: Darwiche, A. (ed.) Beyond NP, Papers from the 2016 AAAI
Workshop. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)

https://doi.org/10.1007/978-3-030-53291-8_31
https://doi.org/10.1007/978-3-642-39071-5_7
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24

516 F.-X. Reichl et al.

32. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based cer-
tificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS,
vol. 7317, pp. 430–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31612-8 33

33. Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (qbfeval’16 and
qbfeval’17). Artif. Intell. 274, 224–248 (2019)

34. Rabe, M.N.: A resolution-style proof system for DQBF. In: Gaspers, S., Walsh, T.
(eds.) SAT 2017. LNCS, vol. 10491, pp. 314–325. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66263-3 20

35. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 375–392. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 23

36. Roussel, O.: Controlling a solver execution with the runsolver tool. J. Satisf.
Boolean Model. Comput. 7(4), 139–144 (2011)

37. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In: Pro-
ceedings of the 38th Design Automation Conference, DAC 2001, pp. 238–243. ACM
(2001)

38. Scholl, C., Jiang, J.R., Wimmer, R., Ge-Ernst, A.: A PSPACE subclass of depen-
dency quantified boolean formulas and its effective solving. In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 1584–1591. AAAI
Press (2019)

39. Śıč, J.: Satisfiability of DQBF using binary decision diagrams. Master’s thesis,
Masaryk University, Brno, Czech Republic (2020)

40. Slivovsky, F.: Interpolation-based semantic gate extraction and its applications
to QBF preprocessing. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12224, pp. 508–528. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 24

41. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
Theor. Comput. Sci. 612, 83–101 (2016)

42. Solar-Lezama, A., Jones, C.G., Bod́ık, R.: Sketching concurrent data structures.
In: Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, pp. 136–148.
ACM (2008)

43. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combinato-
rial sketching for finite programs. In: Shen, J.P., Martonosi, M. (eds.) Proceedings
of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, pp. 404–415. ACM (2006)

44. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

45. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Pre-
liminary report. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, Austin, Texas, USA, 30 April–2 May 1973,
pp. 1–9. ACM (1973)

46. Tentrup, L.: CAQE and quabs: Abstraction based QBF solvers. J. Satisf. Boolean
Model. Comput. 11(1), 155–210 (2019)

47. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Janota, M., Lynce, I.
(eds.) SAT 2019. LNCS, vol. 11628, pp. 388–405. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24258-9 27

https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/978-3-319-66263-3_20
https://doi.org/10.1007/978-3-319-66263-3_20
https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.1007/978-3-030-53288-8_24
https://doi.org/10.1007/978-3-030-53288-8_24
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-030-24258-9_27

Certified DQBF Solving by Definition Extraction 517

48. Vizel, Y., Gurfinkel, A., Malik, S.: Fast interpolating BMC. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 641–657. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 43

49. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their
applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

50. Wimmer, R., Karrenbauer, A., Becker, R., Scholl, C., Becker, B.: From DQBF
to QBF by dependency elimination. In: Gaspers, S., Walsh, T. (eds.) SAT 2017.
LNCS, vol. 10491, pp. 326–343. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66263-3 21

51. Wimmer, R., Scholl, C., Becker, B.: The (D)QBF preprocessor hqspre - underlying
theory and its implementation. J. Satisf. Boolean Model. Comput. 11(1), 3–52
(2019)

52. Wimmer, R., Scholl, C., Wimmer, K., Becker, B.: Dependency schemes for DQBF.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 473–489.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 29

https://doi.org/10.1007/978-3-319-21690-4_43
https://doi.org/10.1007/978-3-319-66263-3_21
https://doi.org/10.1007/978-3-319-66263-3_21
https://doi.org/10.1007/978-3-319-40970-2_29

Scalable SAT Solving in the Cloud

Dominik Schreiber(B) and Peter Sanders

Karlsruhe Institute of Technology, Karlsruhe, Germany
{dominik.schreiber,sanders}@kit.edu

Abstract. Previous efforts on making Satisfiability (SAT) solving fit for
high performance computing (HPC) have led to super-linear speedups
on particular formulae, but for most inputs cannot make efficient use of a
large number of processors. Moreover, long latencies (minutes to days) of
job scheduling make large-scale SAT solving on demand impractical for
most applications. We address both issues with Mallob, a framework for
job scheduling in the context of SAT solving which exploits malleability,
i.e., the ability to add or remove processing power from a job during
its computation. Mallob includes a massively parallel, distributed, and
malleable SAT solving engine based on HordeSat with a more succinct
and communication-efficient approach to clause sharing and numerous
further improvements over its precursor. Experiments with up to 2560
cores show that Mallob outperforms an improved version of HordeSat
and scales significantly better. Moreover, Mallob can solve many formulae
in parallel while dynamically adapting the assigned resources, and jobs
arriving in the system are usually initiated within a fraction of a second.

Keywords: Parallel SAT solving · Distributed computing · Malleable
load balancing

1 Introduction

Today’s applications of SAT solving are manifold and include areas such as
cryptography [26], formal software verification [23], and automated planning
[30]. Application-specific SAT encoders generate formulae which represent the
problem at hand stated in propositional logic. Oftentimes, multiple formulae
which represent different aspects or horizons of the problem are generated [23,
30]. The individual formulae range from trivial to extremely difficult, and their
difficulty is usually not known beforehand. Up to a certain degree, today’s high
performance computing (HPC) can facilitate the resolution of difficult problems.
In particular, we notice increased interest in performing SAT solving in on-
demand HPC environments that are often referred to as cloud [15,29]. This is
also reflected in the International SAT Competition 2020 featuring a cloud track
for the first time [11]. However, prior achievements of super-linear speedups for
particular application instances [4] must be set in relation with the total work
which must be invested in every single formula to achieve such peak speedups.
Furthermore, in most HPC systems, long latencies of job scheduling (ranging
c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 518–534, 2021.
https://doi.org/10.1007/978-3-030-80223-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_35&domain=pdf
http://orcid.org/0000-0002-4185-1851
http://orcid.org/0000-0003-3330-9349
https://doi.org/10.1007/978-3-030-80223-3_35

Scalable SAT Solving in the Cloud 519

from minutes to days) hinder the quick resolution of a stream of jobs even if
most of the jobs are trivial. To address these issues, we believe that a SAT
solver tasked with a formula of unknown difficulty should be allotted a flexible
amount of computational resources based on the overall system load and further
task-dependent parameters. In the context of scheduling and load balancing, this
feature is called malleability : The ability of an algorithm to deal with a varying
number of processing elements during its execution [10]. Malleable algorithms
open up opportunities for highly dynamic load balancing techniques: The number
of associated processing elements for each job can be adjusted continuously to
warrant optimal and fair usage of available system resources [19].

In this work, we present a new framework for the scalable resolution of SAT
jobs on demand. Our system named Mallob consists of two major contributions.
First, we propose a decentralized approach to malleable job scheduling and load
balancing in the context of SAT solving. Secondly, we present a distributed and
malleable SAT solving engine based on the popular large-scale solver Horde-
Sat [4]: Most notably, we introduce a succinct and communication-efficient clause
exchange mechanism, adapt HordeSat’s solver backend to handle malleability,
and integrate a number of performance improvements. Experiments with up to
128 compute nodes (2560 cores) show that Mallob as a standalone SAT solver
clearly outperforms an updated and improved version of HordeSat and scales
significantly better. Moreover, Mallob can solve many formulae in parallel with
minimal overhead and combines parallel job processing with a flexible degree of
parallel SAT solving to make best use of the available resources. In most cases,
it only takes a split second until an arriving job is initiated.

After describing important preliminaries and related work in Sect. 2, we
present the malleable environment which hosts our solver engine in Sect. 3.
Thereupon, in Sect. 4 we present the solver engine itself. We present the evalu-
ation of our system in Sect. 5 and conclude our work in Sect. 6.

2 Related Work

Given a propositional formula F , the SAT problem is to find an assignment to
all variables in F such that F is satisfied, or to report that no such assign-
ment exists. For the sequential resolution of SAT problems, the most commonly
used algorithm is CDCL [25], which is essentially a highly engineered heuristic
depth-first search over the space of partial variable assignments. CDCL features
advanced techniques such as non-chronological backtracking and restart mech-
anisms. Furthermore, when a logical conflict is encountered, the solver learns
a clause which represents this conflict. The knowledge gained from this learn-
ing mechanism can help to speed up the subsequent search. Another branch of
notable sequential SAT solving approaches is the family of local search solvers
which perform stochastic local search over the space of variable assignments [18].

Parallel SAT solvers commonly use sequential SAT solvers as building blocks.
One strategy which is often called the portfolio approach is to execute sev-
eral solvers in parallel on the same formula [1,14]. Diversification strategies for

520 D. Schreiber and P. Sanders

an effective portfolio range from supplying different random seeds to the same
solver over reconfiguring the solver’s parameters to employing wholly different
SAT solvers. As an alternative to portfolio approaches, search space partitioning
approaches subdivide the original formula into several sub-formulae and solve
these in parallel [2,31]. An extreme case of this strategy is applied in parallel
Cube&Conquer approaches where a large number of subproblems is generated
and then distributed among all workers [15,17]. Regardless of the means of par-
allelization, an important feature of parallel solvers is to exchange learnt clauses
among all workers and, notably, to find a good tradeoff between the sharing of
useful information and the avoidance of unnecessary overhead [9].

The International SAT Competition 2020 [11] established a distinction
between modestly parallel SAT solving and high-performance SAT solving by
featuring both a parallel track and a cloud track. In the parallel track, a sin-
gle 32-core node was employed for up to 5000 s per instance while the cloud
track was evaluated on 100 8-core nodes for up to 1000 s per instance. These
different modes of operation require different solver architectures: For modest
parallelism in shared memory, high concurrency and memory consumption can
become a considerable issue [20]. On a larger scale, concurrency can be less of an
issue while good diversification and communication efficiency becomes critical.
HordeSat [4] is a popular solver designed for massive parallelism which served
as a baseline in the mentioned cloud track. It features a modular solver inter-
face which allows to plug in and dynamically diversify different core solvers.
Clause exchange is performed periodically via all-to-all collective operations.
The HordeSat paradigm found adoption in a generic interface for parallel SAT
solving [24].

Previously, a distributed system for SAT solving in the cloud was presented in
[28,29]. It features a centralized scheduler which precomputes a schedule based
on run time predictions and which employs sequential solvers without any com-
munication among them: The authors noted that “such solutions [for exchange
of knowledge] are not necessarily suitable for distributed clouds in which the
communication time could be important” [29]. In contrast, we demonstrate that
clause exchange is highly effective and introduce decentralized dynamic load bal-
ancing without any run time predictions. Another work related to ours is the
distributed Cube&Conquer solver Paracooba [15] which can also resolve multiple
jobs in parallel and also performs a kind of malleable load balancing. While Para-
cooba is designed for Cube&Conquer, we propose a malleable portfolio approach.
In the cloud track of the SAT Competition 2020 [11], our system outperformed
Paracooba and scored a clear first place.

3 Malleable Environment

We now outline the platform Mallob for the scheduling and load balancing of
malleable jobs. Mallob is an acronym for Malleable Load Balancer as well as
Multi-tasking Agile Logic Blackbox. As a comprehensive presentation of Mallob
in its entirety is too broad in scope for this publication, we present the design

Scalable SAT Solving in the Cloud 521

PE 0 Core

PE 1

PE c − 1

...

PE k

...

. . .

PE k + 1

PE p − 1
. . .

MPI

Compute node 0 Compute node m − 1

Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Fig. 1. System architecture used by Mallob

decisions and the features of Mallob that are necessary to understand our SAT
solving system and will describe the internal workings and theoretical properties
of our scheduling and load balancing in a future publication.

We consider a homogeneous1 distributed computing environment with m
compute nodes (see Fig. 1). For the sake of generality, we do not assume any
kind of shared (RAM or disk) memory between the nodes. As such, the only way
for the nodes to exchange information is to send messages over some broadband
interface. This is enabled by the Message Passing Interface (MPI) [13].

Each compute node contains several cores. We partition the cores on a node
into c groups of t cores each running one thread.2 Each group is implemented as
a process and is also called PE (for processing element) in the following. Overall,
our system contains a total of p := c · m PEs and c · m · t parallel threads.

A number of jobs 1, . . . , n arrive in the system at arbitrary times. A job
is a particular problem statement, in our case given by a propositional logic
formula in Conjunctive Normal Form (CNF). Every job j has a constant priority
πj ∈ (0, 1) and a demand of resources dj ∈ N which may vary over time. In the
most simple setting, dj = p at all times. More generally, a job can express with
dj how many PEs it is able to employ in its current stage of computation. We
expect the number of active jobs to be smaller than the number of workers,
which allows us to restrict each PE to compute on at most one job at a time.

If a job j enters the system, a request message r0(j) performs a random walk
through a sparse regular graph over all PEs until an idle PE p0(j), named the root
of j, adopts the job. This root remains unchanged throughout the job’s lifetime
and represents j in collective load balancing computations. Such a balancing
computation is triggered at most once within a certain period e (e.g., e = 0.1 s)
by (a) the arrival of a new job, (b) the completion of a job, and/or (c) the
change of a job’s demand. All such events are then broadcast globally with a
single lightweight collective operation. The result of each balancing is a map

1 While we intend to generalize our system to heterogeneous environments in the
future, this undertaking is out of scope for this publication.

2 The cores may be distributed over several CPU chips (or sockets). Moreover, each
core may be able to run several hardware threads. Our system can handle both
additional levels of hierarchy by appropriately defining c and t.

522 D. Schreiber and P. Sanders

p0(j)

p1(j) p2(j)

p3(j) p4(j)

vj = 6

j′
j′′

r5(j)

p0(j)

p1(j) p2(j)

p3(j) p4(j)

p0(j)

p1(j) p2(j)

p3(j) p4(j) p5(j)

Fig. 2. Illustration of Tj growing from volume 5 to 6. Each circle is a PE.

j �→ vj which assigns to each job j a certain integer, the volume vj ≥ 0. vj
is proportional to djpj/

∑
j′ dj′pj′ and determines the number of PEs which

participate in the resolution of j until the next update of vj .
The job tree Tj of job j is a binary tree of PEs that is rooted at p0(j). Its

purpose is to enforce the volume assigned to j and to enable efficient job-internal
communication. Each node px(j) in Tj has a unique index x ≥ 0. Node px(j) may
have child nodes p2x+1(j) (left child) and p2x+2(j) (right child). Tj is supposed to
consist of exactly vj nodes p0(j), . . . , pvj−1(j) and adjusts accordingly whenever
vj updates: Beginning from p0(j) which computes a new value of vj , a message
containing vj is sent through Tj as shown in Fig. 2. If this update arrives at a node
px(j) for which x ≥ vj , then the node will leave Tj and suspend its computation.
Conversely, if px(j) does not have a left (right) child node and if 2x + 1 < vj
(2x+2 < vj), it will send out a request r2x+1(j) (r2x+2(j)) for another idle PE to
join Tj . These messages are first routed over any former children of px(j) before
they begin a random walk. As such, our node allocation strategy prioritizes PEs
which may still host suspended job nodes of j. In order to make careful use of
main memory, we allow each PE to host a small constant number of job nodes
and let it discard the oldest job nodes if this limit is exceeded.

Mallob also features a special mode for the isolated resolution of a single job:
After a binary tree broadcast of the job description, the i-th PE assumes the
role of pi(j), and no further load balancing is required. As such, Mallob can be
employed as a conventional distributed solver without any noticeable overhead
compared to static distributed solver architectures such as HordeSat’s.

4 The Mallob SAT Engine

We now present our massively parallel, distributed, and malleable SAT solving
engine. We focus on (1) a succinct and communication-efficient clause exchange
which supports malleability; (2) a rework of HordeSat’s solver backend to support
malleability; and (3) practical optimizations and performance improvements.

4.1 Succinct Clause Exchange

HordeSat uses synchronous communication in rounds to periodically perform an
all-to-all clause exchange. The used collective operation is called an all-gather :
Each PE i contributes a buffer bi of fixed size β. The concatenation of all buffers,

Scalable SAT Solving in the Cloud 523

Fig. 3. Exemplary flow of information in the first half of HordeSat’s all-gather opera-
tion (left) and in our aggregation within a job tree (right). Each circle is a PE; a buffer
within a circle represents the PE’s locally collected (exported) clauses.

B := b1 ◦ . . . ◦ bp, is then broadcast to each PE. This all-gather operation is
included by default in all MPI implementations. Each bi contains a list of learned
clauses which were previously exported by the solvers of PE i. The clauses are
serialized in a compact shape, sorted by their size in increasing order. After the
all-gather, each solver imports clauses from B into its individual database.

We noticed that the above clause exchange mechanism has various shortcom-
ings. First, whenever a PE does not fill bi, B contains “holes” which carry no
information (see Fig. 3). Secondly, B may contain duplicates: In particular in the
beginning of SAT solving when a formula is simplified and basic propagations
are done, this may lead to p almost identical buffers bi. This effect is especially
pronounced for unit clauses (see below). Thirdly, B grows proportionally to the
number of involved PEs. For sufficiently large HordeSat configurations, this can
constitute a bottleneck in terms of communication volume and local work.

In our system, we use job tree Tj (as described in Sect. 3) as the communi-
cation structure for the clause exchange of each job j. As such, we ensure that
the PEs involved in a clause exchange are exactly the PEs that are currently
associated with j. As soon as a fixed amount of time s has passed since the last
broadcast of shared clauses (e.g., s = 1 s), each leaf px(j) in Tj sends bx to its
parent. When an inner node px(j) has received a buffer from each of its chil-
dren, it exports its own clauses bx and then performs a two- or three-way merge
of the present buffers: All buffers are read simultaneously from left to right and
aggregated into a single new buffer b′

x, similar to textbook k-way merge of sorted
sequences [27, 5.7.1]. In addition, we use a hash set of seen clauses with hashing
that is invariant to the order of literals [4] in order to recognize duplicates.

The size of b′
x is limited and any remaining unread information in the input

buffers is discarded. As each bi is sorted in increasing order by clause length,
we aggregate some of the globally shortest clauses while we strictly limit the
overall communication volume. Furthermore, we improve the density of use-
ful information in B because each intermediate buffer is compact and contains
no duplicate clauses. We limit the size of b′

x as follows: For each aggregation
step, i.e., for each further level of Tj that is reached, we discount the maximum
buffer size by a factor of α. Specifically, we compute the buffer size limit l(u) :=
�u · αlog2(u) · β� where u is the number of individual buffers bi aggregated so

524 D. Schreiber and P. Sanders

far. This limit can be steered by a user parameter α ∈ [12 , 1], the discount factor
at each buffer aggregation. We can see that l(u) converges to β for α = 1

2 and
grows indefinitely for α > 1

2 with respect to the number u of involved PEs. For
α = 1, l(u) grows proportionally in u just like HordeSat’s shared clause buffer.

HordeSat employs clause filtering to detect and discard redundant clauses
which have already been imported or exported before. This technique is real-
ized with an approximate membership query (AMQ) data structure. Each PE
employs one node filter fn and t solver filters (one for each solver thread). At
clause export, each clause is registered in its solver filter and then tested against
fn. At clause import, each clause is tested against fn and then against each
solver filter. Unit clauses, however, are always admitted due to their high impor-
tance. This is problematic because particular unit clauses can be sent around
many times and can waste a considerable amount of space in the buffers.

In our approach we omit fn because its main use is to filter duplicate clauses
which Mallob already detects during the aggregation of buffers. We comple-
mented the solver filters with an additional filtering of unit clauses, using an
exact set instead of an AMQ data structure. This way no false positives occur
for unit clauses, and each such clause is shared once. We also implemented a
probabilistic “restart” mechanism for clause filters: Every X seconds, half of all
clauses (chosen randomly) in each clause filter are forgotten and therefore can
be shared again. This allows solvers to eventually learn crucial clauses even if
they join Tj after these clauses have already been shared for the first time.

4.2 Malleable Solver Backend

In the following we present the most relevant changes we made to HordeSat’s
solver backend to support malleability.

Malleable Diversification. As in HordeSat, our approach relies on three dif-
ferent sources of diversification: Employing different solver configurations, hand-
ing different random seeds to the solvers, and supplying each solver with different
default polarities (phases) of variables. We diversify a particular solver S with a
diversification index xS ≥ 0 and a diversification seed σS . We use xS to deter-
mine a particular solver configuration and we use σS as a random seed and to
select random variable phases. The i-th solver S (0 ≤ i < t) employed by pk(j) is
assigned xS := kt+ i. We obtain σS by combining xS with the solver’s thread ID
(given by the operating system). As such, each instantiated solver is diversified
differently even if a job node is rescheduled and a solver S′ is instantiated for
which some solver S with xS = xS′ already existed before.

Preemption of Solvers. In our malleable environment, it is essential that a
PE’s main thread can suspend, resume, and terminate each job node at will.
We noticed that we cannot reliably notify a solver thread to stop or suspend its
execution because it can get stuck in expensive preprocessing and inprocessing
[6] for an extended period. Furthermore, it is impossible to forcefully abort a

Scalable SAT Solving in the Cloud 525

thread without terminating or, otherwise, potentially corrupting its surrounding
process. To still enable seamless preemption and termination, we enabled our
solver engine to be launched in a separate process. While this involves some
overhead, suspension and termination of a process is supported on the OS level
in a safe and elegant manner through signals. For instance, a PE’s main thread
can terminate a job node by sending “SIGTERM” to the solver process, which
then exits immediately regardless of the state of its solver threads.

4.3 Performance Improvements

We now present some further improvements of Mallob over HordeSat.

Solver Portfolio. HordeSat originally featured solver interfaces to Lingeling
and Minisat. However, the clause import in HordeSat’s Minisat interface treats
shared clauses just like original, irredundant clauses and periodically interrupts
each solver to add these clauses, what we believe to be detrimental to its perfor-
mance. Therefore, for this work we focus on Lingeling as an efficient and reliable
SAT solver with great diversification options and a dedicated clause import and
export mechanism. We updated Lingeling from its 2014 version [5] to its 2018
version [7] with the side effect of rendering all core modules of our system Free
Software. Similarly, instead of the 16 diversification options from the former
Plingeling [5], we use 13 CDCL diversification options from the newer Plingeling
[7]. Every fourteenth solver thread now uses local search solver YalSAT (included
in the Lingeling interface), alternatingly with and without preprocessing.

Lock-Free Clause Import. For each solver S within a PE, HordeSat’s main
thread copies all admitted clauses from clause sharing into a buffer BS , increasing
its size as necessary. The solver thread of S then imports the clauses in BS one
by one. As this implies concurrent access to BS , a mutually exclusive lock is
acquired by the solver thread before reading clauses and by the main thread
before writing clauses. If the solver thread cannot acquire this lock, it gives
up on importing a clause. We replaced BS with a lock-free ring buffer3 RS and
hence achieve a lock-free import of clauses. We also make more careful use of the
available memory: The size of RS is fixed and clauses are eventually discarded
if a solver consumes no clauses for some time. We set |RS | to a low multiple of
the maximum number of literals which may be shared in a single round.

Memory Usage. The memory consumption of parallel SAT solvers is a known
issue [20]: As each solver commonly maintains its own clause database, memory
requirements increase proportionally with the number of spawned solvers. As
such, large formulae can cause out-of-memory errors. To counteract this issue,
we introduce a simple but effective step of precaution: For a given threshold ŝ, if a
given serialized formula description has size s > ŝ, then only t′ = max{1,
t·ŝ/s�}
3 https://github.com/rmind/ringbuf.

https://github.com/rmind/ringbuf

526 D. Schreiber and P. Sanders

threads will be spawned for each PE. The choice of ŝ depends on the amount
of available main memory per PE. Based on monitoring the memory usage for
different large formulae within a run where 3.2 GB were available per solver, we
use ŝ := 108. As t′ only depends on s, the t′ threads can be started immediately
upon the arrival of a formula without the need for any further inspection.

5 Evaluation

We now turn to the evaluation of our work. After explaining our setup, we first
evaluate the capabilities of our standalone SAT solver engine, denoted Mallob-
mono. We then evaluate Mallob with malleable job scheduling.

We implemented Mallob in C++17 and make use of OpenMPI [12]. Our soft-
ware, all experimental data with supplementary material, and an interactive
visualization of experiments can be found at https://github.com/domschrei/
mallob.

We experimentally compare Mallob to HordeSat, both with its original port-
folio and with the updated portfolio that Mallob uses. As HordeSat does not
necessarily represent the state-of-the-art in distributed SAT solving [2], we refer
to the SAT Competition 2020 [11] as well as the upcoming SAT Competition
2021 for state-of-the-art comparisons involving Mallob. We fixed a significant
performance bug to make HordeSat more competitive: In its original code, Lin-
geling was not given a callback providing the elapsed time since program start.
This caused each solver thread to fall back to frequent expensive system calls.

We ran most experiments on the ForHLR phase II, an HPC cluster with 1152
compute nodes with two 10-core Intel Xeon E5-2660 v3 processors and 64 GB of
main memory (RAM) each, connected by an InfiniBand 4X EDR interconnec-
tion. In addition, we ran some experiments on SuperMUC-NG, a supercomputer
which features 6336 compute nodes with a 24-core Xeon Platinum 8174 processor
and 96 GB of DDR4 RAM each and an OmniPath network interconnection. We
used the operating system Red Hat Enterprise Linux (RHEL) 7.x on ForHLR II
and SUSE Linux Enterprise Server (SLES) 12.x on SuperMUC-NG.

We limited most runs to 300 s per instance. As such, the CPU time per
instance at our largest configuration of 2560 cores is at 213 core hours (ch),
similar in scale to the 222 ch per instance in the SAT Competition’s cloud track.
At the next smaller scale of 640 cores, 300 s translate to 53 ch which is similar
in scale to the 44 ch per instance in the competition’s parallel track.

5.1 Selection of Benchmarks

As the usage of HPC environments is costly in terms of money and energy, we
aimed to run experiments responsibly and resource-efficiently while still ensuring
statistical relevance and robustness of results. For this means we analyzed the
400 benchmarks of the SAT Competition 2020 with GBD [21] and partitioned
them into 80 separate families (including families from past competitions). We
sorted the instances of each family by the number of contained clauses and then
randomly picked one SAT instance from the second (larger) half of each family’s

https://github.com/domschrei/mallob
https://github.com/domschrei/mallob

Scalable SAT Solving in the Cloud 527

sorted instance list. As such, we obtained a selection of 80 instances (35 satis-
fiable, 35 unsatisfiable, 10 “unknown”). We then compared the official rankings
of the SAT Competition 2020 [11] with rankings resulting from our selection
of benchmarks. In the cloud track, our selection of benchmarks reproduces the
exact same ranking of solvers. In the parallel track, we computed a Kendall rank
correlation coefficient [22] of τ = 0.82 over all non-disqualified submissions: 41
pairs of solvers were ranked consistently while four pairs were ranked differently.
In particular, the top three solvers were identical. Therefore, we believe that we
found a reasonably diverse selection of benchmarks for our means. However, as
the reduction of a test set generally increases the risk of overfitting, we treated
better performing but more complicated configurations of our system with cau-
tion and only adopted them when we found the improvement to be significant.

5.2 Standalone SAT Solving Performance

We now discuss our experiments involving HordeSat and Mallob-mono. We per-
formed our experiments on 128 nodes of ForHLR II with a total of 2560 physical
cores. Consistent with the default configuration of HordeSat, we bind each MPI
process to four physical cores. Consequently, we execute 20/4 = 5 MPI pro-
cesses on each node which results in up to 128 · 5 = 640 PEs with up to four
solvers each. We included HordeSat both with its original solvers (“old”) and our
updated portfolio (“new”). We included Mallob with different discount factors
α in a basic configuration that is as close as possible to HordeSat. HordeSat
imposes an upper bound on the LBD or “glue” value [3] of clauses that are
exported: Initially, a clause must be unit or have a maximum LBD score of 2 to
be shared, and whenever a PE fills its clause buffer by less than 80% this limit
is incremented. We also adopted this mechanism in Mallob. We turned off our
clause filter half life mechanism (i.e., we set X = ∞) for all runs of Mallob-mono.

As Fig. 4 shows, the updated solvers improve HordeSat’s performance con-
siderably. Furthermore, the most näıve and untuned configuration of Mallob

0 50 100 150 200 250 300
Run time t / s

0

10

20

30

40

50

60

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

Mallob α = 8/8
Mallob α = 7/8
Mallob α = 6/8
Mallob α = 5/8
Mallob α = 4/8
HordeSat (new)
HordeSat (old)

Configuration # (+, -) PAR-2
HordeSat (old) 51 23 28 252.7
HordeSat 59 28 31 193.7
Mallob α = 4/8 59 29 30 196.2
Mallob α = 5/8 62 30 32 169.6
Mallob α = 6/8 63 30 33 157.4
Mallob α = 7/8 63 31 32 154.0
Mallob α = 8/8 64 31 33 158.2

Fig. 4. Performance of HordeSat and “näıve” Mallob on 128 compute nodes. The table
shows solved instances (SAT, UNSAT) and PAR-2 scores [16] (lower is better).

528 D. Schreiber and P. Sanders

0 100 200 300
Run time t / s

0

10

20

30

40

50

60

70

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

HordeSat

0 100 200 300
Run time t / s

0

10

20

30

40

50

60

70

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

Mallob

128 × 5 × 4
32 × 5 × 4
8 × 5 × 4
2 × 5 × 4
1 × 3 × 4
Kissat
Lingeling

Fig. 5. Scaling behavior of HordeSat (with updated solvers) and Mallob (α = 7/8,
without any clause length or LBD limits) compared to two sequential solvers.

with α = 1 outperforms HordeSat even if both systems make use of the exact
same solvers. If α = 0.5, only a very small clause buffer of less than 1500 inte-
gers is shared each round which proves to be highly detrimental to Mallob’s
performance and underlines the importance of clause sharing. The best overall
performance is achieved with α = 7/8 whereas α = 6/8 is a close second.

We provide further experimental results for the parametrization of Mallob in
the publication’s supplementary material (see Sect. 5). Measured on 128 nodes,
Mallob achieved best performance without HordeSat’s LBD limit mechanism.
We also tested a maximum clause length limit of 5 and 10 and found the results
to be mostly inconclusive. As such, we continue with a very simple configuration
of Mallob without any strict limits on clause lengths or LBD scores.

We now discuss the scalability of our solver. Figure 5 provides an overview
on the performance of both HordeSat and Mallob when executed on 12, 40, 160,
640, and 2560 cores. As sequential baselines we included Lingeling (in the 2018
version used by Mallob) as well as Kissat [8], the winner of the SAT Competition
2020’s main track. Table 1 shows pairwise speedups. We used a time limit of
τs = 50 000 s for sequential solvers and τp = 300 s for parallel solvers. As in [4]
we “generously” attribute a run time of τs to the sequential approach for each
unsolved instance solved by the parallel approach. We computed the median
speedup Smed and the total speedup Stot (the sum of all sequential run times
divided by the sum of all parallel run times). We also provide speedups emulating
“weak scaling”, i.e., only considering instances for which the sequential approach
took at least as many seconds as the number of cores in the parallel approach.

While both parallel solvers show improved performance whenever the num-
ber of cores is quadrupled, HordeSat clearly lacks scalability beyond 32 nodes.
As such, Mallob on only 32 nodes outperforms HordeSat on 128 nodes. Further-
more, the 128-node configuration of Mallob achieves a much more pronounced
speedup over its 32-node configuration, although we do notice some degree of

Scalable SAT Solving in the Cloud 529

Table 1. Parallel speedups for HordeSat (H) and Mallob (M). In the left half, “#”
denotes the number of instances solved by the parallel approach and Smed (Stot) denotes
the median (total) speedup for these instances compared to Lingeling / Kissat. In the
right half, only instances are considered for which the sequential solver took at least
(num. cores of parallel solver) seconds to solve. Here, “#” denotes the number of
considered instances for each combination.

Config. # All instances Hard instances

Lingeling Kissat Lingeling Kissat

Smed Stot Smed Stot # Smed Stot # Smed Stot

H1×3×4 36 3.84 51.90 2.22 29.55 32 4.39 52.01 31 4.03 32.49

H2×5×4 40 12.00 95.80 5.06 64.44 35 12.27 96.83 33 9.11 69.63

H8×5×4 49 22.83 135.55 9.76 90.08 38 32.00 142.76 32 24.88 105.94

H32×5×4 56 42.12 203.66 15.25 112.14 34 97.61 231.77 19 114.86 208.68

H128×5×4 59 50.35 204.10 17.38 111.46 21 356.33 444.12 10 243.42 375.04

M1×3×4 35 4.83 58.15 3.62 64.66 31 5.37 58.24 30 5.29 66.08

M2×5×4 44 12.98 94.44 10.52 67.71 39 14.37 95.28 37 11.54 69.25

M8×5×4 52 28.38 154.62 12.06 89.61 41 34.29 162.23 34 23.43 106.85

M32×5×4 60 53.75 220.92 23.41 148.57 37 152.19 245.54 23 134.07 262.04

M128×5×4 65 81.60 308.48 25.97 175.58 25 363.32 447.97 12 363.32 483.11

diminishing returns as well. This decline in efficiency motivates the next stage
of our evaluations where Mallob resolves multiple jobs in parallel.

5.3 Malleable Job Scheduling

To evaluate Mallob in its scheduling mode, we appoint one PE as a designated
“client” which introduces jobs to the system and receives results or timeout noti-
fications. Furthermore, the randomized scheduling and load balancing paradigm
of Mallob requires that a small ratio ε of PEs is reserved to remain idle. We
cautiously chose ε = 0.05 but expect that lower values of ε can be viable. We
limited each PE to keep a maximum of three job nodes (active or inactive).

In a first experiment, we test the basic malleability of our solving engine. We
use 64 compute nodes of SuperMUC-NG with a total of 1536 cores and partition
each node into six PEs à four cores, resulting in 384 PEs in total. As such, we
obtain up to
(1 − ε)(p − 1)� =
0.95 · 383� = 363 parallel active job nodes. We
introduce a sequential chain of 80 jobs to the system. Periodically (once every
30 s), a “stranger” job arrives and resides in the system for a limited time (15 s)
during which it occupies half of the available PEs. We run this experiment with
and without a clause filter half life X = 90, chosen by preliminary tests, to
evaluate its impact in such a malleable setting. As a comparison, we repeat the
experiment on 64 and on 32 compute nodes without any disturbances.

Figure 6 shows that the run with disturbances performed worse than the
static (i.e., undisturbed) large run and better than the static small run, which is
consistent with the available CPU resources in these runs. The periodic reduction

530 D. Schreiber and P. Sanders

0 50 100 150 200 250 300
Run time t / s

30

40

50

60

#
in
st
an

ce
s
so
lv
ed

in
≤

t
s

64×6×4
64×6×4 disturbed
32×6×4

Configuration # (+, -) PAR-2
32×6×4 X=∞ 61 28 33 176.6
64×6×4 X=90 dstrb. 61 28 33 174.5
64×6×4 X=∞ dstrb. 62 29 33 166.9
64×6×4 X=∞ 64 31 33 153.5

Fig. 6. Performance of Mallob with X = ∞ (note the range of the y-axis) with and
without periodic disturbances. The table shows solved instances (SAT, UNSAT) and
PAR-2 scores [16] (lower is better) and also includes a variant with X = 90.

of clause filters was not helpful but rather detrimental to Mallob’s performance
in this specific setting. Still, for the following experiments we continue with a
(potentially suboptimal) value of X = 90 because we want to ensure from a
design perspective that crucial clauses are eventually shared with the PEs which
arrive late to a job. We intend to pursue more reliable and explicit clause re-
sharing strategies for malleable SAT solving in the future.

In our next experiment, we let Mallob resolve several jobs at once to evaluate
its load balancing. We use 128 compute nodes of ForHLR II and run four PEs à
five threads on each compute node (because this fits best the two-socket hardware
at hand). As such, we have 512 PEs and up to 485 parallel active job nodes with
ε = 0.05. We limit the number of parallel jobs in the system to J = 4 (16, 64)
which leads to about 121 (30, 7) PEs or 605 (150, 35) threads per job compared
to the 640 (160, 40) threads of the closest tested configuration of Mallob-mono.

For 96% of all measurements we counted exactly 485 busy PEs (94.9% system
load). The job scheduling times, measured from the introduction of the initial
job request r0(j) to the initiation of the job description transfer to p0(j), ranged
from 0.003 s to 0.781 s (average 0.061 s, median 0.006 s). Our scheduling and load
balancing imposes very little overhead: With J = 4 (16, 64) we measured an

0 200 400 600 800
Time / s

0

25

50

75

#
jo
bs

Scheduled
Done
Active

Approach # (+, -) PAR-2
Mallob J = 4 58 26 32 192.7
Mb-mono m = 32 60 28 32 181.4
Mallob J = 16 54 24 30 232.7
Mb-mono m = 8 52 23 29 240.1
Mallob J = 64 49 21 28 279.0
Mb-mono m = 2 44 19 25 299.8

Fig. 7. Experiment with a uniform number J of parallel jobs. Left: Number of active
jobs and cumulative number of scheduled jobs and done (i.e., finished or cancelled)
jobs with J = 16 (measured each second). Right: Solved instances and PAR-2 scores
(lower is better) of Mallob with J = 4, 16, 64 and of comparable Mallob-mono runs.

Scalable SAT Solving in the Cloud 531

average of 3.1% (3.0%, 3.0%) of active core time in the PEs’ main threads which
collectively perform the entire scheduling, load balancing, and communication.

We now compare Mallob with J = 4 (16, 64) with Mallob-mono on 640
(160, 40) cores. Figure 7 (right) shows that the run with J = 4 performed worse,
the run with J = 16 performed better and the run with J = 64 performed
much better than its closest mono configuration: When few active jobs are left,
additional PEs are available to accelerate the resolution of the remaining jobs.
This effect is more pronounced the more jobs are being processed overall.

In a final experiment, we evaluate the performance and resource efficiency of
Mallob and its scheduling in a more ambitious setting. We again use 128×4×5
cores of ForHLR II. We immediately introduce all 400 benchmark instances of the
SAT Competition 2020 at system start and do not impose any time limit per job.
As a comparison, we measured the performance of Mallob-mono on 128 nodes for
each instance and computed a hypothetical optimal sequential scheduler (HOSS)
which knows each job’s run time in advance. To minimize average response
times, the HOSS schedules the 400 runs of Mallob-mono sorted by their run
time in ascending order. We also include two trivial but practical schedulers
which process all jobs “embarrassingly parallel” by running 400 instances of
Lingeling or Kissat at the same time.

Figure 8 shows that the HOSS outperforms 400 Lingelings, but performs
worse than 400 Kissats in terms of median response times. This underlines
both the great performance of Kissat and the high resource efficiency of (state-
of-the-art) sequential SAT solvers. However, Mallob with malleable scheduling
outperforms any of the extremes as it combines parallel job processing with a
flexible degree of parallel SAT solving: As more and more jobs finished over
time, the average number of cores per job increased steadily from 7.2 to 24.
Our system solved 299 instances within 4378 core hours (ch) while the HOSS
solves 270 instances with the same resources and takes 7358 ch to solve the same
number of instances. To put these measures in perspective [11], Mallob-mono
in the SAT Competition 2020 spent 29449 ch for solving 299 instances (7005 ch

0 2000 4000 6000
Elapsed time / s

0

100

200

300

#
so
lv
ed

in
st
an

ce
s

Mallob J = ∞
400×Kissat
HOSS
400×Lingeling

Rall Rslv

Configuration avg. med. avg. med.
Mallob J = ∞ 2422.4 679.8 808.6 260.6
400×Kissat 2998.4 1362.5 975.5 355.5
HOSS 2774.7 2024.5 1396.4 937.3
400×Lingeling 4436.0 7200.0 1559.2 819.9

Fig. 8. Cumulative solved instances by different scheduling approaches on 128 compute
nodes within two hours. The table shows average and median response times, calculated
for all 400 instances (Rall) and for the solved instances per approach (Rslv). Each
unsolved instance leads to a response time of 7200 s.

532 D. Schreiber and P. Sanders

for solved instances, 22444 ch for unsolved instances), more instances than any
other solver. The winning system of the parallel track solved 284 instances within
6548 ch (1392 ch for solved and 5156 ch for unsolved instances). In both cases we
estimate the used hardware to be similar in per-core performance to the hard-
ware we used.

To conclude, Mallob is able to find a flexible trade-off between the resource-
efficiency of parallel job processing and the speedups obtained by parallel SAT
solving based on the current system load. For real world applications, various
mechanisms of Mallob can help to steer this degree of parallelism, such as limiting
the maximum number J of concurrent jobs, setting individual job priorities, and
limiting a job’s maximum volume and its (wallclock or CPU) time budget.

6 Conclusion

In order to improve the scalability and resource efficiency of SAT solving in cloud
environments, we introduced the Mallob framework for the scalable resolution
of SAT jobs on demand. We presented a new approach to malleable job schedul-
ing and a SAT solving engine based on HordeSat which features succinct clause
sharing, a reworked solver backend supporting malleability, and various practi-
cal improvements. We showed that our standalone SAT solver outperforms an
improved version of HordeSat and leads to better speedups. We observed that
our job scheduling and load balancing imposes very little overhead and that
Mallob’s combination of parallel job processing and flexible parallel SAT solving
is able to improve resource efficiency and response times in a cloud environment.

While we focused on Mallob’s SAT solving capabilities in this work, for future
work we intend to evaluate the general scheduling and load balancing properties
of Mallob under more realistic job arrival rates and varying job priorities. Sec-
ondly, we intend to integrate further solver backends and explore better methods
for the re-sharing of crucial clauses in order to improve Mallob’s performance.
Thirdly, we intend to advance Mallob by adding support for incremental SAT
solving and for related applications such as automated planning [30].

Acknowledgments. This project has received fund-
ing from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 882500). This
work was performed on the supercomputer ForHLR
funded by the Ministry of Science, Research and the Arts Baden-Württemberg
and by the Federal Ministry of Education and Research. The authors grate-
fully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.
eu) for funding this project by providing computing time on the GCS Super-
computer SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de). The
authors wish to thank Tomáš Balyo and Markus Iser for fruitful discussions, the
anonymous reviewers for their helpful feedback and suggestions, and Ekkehard
Schreiber and Marvin Williams for kindly proofreading the manuscript.

www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de

Scalable SAT Solving in the Cloud 533

References

1. Audemard, G., Hoessen, B., Jabbour, S., Piette, C.: Dolius: a distributed parallel
SAT solving framework. In: Pragmatics of SAT, pp. 1–11. Citeseer (2014)

2. Audemard, G., Lagniez, J.-M., Szczepanski, N., Tabary, S.: An adaptive parallel
SAT solver. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 30–48. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 3

3. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Twenty-First International Joint Conference on Artificial Intelligence, pp. 399–
404 (2009)

4. Balyo, T., Sanders, P., Sinz, C.: HordeSat: a massively parallel portfolio SAT solver.
In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 156–172. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 12

5. Biere, A.: Yet another local search solver and Lingeling and friends entering the
SAT competition 2014. In: Proceedings of SAT Competition, p. 65 (2014)

6. Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT
competition 2016. Proceedings of SAT Competition pp. 44–45 (2016)

7. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the
SAT competition 2018. In: Proceedings of SAT Competition, pp. 14–15 (2018)

8. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Proceedings of
SAT Competition, p. 50 (2020)

9. Ehlers, T., Nowotka, D., Sieweck, P.: Communication in massively-parallel SAT
solving. In: 2014 IEEE 26th International Conference on Tools with Artificial Intel-
ligence, pp. 709–716. IEEE (2014)

10. Feitelson, D.G., Rudolph, L.: Toward convergence in job schedulers for parallel
supercomputers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1996. LNCS, vol.
1162, pp. 1–26. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0022284

11. Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M.: SAT Competition 2020.
In: Artificial Intelligence (2021, to appear)

12. Graham, R.L., Shipman, G.M., Barrett, B.W., Castain, R.H., Bosilca, G., Lums-
daine, A.: Open MPI: a high-performance, heterogeneous MPI. In: 2006 IEEE
International Conference on Cluster Computing, pp. 1–9. IEEE (2006)

13. Gropp, W., Gropp, W.D., Lusk, E., Skjellum, A., Lusk, E.: Using MPI: portable
parallel programming with the message-passing interface, vol. 1. MIT Press, Cam-
bridge (1999)

14. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. J. Satisf.
Boolean Model. Comput. 6(4), 245–262 (2010)

15. Heisinger, M., Fleury, M., Biere, A.: Distributed cube and conquer with paracooba.
In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 114–122. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51825-7 9

16. Heule, M., Järvisalo, M., Suda, M.: SAT race 2019 (2019). http://sat-race-2019.
ciirc.cvut.cz/downloads/satrace19slides.pdf. Accessed 13 May 2021

17. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding
CDCL SAT solvers by Lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.)
HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34188-5 8

18. Hoos, H.H., Stützle, T.: Local search algorithms for SAT: an empirical evaluation.
J. Autom. Reason. 24(4), 421–481 (2000)

https://doi.org/10.1007/978-3-319-44953-1_3
https://doi.org/10.1007/978-3-319-24318-4_12
https://doi.org/10.1007/BFb0022284
https://doi.org/10.1007/978-3-030-51825-7_9
http://sat-race-2019.ciirc.cvut.cz/downloads/satrace19slides.pdf
http://sat-race-2019.ciirc.cvut.cz/downloads/satrace19slides.pdf
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8

534 D. Schreiber and P. Sanders

19. Hungershofer, J.: On the combined scheduling of malleable and rigid jobs. In:
16th Symposium on Computer Architecture and High Performance Computing,
pp. 206–213. IEEE (2004)

20. Iser, M., Balyo, T., Sinz, C.: Memory efficient parallel SAT solving with inprocess-
ing. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelli-
gence (ICTAI), pp. 64–70. IEEE (2019)

21. Iser, M., Sinz, C.: A problem meta-data library for research in SAT. Proc. Prag-
matics SAT 59, 144–152 (2019)

22. Kendall, M.G.: Rank Correlation Methods. Griffin, London (1948)
23. Kleine Büning, M., Balyo, T., Sinz, C.: Using DimSpec for bounded and unbounded

software model checking. In: Ait-Ameur, Y., Qin, S. (eds.) ICFEM 2019. LNCS,
vol. 11852, pp. 19–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32409-4 2

24. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: PaInleSS: a framework for parallel
SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
233–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 15

25. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Handbook of Satisfiability, pp. 131–153 (2009). IOS Press

26. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Autom.
Reason. 24(1), 165–203 (2000)

27. Mehlhorn, K., Sanders, P.: Algorithms and data structures: the basic toolbox.
Springer Science & Business Media, Berlin (2008). https://doi.org/10.1007/978-3-
540-77978-0

28. Ngoko, Y., Cérin, C., Trystram, D.: Solving SAT in a distributed cloud: a portfolio
approach. Int. J. Appl. Math. Comput. Sci. 29(2), 261–274 (2019)

29. Ngoko, Y., Trystram, D., Cérin, C.: A distributed cloud service for the resolution of
SAT. In: 2017 IEEE 7th International Symposium on Cloud and Service Computing
(SC2), pp. 1–8. IEEE (2017)

30. Schreiber, D.: Lilotane: a lifted SAT-based approach to hierarchical planning. J.
Artif. Intell. Res. 70, 1117–1181 (2021)

31. Schubert, T., Lewis, M., Becker, B.: PaMiraXT: parallel SAT solving with threads
and message passing. J. Satisfiability, Boolean Model. Comput. 6(4), 203–222
(2010)

https://doi.org/10.1007/978-3-030-32409-4_2
https://doi.org/10.1007/978-3-030-32409-4_2
https://doi.org/10.1007/978-3-319-66263-3_15
https://doi.org/10.1007/978-3-540-77978-0
https://doi.org/10.1007/978-3-540-77978-0

DQBDD: An Efficient BDD-Based DQBF
Solver

Juraj Śıč1(B) and Jan Strejček2

1 Brno University of Technology, FIT, Brno, Czech Republic
sicjuraj@fit.vut.cz

2 Masaryk University, Brno, Czech Republic
strejcek@fi.muni.cz

Abstract. This paper introduces a new DQBF solver called DQBDD,
which is based on quantifier localization, quantifier elimination, and
translation of formulas to binary decision diagrams (BDDs). In 2020,
DQBDD participated for the first time in the Competitive Evaluation of
QBF Solvers (QBFEVAL’20) and won the DQBF Solvers Track by a
large margin.

1 Introduction

A binary decision diagram (BDD) is a data structure proposed by Bryant [5]
to succinctly represent all satisfying assignments of a Boolean formula. Unfortu-
nately, BDDs have limited scalability as there exist formulas such that the corre-
sponding BDDs are exponential in the number of Boolean variables [6]. However,
it has been also observed that applying a quantifier to a formula variable often
reduces the size of the corresponding BDD [15]. This observation suggests that
BDDs could be an appropriate data structure for satisfiability solvers processing
formulas with quantifiers. Indeed, recently introduced BDD-based solvers are
usually aimed at quantified formulas. For example, eBDD-QBF [21] is a solver
for quantified Boolean formulas (QBFs) and Q3B [15,16] is an SMT-solver for
quantified bit-vector formulas.

This paper introduces another BDD-based solver for quantified formulas,
namely the tool called DQBDD deciding satisfiability of dependency quantified
Boolean formulas (DQBFs). These formulas are quantified Boolean formulas
with existential quantifiers of the form ∃x(Dx), where the value of x can depend
only on the values of the universally quantified variables in the dependency set
Dx. For a precise definition of the syntax and semantics of DQBF, we refer to [11].
While deciding satisfiability of a given Boolean formula is NP-complete, the same
problem for QBFs is PSPACE-complete and it is even NEXPTIME-complete for
DQBFs [22]. Satisfiability of DQBFs has also some practical applications, in

This work has been supported by the Czech Ministry of Education, Youth and Sports
project LL1908 of the ERC.CZ programme, and the FIT BUT internal project FIT-S-
20-6427.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 535–544, 2021.
https://doi.org/10.1007/978-3-030-80223-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_36&domain=pdf
http://orcid.org/0000-0001-7454-3751
http://orcid.org/0000-0001-5873-403X
https://doi.org/10.1007/978-3-030-80223-3_36

536 J. Śıč and J. Strejček

particular the partial equivalence checking (PEC) [12] which answers the question
of whether a given combinational circuit with unknown parts can be equivalent
to a given specification. Another application is the controller synthesis problem
(CSP) [4] which tries to find a controller that keeps a given system in safe states.

The DQBF satisfiability solving is now a hot research topic. The first
algorithm [8], based on DPLL, was introduced in 2012. Since then, several differ-
ent solving techniques were suggested and implemented in DQBF solvers iDQ [9],
iProver [18], HQS [11,13,34], and dCAQE [33]. Further, there exist DQBF prepro-
cessors HQSpre [35] and Unique [30] which can significantly reduce a given formula
and HQSpre can even directly solve some of them. Research advances in this area
are described in existing overviews [19,28]. Out of the mentioned solvers, the best
performing tool is HQS, which won the DQBF Solvers Track of the Competitive
Evaluation of QBF Solvers (QBFEVAL) in 2018 and 2019 [23,24].

The following section briefly explains the basic approach of DQBDD to
DQBF solving and compares it to the approach of HQS. Section 3 describes
the implementation, installation, and usage of our tool. The performance of our
tool is then analyzed in Sect. 4.

2 Approach

Let us first assume that we want to build a BDD-based solver for QBFs. The most
straightforward approach is to translate a given formula to the corresponding
BDD in a bottom-up manner, i.e., start with atomic subformulas and build BDDs
for larger subformulas from previously constructed BDDs for smaller subformu-
las. The whole formula is satisfiable if and only if the resulting BDD represents at
least one satisfying assignment. When processing a quantified subformula ∀x.ψ
or ∃x.ψ, we handle it as the right side of the corresponding equivalence

∀x.ψ ≡ ψ[1/x] ∧ ψ[0/x] or ∃x.ψ ≡ ψ[1/x] ∨ ψ[0/x]

where ψ[v/x] for v ∈ {0, 1} denotes the formula ψ with all the occurrences of x
replaced by the value v. Given a BDD for ψ, the BDD for ψ[1/x] ∧ ψ[0/x] or
ψ[1/x] ∨ ψ[0/x] contains fewer variables than the BDD for ψ (except the case
when the BDD for ψ does not contain x; both BDDs are then identical) and
the number of its nodes is usually also lower. As mentioned before, the main
weakness of BDDs is that they can grow very quickly with an increasing number
of variables and the operations on large BDDs get slower. To reduce the size of
manipulated BDDs, we first push the quantifiers downwards the syntax tree as
far as possible. This process is known as localization [11] or miniscoping [14].

Now we briefly explain the approach of DQBDD to solving satisfiability of
DQBFs. The full description of the algorithm can be found in the master’s thesis
of Juraj Śıč [32]. The approach has basically three steps: preprocessing, quantifier
localization, and translation of the input formula to the corresponding BDD.

Formula Preprocessing. The tool gets an input formula in the DQDIMACS
format [9], which implies that the formula is in prenex conjunctive normal form

DQBDD: An Efficient BDD-Based DQBF Solver 537

(PCNF). DQBDD then calls HQSpre to reduce the formula. The preprocessed
formula is still in prenex normal form, but its matrix (i.e., the part of the for-
mula without the prefix of quantifiers) does not have to be in CNF any more.
Alternatively, DQBDD can also read a formula in the prenex cleansed DQCIR
format1 which does not have to be in CNF and HQSpre is thus inapplicable.
As the last step of the preprocessing phase, negations are pushed to Boolean
variables as the remaining steps of the DQBDD algorithm expect a formula in
negation normal form (NNF), where negations appear only in front of variables.
Note that NNF has no restrictions on the position of quantifiers, so DQBDD
can be easily adjusted to handle DQBFs that are not in prenex normal form.

Quantifier Localization. In this step, DQBDD applies localization rules [11,
Theorems 3 and 4] to push the quantifiers downwards as far as possible. Note that
the rule (3d) of Theorem 3 [11] is not valid when applied to subformulas [10,32].
However, the rule can be fixed by additional side conditions [10,32].

Translation to a BDD. This step works similarly to the straightforward
algorithm for QBFs described at the beginning of this section: the DQBF for-
mula produced by the previous steps is translated to the corresponding reduced
ordered BDD in a bottom-up manner. However, handling quantified subformulas
is not as simple as for QBF. We use the following quantifier elimination rules.

Universal quantifier elimination. We can apply so-called universal or Shan-
non expansion to any subformula ∀x.ψ such that all existential quantifiers
∃y(Dy) in ψ satisfy x ∈ Dy. That is, we replace this subformula with

ψ1[0/x] ∧ ψ2[1/x]

where ψ1 arises from ψ by removing x from all dependency sets Dy and ψ2

differs from ψ1 by replacing each variable y existentially quantified inside
this formula by a fresh variable y′ with the same dependency set. Hence, any
universal quantifier can be eliminated as all potential existential quantifiers
∃y(Dy) in ψ violating x ∈ Dy can be pushed above the subformula. Note that
the elimination can increase the number of variables in the subformula.

Existential quantifier elimination. The situation for subformulas ∃y(Dy).ψ
is different. Roughly speaking, such a subformula can be handled as

ψ[0/y] ∨ ψ[1/y]

but only if ψ contains no quantifiers and each variable in ψ is either a free
variable, or a variable from Dy, or an existentially quantified variable y′ sat-
isfying Dy′ ⊆ Dy [11, Theorem 5]. To satisfy these requirements, it may be
necessary to first eliminate some universal variable in order to remove it from
ψ or from some Dy′ . Recall that the elimination of a universal quantifier can
again increase the number of existential quantifiers in the formula.

1 This is the prenex cleansed QCIR format [17] extended with quantifiers depend(v,

v1, ..., vn) representing existential variable v with dependencies v1, ..., vn.

538 J. Śıč and J. Strejček

Now assume that we need to translate a subformula of the form

∀x1∀x2 . . . ∀xn∃y1(Dy1)∃y2(Dy2) . . . ∃ym(Dym
).ψ

and ψ has already been translated. Note that the order of these quantifiers can be
arbitrarily changed without any impact on the formula semantics as long as all
variables in each dependency set Dyi

are quantified before yi. We implemented
three possible strategies for quantifier elimination called none, simple, and all.

None. Instead of elimination, we push the quantifiers upwards using the reverse
version of quantifier localization rules. This strategy is equivalent to an algo-
rithm that skips the quantifier localization and keeps the formula in prenex
form.

Simple. We iteratively eliminate all existential quantifiers for which the elimi-
nation rule requirements are satisfied and the universal quantifiers that are
not in any dependency set Dyi

and thus their elimination does not introduce
any fresh variable. The remaining quantifiers are pushed up.

All. We iteratively eliminate all quantifiers that can be eliminated. More pre-
cisely, we first eliminate all existential quantifiers satisfying the requirements,
then we eliminate a selected universal quantifier, and then we repeat the pro-
cess. If we reach the situation that all universal quantifiers are eliminated and
the remaining existential quantifiers cannot be eliminated due to a variable
quantified outside the considered subformula, then we push these remaining
existential quantifiers up.

If the considered subformula is in fact the whole formula, then we have to apply
the all strategy as we cannot push any quantifier up in the formula. In this
strategy, the universal quantifiers can be eliminated in an arbitrary order. We
implemented three heuristics to determine the order, namely at the beginning,
current lowest, and vars in conjuncts.

at the beginning. This heuristics determines the elimination order of universal
variables x1, . . . , xn at the beginning of the elimination process according to
the number of dependency sets each variable appears in (variables with the
lowest number are eliminated first). The motivation is to keep the number of
variables added by the elimination process low as long as possible.

current lowest. This heuristics is similar to the previous one, but the order
is updated according to the current situation every time before the next
universal variable is selected for elimination.

vars in conjuncts. This heuristics is motivated directly by the use of BDDs.
Elimination of a universal variable x produces the BDD for ψ1[0/x]∧ψ2[1/x].
As we have the BDD for ψ in hand and instantiation of a variable is very
cheap, for each universal variable x we compute the set of variables in the
BDDs for ψ1[0/x] and ψ2[1/x] and select the variable with the smallest set.

An experimental comparison of all combinations of elimination strategies and
elimination order heuristics [32] shows significant differences between strategies
and only small differences between heuristics. We selected the simple strategy

DQBDD: An Efficient BDD-Based DQBF Solver 539

with the heuristics at the beginning as the default setting. The combination of
the simple strategy with the heuristics vars in conjuncts solved the same number
of instances (not the same instances) but it was slightly slower.

Our approach is very close to the current approach of HQS, which also applies
preprocessing, quantifier localization, and quantifier elimination using the same
elimination strategy simple as we use by default. However, there are two impor-
tant differences. First, HQS uses a succinct representation of Boolean formulas
called and-inverter graphs (AIGs) [20]. Second, after turning the formula back
to prenex normal form, HQS uses dependency elimination [34] (which removes
universal variables only from some dependency sets) and quantifier elimination
to simplify the formula until it gets a QBF, which is then sent to a QBF solver.

3 Implementation and Usage

DQBDD is implemented in C++ under LGPLv3 license. The current stable
version is 1.2. For working with BDDs, our tool uses the library CUDD v3.0.0 [31]
which also implements Rudell’s sifting algorithm [26] for dynamic reordering of
BDD variables to keep the size of BDDs small. Further, DQBDD integrates the
DQBF preprocessor HQSpre2 [35] which uses Easylogging++ v9.96.7 library for
logging, and SAT solvers PicoSAT [3] and antom [29]. Finally, DQBDD also uses
the library cxxopts v2.2.0 for command-line argument parsing.

The sources of DQBDD including all the mentioned libraries can be found
at https://github.com/jurajsic/DQBDD. Compilation of the tool requires only
a C++ compiler supporting the C++14 standard and CMake v3.5 or higher.
DQBDD can be compiled into a dynamically linked executable on Linux and Mac
systems while static linking is supported only on Linux systems (and is enabled
by default). The executables of DQBDD v1.2 are available in the repository.

The tool is executed from command-line as

DQBDD [ARGUMENT...] <input file>

where <input file> specifies the input formula in DQDIMACS [9] or prenex
cleansed DQCIR format. The tool supports the following arguments:

--preprocess 0/1 turns the preprocessing off/on (not applicable for DQCIR).
--dyn-reordering 0/1 turns off/on the mentioned sifting algorithm in CUDD.
--localise 0/1 turns off/on the quantifier localization step. Turning off local-

ization effectively enforces the quantifier elimination strategy none.
--elimination-choice 0/1/2 selects the strategy none/simple/all for quanti-

fier elimination. To select none, it is more efficient to switch off the quantifier
localization step.

--uvar-choice 0/1/2 selects the heuristics at the beginning/current lowest/vars
in conjuncts determining the order of universal quantifier elimination.

The default value of all these arguments is 1 except the last argument, where
the default value is 0.
2 We use the version distributed with HQS downloaded on March 18, 2021, from

http://abs.informatik.uni-freiburg.de/src/projectfiles/21/HQS.zip.

https://github.com/jurajsic/DQBDD
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/HQS.zip

540 J. Śıč and J. Strejček

Table 1. For each tool and instance type, the table shows the total number of solved
instances, the number of solved satisfiable and unsatisfiable instances, and the number
of instances solved uniquely by the solver. All solved CSP instances are satisfiable.

PEC CSP SAT

3277 instances 404 instances 22 instances

total sat unsat uniq total uniq total sat unsat uniq

dCAQE 818 132 686 2 41 15 7 3 4 0

DQBDD 3035 364 2671 384 26 4 1 0 1 1

HQS 2625 246 2379 5 24 0 6 4 2 0

iDQ 534 48 486 1 7 0 7 4 3 0

iProver 677 83 594 0 19 0 7 2 5 1

4 Experimental Comparison

We compared the performance of DQBDD v1.2 against DQBF solvers iDQ v1.0,
iProver v3.43, dCAQE v4.0.1, and the current version of HQS4.

For the experiments, we used the DQBF benchmark set considered also in
other recent papers on DQBF [10,11]. The set consists of 4316 instances of partial
equivalence checking problem (PEC) collected from various sources [7,9,12,27],
461 instances of controller synthesis problem (CSP) [4], and 34 instances of SAT
problem encoded as DQBF with an exponentially smaller number of variables [1].

All our experiments were computed on a 24 core machine with 2.10 GHz Intel
Xeon CPU. We set the runtime limit to 900 s of CPU time and the memory con-
sumption limit to 4 GB for each tool and input formula. We employed the frame-
work for reliable benchmarking and resource measurement called BenchExec
v2.2 [2] to enforce these limits. BenchExec also isolates the measured processes
such that they can run in parallel with minimum interference between each other.

First, we run preprocessor HQSpre on all benchmarks and removed the solved
instances from our benchmark set. This leaves us with 3277 PEC instances, 404
CSP instances, and 22 SAT instances. Then we run solvers dCAQE, iDQ, and
iProver on the remaining instances in the preprocessed form. We run HQS and
DQBDD on the remaining instances in their original form as both these tools
call HQSpre in their solving routine. All the considered benchmarks with the
corresponding BenchExec definitions and obtained results from the solvers can
be found at https://github.com/jurajsic/DQBFbenchmarks.

The results are presented in Table 1. DQBDD dominates on PEC instances.
This can be also seen in Fig. 1a which shows the cactus plot comparing running
times of individual solvers on PEC instances. Only HQS can solve a similar
number of PEC instances, but it is significantly slower. The total running time
of DQBDD on solved PEC instances is 28 081 s, while for HQS, which solved
3 Called with “--qbf mode true --inst out proof false --res out proof false”.
4 Downloaded from http://abs.informatik.uni-freiburg.de/src/projectfiles/21/HQS.

zip on March 18, 2021.

https://github.com/jurajsic/DQBFbenchmarks
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/HQS.zip
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/HQS.zip

DQBDD: An Efficient BDD-Based DQBF Solver 541

500 1,000 1,500 2,000 2,500 3,000
10−3

10−2

10−1

100

101

102

103

Number of solved instances

C
P
U

ti
m
e
(s
)

dCAQE
DQBDD
HQS
iDQ

iProver

(a) PEC instances

5 10 15 20 25 30 35 40 45
10−2

10−1

100

101

102

103

Number of solved instances

C
P
U

ti
m
e
(s
)

dCAQE
DQBDD
HQS
iDQ

iProver

(b) CSP instances

Fig. 1. Cactus plots showing on the x axis the numbers of PEC and CSP instances
solved by individual tools for the runtime limit set to values on the y axis.

410 instances less, it is 58 154 s. The scatter plot in Fig. 2a compares running
times of DQBDD and HQS on individual PEC instances. Furthermore, there
was a discrepancy for 7 PEC instances. All these were determined as satisfiable
by dCAQE while at least one other solver determined them as unsatisfiable. We
believe that all these instances are unsatisfiable as we were able to find a simple
unsatisfiable DQBF that dCAQE solves incorrectly [32, Appendix D].

For CSP instances, dCAQE solved the most instances. The comparison of
running times of all tools can be found in Fig. 1b. As dCAQE sometimes returns
an incorrect result, we rather focus on the comparison of the two next best
solvers, that is DQBDD and HQS. DQBDD needed 190 s to solve the 22 instances
solved by both DQBDD and HQS, while HQS needed 238 s. The detailed com-
parison of running times is shown in Fig. 2b.

542 J. Śıč and J. Strejček

10−2 10−1 100 101 102
10−2

10−1

100

101

102

DQBDD

H
Q
S

(a) PEC instances

10−2 10−1 100 101 102
10−2

10−1

100

101

102

DQBDD

H
Q
S

(b) CSP instances

Fig. 2. Scatter plots comparing CPU times of DQBDD and HQS on individual satis-
fiable (blue) and unsatisfiable (red) instances of PEC and CSP. (Color figure online)

Finally, DQBDD solved only one SAT instance, but other solvers were not
able to solve this instance.

QBF. As QBF is a special case of DQBF, DQBDD is also a QBF solver. We
tried DQBDD on the QBF benchmarks from the QBFEVAL’20 [25] competition.
Out of the 521 QBFs considered in the Prenex CNF Track, DQBDD solved 250
instances. However, 214 of them were actually solved by the preprocessor. For
the 339 Prenex non-CNF Track benchmarks, DQBDD solved 109 instances.
As HQSpre works only on CNF benchmarks, no preprocessing was involved. A
comparison of these results with the results of QBFEVAL’20 reveals that our
solver is currently not competitive with leading QBF solvers.

5 Conclusion

We have presented a new DQBF solver called DQBDD. The tool uses a simi-
lar approach based on quantifier localization and elimination as the solver HQS,
but DQBDD essentially translates a given formula to the equivalent BDD, which
other DQBF solvers do not. Our experimental comparison shows that DQBDD
runs significantly faster on instances of the partial equivalence checking problem,
which is currently the principal application of DQBF solving. The good perfor-
mance of DQBDD has also been confirmed by winning the DQBF Solvers Track
of QBFEVAL’20.

DQBDD: An Efficient BDD-Based DQBF Solver 543

References

1. Balabanov, V., Roland Jiang, J.-H.: Reducing satisfiability and reachability to
DQBF, 2015. Talk given at International Workshop on Quantified Boolean Formu-
las - QBF 2015 (2015)

2. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2017). https://doi.org/10.
1007/s10009-017-0469-y

3. Biere, A.: Picosat essentials. J. Satisfiability, Boolean Model. Comput. (JSAT). 4,
75–97 (2008)

4. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
In: Verification, Model Checking, and Abstract Interpretation, pp. 1–20 (2014)

5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

6. Bryant, R.E.: On the complexity of VLSI implementations and graph representa-
tions of Boolean functions with application to integer multiplication. IEEE Trans.
Comput. 40(2), 205–213 (1991)

7. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 243–251. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-09284-3 19

8. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In:
Pragmatics of SAT (PoS 2012, aff. to SAT 2012) (2012)

9. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: instantiation-based DQBF
solving. In: Le Berre, D. (ed.) POS-14. Fifth Pragmatics of SAT Workshop, A
Workshop of the SAT 2014 Conference, part of FLoC 2014 during the Vienna
Summer of Logic, 13 July, 2014, Vienna, Austria, volume 27 of EPiC Series in
Computing, pp. 103–116. EasyChair (2014)

10. Ge-Ernst, A., Scholl, C., Śıč, J., Wimmer, R.: Solving dependency quantified
Boolean formulas using quantifier localization. Theoretical Computer Science
(2021). Submitted. Preprint available as arXiv:1905.04755v2

11. Ge-Ernst, A., Scholl, C., Wimmer, R.: Localizing quantifiers for DQBF. In: Barrett,
C.W., Yang, J. (eds.) 2019 Formal Methods in Computer Aided Design, FMCAD
2019, San Jose, CA, USA, 22–25 October, 2019, pp. 184–192. IEEE (2019)

12. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence
checking of partial designs using dependency quantified Boolean formulae. In: 2013
IEEE 31st International Conference on Computer Design, ICCD 2013, Asheville,
NC, USA, 6–9 October, 2013, pp. 396–403. IEEE Computer Society (2013)

13. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.:. Solving
DQBF through quantifier elimination. In: Nebel, W., Atienza, D. (eds.) Proceed-
ings of the 2015 Design, Automation and Test in Europe Conference and Exhi-
bition, DATE 2015, Grenoble, France, 9–13 March, 2015, pp. 1617–1622. ACM
(2015)

14. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press (2009)

15. Jonáš, M., Strejček, J.: Solving quantified bit-vector formulas using binary decision
diagrams. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
267–283. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 17

16. Jonáš, M., Strejček, J.: Q3B: an efficient BDD-based SMT solver for quantified bit-
vectors. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 64–73.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5 4

https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-319-09284-3_19
https://doi.org/10.1007/978-3-319-09284-3_19
http://arxiv.org/abs/1905.04755v2
https://doi.org/10.1007/978-3-319-40970-2_17
https://doi.org/10.1007/978-3-030-25543-5_4

544 J. Śıč and J. Strejček

17. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. Beyond
NP. In: AAAI Workshop (2016)

18. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 24

19. Kovásznai, G.: What is the state-of-the-art in DQBF solving. In: MaCS-16. Joint
Conference on Mathematics and Computer Science (2016)

20. Mishchenko, A., Chatterjee, S., Brayton, R.: FRAIGs: a unifying representation
for logic synthesis and verification. EECS Dept., UC Berkeley, Technical report
(2005)

21. Olivo, O., Emerson, E.A.: A more efficient BDD-based QBF solver. In: Lee, J. (ed.)
CP 2011. LNCS, vol. 6876, pp. 675–690. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-23786-7 51

22. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer noncooperative
games of incomplete information. Comput. Math. Appl. 41(7), 957–992 (2001)

23. Pulina, L., Seidl, M.: QBF evaluation 2018 (2018)
24. Pulina, L., Seidl, M., Shukla, A.: QBF evaluation 2019 (2019)
25. Pulina, L., Seidl, M., Shukla, A.: QBF evaluation 2020 (2020)
26. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams.

In: Proceedings of 1993 International Conference on Computer Aided Design
(ICCAD), pp. 42–47 (1993)

27. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In: Pro-
ceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232),
pp. 238–243 (2001)

28. Scholl, C., Wimmer, R.: Dependency quantified Boolean formulas: an overview of
solution methods and applications. In: Beyersdorff, O., Wintersteiger, C.M. (eds.)
SAT 2018. LNCS, vol. 10929, pp. 3–16. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94144-8 1

29. Schubert, T., Lewis, M., Becker, B.: Antom - solver description (2010)
30. Slivovsky, F.: Interpolation-based semantic gate extraction and its applications

to QBF preprocessing. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12224, pp. 508–528. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 24

31. Somenzi, F.: CUDD: CU decision diagram package release 3.0.0 (2015)
32. Śıč, J.: Satisfiability of DQBF using binary decision diagrams. Master’s thesis,

Masaryk University, Faculty of Informatics (2020)
33. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Janota, M., Lynce, I.

(eds.) SAT 2019. LNCS, vol. 11628, pp. 388–405. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24258-9 27

34. Wimmer, R., Karrenbauer, A., Becker, R., Scholl, C., Becker, B.: From DQBF
to QBF by dependency elimination. In: Gaspers, S., Walsh, T. (eds.) SAT 2017.
LNCS, vol. 10491, pp. 326–343. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66263-3 21

35. Wimmer, R., Scholl, C., Becker, B.: The (D)QBF preprocessor HQSpre - underlying
theory and its implementation. J. Satisfiability Boolean Model. Comput. 11, 3–52
(2019)

https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-642-23786-7_51
https://doi.org/10.1007/978-3-642-23786-7_51
https://doi.org/10.1007/978-3-319-94144-8_1
https://doi.org/10.1007/978-3-319-94144-8_1
https://doi.org/10.1007/978-3-030-53288-8_24
https://doi.org/10.1007/978-3-030-53288-8_24
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-319-66263-3_21
https://doi.org/10.1007/978-3-319-66263-3_21

Logical Cryptanalysis with WDSat

Monika Trimoska(B), Gilles Dequen, and Sorina Ionica

Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France
{monika.trimoska,gilles.dequen,sorina.ionica}@u-picardie.fr

Abstract. Over the last decade, there have been significant efforts in
developing efficient XOR-enabled SAT solvers for cryptographic applica-
tions. In [22] we proposed a solver specialised to cryptographic problems,
and more precisely to instances arising from the index calculus attack on
the discrete logarithm problem for elliptic curve-based cryptosystems.
Its most prominent feature is the module that performs an enhanced
version of Gaussian Elimination. [22] is concentrated on the theoretical
aspects of the new tool, but the running time-per-conflict results suggest
that this module uses efficient implementation techniques as well. Thus,
the first goal of this paper is to give a comprehensive exposition of the
implementation details of WDSat. In addition, we show that the WDSat
approach can be extended to other cryptographic applications, mainly
all attacks that involve solving dense Boolean polynomial systems. We
give complexity analysis for such systems and we compare different state-
of-the-art SAT solvers experimentally, concluding that WDSat gives the
best results. As a second contribution, we provide an original and eco-
nomical implementation of a module for handling OR-clauses of any size,
as WDSat currently handles OR-clauses comprised of up to four literals.
We finally provide experimental results showing that this new approach
does not impair the performance of the solver.

1 Introduction

Due to the significant number of improvements in sat-based parity reasoning over
the last decade, sat solvers are gaining popularity in cryptographic applications.
More specifically, they are often used to tackle the solving phase in algebraic crypt-
analysis of stream ciphers [11,14,18,19,21], and more recently, of public-key cryp-
tosystems [10,23]. Algebraic cryptanalysis includes all attacks where the under-
lying problem of a cryptographic system is reduced to the problem of solving a
multivariate polynomial system of equations. The resulting system is solved using
algebraic techniques, such as Gröbner basis algorithms [9], exhaustive search [5],
hybrid methods [2] or algorithms in the XL family [6]. Finding a solution to
the polynomial system constitutes a successful attack and results in recovering

We acknowledge financial support from the European Union under the 2014/2020
European Regional Development Fund (FEDER) and from the Agence Nationale de
Recherche under project ANR20-ASTR-0011.

c© Springer Nature Switzerland AG 2021
C.-M. Li and F. Manyà (Eds.): SAT 2021, LNCS 12831, pp. 545–561, 2021.
https://doi.org/10.1007/978-3-030-80223-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80223-3_37&domain=pdf
https://doi.org/10.1007/978-3-030-80223-3_37

546 M. Trimoska et al.

(a part of) the secret key or the plaintext. Boolean polynomial systems may be
easily re-written as sat formulas, which are then solved using a sat solver. This
technique is referred to as logical cryptanalysis [17].

The transformation of a Boolean polynomial system into a cnf formula is
done in three steps, each resulting in a propositional formula in different form.
First, we obtain an Algebraic Normal Form (anf) by replacing all multiplications
over the binary field by a logical and and all sums by the xor operator. The next
step is to eliminate all conjunctions through a linearization-like process that
consists in replacing all occurrences of (x1 ∧ . . . ∧ xk) by a newly added variable
x1,...,k and adding the constraint x1,...,k ⇔ (x1 ∧ . . . ∧ xk) to the model in its
cnf equivalence (¬x1,...,k ∨x1)∧ . . .∧ (¬x1,...,k ∨xk)∧ (¬x1 ∨ . . .∨¬xk ∨x1,...,k).
This step results in a so-called cnf-xor formula which is a conjunction of both
or-clauses and xor-clauses. Classically, a xor-clause of size k can be rewritten
either as a conjunction of 2k−1 k-or-clauses or as a conjunction of 3-or-clauses,
if the xor-clause is first cut up into 3-xor-clauses.

Since the xor operator is at the core of reasoning models obtained from cryp-
tographic attacks, significant effort has been put into developing xor-enabled
sat solvers that read formulas in cnf-xor form and are adapted to reason
directly on xor constraints. In this paper, we give implementation details of one
such solver, named WDSat, proposed in [22]. WDSat is a built-from-scratch
dpll-based sat solver that is specifically designed for solving ANF instances
derived from cryptographic attacks on public-key cryptosystems. These formu-
las have few variables, but are highly dense, i.e. they have very long xor-
clauses. The original proposal of WDSat shows experimental results on for-
mulas derived from an attack on elliptic curve-based cryptosystems. In contrast,
in this paper, we experiment with WDSat and other state-of-the-art sat solvers
using instances derived from the Multivariate Quadratic (mq) problem, which is
the problem of finding all common zeros of a multivariate quadratic system of
polynomials. The following toy example shows an mq system with 4 equations
in 3 variables over the binary field.

x1x2 + x1x3 + x1 + x2 + x3 + 1 = 0
x1x2 + x2x3 + x1 + x3 = 0
x1x2 + x3 + 1 = 0.

In addition, we propose an original technique with reduced amount of mem-
ory, which allows to handle large size clauses and thus, solve multivariate poly-
nomial systems of any degree. We report experimental results with WDSat on
multivariate polynomial systems of degree three and four. Solving the multi-
variate polynomial problem is at the core of algebraic cryptanalysis, as many
cryptographic attacks can be reduced to the problem of solving a multivariate
polynomial system of equations.

Logical Cryptanalysis with WDSat 547

2 Background

WDSat was proposed at CP 2020 [22] as an xor-enabled sat solver dedicated
to solving instances derived from a Weil Descent. A Weil descent is a technique,
commonly used in cryptanalysis, for reducing the problem of finding roots of a
polynomial defined over an extension field to the problem of solving a multivariate
polynomial system of equations defined over the base field. TheWDSat solver was
particularly designed for the Weil descent steps performed in an attack on ellip-
tic curve-based cryptosystems. The solver is built-from-scratch and based on the
dpll algorithm [7]. It is comprised of three reasoning modules that communicate
with each other. One is used for reasoning on the cnf part of the formula and the
other two are used forxor reasoning.When an assumption of a truth value ismade,
the literal is first set in the cnfmodule. Then, all propagated literals are recov-
ered and are set, together with the initial assumption, in the second module, called
xorset. Finally, all literals propagated by the cnf and xorsetmodules are set in
the third module, called xorgauss. If the xorgaussmodule results in more prop-
agated literals, the process is repeated, until all modules can no longer propagate.
Each module is equipped with a corresponding propagation, conflict detection and
backtracking technique. The cnf and xorsetmodules use classic techniques for
unit propagation on or and xor-clauses respectively. Handling the xor-clauses
instead of breaking them down into a cnf is beneficial for sat solving, as it allows
us to use powerful techniques inspired from algebraic solving tools, such as the
Gaussian Elimination (ge). Performing ge generally results in fewer conflicts, but
is computationally expensive.Thus, the purpose of thexorgaussmodule is to per-
form (ge) on the xor part of the formula efficiently. In this module, xor-clauses
are represented as Equivalence Classes (ec). A representative is chosen for each
class and the ge technique consists in assigning a truth value to a variable while
applying defined rules that ensure that the so-called unicity-of-representatives
property is maintained. This property states that a representative of an ecwill
never be present in another ec. Thus, the notion of representative of an ec is anal-
ogous to the notion of pivot in linear algebra.

In addition, starting from the observation that existing sat-based implemen-
tations of the ge are not as efficient as ge in algebraic tools, we proposed in [22]
an extended version of the xorgaussmodule (xg-ext). Indeed, in a Gröbner-
basis based approach [13], when a variable xi is set to 1, all occurrences of a
monomial xixj are replaced by xj and can be canceled out with other occur-
rences of xj . Recall that a monomial xixj from the initial Boolean polynomial
system becomes xi∧xj in the equivalent propositional formula and is replaced by
a newly added variable xi,j . The cnf block that we obtain from this substitution
is (xi ∨ ¬xi,j) ∧ (xj ∨ ¬xi,j) ∧ (¬xi ∨ ¬xj ∨ xi,j). When we set xi to true and
apply the unit propagation rules, we are left with the following or-clauses:

(xj ∨ ¬xi,j)∧ (1)
(¬xj ∨ xi,j).

In the xor part of the cnf-xor formula, xj and xi,j are two different variables
and a possible cancellation of terms can be overseen. To fix this oversight, the

548 M. Trimoska et al.

following rule is added to WDSat . When xi,j ⇔ (xi∧xj) and we set xi to true,
xi,j is replaced by xj . To perform the substitution of xi,j by xj , propagation rules,
similar to the ones for truth value assignment, are defined for maintaining the
unicity-of-representatives property. This constitutes the xg-extmodule.

Since this oversight is due to the cnf-xor input form, it is common for
all xor-enabled sat solvers that perform ge. However, the newest version of
CryptoMiniSat (5.8.0) implements a technique called BIRD [20] that seems to
fix the issue as well. The BIRD technique consists in (i) transforming xor clauses
into cnf, (ii) inprocess over cnf clauses, (iii) recover simplified xor-clauses and
(iv) perform cdcl coupled with ge on the cnf-xor formula. Since this technique
is performed during resolution, the recovery process in the third step should be
able to recover the xor-clause (xj ⊕xi,j ⊕�) from the two or-clauses in Eq. (1).
Adding the recovered clause to the xor system and performing ge should have
a similar result as replacing xi,j by xj .

3 Implementation Details

Input Forms. The WDSat solver can read formulas in both anf and cnf-
xor form. Reading a formula in anf comes with two advantages. The first one
is linked to branching rules and the second is that this form allows us to use
the extension of the xgmodule. Since the direct encoding is shorter, in number
of clauses, than in cnf-xormodeling, the use of anf comes more advantageous
within the context of cryptographic problems.

Branching Rules. Reading a formula in anf, the solver can store the informa-
tion of which variables comprise the initial system, as opposed to variables that
are added to substitute a conjunction. We can thus, distinguish unary variables
from substitution variables. The truth value of a substitution variable is equal
to the conjunction of the truth values of the corresponding unary variables. As
a result, assigning truth values to all unary variables will necessarily propagate
all other variables (see, for instance, Proposition 1 in [23]). In WDSat, only
unary variables are considered in the binary search. Conflict-driven branching
heuristics can not be used in WDSat, as the solver does not perform con-
flict analysis. In addition, there is a heuristic branching technique specific to
sat instances derived from Boolean polynomial systems developed for WDSat.
This technique, inspired by the Minimal Vertex Cover problem from graph the-
ory, determines the minimal subset of variables that need to be assigned to obtain
a formula comprised only of xor-clauses. This formula is then solved in polyno-
mial time using ge. The technique is currently used only during preprocessing to
provide a predetermined branching order that is optimal. Thus, the solver does
not use heuristics to decide on the order of branching variables dynamically, but
the order can be specified by the user. This feature is to be used if the user has
more information on the system or if the preprocessing technique was applied.

Logical Cryptanalysis with WDSat 549

3.1 Three Reasoning Modules

In this section, we give a description and implementation details of the three
modules that make up the WDSat solver and we propose a novel cnfmodule
that can handle longer clauses. Each module has its own propagation stack,
called the CNF propagation stack, the XORSET propagation stack and the
XG propagation stack, as well as a respective set in function that sets a literal
to true in the corresponding module. These stacks are used for communication
between the modules. For simplicity, we consider that these stacks and all other
data structures relative to the modules are included in a structure F , simply
referred to as the propositional formula.

CNF Module. In this module, responsible for unit propagation on or-clauses,
the or-clauses are treated as lists of implications, following an idea of Heule
et al. [12] for handling 3-or-clauses, implemented in the March sat solver. In addi-
tion, the method is extended to handle 4-or-clauses. Hence, WDSat is able to
solve instances derived from Boolean polynomial systems of degree three at most.

Compressed CNF Reasoning. In this section, we propose an original method
for handling or-clauses, using a compact data structure and simple bitwise oper-
ations. Our module serves as an addition to the WDSat solver, as it allows us to
handle or-clauses of any size. In this module, or-clauses are stored as bit-vectors
comprised of the following three parts: the value of the clause is the arithmetic sum
of its literals in their dimacs representation, the weight of the clause is the num-
ber of unassigned literals left in the clause and the final part, referred to as the sat
assessment is composed of only one bit that is set to 1 when the clause is already
satisfied by one of its assigned literals, and to 0 otherwise. The value and theweight
bit-vectors have a predetermined static length. The first two lines in Table 1 show
an example of the representation of two or-clauses. As an illustration, the value
of ¬x1 ∨ x4 ∨ ¬x2 is (−1) + 4 + (−2) = 1, and the weight equals 3.

Let k be the number of variables in a cnf, and let W be the length of the
longest or-clause. The length of a bit-vector representing a clause in this manner
is given by the formula:

�log2(2Wk)� + �log2(W)� + 1. (2)

Since the increase is asymptotically logarithmic, a 64-bit integer can easily repre-
sent very long clauses. Hence, a formula is an array of integers, denoted clauses,
where each entry represents a clause. In the remainder of this section, we will
use |W | to denote the length (in bits) of the maximal weight.

To perform unit propagation, we need to have efficient access to the occur-
rences of each literal. More specifically, we allocate an array occ in clause
indexed by signed literals. Each entry in the array holds a list of clauses in
which the corresponding literal occurs. When we set a literal l to true, we per-
form the following operations. As per the first rule of unit propagation, the sat
assessment is set to 1 in all clauses from the list occ in clause[l]. As per the
second unit propagation rule, −l is subtracted from the value of all clauses from
the list occ in clause[−l], and the weight of these clauses is decremented.

550 M. Trimoska et al.

Table 1. Example of two clauses in a cnfwith 4 variables and maximum clause
length 4.

or-clause Bit-vector Decimal

Value Weight Sat

¬x1 ∨ x4 ∨ ¬x2 00001 011 0 22

x1 ∨ x3 00100 010 0 68

Set x1 to false.

¬x1 ∨ x4 ∨ ¬x2 00001 011 1 23

x3 00011 001 0 50

Propagation: x3 is set to true.

With our compact representation, clauses are managed using only bitwise
operations. More specifically, we use the following functions, where, as per the C
syntax, 	 and
 denote the left and right bitwise shift, & denotes the bitwise
and , and | denotes the bitwise or. These functions are used in the set in cnf
function, given in Algorithm 1.

– get clause value(cl) : clauses[cl]
 (|W | + 1);
– get clause weight(cl) : (clauses[cl]
 1) & (2|W | − 1);
– literal to clause(l) : (l 	 (|W | + 1)) | 2;
– is clause sat(cl) : clauses[cl] & 1;
– set clause to sat(cl) : clauses[cl] ← clauses[cl] | 1;

As we can see in Algorithm 1, a propagation is detected when the weight of
a clause is equal to 1. In this case, the value of the clause is equal to the dimacs
representation of the only remaining literal that can satisfy the clause, and thus,
the literal is directly propagated. A conflict occurs when we try to assign a
variable that is already assigned to the opposite truth value. The second part of
Table 1 shows an example of the changes that are made in the clauses structure
from the execution of Algorithm 1.

This economical structure is adapted for the requirements of WDSat and
the classic dpll algorithm. In this paradigm, it is never required to get all literals
from a specific clause, or to check which literals are unassigned, unless there is
only one unassigned literal left. Thus, it is not concerning that these operations
can not be done efficiently in our cnfmodule.

XORSET Module. xorset is a simple module for parity reasoning. In other
words, this module performs unit propagation on xor-clauses. The unit propa-
gation rule can be informally defined as follows. When all except one literal in an
xor-clause are assigned, the remaining literal is given a truth value according to
parity reasoning. Recall that an xor-clause is satisfied if there is an odd number
of literals that are set to true.

During the solving process, the solver counts the number of literals in a clause
that are set to true, and respectively the ones that are set to false. In order to

Logical Cryptanalysis with WDSat 551

Algorithm 1. Function set in cnf(to set, F) : Function that sets a list of
literals to true.
Input: A list of literals that need to be set to true, the propositional formula F
Output: false if unsatisfiability is detected with unit propagation, true otherwise.

1: CNF propagation stack ← to set.
2: while CNF propagation stack is not empty do
3: l ← top element from CNF propagation stack.
4: if assignment[l] �= true then
5: if assignment[l] = false then
6: return false.
7: end if
8: assignment[l] ← true.
9: for each cl in occ in clause[l] do

10: set clause to sat(cl).
11: end for
12: for each cl in occ in clause[−l] do
13: if not is clause sat(cl) then
14: clauses[cl] ← clauses[cl]− literal to clause(−l).
15: if get clause weight(cl) = 1 then
16: l prop ← get clause value(cl).
17: add l prop to CNF propagation stack.
18: end if
19: end if
20: end for
21: end if
22: end while
23: return true.

do this efficiently, the solver needs to have quick access to the occurrences of each
literal. At the implementation level, the structure that keeps this information
is an array indexed by both positive and negative literals that contains lists of
clauses in which a literal appears. This is a classical technique for implementing
basic xor reasoning in a sat solver.

XORGAUSS Module. As explained in Sect. 2, in this module, xor-clauses
are represented as equivalence classes. To obtain this representation, the first
step is to normalise all clauses so that they contain only positive literals and
do not contain more than one occurrence of each literal. To eliminate negative
literals, normalised clauses may contain a � constant. All variables in a clause are
considered to belong to the same equivalence class (ec), and one literal from the
ec is chosen to be the representative. An xor-clause (x1 ⊕ x2 ⊕ ... ⊕ xn) ⇔ �
rewrites as x1 ⇔ (x2 ⊕ x3 ⊕ ... ⊕ xn ⊕ �). The initialization process of the
xgmodule consists in performing the following steps for each xor-clause : (i)
put the clause in normal form, (ii) transform the clause into an ec and (iii)
replace all occurrences of its representative in the system with the right side
of the equivalence. Applying this transformation, we obtain a simplified system
having the unicity-of-representatives property.

552 M. Trimoska et al.

Example 1. Let us consider the following set of three xor-clauses.

x1 ⊕ x4 ⊕ x5 ⊕ x6

x1 ⊕ x2 ⊕ ¬x4

x2 ⊕ x3 ⊕ ¬x6

The steps of the initialization process of this formula are shown in Table 2.
The left column shows the set of equivalence classes that grows with each step.
The right column shows the set of remaining xor-clauses. We consider that all
clauses are already put in normal form. This set becomes smaller as each clause
is transformed into an equivalence class.

Table 2. Equivalence classes initialization steps.

Set of equivalence classes Set of xor-clauses

∅ x1 ⊕ x4 ⊕ x5 ⊕ x6

x1 ⊕ x2 ⊕ x4 ⊕ �
x2 ⊕ x3 ⊕ x6 ⊕ �

x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕ � x2 ⊕ x5 ⊕ x6

x2 ⊕ x3 ⊕ x6 ⊕ �
x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕ � x3 ⊕ x5

x2 ⇔ x5 ⊕ x6 ⊕ �

x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕ � ∅
x2 ⇔ x5 ⊕ x6 ⊕ �
x3 ⇔ x5 ⊕ �

At the implementation level, xor-clauses are represented as bit-vectors. If a
variable is present in the clause, the corresponding bit is set to 1, otherwise it
is set to 0. Plus, the first bit in the vector is used for the �/⊥ constant. For a
compact representation, bit-vectors are stored in an array of 64-bit integers. For
instance, to store a k-bit vector, an array of �(k + 1)/64� integers is allocated.
Finally, the clauses represented in this manner are stored in an array indexed by
the representatives. This array is the core structure of the xgmodule and it will
be referred to as the EC structure. For an example of the EC structure, see Fig. 1
that illustrates the set of equivalence classes that we obtain through the trans-
formation in Table 2. In this illustration, each line represents one equivalency
and is labeled with the representative. The columns are colored in gray if and
only if the corresponding variable belongs to the right side of the equivalency.
The constant is referenced in the first column.

To explain the implementation choices, in Table 3 we recall the inference
rules from [22] for performing ge in the xgmodule of WDSat. In this table,
R denotes the set of representatives and C denotes the set of clauses. Cx is

Logical Cryptanalysis with WDSat 553

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

Fig. 1. The EC structure.

an xor-clause in C that is represented by an ecwith representative x. Finally,
var(Cx) denotes the set of literals (plus a �/⊥ constant) in the clause Cx and
the notation C[x1/φ] is used when the literal x1 is replaced by φ in all clauses,
where φ may be a clause, a variable or a constant.

Table 3. Inference rules for the substitution of x1 by a true/false constant.

Premises Conclusions on C Updates on R

x1, C C[x1/�] N/A

x1�∈ R

x1, C Cx2 ← Cx1 ⊕ x2 ⊕ � R ← R \ {x1}
x1 ∈ R C[x2/Cx2] R ← R ∪ {x2}
x2 ∈ var(Cx1)

This representation of equivalence classes allows for an efficient implemen-
tation of the inference rules, where the main operations are xor-ing bit-vectors
and flipping the clause constant. The first rule, for whose application we give
pseudo-code in Algorithm 2, corresponds to the case where x1 is not a represen-
tative. In a bit-vector from the EC structure, individual bits can be set to 0, set
to 1 or their value can be checked. We distinguish variable bits from the con-
stant bit. Other operations that modify the EC structure are flip constant,
used simply to inverse the value of the constant bit, and the operator ⊕ that
denotes the xor-ing of two bit-vectors. Lines in Algorithm 2 that contain oper-
ations that modify the EC structure are in bold. For a better understanding of
the infer algorithm, we provide an execution example in Fig. 2. In this example,
we show the contents of the EC structure after the execution of each line in
bold. The infer function corresponding to the second inference rule, where x1

is in the set of representatives, is detailed in Algorithm 3. In this algorithm, a
reset vector function is used that simply sets all the bits in a given bit-vector
to 0. The execution example for this algorithm is given in Fig. 3.

Finally, everything is linked together in the set in function of the xgmodule,
detailed in Algorithm 4. In this algorithm, the get propositional variable
function extracts the propositional variable from a literal and the get truth
value function checks whether l is a positive or a negative literal. For
instance, calling get propositional variable(¬x1) would return x1 and
get truth value(¬x1) would return false.

554 M. Trimoska et al.

Algorithm 2. Function infer non representative(ul, tv, F) : Function that
applies the first inference rule to the EC structure.
Input: Propositional variable ul, truth value tv, the propositional formula F
Output: The EC structure and the XG propagation stack are modified.

1: add ul to R.
2: if tv =true then
3: flip constant(EC[ul]).
4: end if
5: set ul to 1 in EC[ul].
6: for each r in R do
7: if ul is set to 1 in EC[r] then
8: EC[r] ← EC[r] ⊕ EC[ul].
9: if all variable bits in EC[r] are set to 0 then

10: if the constant bit in EC[r] is set to 1 then
11: add r to XG propagation stack.
12: else
13: add ¬r to XG propagation stack.
14: end if
15: end if
16: end if
17: end for
18: set ul to 0 in EC[ul].

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

(a) Before execution.

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(b) After line 3.

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(c) After line 5.

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(d) After line 8.

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(e) After line 8.

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(f) After line 18.

Fig. 2. Setting x6 to true. Stream of changes on the EC structure after execution of
the respective lines of Algorithm 2.

4 Applications in Cryptanalysis

At the core of algebraic cryptanalysis, as well as multivariate public-key cryp-
tography is the problem of solving a multivariate polynomial system, which is

Logical Cryptanalysis with WDSat 555

Algorithm 3. Function infer representative(ul, tv, F) : Function that
applies the second inference rule to the EC structure.
Input: Propositional variable ul, truth value tv, the propositional formula F
Output: The EC structure and the XG propagation stack are modified.

1: new r ← choose new representative(EC[ul]).
2: add new r to R.
3: EC[new r] ← EC[new r] ⊕ EC[ul].
4: reset vector(EC[ul]).
5: if tv = � then
6: flip constant(EC[ul]).
7: flip constant(EC[new r]).
8: end if
9: for each r in R do

10: if new r is set to 1 in EC[r] then
11: EC[r] ← EC[r] ⊕ EC[new r].
12: if all variable bits in EC[r] are set to 0 then
13: if the constant bit in EC[r] is set to 1 then
14: add r to XG propagation stack.
15: else
16: add ¬r to XG propagation stack.
17: end if
18: end if
19: end if
20: end for
21: set new r to 0 in EC[new r].
22: if all variable bits in EC[new r] are set to 0 then
23: if the constant bit in EC[new r] is set to 1 then
24: add new r to XG propagation stack.
25: else
26: add ¬new r to XG propagation stack.
27: end if
28: end if

considered to be NP-hard. The crucial parameters in evaluating the hardness
of a multivariate polynomial system are the number of variables, denoted by
n, the number of equations, denoted by m and their ratio. The case of m = n
is considered to be the hardest, whereas overdetermined systems are easier to
solve.

For our experimental work, we generate instances with parameters m = 2n
and with (pseudo)random solutions, where all coefficients are randomly gener-
ated following the uniform distribution. The process of generating one random
instance follows these steps: (i) Fix parameters m and n. (ii) Choose randomly
an n-bit solution vector. (iii) For each equation, choose randomly all coefficients
except the 0/1 constant, and then compute the constant according to the solu-
tion vector chosen in the previous step. This generation approach results in
dense polynomial systems, as each monomial has probability 1/2 to appear in
each equation. Heuristically, we expect most instances obtained in this way to

556 M. Trimoska et al.

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

(a) Before execution.

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(b) After line 3

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(c) After line 4

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(d) After line 6

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(e) After line 7

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(f) After line 11

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(g) After line 11

�/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(h) After line 21

Fig. 3. Setting x1 to true (x5 is chosen as the new representative). Stream of changes
on the EC structure after execution of the respective lines of Algorithm 3.

be hard and to have no underlying structure. For mq systems, currently the best
solving tools are algebraic tools, such as the Joux-Vitse hybrid algorithm [13]
and the libFes library [4] based on Bouillaguet et al.’s algorithm [5]. According
to experimental results reported in [13], WDSat does not outperform algebraic
solving tools for mq instances.

Complexity Analysis. The complexity analysis in this section concerns
mq systems, but it can be extended for systems of higher degree. Let v denote
the number of variables in a sat instance. Since WDSat is dpll-based, we
consider that the worst-case time complexity is, in general, O(2v). However, as
explained in Sect. 3, WDSat has an advantage over generic sat solvers when it
reads a formula in anf, as it decides to branch only on variables that are present
in the initial Boolean polynomial system. Thus, the complexity is O(2n) where
n ≤ v (with equality only in the case where the initial Boolean system is linear).
Moreover, for instances derived from the mq problem, we can make a more pre-
cise estimation. The following analysis concerns the WDSat xg-ext variant, as
this variant was found to be the most efficient for mq systems. Our complexity
analysis is based on estimating the dpll-tree level on which conflicts are found.

Logical Cryptanalysis with WDSat 557

Algorithm 4. Function set in xg(to set, F) : Function that sets a list of literals
to true.
Input: A list of literals that need to be set to true, the propositional formula F
Output: false if unsatisfiability is detected with unit propagation, true otherwise.

1: XG propagation stack ← to set.
2: while XG propagation stack is not empty do
3: l ← top element from XG propagation stack.
4: if assignment[l] �= true then
5: if assignment[l] = false then
6: return false.
7: end if
8: assignment[l] ← true.
9: ul ← get propositional variable(l).

10: tv ← get truth value(l).
11: if x1 ∈ R then
12: infer representative(ul, tv, F).
13: else
14: infer non representative(ul, tv, F).
15: end if
16: end if
17: end while
18: return true.

Recall that the EC structure in the xorgaussmodule of the WDSat solver
can be viewed as a matrix whose columns are all monomials and unary variables
in the system, and the lines are linear xor-clauses, similar to the Macaulay
matrix [16]. Thus, this matrix holds a linearized system that will have a unique
solution when the number of lines is equal to the number of columns. This is
true because the ge that is performed on each step ensures that all remaining
xor-clauses represent linearly independent equations. For an mq system, the
number of columns in the EC structure, supposing that all monomials have at
least one occurrence, is n(n+1)/2. It is well-known that overdetermined systems
where m ≥ n(n + 1)/2 are solvable in polynomial time. Let n′ be the number of
remaining variables in the system after the solving process has started. Then, at
level h of the binary search tree, we have that n′ = n − h. As per our previous
analysis, the system is solved or a conflict is met when m ≈ n′(n′ + 1)/2, i.e. at
level h ≈ n−√

2m. We conclude that the complexity of WDSat with xg-ext for
solving instances derived from the mq problem is

O(2n−√
2m). (3)

Even though this analysis is strongly linked to the ge, it does not necessarily
hold for other sat solvers that perform ge, such as CryptoMiniSat. If a solver
does not apply the xg-ext technique, it can not be guaranteed that the number
of remaining columns in the EC matrix with entries different from 0 will be
n′(n′ + 1)/2 on level h.

558 M. Trimoska et al.

Experimental Results. Table 4 shows a comparison between different
approaches for solving mq systems. These experiments were performed on a 2.40
GHz Intel Xeon E5-2640 processor, all results are an average of 100 runs and
running times are in seconds. The first four entries show the performance of non
xor-enabled sat solvers, namely MiniSat [8], Glucose [1], Kissat [3], which

Table 4. Comparing different approaches for solving the mq problem.

n m Input form #Vars #Clauses Solver Runtime #Conflicts

25 50 cnf 8301 33006 MiniSat 11525.24 40718489

Glucose 2384.99 10982657

Kissat 2118.52 6622284

Relaxed 3014.22 10353009

cnf-xor 325 920 CryptoMiniSat 5.6.5 2598.66 9806242

CryptoMiniSat 5.6.5 + ge 383.06 2007847

CryptoMiniSat 5.8.0 2870.81 9197978

CryptoMiniSat 5.8.0 + ge 594.48 2407635

WDSat 57.85 14177200

WDSat + ge 23.77 1046328

anf 25 50 WDSat + xg-ext 0.82 21140

30 60 cnf-xor 465 1365 CryptoMiniSat 5.6.5 + ge 28954.14 116013784

WDSat 2774.44 483437900

WDSat + ge 1223.16 34718415

anf 30 60 WDSat + xg-ext 17.71 379346

is the winner in the main track of the latest sat competition [15] in 2020, and
Relaxed LCMDCBDL newTech [24], the winner in the main track on sat-
isfiable instances. These solvers take as input a cnf and the number of variables
and clauses shown in the table are an average of the 100 instances for the cho-
sen parameters. We note that, for these specific instances, Kissat has the best
performance among the non xor-enabled solvers.

For the xor-enabled solvers, CryptoMiniSat and WDSat, we tested differ-
ent versions, specifically to see whether performing ge results in better running
times for solving instances derived from the mq problem. First, we conclude that
the best version of WDSat is the one with the xg-ext technique. Then, we can
see that CryptoMiniSat gives better results when the ge is turned on, how-
ever, CryptoMiniSat 5.8.0, which is the most recent version seems slower for
these instances than CryptoMiniSat 5.6.5. For this reason, we report results
for both versions. Note that in CryptoMiniSat 5.8.0 ge is used by default and
it is automatically disabled if the solver detects that it performs badly. This
version is denoted CryptoMiniSat 5.8.0 in Table 4, whereas CryptoMiniSat
5.8.0 + ge denotes experiments where CryptoMiniSat 5.8.0 is executed with
the option –autodisablegauss 0, which ensures that ge is used throughout the
entire solving process.

Logical Cryptanalysis with WDSat 559

For versions of the solvers that have good performances (namely approaches
with ge, plus the simplest version of WDSat) we were able to increase the
parameters and results are shown at the end of Table 4. We conclude that
WDSat outperforms all other solvers for these instances. Finally, to confirm
our complexity analysis for the xg-ext version of WDSat, we checked the level
at which conflicts occur, and found that it is either �n − √

2m� or �n − √
2m�,

with no exceptions.
Table 5 shows running time comparisons between WDSat xg-ext using the

original cnfmodule and WDSat xg-ext using the compressed cnfmodule that
we propose in Sect. 3.1. We conclude that running times are comparable and that
replacing the cnfmodule in WDSat by our proposed cnfmodule does not
impair the performance of the solver, while allowing us to solve higher degree
polynomial systems. For instance, we used the compressed cnfmodule to solve
systems of degree (d) four and the results are shown at the end of Table 5.

Table 5. Comparing WDSat’s original cnfmodule with our compressed cnfmodule
for solving multivariate polynomial systems.

d or-clause size n m #Vars cnf #Clauses cnf cnfmodule Runtime #Conflicts

2 3 25 50 325 920 Original 0.82 21140

Compressed 0.98

30 60 465 1365 Original 17.71 379346

Compressed 21.26

3 4 20 40 1350 5130 Original 30.65 57597

Compressed 30.54

25 50 2625 10100 Original 3413.09 2095437

Compressed 3529.71

4 5 15 30 1940 8960 Compressed 4.86 4333

18 36 4047 19023 Compressed 180.52 39204

5 Conclusion

In this paper, we gave implementation details of the WDSat solver and showed
that it has a broader range of cryptographic applications than the one it was
initially designed for. Several cryptographic attacks can be reduced to the prob-
lem of solving a Boolean multivariate polynomial system, and when the derived
systems are dense, experimental results suggest that WDSat gives the best per-
formance among state-of-the-art sat solvers. In addition, our novel cnfmodule
completes WDSat, so that it can tackle Boolean polynomial systems of any
degree. This paper does not alter the overall state-of-the-art, as for mq instances,
algebraic tools are still faster than xor -enabled SAT solvers.

560 M. Trimoska et al.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11–17, 2009, pp. 399–404 (2009)

2. Bettale, L., Faugère, J., Perret, L.: Hybrid approach for solving multivariate sys-
tems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)

3. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Balyo, T., Fro-
leyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT
Competition 2020 - Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

4. Bouillaguet, C.: LibFES-lite. https://github.com/cbouilla/libfes-lite (2016)
5. Bouillaguet, C., Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.: Fast

exhaustive search for quadratic systems in F2 on FPGAs. In: Lange, T., Lauter, K.,
Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 205–222. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43414-7 11

6. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

7. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

9. Faugère, J.C.: A new efficient algorithm for computing Gröbner basis (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

10. Galbraith, S.D., Gebregiyorgis, S.W.: Summation polynomial algorithms for elliptic
curves in characteristic two. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT
2014. LNCS, vol. 8885, pp. 409–427. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13039-2 24

11. Han, C.-S., Jiang, J.-H.R.: When Boolean satisfiability meets Gaussian elimination
in a simplex way. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 410–426. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31424-7 31

12. Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March eq: implement-
ing additional reasoning into an efficient look-ahead SAT solver. In: Hoos, H.H.,
Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg
(2005). https://doi.org/10.1007/11527695 26

13. Joux, A., Vitse, V.: A crossbred algorithm for solving Boolean polynomial sys-
tems. In: Kaczorowski, J., Pieprzyk, J., Pomyka�la, J. (eds.) NuTMiC 2017. LNCS,
vol. 10737, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76620-1 1

14. Laitinen, T., Junttila, T., Niemelä, I.: Conflict-driven XOR-clause learning. In:
Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 383–396.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8 29

15. van Maaren, H., Franco, J.: The International SAT Competition Web Page. http://
www.satcompetition.org/. Accessed 27 May 2020

https://github.com/cbouilla/libfes-lite
https://doi.org/10.1007/978-3-662-43414-7_11
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-13039-2_24
https://doi.org/10.1007/978-3-319-13039-2_24
https://doi.org/10.1007/978-3-642-31424-7_31
https://doi.org/10.1007/978-3-642-31424-7_31
https://doi.org/10.1007/11527695_26
https://doi.org/10.1007/978-3-319-76620-1_1
https://doi.org/10.1007/978-3-319-76620-1_1
https://doi.org/10.1007/978-3-642-31612-8_29
http://www.satcompetition.org/
http://www.satcompetition.org/

Logical Cryptanalysis with WDSat 561

16. Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge Tracts in
Mathematics and Mathematical Physics, University Press (1916). https://books.
google.fr/books?id=uA7vAAAAMAAJ

17. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Autom. Rea-
soning 24(1/2), 165–203 (2000). http://dblp.uni-trier.de/db/journals/jar/jar24.
html#MassacciM00

18. McDonald, C., Charnes, C., Pieprzyk, J.: An algebraic analysis of Trivium ciphers
based on the Boolean satisfiability problem. IACR Cryptol. ePrint Arch. 2007, 129
(2007). http://eprint.iacr.org/2007/129

19. Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: POS-10.
Pragmatics of SAT, Edinburgh, UK, July 10, 2010. EPiC Series in Computing, vol.
8, pp. 2–14. EasyChair (2010)

20. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and its
applications to approximate model counting. In: The Thirty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, 27 January–1 February 2019, pp. 1592–1599. AAAI Press (2019)

21. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

22. Trimoska, M., Ionica, S., Dequen, G.: Parity (XOR) reasoning for the index calculus
attack. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 774–790. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58475-7 45

23. Trimoska, M., Ionica, S., Dequen, G.: A SAT-based approach for index calculus
on binary elliptic curves. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020.
LNCS, vol. 12174, pp. 214–235. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51938-4 11

24. Zhang, X., Cai, S.: Relaxed backtracking with Rephasing. In: Balyo, T., Froleyks,
N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Compe-
tition 2020 - Solver and Benchmark Descriptions. Department of Computer Science
Report Series B, vol. B-2020-1, pp. 16–17. University of Helsinki (2020)

https://books.google.fr/books?id=uA7vAAAAMAAJ
https://books.google.fr/books?id=uA7vAAAAMAAJ
http://dblp.uni-trier.de/db/journals/jar/jar24.html#MassacciM00
http://dblp.uni-trier.de/db/journals/jar/jar24.html#MassacciM00
http://eprint.iacr.org/2007/129
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-030-58475-7_45
https://doi.org/10.1007/978-3-030-51938-4_11
https://doi.org/10.1007/978-3-030-51938-4_11

Author Index

Ansótegui, Carlos 1, 11

Barrett, Clark 377
Belle, Vaishak 134
Beyersdorff, Olaf 21, 47
Biere, Armin 171, 417
Blinkhorn, Joshua 30
Böhm, Benjamin 47
Brown, Kristopher 377

Cai, Shaowei 64, 332
Cao, Henrik 82
Cherif, Mohamed Sami 488
Chew, Leroy 98
Chung, Jonathan 359

de Colnet, Alexis 116
Dequen, Gilles 545
Dilkas, Paulius 134
Donovick, Caleb 377
Dudek, Jeffrey M. 152

Fleming, Noah 359
Fleury, Mathias 171
Friedrich, Tobias 188
Fröhlich, Andreas 417

Ganesh, Vijay 359
Ge, Cunjing 270
Guman, Allison 377

Habet, Djamal 488
Hermann, Miki 207
Heule, Marijn J. H. 216, 417
Hoos, Holger 332
Huang, Pei 225
Hundeshagen, Norbert 242

Ignatiev, Alexey 251, 280
Ionica, Sorina 545
Irfan, Ahmed 377

Jin, Jiwei 270

Kochemazov, Stepan 280
Kolokolova, Antonina 359
Kullmann, Oliver 299

Lange, Martin 242
Le Berre, Daniel 315
Lei, Zhendong 332
Lester, Martin Mariusz 349
Li, Chunxiao 359
Li, Rundong 225
Liu, Minghao 225
Liu, Zhenjun 417
Luo, Chuan 332
Lv, Yiqi 270

Ma, Feifei 225, 270
Mann, Makai 377
Manthey, Norbert 387
Marques-Silva, Joao 251, 280
Meel, Kuldeep S. 471
Mengel, Stefan 116, 399
Mora, Federico 453
Mu, Alice 359
Mukherjee, Soham 359

Nawrocki, Wojciech 417
Neumann, Frank 188

Ojeda, Jesús 1

Pacheco, Antonio 1
Peitl, Tomáš 30
Peng, Junqiang 436
Phan, Vu H. N. 152
Pimpalkhare, Nikhil 453
Polgreen, Elizabeth 453
Pon, Josep 1, 11
Prevot, Nicolas 471
Pulina, Luca 21
Py, Matthieu 488

564 Author Index

Reichl, Franz-Xaver 499
Rothenberger, Ralf 188

Salvia, Josep M. 1
Salzer, Gernot 207
Sanders, Peter 518
Schreiber, Dominik 518
Seidl, Martina 21
Sellmann, Meinolf 11
Seshia, Sanjit A. 453
Shukla, Ankit 21
Síč, Juraj 535
Siebert, Georg 242
Slivovsky, Friedrich 30, 399, 499
Soos, Mate 471
Strejček, Jan 535
Stuntz, Lindsey 377

Sutton, Andrew M. 188
Szeider, Stefan 499

Tierney, Kevin 11
Tinelli, Cesare 377
Torres, Eduard 1
Trimoska, Monika 545

Vardi, Moshe Y. 152
Vinyals, Marc 359

Wallon, Romain 315
Wilson, Amalee 377

Xiao, Mingyu 436

Zaikin, Oleg 299
Zhang, Jian 225, 270
Zhang, Xindi 64
Zohar, Yoni 377

	Preface
	Organization
	Contents
	OptiLog: A Framework for SAT-based Systems
	1 Introduction
	2 OptiLog Framework Architecture
	2.1 Formula Module
	2.2 SAT Solver Module
	2.3 PB Encoder Module
	2.4 Automatic Configuration (AC) Module
	2.5 Adding SAT Solvers to OptiLog Through iSAT Interface

	3 Example: The Linear MaxSAT Algorithm with OptiLog
	4 Conclusions and Future Work
	References

	PyDGGA: Distributed GGA for Automatic Configuration
	1 Introduction
	2 Preliminaries
	3 PyDGGA
	3.1 Distributed Architecture
	3.2 Simulation
	3.3 Scheduling and Canceling
	3.4 Instance Selection
	3.5 Elite Mini-Tournament
	3.6 Other Tool Enhancements

	4 Using PyDGGA
	5 Experiments with SAT
	6 Conclusions and Future Work
	References

	QBFFam: A Tool for Generating QBF Families from Proof Complexity
	1 Introduction
	2 Related Work
	3 Formula Families
	4 Case Study
	5 Conclusion
	References

	Davis and Putnam Meet Henkin: Solving DQBF with Resolution
	1 Introduction
	2 Preliminaries
	3 Davis-Putnam Resolution for H-Form DQBF
	3.1 Strategy Operations
	3.2 Definition of the Construction
	3.3 Correctness and Completeness
	3.4 Representing Strategies

	4 NEXP-completeness of CNF H-Form DQBF
	5 Conclusion
	References

	Lower Bounds for QCDCL via Formula Gauge
	1 Introduction
	2 Preliminaries
	3 QCDCL as a Formal Proof System
	4 Quasi Level-Ordered Proofs
	5 A Lower Bound Technique via Gauge
	6 Applications of the Lower Bound Technique
	7 Conclusion
	References

	Deep Cooperation of CDCL and Local Search for SAT
	1 Introduction
	2 Preliminaries
	2.1 Preliminary Definitions and Notations
	2.2 CDCL Solvers
	2.3 Local Search Solvers
	2.4 Experiment Preliminaries

	3 Exploring Promising Branches by Local Search
	4 Phase Resetting with Local Search Assignments
	5 Branching with Conflict Frequency in Local Search
	6 Experiments
	7 Related Works
	8 Conclusions
	References

	Hash-Based Preprocessing and Inprocessing Techniques in SAT Solvers
	1 Introduction
	2 Preliminaries
	3 Hash-Based Methods
	4 Probabilistic Analysis
	5 Evaluation
	6 Conclusions
	References

	Hardness and Optimality in QBF Proof Systems Modulo NP
	1 Introduction
	1.1 Organisation

	2 Preliminaries
	2.1 Proof Complexity
	2.2 Propositional Logic
	2.3 Quantified Boolean Formulas

	3 Simulations with Extension Variables
	4 Extended Q-Res Modulo NP
	5 Weaker QBF Systems
	6 Conclusion
	References

	Characterizing Tseitin-Formulas with Short Regular Resolution Refutations
	1 Introduction
	2 Preliminaries
	3 Reduction from Unsatisfiable to Satisfiable Formulas
	3.1 Well-Structured Branching Programs for SearchVertex(G,c)
	3.2 Constructing DNNF from Well-Structured Branching Programs

	4 Adversarial Rectangle Bounds
	5 Splitting Parity Constraints
	5.1 Rectangles Induce Sub-constraints for Tseitin-Formulas
	5.2 Vertex Splitting and Sub-constraints for Tseitin-Formulas
	5.3 Vertex Splitting in 3-Connected Graphs

	6 DNNF Lower Bounds for Tseitin-Formulas
	6.1 Reduction from Connected to 3-Connected Graphs
	6.2 Proof of the DNNF Lower Bound and of the Main Result

	7 Conclusion
	References

	Weighted Model Counting Without Parameter Variables
	1 Introduction
	2 Weighted Model Counting
	2.1 Bayesian Network Encodings

	3 Pseudo-Boolean Functions
	4 Pseudo-Boolean Projection
	4.1 From WMC to PBP
	4.2 Correctness Proofs

	5 Experimental Evaluation
	5.1 Setup
	5.2 Results

	6 Conclusion
	References

	ProCount: Weighted Projected Model Counting with Graded Project-Join Trees
	1 Introduction
	2 Preliminaries
	3 Using Project-Join Trees for Projected Model Counting
	3.1 Project-Join Trees for Model Counting
	3.2 Adaptations for Projected Model Counting

	4 Building Graded Project-Join Trees
	4.1 Reducing Free Project-Join Trees to Ungraded Project-Join Trees
	4.2 Reducing Graded Project-Join Trees to Free Project-Join Trees

	5 Experimental Evaluation
	5.1 Experiment 1: Comparing Planners
	5.2 Experiment 2: Comparing Execution Heuristics
	5.3 Experiment 3: Comparing Weighted Projected Model Counters

	6 Related Work
	7 Discussion
	References

	Efficient All-UIP Learned Clause Minimization
	1 Introduction
	2 Minimization
	3 Shrinking
	4 Minimizing and Shrinking
	5 Experiments
	6 Conclusion
	References

	Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily
	1 Introduction
	1.1 Planted k-SAT

	2 Non-uniform Planted k-SAT
	3 The Greedy Algorithm on Non-uniform Planted k-SAT
	4 Relationship Between Planted and Filtered Instances
	5 Experiments
	6 Conclusions
	References

	MCP: Capturing Big Data by Satisfiability (Tool Description)
	1 Introduction and Related Work
	2 Preliminaries
	3 Core of the MCP System
	3.1 Strategies for Computing the Closure
	3.2 Minimal Section
	3.3 Effective Learning of Formulas
	3.4 First Postprocessing: Redundancy Elimination
	3.5 Second Postprocessing: Set Cover
	3.6 Input Format and Action Possibilities
	3.7 Parallelization
	3.8 Invocation

	4 Prequel and Sequel Modules
	4.1 Data Binarization
	4.2 Formula Evaluation

	5 System Distribution and Examples
	6 Concluding Remarks
	References

	Chinese Remainder Encoding for Hamiltonian Cycles
	1 Introduction
	2 Preliminaries
	3 Encodings
	3.1 Degree Constraint
	3.2 Binary Adder
	3.3 Linear-Feedback Shift Register

	4 Chinese Remainder Encoding
	5 Results
	6 Conclusions
	References

	Efficient SAT-Based Minimal Model Generation Methods for Modal Logic S5
	1 Introduction
	2 Preliminaries
	2.1 Syntax and Semantics
	2.2 Satisfiability
	2.3 The Number of Possible Worlds
	2.4 S5-NF
	2.5 Complexity Analysis

	3 Methodology
	3.1 Querying SAT Iteratively
	3.2 Partial MaxSAT Model

	4 Improved Methods
	4.1 SIF Strategy
	4.2 Improved S5-K-SAT Model
	4.3 Improved PMS Model
	4.4 The Benefit of SIF

	5 Comparison
	6 Experimental Evaluation
	6.1 Benchmarks
	6.2 Environment
	6.3 Experimental Results

	7 Why Is a Minimal Model Small?
	8 Conclusion
	References

	DiMo – Discrete Modelling Using Propositional Logic
	1 Propositional Logic in Formal Modelling
	2 The DiMo Language and Tool
	3 Conclusion
	References

	SAT-Based Rigorous Explanations for Decision Lists
	1 Introduction
	2 Preliminaries
	2.1 Propositional Satisfiability
	2.2 Classification Problems, Decision Lists, and Explanations

	3 Explaining Decision Lists
	3.1 DL Explainability
	3.2 Explaining Arbitrary DLs with SAT

	4 Experimental Results
	5 Conclusions
	References

	Investigating the Existence of Costas Latin Squares via Satisfiability Testing
	1 Introduction
	2 Preliminaries
	3 Modeling
	4 Improvements in Modeling
	5 New Results and Experimental Evaluation
	5.1 New Results
	5.2 Experimental Evaluation

	6 Conclusion
	References

	Assessing Progress in SAT Solvers Through the Lens of Incremental SAT
	1 Introduction
	2 Preliminaries
	3 Motivation
	4 Setup and Its Rationale
	4.1 SAT Competition Main Track Benchmarks
	4.2 SAT Competition Incremental Track Benchmarks

	5 Experimental Evidence
	5.1 RC2 MaxSAT and Mostly Unsatisfiable Calls
	5.2 LSU MaxSAT and Mostly Satisfiable Calls
	5.3 MUS Extraction and Mixed Oracle Calls
	5.4 Final Remarks

	6 Conclusions
	References

	Projection Heuristics for Binary Branchings Between Sum and Product
	1 Introduction
	2 Branching Tuples and Distances
	2.1 Trees and Distances
	2.2 The Tau-Function and Bounds on Tree Sizes

	3 The Canonical Order of Branching Tuples
	4 Analysis and Numerics of Binary Tau
	5 On Binary Projections
	5.1 On Means in General
	5.2 Comparing the Various Means by Their Kernels

	6 Summary and Outlook
	References

	On Dedicated CDCL Strategies for PB Solvers
	1 Introduction
	2 Preliminaries
	3 Branching Heuristics
	3.1 VSIDS in PB Solvers
	3.2 Towards Better VSIDS for PB Solvers

	4 Learned Constraint Deletion
	4.1 Size-Based Measures
	4.2 LBD-Based Measures
	4.3 Deleting PB Constraints

	5 Restarts
	6 Experimental Results
	6.1 Solver Configurations
	6.2 Decision Problems
	6.3 Optimization Problems
	6.4 Discussion

	7 Conclusion
	References

	Efficient Local Search for Pseudo Boolean Optimization
	1 Introduction
	2 Preliminaries
	3 Main Ideas
	3.1 Constraint Weighting
	3.2 Scoring Function

	4 A Local Search Algorithm for PBO
	5 Experiments
	5.1 Minimum-Width Confidence Band Problem
	5.2 Wireless Sensor Network Optimization Problem
	5.3 Seating Arrangements Problem
	5.4 Results on Pseudo-Boolean Competition Benchmark

	6 Conclusions and Future Work
	References

	Scheduling Reach Mahjong Tournaments Using Pseudoboolean Constraints
	1 Problem Description
	1.1 Constraints

	2 Problem Encoding
	2.1 Monolithic Constraint Encoding
	2.2 Wind Balancing Constraint Encoding

	3 Evaluation
	4 Related Work and Conclusions
	A Benchmarks for Large Instances
	References

	On the Hierarchical Community Structure of Practical Boolean Formulas
	1 Introduction
	2 Preliminaries
	3 Research Methodology
	4 Hierarchical Community Structure
	5 Empirical Results
	5.1 HCS-based Category Classification of Boolean Formulas
	5.2 HCS-based Empirical Hardness Model
	5.3 HCS Parameter Value Ranges for Industrial/Random Instances
	5.4 Scaling Experiments with HCS Parameters
	5.5 Discussion of Empirical Results

	6 Theoretical Results
	7 Related Work
	8 Conclusions and Future Work
	References

	Smt-Switch: A Solver-Agnostic C++ API for SMT Solving
	1 Introduction
	2 Design
	2.1 Interface
	2.2 Additional Features

	3 Example
	4 Related Work
	5 Evaluation
	6 Conclusion
	References

	The MergeSat Solver
	1 Introduction
	2 Recent SAT Competitions
	2.1 Benchmark Selection
	2.2 Winning Solvers and Top Solvers
	2.3 SAT Solver Evolution

	3 Development Model of MergeSat
	3.1 Supported Features and Selected Techniques
	3.2 Incorporating Patches
	3.3 Provided Implementation Improvements
	3.4 Development Environment

	4 Tool Comparison
	5 Conclusion and Future Work
	References

	Proof Complexity of Symbolic QBF Reasoning
	1 Introduction
	2 Preliminaries
	2.1 Propositional Logic and Quantified Boolean Formulas
	2.2 Graphs and Pathwidth of Formulas
	2.3 OBDD
	2.4 Combinatorial Rectangles

	3 Symbolic QBF Proof Systems
	4 Relation to Other Proof Systems
	5 A Lower Bound on OBDD Refutations
	5.1 From OBDD Proofs to Rectangle Decision Lists
	5.2 From Rectangle Decision Lists to Communication Complexity
	5.3 A Function with only Small Monochromatic Rectangles
	5.4 Putting It All Together

	6 Conclusion
	References

	XOR Local Search for Boolean Brent Equations
	1 Introduction
	2 XOR Constraints
	3 Extracting XORs
	4 Implementation
	5 Experiments
	6 Conclusion
	References

	A Fast Algorithm for SAT in Terms of Formula Length
	1 Introduction
	2 Preliminaries
	3 Branch-and-Search and Measure-and-Conquer
	4 The Algorithm
	4.1 Reduction Rules
	4.2 Branching Rules and the Algorithm

	5 Framework of the Analysis
	5.1 Some Lower Bounds

	6 Step Analysis
	6.1 Step 2
	6.2 Step 3
	6.3 Step 4
	6.4 Step 5
	6.5 Step 6
	6.6 Step 7
	6.7 Step 8
	6.8 Step 9
	6.9 Step 10
	6.10 Step 11

	7 The Final Result
	8 Concluding Remarks
	References

	MedleySolver: Online SMT Algorithm Selection
	1 Introduction and Motivation
	2 Related Work
	3 Problem Statement and Approach Overview
	4 Dynamic Solver Selection
	4.1 Thompson Sampling
	4.2 Features for Contextual Approaches
	4.3 k-Nearest-Neighbor

	5 Runtime Prediction
	6 Empirical Evaluation
	6.1 RQ1: Comparison with Individual Solvers
	6.2 RQ2: Comparison with State-of-the-Art
	6.3 RQ3: Impact of Individual Components
	6.4 Threats to Validity

	7 Conclusions and Future Work
	References

	Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving
	1 Introduction
	2 Definitions
	3 Related Work
	4 GPUShareSat: GPU-Based Parallel SAT Solving
	4.1 Usefulness of Clauses
	4.2 Assignment Trigger Check
	4.3 Pooling-Based Efficient Trigger Check
	4.4 GPU Implementation

	5 Evaluation
	6 Conclusion
	References

	A Proof Builder for Max-SAT
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Resolution Refutations in SAT
	2.3 Proofs for Max-SAT

	3 Related Work
	4 MS-Builder
	5 MS-Checker
	6 Experiments
	7 Conclusion
	References

	Certified DQBF Solving by Definition Extraction
	1 Introduction
	2 Preliminaries
	3 Solving DQBF by Definition Extraction
	3.1 A Two-Phase Algorithm
	3.2 Combining Definition Extraction with CEGIS

	4 Experiments
	4.1 Performance on Standard Benchmark Sets
	4.2 Distribution of Defined Existential Variables
	4.3 Solution Validation

	5 Related Work
	6 Conclusion
	References

	Scalable SAT Solving in the Cloud
	1 Introduction
	2 Related Work
	3 Malleable Environment
	4 The Mallob SAT Engine
	4.1 Succinct Clause Exchange
	4.2 Malleable Solver Backend
	4.3 Performance Improvements

	5 Evaluation
	5.1 Selection of Benchmarks
	5.2 Standalone SAT Solving Performance
	5.3 Malleable Job Scheduling

	6 Conclusion
	References

	DQBDD: An Efficient BDD-Based DQBF Solver
	1 Introduction
	2 Approach
	3 Implementation and Usage
	4 Experimental Comparison
	5 Conclusion
	References

	Logical Cryptanalysis with WDSat
	1 Introduction
	2 Background
	3 Implementation Details
	3.1 Three Reasoning Modules

	4 Applications in Cryptanalysis
	5 Conclusion
	References

	Author Index

