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Preface

This volume contains the papers presented at the 24th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2021), held during July 5-9,
2021, in Barcelona. Because of the COVID-19 pandemic, SAT 2021 followed a hybrid
format, with both in-person and virtual participation options.

The SAT conference is the premier annual meeting for researchers focusing on the
theory and applications of the propositional satisfiability problem, broadly construed.
Aside from plain propositional satisfiability, the scope of the meeting includes Boolean
optimization, including MaxSAT and pseudo-Boolean (PB) constraints, quantified
Boolean formulas (QBF), satisfiability modulo theories (SMT), and constraint pro-
gramming (CP) for problems with clear connections to Boolean reasoning.

Many challenging combinatorial problems can be tackled using SAT-based tech-
niques, including problems that arise in formal verification, artificial intelligence,
operations research, computational biology, cryptology, data mining, machine learning,
mathematics, etc. Indeed, the theoretical and practical advances in SAT research over
the past 25 years have contributed to making SAT technology an indispensable tool in
various domains.

SAT 2021 welcomed scientific contributions addressing different aspects of SAT
interpreted in a broad sense, including theoretical advances (such as exact algorithms,
proof complexity, and other complexity issues), practical search algorithms, knowledge
compilation, implementation-level details of SAT solvers and SAT-based systems,
problem encodings and reformulations, and applications (including both novel appli-
cation domains and improvements to existing approaches), as well as case studies and
reports on findings based on rigorous experimentation.

SAT 2021 received 73 submissions, comprising 44 long papers, 18 short papers, and
11 tool papers. At least three Program Committee members reviewed each paper. The
reviewing process included an author response period, during which the authors were
given the opportunity to respond to the initial reviews for their submissions. To reach a
final decision, a Program Committee discussion period followed the author response
period. External reviewers supporting the Program Committee were also invited to
participate directly in the discussion for the papers they reviewed. This year, most
submissions received a meta-review, summarizing the discussion that occurred after the
author response and an explanation of the final recommendation. In the end, the
Program Committee decided to accept a total of 37 papers: 25 long, 3 short, and 9 tool
papers.

The Program Committee singled out the following two submissions for the Best
Paper Award and the Best Student Paper Award, respectively:

— Shaowei Cai and Xindi Zhang: “Deep Cooperation of CDCL and Local Search for
SAT”.

— Alexis de Colnet and Stefan Mengel: “Characterizing Tseitin-Formulas with Short
Regular Resolution Refutations”.
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In addition to presentations on the accepted papers, the scientific program of SAT
included two invited talks by the following speakers:

— Carlos Ansotegui, University of Lleida, Spain.
— Adnan Darwiche, University of California, Los Angeles (UCLA), USA.

The conference hosted various associated events. In particular, the following three
workshops, affiliated with SAT-2021, were held July 5-6, 2021:

— International Workshop on Model Counting and Sampling (MCW 2021), organized
by Johannes K. Fichte, Kuldeep Meel, Markus Hecher, and Mate Soos.

— Pragmatics of SAT Workshop (PoS 2021), organized by Matti Jarvisalo and Daniel
Le Berre.

— Quantified Boolean Formulas and Beyond Workshop (QBF 2021), organized by
Hubie Chen, Florian Lonsing, Martina Seidl, and Friedrich Slivovsky.

The results of several competitive events were also announced at SAT 2021:

— EDA Challenge 2021, organized by Armin Biere, Chu-Min Li, Felip Manya, and
Zhipeng Lii.

— MaxSAT Evaluation 2021, organized by Fahiem Bacchus, Jeremias Berg, Matti
Jarvisalo, and Ruben Martins.

— Model Counting Competition 2021 (MC 2021), organized by Johannes K. Fichte
and Markus Hecher.

— SAT Competition 2021, organized by Tomas Balyo, Nils Froleyks, Markus Iser,
Marijn Heule, Matti Jarvisalo, and Martin Suda.

We thank everyone who contributed to making SAT 2021 a success. In particular,
we thank the Publicity Chair, Jesus Giraldez; the Workshop Chair, Djamal Habet; the
Local Arrangements Chairs, Josep Argelich and Jordi Planes; and all the organizers
of the SAT affiliated workshops and competitions.

We are indebted to the Program Committee members and the external reviewers,
who dedicated their time to review and evaluate the submissions to the conference. We
thank the authors of all submitted papers for their contributions, the SAT Association
for their guidance and support in organizing the conference, and the EasyChair con-
ference management system for facilitating the submission and selection of papers as
well as the assembly of these proceedings.

We gratefully thank the sponsors of SAT 2021: The Artificial Intelligence journal
and CAS Software AC for providing travel support to students attending the confer-
ence, Springer for sponsoring the best paper awards, and the University of Picardie
Jules Verne and its Modelling, Information and Systems (MIS) laboratory, the Spanish
National Research Council (CSIC) and its Artificial Intelligence Research Institute
(IITA), and the Spanish Network on Satisfiability and Constraint Programming for
financial and organizational support. Finally, we thank Huawei for its support to SAT
2021.

May 2021 Chu-Min Li
Felip Manya
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OptiLog: A Framework for SAT-based
Systems

Carlos Ansétegui®, Jesis Ojeda®™) | Antonio Pacheco™), Josep Pon®),

Josep M. Salvia®) | and Eduard Torres®)

Logic and Optimization Group (LOG), University of Lleida, Lleida, Spain
{carlos.ansotegui, jesus.ojedacontreras, josep.pon,eduard.torres}@udl.cat,
jpacheco@alumnes.udl.cat

Abstract. We present Optilog, a new Python framework for rapid pro-
totyping of SAT-based systems. OptiLog allows to use and integrate SAT
solvers currently developed in C/C++ just by implementing the iSAT
C++ interface. It also provides a Python binding to the PBLib C++
toolkit for encoding Pseudo Boolean and Cardinality constraints. Finally,
it leverages the power of automatic configurators by allowing to easily
create configuration scenarios including multiple solvers and encoders.

1 Introduction

Python [33] has emerged as one of the most preferred programming languages
for rapid prototyping of applications because of its straightforward syntax and
the great amount of established libraries that provide common functionality for
researchers to readily use. We can find several of these libraries into diverse Arti-
ficial Intelligence disciplines like, for example, Numpy [20], Pandas [29], scikit-
learn [31], Pytorch [30] or Keras [12].

In terms of performance, the core of the critical components of these sys-
tems is implemented with more efficient languages such as C++, although their
interconnection is commonly materialized through Python.

Within the area of Constraint Programming, Python has also become quite
popular. CPLEX [23], Gurobi [19], OR-Tools [18], COIN-OR [13], SCIP [17], Z3
[14] and many others have Python bindings. In particular, in the SAT community
there have also been several contributions. PySAT [24] was the first framework,
to our best knowledge, to provide Python bindings for several SAT solvers.

Recently, there have been other contributions that can be queried from
Python such as SAT Heritage [4], intended to serve as an archive and to easily
compile and run all SAT solvers that have been released so far, or cnfgen [25],
that produces hard SAT benchmarks coming from research in Proof Complexity.

Supported by MINECO-FEDER TASSAT3 (TIN2016-76573-C2-2-P), MICINNs
PROOFS (PID2019-109137GB-C21) and FPU fellowship (FPU18/02929).
© Springer Nature Switzerland AG 2021

C.-M. Li and F. Manya (Eds.): SAT 2021, LNCS 12831, pp. 1-10, 2021.
https://doi.org/10.1007/978-3-030-80223-3_1
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Our contribution in OptiLog' is two-fold. First, we provide a Python binding
[28] for the PBLib [32] that allows to encode Pseudo Boolean (PB) constraints
into SAT. This binding is also currently integrated into PySAT.

Second, we take a step further, easing both the integration of new C++ SAT
solvers in OptiLog and their end usage into practical environments.

We isolate the development of C++ SAT solvers so that by implementing
the iISAT C++ interface OptiLog gently incorporates the new SAT solver. In
contrast, PySAT requires the user to write some ad-hoc additional Python code
plus the Python bindings. The iSAT interface is inspired by the C interface
TPASIR (Reentrant Incremental Sat solver API, in reverse) [7] and the PySAT
interface.

To optimize the end-SAT-based system, the end-user is commonly forced to
play by hand with a non-negligible amount of adjustable parameters coming
from the solvers or encoders it uses. Automatic configurators should have to be
used in this context. Unfortunately, it takes a while to become familiar on how
to create the configuration of the scenarios, which is usually a source of countless
bugs. OptiLog get rids of all this complexity and automatically generates all the
pieces needed for the configuration, delivering a ready-to-tune application.

There have been a number of methods developed for tuning parameters auto-
matically, such as CALIBRA [1], ParamlILS [22], I/F-Race [11], SMAC [21] and
GGA [2,3]. OptiLog currently provides support for SMAC and GGA.

The paper is structured as follows: In Sect. 2 we present the OptiLog frame-
work with detail about the most important modules implemented, and how a
new SAT solver can be integrated into it. Section 3 will present a comprehen-
sive example of the framework. Finally, we will end with Sect. 4, providing some
closing thoughts and future work.

2 OptiLog Framework Architecture

The general architecture of OptiLog is described in Fig. 1. Four main modules
compose the end-user OptiLog API, which we briefly describe in the follow-
ing subsections: the Formula module, the SAT Solver module, the PB Encoder
module and the Automatic Configuration (AC) module. Additionally, new C++
SAT solvers can be integrated into OptiLog by implementing the C++ iSAT
interface. Full details can be found in the OptiLog manual accessible from [27].

2.1 Formula Module

The Formula module is designed to ease the implementation and manipulation of
boolean formulas. As such, two specific classes are created: CNF (for the typical
Conjunctive Normal Form) and WCNF (for the Weigthed CNF version). These

L Opti stands for Optimization and LOG stands for Logic Optimization Group at UdL
(http://ulog.udl.cat/).
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OptiLog
End-user OptiLog API Solver Developer
Formula SAT Solver o iSAT C++
SAT-based Module Module Interface
System
PB Encoder
( Module J [AC Module] [ SAT Solver]

Fig. 1. OptiLog’s architecture.

Formulas have the common functionality of setting new variables, adding clauses
and exporting to the DIMACS file format.

CNF': The CNF class provides the traditional representation of a Conjunctive
Normal Form fomula, a conjunction of clauses defined as disjunctions of literals.
In code, clauses are provided as lists of integers.

WCNPF: The WCNF class provides the interface for partial and weighted partial
CNF formulas. In this case, clauses can be added with a weight. If this is the
case, these clauses are considered soft. Hard clauses are added without weight
or by specifying the weight INF_WEIGHT that represents co.

As an example, CNF Formula (x1 V x2) A (23 V —22) and WCNF Formula
(z1 V x9,1) A (23 V 9, 00) would be implemented as follows

from optilog.sat import CNF, WCNF
cnf = CNF ()
cnf.add_clauses([[1, 21, [3, -211)

wenf = WCNF ()
wenf.add_clause([1, 2], weight=1)
wenf.add_clause([3, -2]1) # equivalent to weight=WCNF.INF_WEIGHT

O UL W N

Aside from the typical formula manipulation methods, OptiLog pro-
vides additional methods. In particular, it provides explicit functions
load_{cnf |wenf} from the optilog.loaders Python module. These functions
allow to load the formula directly into a SAT solver.

2.2 SAT Solver Module

OptiLog is inspired on the interfaces of IPASIR [7] and PySAT. The behaviour
of some functions can slightly deviate, see the manual [27] for details. The solvers
currently integrated in OptiLog are: Cadical [10], Glucose 4.1 and Glucose 3.0
[5], Picosat [8], Minisat [15] and Lingeling 18 [9]. Not all the solvers implement
all the methods in the iSAT API, the only one that fully does is a modified
version of Glucose 4.1. Here, we briefly describe some of the additional methods
that we incorporated into the iSAT API and that are currently supported by
the modified version of Glucose 4.1 delivered with the OptiLog tool.
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solver.set & solver.get: Used to set and get the value of parameters that
modify the behaviour of the solver.

solver.set_decision_var: Used to set whether the input variable can be used
as a decision variable.

solver.set_static_heuristic: Used to set a static decision heuristic.

solver.solve_hard_limited: Solves the current formula with a strict budget in
terms of conflicts or propagations.

solver.learnt_clauses: This method returns the learnt clauses that are cur-
rently in the solver including learnt unit clauses.

2.3 PB Encoder Module

The PB Encoder module currently integrates the Python binding for PBLib we
developed for this project, which provides the access to PB and Card encoders,
some of them incremental. It also incorporates the Totalizer incremental encoder
implemented in Python in PySAT. The user can transparently create PB/Card
constraints that are automatically encoded through PBLib and PySAT Card
functions into a set of SAT clauses. If all coefficients (weights) in the constraint
are equal to 1, Card constraint encoders are applied.

1 from optilog.sat.pbencoder import IncrementalEncoder

2 L =11,2,-3]

3 W= [4,3,3]

4 encoder, max_var, C = IncrementalEncoder.init (

5 lits=L, bound=7, weights=W, max_var=3, encoding="segcounter")

Lines 2-5 in the above example show how to encode the PB constraint 4 -z + 3 -
y+3-—z < 7 through an incremental encoder into SAT using OptiLog. Currently,
we only support PB constraints with positive coefficients?.

Function IncrementalEncoder.init takes as input the list of literals L, the
bound, the list of weights W, the maximum variable and the encoding to be
used. It returns an encoder object that can be used to refine the upper bound,
the maximum variable used by the encoder and the list of clauses that encode
the constraint C. In our example, to refine the upper bound to < 6 we can use
the command max_var, C = encoder.extend(6), which returns the clauses C
to force the new upper bound and the maximum variable used in C.

The possible encodings supported in PBLib for incremental encoding are bdd
and card for cardinality constraints and seqcounter and adder for PB. PySAT
Card supports totalizer for cardinality constraints. All these encodings are avail-
able in IncrementalEncoder through the parameter encoding in the init method.
By default PBLib automatically overrides the user selected encoding when it
detects it can generate too many clauses. In contrast, OptiLog always applies
the encoding selected by the user.

2 We will add in short a normalization step for general PB constraints.
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2.4 Automatic Configuration (AC) Module

The AC module provides an API to generate configuration scenarios for AC
tools. An AC tool searches for a setting, to the configurable parameters of a
target function (algorithm), that optimizes some objective function or run time
on a set of instances (data) under different seeds. We present the module features:

1 import random

2 from optilog.autocfg import ac, Bool, Int, Real, Categorical, CfgCall
3 from optilog.autocfg.configurators import SMACConfigurator

4 @ac

5 def funcl/(

6 x, data, pl: Bool() = True, p2: Real(-1.3, 2) = 0,

7 p3: Int(-5, 5) = 0, pd4: Categorical("A", "B", "C") = "A"):
8

9 @ac

10 def func2(

11 data, seed, 1_funcl: CfgCall(funcl), n: Int(1l, 10) = 1):
12 random. seed (seed)

13 res = n * 1_funcl (random.randint (20,30), data)

14 print ("Result:", res)

15 return res

16

17 configurator = SMACConfigurator (

18 func2, global_cfgcalls=[func2], runsolver_path='./runsolver’,
19 input_data=['pathl’, ’'path2’, ‘path3’],

20 data_kwarg='data’, seed_kwarg='seed’,

21 run_obj='quality’, cutoff=30, time_limit_sec=43200,

22 quality_regex=r""Result: (\d+)S$")

23 configurator.generate_scenario(’./scenario’)

Configurable Parameters: Leveraging Python’s type hints we can specify the
type, domain and default value of the parameters to configure. For example, the
AC module will recognize four configurable parameters in func! (pl,p2,p3,p4),
where parameter p3 is of type optilog.autocfg.Int, and will collect the anno-
tated information for creating the configuration scenario.

Configurable Functions: The AC module allows to gather the configurable
parameters of a configurable function (decorated with @ac). All calls to the
same global CfgCall function will share the same values for the configurable
parameters, while calls to local CfgCall functions can have different values. In
the example, func2 is global while [_funcl is a local call to funcl.

Configuration Scenario: class SMACConfigurator is used to automatically
generate the scenario for the SMAC configurator. It receives as parameters: (1.
18) the entry point func2 (i.e., the function that SMAC will call), the list of
global configurable functions [func2] (notice that in our example func2 is itself
configurable), the path to the runsolver tool, (1. 19) the list of input data (which
is printed, item by item, to a text file and used by SMAC as the description of
the set of instances where the function to be tuned will be evaluated), (1. 20) the
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parameters (data_kwarg, seed_kwarg) that will use the AC tool to send the data
and seed to the entry point on which the current configuration will be evaluated,
(1. 21) the objective is set to quality in order to minimize the result of the entry
point (runtime is another possible objective), a set of parameters related to the
automatic configuration process (cutoff, time_limit_sec), and (1. 22) the regular
expression to extract the quality reported to the AC tool.

2.5 Adding SAT Solvers to OptiLog Through iSAT Interface

OptiLog automatically generates bindings to C++ SAT solvers that implement
the iISAT abstract interface. In order to integrate a new SAT solver, the solver
source code has to be included into the compilation pipeline and an implemen-
tation to the abstract iSAT interface has to be provided.

The Extern/sat directory contains the source code of the SAT solver. For
example, in Extern/sat/glucose4l we find the source code for Glucose 4.1.

The Module/sat directory contains the implementation for the iSAT inter-
face. In particular, the files solver.{cpp|hpp} define the implementation of the
iSAT abstract interface. These files contain macros that will be used to automat-
ically generate Python bindings. In the Glucose 4.1 example, the implementation
of the interface is located in Module/sat/glucose4l.

All the process described above is automatically performed by executing the
new_solver script provided by OptiLog.

3 Example: The Linear MaxSAT Algorithm with OptiLog

SAT-based MaxSAT algorithms reformulate the MaxSAT optimization problem
into a sequence of SAT decision problems. Each SAT instance of the sequence
encodes whether there exists an assignment with a cost < k, encoded as a PB or
Card constraint depending on the weights of the soft constraints. SAT instances
with a k less than the optimal cost are unsatisfiable, the others being satisfi-
able. In particular, the subclass of model-guided algorithms iteratively refine
(decrease) the upper bound and guide the search with satisfying assignments
(models) obtained from satisfiable SAT instances.

Left hand side of Program 1 shows an implementation of the Linear algorithm
[16,26], a SAT-based model-guided algorithm for Weighted MaxSAT formulas,
with OptiLog. The linear function takes as parameters the path to the Weighted
MaxSAT instance in DIMACS format and the seed (lines 7, 8). Lines 10-12 create
the incremental SAT solver, set its seed and load the hard clauses directly into
the solver while the soft clauses are stored in the WCNF formula f.

Lines 15-19 make a relaxed copy of the soft clauses (adding a new blocking
variable per clause) that is added to the SAT solver. Line 22 creates an incre-
mental PB constraint on the blocking variables B that uses as coefficients W,
the weights of the soft constraints, and the initial upper bound ub as the inde-
pendent term. It retrieves the set of initial SAT clauses C' for the PB encoding
(added to the SAT solver in line 24), the maz_var auxiliary variable used in



OptiLog: A Framework for SAT-based Systems

‘ordurexs uoOIRINGYUOD

DIYRTIOINR 9} UT PAIJIIO oIR [UdM™PpDO] PUR L2Podus]puawaLou] 10y syrodut oy, *(1Y3L1) UOIYRINSYUOD JIjeTONE ST S[CRUS 0}
uorjejuatLIdUI aures 1) 09 paiinbal suoryesyrpow pue (1391) 8o rd( YIim pajustus[dut WiLIo3[e I SXRIN Iesul] T ureisol

qn uanisx

(qn *,0,)3utad
(() Tepow"s)3soo 3 = qn
ianxl ST Sa1 IT
()oATOS*S = sax
(D) sesneTd ppe-s
(T - gn)pusixs I2podus = D ‘JIeA” Xew
0 < gn pue aniJ ST S9I STTUYM

(D) sesne1d ppe-s

(burtpoous ‘A Xew ‘M ‘gn ‘g)3TuT’
ISPOOUZTRIUSWSIOUT = D ‘IJIeA” Xeuw ‘ISpPodus
()a3ybtem dol 3 ‘eniy = gn ‘sax

[(m] =+ M
[xean"xew] =+ g
([1ea”xew] + D)asneld ppe-'s
T =+ JIeA” xeu
:1S9SNeTd 3JOS°J UT O ‘M XOF

(yxea xew- 3 ‘[] ‘[] = Iea xew ‘M ‘g
(s ‘eduelsuTt)Juom peoTl = J

(po9s=pe9as)uj I9ATOS ITUT = S

,3seq, = (,Is3unodbes, ’,I9ppe, ‘,3s9q,)rROTII0H23PR) :HUTIPODUSD
‘(ITpesoonThb 389b6) [TRDHID UJ ISATOS JTUT

‘poss

‘20UR]}SUT

) Iesut] FOP

ITposoonTh 386 3xodwt jes HIyoojne-HoTrido woxg
TTeD6ID ‘TPOTIOL23B) ‘OP 3aodwr HJdoojne-HoTTido woxy

ve

qn uanjex e
€e

(qn ‘,0,)3utad 149

(()Tepow-s)3son 3 = qn 1€

:oniIl ST SoI 3IT 0¢

()oATOS's = sax 6%

(D) sesnero ppe-s 8¢C

(T - gn)puslxXe ISPOdUS = D 'ITeA” Xew 1T
10 < gn pue oNIJ ST S9I STTUM 9z

14

(D) sosne1d ppe-s 74

(rea™xew ‘M ‘qn ‘g)3TuT” €C
ISPOOUZTRIUSWSIOUT = D ‘JIeA” Xeu 'ISpodus 44
()aybTem dol 3 ‘eniL = gn ’‘sax 12

0c

[Mm] =+ M 61

[xea”™xew] =+ d QT

([xeA™xew] + D)9sSnNeld ppe’s LT

T =+ JIeA” Xeu 9T

:s9sne(o 3JOS°J UT O ‘M IOF qT

18

()xea™xew"3 ‘[] ‘[] = xea xew ‘M ‘g T

(s ‘®doue]lsuT)Judm pPeoT = J 1

(poos ' ,poos,)39s"s 1T

() Tpesoontn = s ot

6

poss 9
‘90Ue]SUT L
)IeSUTT FOP 9
g

14

Juom peoT 3xodwt sispeol bHoTrido woxz ¢
I9podoudTejusweIoul 3IodwT Iopoodusqd-ies HoTTido woxF g
IposoonTo 3xodwt jes- HoTTido woxy |




8 C. Ansétegui et al.

the encoding and the object encoder through which we will be able to generate
additional SAT clauses to further restrict the constraint (see line 27).

Lines 26-32 conform the main loop of the algorithm. The new clauses to
extend the incremental PB constraints are generated and added (lines 27,28).
Line 29 calls the SAT solver and, if the current SAT instance is satisfiable, the
model is retrieved using its cost to refine the upper bound (lines 30,31).

Right hand side of Program 1 shows how the definition of the linear function
has to be changed so that it can be automatically configured. There are, in
particular, two main configurable aspects: the SAT solver and the PB encoder
to be used plus their respective adjustable parameters.

Instead of initializing the SAT solver in line 10, we use the configurable
function get_glucose41 that returns a configured Glucose1 solver>.

The other aspect to be configured is the incremental encoder that we are
using. We add a configurable categorical parameter called encoding (line 8),
which is passed to the init method of IncrementalEncoder in line 22.

The following lines show how the SMACConfigurator object is created. Line
7 is used to report the quality to the AC tool and line 8 is used to specify the
default quality when there is a crash such as a system timeout or memout.

1 configurator = SMACConfigurator (

2 linear, runsolver_path="./runsolver", global_cfgcalls=[linear],
3 input_data=["instl.wcnf", "inst2.wcnf", ..., "instN.wcnf"],

4 data_kwarg="instance", seed_kwarg="seed",

5 cutoff=30, memory_ limit=6 =* 1024,

6 wallclock_ 1imit=43200, run_obj="quality",

7 quality regex=r""o (\d+)s$",

8 cost_for_crash=(2 << 64) - 1, # Max sum WCNF weights

9 )

10 configurator.generate_scenario("./scenario")

We experimented with the configurable version of the Linear algorithm on
a computer cluster with 2.1 GHz cores. As benchmarks, we used the set of 600
instances from the complete weighted track of the MaxSAT 2020 evaluation [6].

We executed SMAC in parallel with 32 runs (one of them with the default
configuration of Glucose4l and PB encoder). In 5 out of the 32 runs, SMAC
was able to find a better configuration than the default. These 5 runs provide
suboptimal values for 446, 445, 443, 443 and 424 instances, while the default
only on 388. Curiously, 2 out of the 5 best runs (443, 424) set the PB encoder
to adder (default value is best). The rest of the changes are applied on the
Glucose41 parameters. This is a sign of the benefit of using AC tools even on
systems that combine several pieces that already have good default parameters.

3 A SAT solver developer can make his solver configurable providing a json describing
all the parameters with their domain and default value. More details can be consulted
in the online documentation [27].
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4 Conclusions and Future Work

The SAT community has generated amazing tools that we need to make more
accessible to our and other communities. OptiLog contributes in this sense, eas-
ing the access to solvers and encoders, providing the iSAT interface that could
become the basis for an standard SAT API., and the AC module that can poten-
tially be applied to tune any Python function.

As future work, we will add other solvers, like MaxSAT or PB solvers, adding
support for more complex compilation flags. We will also provide support for call-
back functions as in Gurobi [19] to be applied on critical points: restarts, pick lit-
eral decision, conflict analysis, etc. Finally, we will integrate crafted and random
instance generators and allow dynamic instance downloading from repositories.
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Abstract. We present PYDGGA, a Python tool that implements a
distributed version of the automatic algorithm configurator GGA, which
is a specialized genetic algorithm to find high quality parameters for
solvers and algorithms. PYDGGA implements GGA using an event-
driven architecture and runs a simulation of future generations of the
genetic algorithm to maximize the usage of the available computing
resources. Overall, PYDGGA offers a friendly interface to deploy elastic
distributed AC scenarios on shared high-performance computing clus-
ters.

Keywords: Automatic algorithm configuration - Satisfiability

1 Introduction

Automatic algorithm configuration (AAC) methods have become a critical tool
for solver developers and users to squeeze every last drop of performance out of
their approaches, as well as customize algorithms to perform well on a particular
set of instances. AAC tools do this by trying out different parameter settings
for solvers and returning the one that performs the best according to some
objective function, e.g., solver runtime or heuristic quality. Parameters range in
scope and can, for example, determine the type of heuristic an algorithm should
use, modify a learning rate, or decide whether to perform random restarts or not.
Regardless of what the parameters actually are, setting them to a specific value
can dramatically affect an algorithm’s overall ability to solve problem instances
of a particular type. However, finding suitable parameters is difficult and time
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consuming because each evaluation of the algorithm being configured is very
computationally expensive.

Setting parameters automatically dramatically reduces manual efforts and
can result in orders of magnitude improvements in performance. Over the past
decade there have been several methods developed for tuning parameters auto-
matically, such as CALIBRA [1], ParamILS [13], I/F-Race [6], SMAC [12],
ReACT/ReACTR [9,10] and CPPL [8]. We focus on the algorithm configurator
GGA [3,4], which uses a gender-based genetic algorithm to search through the
space of configurations on a set of instances to assign good values to parameters.

While previous work has explored parallel algorithm configuration in the
context of ParamILS, SMAC [11] and grid search [18], we want to leverage the
advantage of population-based approaches followed by GGA, and the inherent
potential for parallelization [7] of genetic algorithms. We provide several novel
enhancements of GGA that allow it to fully utilize parallel resources by simulat-
ing future generations even before the current generation is completely finished.
Our experimental results show the effectiveness of our enhancements, leading to
significant improvements on five different SAT benchmarks.

This paper is organized as follows. We first formalize AAC and provide some
background information. Then we describe the PYDGGA architecture and novel
components versus previous versions of GGA. We then provide brief instructions
on how to use PyDGGA. Finally, we experiment on SAT problems and conclude.

2 Preliminaries

In this paper, we present a tool for AAC that extends the algorithm GGA [3],
which we briefly present at the end of this section. Formally, in AAC, given a
target algorithm A with parameter configuration space ©, a set of instances IT
and a cost metric ¢ : © x II — R, the objective is to find a parameterization
0 € O of A that minimizes ¢ over I1. We refer to the combination of A, @, IT
and the configuration of the AAC tool, including ¢, as an AAC scenario. Since
the behavior of A is determined by its parameterization, we could also state that
AAC generates a specialized version of A to tackle the instances in IT and other
instances with a similar structure more efficiently or effectively.

It is common for A to be a black-box, meaning it accepts some inputs (the
parameters and a problem instance) and provides some output (e.g., é), but
we cannot see internal functionality. Practically speaking, A is implemented as a
binary file that outputs its results in a format adequate for its domain, but likely
not for the AAC tool. Moreover, it may also be necessary to limit the resources
that A can use to solve an instance, such as memory or CPU time. The standard
way of addressing these issues in AAC tools is for the user to replace A with a
wrapper script that handles these and any other aspects that may be necessary.

The configuration space @ is composed of categorical and numerical param-
eters. The former represent parameters with discrete domains whose values have
no order, whereas the latter have an order and can be sub-classified as either
integer or real parameters. Some AAC approaches, like GGA, support modeling
© with dependencies or simple constraints.
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GGA

GGA is a genetic algorithm-based approach to general AAC that has been used in
practice for a wide array of applications, such as tuning solvers in SAT [15]/Max-
SAT [2], machine reassignment [17], and mixed-integer programming [15]). As a
genetic algorithm, it has the archetypal loop in which each iteration is referred
to as a generation, and tries to improve the solution via recombination and
mutation operators. In GGA, the population is partitioned into competitive and
non-competitive groups. The former is evaluated on A, whereas the latter acts
as a source of diversity to escape local optima. To conduct the evaluations of
each generation, GGA uses a parallel racing scheme, called a tournament. If the
entire population was placed into a single tournament, it would be too large for
a single processor. Thus, the tournament is split into mini-tournaments that are
run sequentially. This division yields one winner per mini-tournament, each of
which is recombined with members of the non-competitive group to generate the
offspring for the next generation.

In the first generations, we expect most individuals to perform rather poorly
since they are generated at random. Thus, we do not wish to evaluate these
individuals on the entire instance set II. Instead, each tournament is evaluated
using a randomly selected subset of IT. Initially, this subset is quite small (around
5 instances), but as further generations are expected to have better individuals,
the size of the subset is increased linearly until roughly 75% of all generations
have been carried out, and the subset becomes II. For further details on GGA
please refer to [3].

3 PYDGGA

PYDGGA is a distributed version of GGA written in Python that has been
adapted to exploit the resources of High-Performance Computing (HPC) clus-
ters. In this section, we first focus on the parts of the algorithm that have been
modified to adapt GGA to HPC clusters. Then, we introduce a new instance
selection policy and what we refer to as an elite mini-tournament, which are
extensions to the original GGA introduced in PYDGGA. Finally, we comment
on some practical enhancements that do not alter the original GGA approach.

3.1 Distributed Architecture

To adapt GGA to a distributed computing architecture while preserving the
core algorithm as close as possible to the original description, PYDGGA is
implemented using an event-driven architecture, which is known to be good for
horizontal scalability. The events represent steps from the original GGA, such
as the generation of new offspring or evaluation of a genome on an instance.
Each event has the necessary information attached to it to perform its associ-
ated action and triggers the next event in a way to maintain the original GGA
execution logic.
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Fig. 1. Master-Worker architecture

To exploit the available computing resources to the fullest extent, PYDGGA
uses a master-worker architecture, shown in Fig.1 with just one worker for
the sake of clarity, to distribute the genome-instance evaluations across sev-
eral machines. The master runs the event-based core and the workers wait for
parameters and instance data to evaluate and return the result. The workers
have none of GGA’s logic and can be added or removed at any time. The master
will simply use the workers still available and rollback incomplete evaluations, if
necessary. We use this approach instead of just relying on a batch-queuing sys-
tem, such as SGE or SLURM, because these systems are used by multiple users
concurrently and their tasks are interleaved, which adds a non-negligible delay
when only a handful of tasks are to be executed. Since PYDGGA tries to run
as many evaluations as possible, this delay ends up being a burden. The worker
approach lets PYDGGA run on any distributed environment regardless of the
batch-queuing system, as long as there is a shared file system. This ensures com-
puting resources are reserved for a longer period and allows the user to terminate
and re-submit more workers later to release resources for other jobs temporarily.

3.2 Simulation

Simply rewriting a sequential algorithm in a parallel or distributed fashion is no
guarantee that it can exploit the full capacity of modern hardware. This holds for
PYDGGA as well, thus we make some additions to the parallel logic to improve
its performance. In PYDGGA, we run a simulation of the population’s evolution,
which creates a directed-graph that represents the dependencies between the
different steps of the algorithm. In this graph, the nodes represent individuals
and mini-tournaments, and the edges describe the action that they trigger on
other individuals or mini-tournaments. For example, when a mini-tournament
finishes it triggers a “create offspring” event on all those individuals that are to
be children of the winner.

When coupling the simulator with the event-driven architecture, PYDGGA
can exploit distributed environments even further by interlacing steps from dif-
ferent generations. For example, when a mini-tournament is done, the individuals
of the next generation that depend on the winner of the mini-tournament can
be generated and evaluated without waiting for the current generation to finish.
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3.3 Scheduling and Canceling

A problem arises when we can run evaluations of different generations distribu-
tively at the same time. Which should be run first? It makes sense to run the
evaluations in an order relative to the generation they belong to. This way we
keep on fulfilling the dependencies of later generations, which trigger more evalu-
ations, and thus the hardware rarely idles. However, this static order may break
the efficiency of the original GGA racing scheme.

GGA uses mini-tournaments with size equal to the number of CPU cores on
a single machine, and runs the evaluation of each individual on a different core.
Then, as soon as an individual can be declared the winner it simply cancels the
evaluations of the other individuals in the mini-tournament that have not been
started yet.

PYDGGA can handle many more resources than GGA and can evaluate
entire mini-tournaments at the same time, which means that it will waste
time running evaluations that GGA would have skipped. To tackle this issue,
PYDGGA keeps a dynamic priority value that determines the next evaluation
to run. However, computing this value so as to maximize overall efficiency is
still an open question. Our current approach tries to mimic the racing scheme
behaviour. Finally, since the scheduling is not perfect, we know that PYDGGA
will start some evaluations that will end up being unnecessary. To mitigate this,
we also implement a way for PYDGGA to terminate running evaluations.

3.4 Instance Selection

As mentioned before, GGA randomly selects a subset of IT at each generation,
meaning that two consecutive generations may be evaluated on completely dif-
ferent instances. Other approaches, such as IRACE [6] or SMAC [12], use a
randomly augmented superset of the set used in the previous iteration. It seems
likely that this type of instance selection would be beneficial for GGA in some
scenarios, as many instances will have already been evaluated by the surviving
individuals of a generation, and this will reduce the amount of work to determine
the winner of the next generation.

We want to clarify, however, that using this strategy makes it easier to overfit
the initial subset of instances, which may or may not be representative enough.
For example, it may be a good approach to configure a solver for a specific family
of SAT instances, but can lead to worse results if one wants a configuration that
generalizes to all the instances in the crafted or industrial categories.

3.5 Elite Mini-Tournament

During the configuration process some genomes that used to be among the best
of a generation end up being lost due to the changing subset of IT used to
evaluate them. Nonetheless, we have observed that some of these would have
become relevant again, or even the overall best genome as the subset of I
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becomes larger. To address this phenomenon we introduce an additional mini-
tournament, the so-called “elite mini-tournament”, to each generation in which
only the best overall genomes of previous generations can compete. This gives a
chance to these genomes to continue to be part of the recombination procedure
and help drive the algorithm to their region of the search space should they
become relevant again.

3.6 Other Tool Enhancements

On top of the more profound changes commented above, we also introduce some
additional modifications to make PYDGGA more user-friendly.

— Stop/Resume: PYDGGA keeps a cache of all the evaluations performed
so far inside the scenario directory. If the same scenario is used again it will
reuse the cache whenever possible, which has the effect of resuming the search
from wherever it was stopped as all the evaluations in the simulation graph
up to that point are resolved instantly.

— Enhanced configurations constraints: GGA allows the user to specify
combinations of forbidden values, but only can only express very simple con-
straints, such as a = 10 & b = 5 is forbidden, which forces the user to write
the Cartesian product of all the forbidden parameter-value combinations.
PYDGGA uses Python’s abstract syntax tree module, which lets the user
write Python logical expressions that must be satisfied (True) by all valid
configurations, for example: 10 <= a < 20 and b in [5,6,7].

— Abort Search: GGA only supports two possible evaluation results: SUC-
CESS and CRASHED. The first denotes that the evaluation was successful
and the second captures cases where A failed but are not critical, for example
because it run out of memory. While CRASHED works fine in most situations,
there are others that leave the user waiting for the algorithm to finish just to
realize at the end that all the evaluations CRASHED. As an example, imagine
that the instances or the target algorithm binary are moved while PYDGGA
is running, or imagine that the user decides to abort if the program detects
that the result it is computing is not correct and the same error may arise in
the rest of the executions. For these situations, we add the evaluation result
ABORT, which stops PYDGGA immediately.

— Objective function: GGA was designed with runtime tuning in mind.
PYDGGA extends this to support a different type of objective function.
Namely, the user can pass any value as the evaluation metric (including the
runtime) and PYDGGA will try to configure the target algorithm for that
metric.

4 Using PYDGGA

PYDGGA is available as a command-line tool from https://ulog.udl.cat/?page
id=30. There one can download a pre-built binary, the user manual and some
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examples. For the sake of brevity, we do not describe the details of the whole
process. Instead, we explain what a scenario is and show that running PYDGGA
locally or in a distributed environment is quite similar. We encourage the reader
to follow the complete example on how to tune the SAT solver glucose 4 in the
user manual.

A configuration scenario for PYDGGA is just a directory with some special
files that contain the information required to configure the target algorithm.
These files are:

— conf.xml: This file describes the parameter structure of A, as a tree. Addi-
tionally, it may also contain the so called seed genomes, i.e., the default solver
parameter’s values, and constraints to filter forbidden parameterizations.

— instances.txt: A simple text file that contains the instances that form I7.
Each line of the file contains the path to an instance and the seed that the
target algorithm should use to initialize the pseudo-random number generator
of A when evaluating that instance.

— settings.txt: The configuration of PYDGGA itself, such as the number of
generations, the size of the population, etc. It also contains the name of the
wrapper file.

— wrapper file: This could be the target algorithm A or a script that acts as
the interface between PYDGGA and A.

Once a scenario is set up, running or testing it is as simple as running the
following command to start PYDGGA locally:

pydgga gga -s "/path/to/scenario_dir"

If the scenario works locally, it is almost ready for use in a distributed envi-
ronment. The only additional element is a script that PYDGGA will invoke any
time it needs to start a new worker. For example, to run it on an environment
that uses qsub to submit jobs, the script could be:

1 #!/usr/bin/env sh

2

3 QUEUE="yourqueue.q" # System specific configuration
4 PENV="smp"

5 MEM_LIMIT="35840M" # 35 GB

6 RT_LIMIT=172800 # 2 Days

7

8 name=${1} # session name | Extract fixed parameters

9 slots=${2} # number of slots | passed by pydgga

10 shift 2 # remove ‘name’ and ‘slots’ from S{@}

11

12 olog="/path/to/stdout/directory"

13 elog="/path/to/stderr/directory"

14

15 echo "pydgga dggaw ${@}" | gsub -V -cwd -pe ${PENV} ${slots}\

16 -1 h_vmem=${MEM LIMIT} -1 h_rt=${RT_LIMIT} -g ${QUEUE} \
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17 -N ${name} -o "${olog}" -e "S{elog}"
18
19 exit 0

Then to run the same scenario distributed, one simply runs:

pydgga dgga -s "/path/to/scenario_dir" --worker-script "/path/to
/script" --slots SLOTS_PER_WORKER --num-workers NUM_WORKERS

5 Experiments with SAT

In this section we conduct some experiments to showcase that PYDGGA can
outperform the default parameters on several SAT scenarios. We focus on min-
imizing the runtime of a SAT solver. The experiments are conducted in a com-
pute cluster with nodes equipped with two octo-core Intel Xeon Silver 4110 @
2.10 GHz processors and 96 GB of RAM. The selected solver is the award-winning
SparrowToRiss [5], which has a large configuration space with 222 parame-
ters open for configuration. The instances come from the industrial and crafted
benchmarks used in [16]: Bounded Model Checking (BMC), Circuit Fuzz (CF),
IBM-Hardware Verification, Graph Isomorphism (GI), and N-Rooks, which are
all available, including the train/test splits, in the AClib [14].

To configure the solver, we let PYDGGA run for 2 days. In both the training
and test phases we use a time limit of 300s and 5 GB per evaluation. We present
the results of our evaluation in Table 1, which show that PyDGGA can find better
parameteriztions than the defaults for SparrowToRiss on all the evaluated SAT
benchmarks. The cost metric employed is PAR10, which is defined as the time
needed to solve the instance if solved within the time limit, otherwise the run is
penalized with a value 10 times the time limit. We report the results using the
PARI10 metric as well as the number of solved instances. Finally, to make the
PARI10 value more readable, we remove the constant value post hoc added by
instances that are never solved by any configuration.

Table 1. PAR10 performance (# solved instances) on the test instances

BMC CF IBM GI N-Rooks
Default | 346 (262) | 297 (276) | 113 (232) | 247 (307) | 116 (348)
PYDGGA 171 (267) 89 (283) 10 (232) 91 (317) 6.3 (351)

6 Conclusions and Future Work

PyDGGA is able to exploit the resources of a distributed computing environ-
ment. Experiments using the SAT solver SparrowToRiss demonstrated that it
can boost the performance of an algorithm by automatically finding a parameter-
ization that yields better results than the default one. Additional performance
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gains could be achieved by integrating surrogate models or by improving the
evaluations scheduling to utilize the computing resources more efficiently. More-
over, the usability of the tool could be improved by using zero-configuration
networking protocols on HPC clusters, and by providing an API that let the
users integrate PYDGGA in their pipelines using Python code.
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Abstract. We present QBFFam, a tool for the generation of formula fam-
ilies originating from the field of proof complexity. Such formula fami-
lies are used to investigate the strength of proof systems and to show
how they relate to each other in terms of simulations and separations.
Furthermore, these proof systems underlie the reasoning power of QBF
solvers. With our tool, it is possible to generate informative and scalable
benchmarks that help to analyse the behavior of solvers. As we will see
in this paper, runtime behavior predicted by proof complexity is indeed
reflected by recent solver implementations.

Keywords: Quantified boolean formulas - Formula generator -
Benchmarking

1 Introduction

In recent years, much progress has been achieved in the theory and practice of
solving quantified Boolean formulas (QBF) [12], offering a rich solving infras-
tructure, ranging from preprocessing over solving to result validation, strategy
extraction, and theoretical lower bounds. As the decision problem for QBF
(QSAT) is PSPACE-complete, many practical application problems [35] from
fields such as formal verification, artificial intelligence, and reactive synthesis
can be efficiently encoded in QBF and handed over to a QBF solver. Because of
the PSPACE-completeness of QSAT, however, solving a QBF is a difficult task.

To solve QBF's various solving approaches have been presented (see [12] for
a description of recent QBF solving techniques). Conflict-driven clause/cube
learning (QCDCL) generalizes the successful CDCL paradigm that is dominant
in SAT solving. Ezpansion-based techniques that build propositional abstractions
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and then exploit the power of SAT solvers have been extremely successful in the
last QBFEval competitions [34].

Empirical observations indicated that different approaches have a different
reasoning power, resulting in a more diverse solving technique landscape than
present in SAT. These observations can be confirmed by proof complexity results,
offering explanations how the different approaches relate to each other by estab-
lishing separation and simulation results of the proof systems underlying the
solvers. In many cases, formula families play a crucial role to characterize what
is easy/hard for a solver.

In this paper, we present QBFFam, a tool for generating prominent formula
families from proof complexity. With this tool, we provide a diverse collection of
benchmarks that can be arbitrarily scaled and that are used in proof complexity
to compare those proof systems that underlie the behavior of the state-of-the-art
solvers. In this way, it becomes possible to obtain an improved understanding
of solver implementations and their behavior, because for the generated families
many theoretical results with respect to lower and upper bounds have been
established.

Our tool is available at

https://github.com/marseidl/qbffam.git

It is implemented in Python and is called via gbffam <family> <n> where n is
the size of the generated formula according to the definition of the respective
family and family is one of the following 12 formula families:

KBKF KBKF_LD KBKF_QU
Parity LQParity QUParity
EQ EQ-Sq BEQ
LONSING TRAPDOOR CR

Details on the formula families as well as an overview of their applications
in proof complexity are given in Sect.3. All of the generated formulas are
false QBF's in prenex conjunctive normal form (PCNF) and have the structure
QX5 ...QX,.¢ where the prefix Q1 X7 ... Q,X,, contains quantifiers Q; € {V,3}
and the matrix ¢ is a propositional formula in conjunctive normal form (CNF).
As usual, a CNF is a conjunction of clauses, a clause is a disjunction of literals,
and a literal is a variable or a negated variable. All formulas are closed, i.e.,
all variables are quantified. Formulas in PCNF are typically represented in the
QDIMACS' format which is supported by the majority of modern QBF solvers.

Organisation. The rest of the paper is structured as follows. We first review
related work in Sect. 2. In Sect. 3 we discuss the 12 formula families supported by
QBFFam. Here we also give an overview of relevant results from proof complexity
for these formulas in several QBF proof systems. In particular, we report which
formula family has/does not have short proofs in what proof systems. In Sect. 4

! http:/ /www.qgbflib.org/qdimacs.html.
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we describe a case study, where we evaluate modern QBF's solvers on two formula
families. We conclude with an outlook to future work in Sect. 5.

2 Related Work

The tool most closely related to QBFFam is the tool CNFGen [29] which is a genera-
tor for crafted SAT instances from propositional proof complexity. Among others,
it supports the generation of formula families such as the pigeonhole formulas
or the Tseitin formulas. Many of the provided formula families are known to be
exponentially hard for propositional resolution and therefore for plain resolution-
based CDCL solvers, as propositional resolution and (non-deterministic) CDCL
are known to be equivalent [3,33]. This is also underpinned by experimental eval-
uations. Together with the rigorous lower bounds obtained in proof complexity
such experiments help to understand the solving behavior of SAT solvers, iden-
tify their limitations, and also point towards directions for improvement.

To the best of our knowledge, there is no similar generator in the context of
QBF solving so far. There are tools and frameworks for generating hard random
formulas with a CNF matrix [15] or non-CNF matrix [18]. These random gen-
erators are used to empirically support theoretical characterizations of random
formulas (cf. for example [17]). On the practical side they form the foundation
for fuzzing, a testing technique that aims to find defects in solvers by massively
solving random instances, thus achieving high code coverage, which is important
to detect conceptual errors and only sporadically triggered corner cases [14].

3 Formula Families

Currently, our tool QBFFam supports the generation of 12 different formula fam-
ilies which are summarized in Table 1 together with a characterization in terms
of number of quantifier alternations, number of variables, and number of clauses.
Additionally, we also provide information on their proof complexity indicating
for which proof systems short proofs or lower bounds are known.

Q-resolution (QRes) is the simplest among the considered proof systems, pro-
viding rules for resolution over existential variables and universal reduction [28].
In QRes-QU [20] resolution over universals is allowed as well. In long-distance
resolution QRes-LD [1] certain resolution steps, forbidden in Q-Resolution, gen-
erating tautologous clauses are allowed. The system QRes-LQU™ [2] combines
long-distance resolution with resolution over universals, yielding a very power-
ful proof system. Another extension of QRes is QRes-SYM [26] which is able to
exploit symmetries of formulas [27].

The proof system VExp-Res [25] is the formal basis for expansion-based QBF
solving. In addition to the resolution rule it has a rule that captures the expan-
sion of universal variables and the renaming of existential variables in terms of
annotations. The more powerful proof systems IR-calc and IRM-calc provide more
flexibility than VExp-Res in the way how and when annotations are obtained [10].
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Table 1. Characteristics of the families and overview of some results from proof theory.

Formula #alt |#vars #cl QRes | QRes-LD | QRes-QU QRes—LQUJr VExp-Res | IR-calc | IRM-calc | QRes-SYM
family

KBKF n+1/4n 4an 4+ 1|X v v v X X v v
KBKF_LD n+1|4n 4an 4 1| X X v v X X X v
KBKF_QU n+1|/5n 4an 4+ 1|X v X v X X v v
Parity 2 2n 4n — 2|X v X v v v v v
LQParity 2 2n 8n — 6|X X X v v v v v
QUParity 2 2n+1 8n — 6|X X X X 4 4 v v
EQ 3 3n 2n 4+ 1|X v X v X X v v
EQ-Sq 3 n? + 4n 5n2 X v X v X X 4 4
BEQ 4 6n+2 |5n+2 X v X 4 X X v X
CR 2 n? 2n o7 v v v v v v
TRAPDOOR |3 om?) low? |v |v v v/ v v v v
LONSING 2 on? |lon?) |v |v v v/ v v v v
v ... short proofs (poly size) X ... no short proofs (exponential lower bounds)

#alt ... number of quantifier alternations

#vars ... number of variables  #cl ... number of clauses

In the following, we briefly discuss the supported formula families.

KBKF Formulas and Extensions KBKF _LD, KBKF _QU. Already in their first paper
on Q-resolution from 1995 [28] Kleine Biining, Karpinski, and Flégel introduced
a formula family that is nowadays known as the KBKF formula family. Since their
inception, the KBKF formulas have triggered lots of research in QBF proof com-
plexity. The original motivation of [28] was to provide quantified extended Horn
formulas that have no short QRes proofs. Interestingly, the formulas also provide
exponential separations between QRes and QRes-QU [20] as well as between QRes
and QRes-LD [19]. The formulas KBKF have unbounded quantifier complexity, and
much later it became clear [7], that such formulas are indeed needed for sepa-
rating QRes and QRes-QU. The KBKF formulas remain hard in expansion-based
systems VExp-Res and IR-calc, but become easy in IRM-calc [10].

Extensions of KBKF have been introduced to obtain hard formulas for more
powerful proof systems. In particular, the formula family KBKF_QU duplicates uni-
versal variables in the prefix and in clauses and becomes hard for QRes-QU, but
remains easy for QRes-LD [2]. Another modification KBKF_LD [2] adds variables
from the innermost existential quantifier block to some clauses. These formulas
are hard for the systems QRes-LD [2] and IRM-calc [10]. All three formula fam-
ilies exhibit many symmetries, making them simple if reasoning on symmetries
is supported [26].

A simple self-contained proof of the hardness of KBKF in QRes is given in [5].
Most further hardness results mentioned above lift QRes hardness to stronger
proof systems.

Parity Formulas Parity and Extensions LQParity, QUParity. The formulas of
the parity family Parity are Tseitin-transformed CNF representations of QBF's
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with structure 3z, ..., 2,V2.(2Vd,) A(-2V —¢,) where ¢, = 21 D...Dx,. The
unique strategy for falsifying the formula is to set the only universal variable z to
z1®...®x,. Hence, the unique Herbrand function for z must compute the parity
function, which is exponentially hard for bounded-depth circuits AC° [22]. As
strategy extraction in QRes and QRes-QU is in AC® [1], the QRes and QRes-QU
proofs of Parity must be of exponential size. An alternative proof of hardness
for Parity in QRes, not relying on the complex machinery of AC? lower bounds,
is given in [7].

In contrast, Parity is easy for QRes-LD [16] and VExp-Res [10]. The exten-
sions LQParity and QUParity are constructed to obtain hard formulas for QRes-
LD and QRes-LQU™, respectively [10].

Equality Formulas EQ and Extensions EQ-Sq and BER. The equality formulas [6]
have a quantifier prefix of the form 3x; ...z, Vuy ... u,3t1 ...%, and encode that
x; <« u; for 1 < ¢ < n. The t; variables are Tseitin variables for obtaining a
PCNEF, collected in one clause of size n. Arguably, the equality formulas are the
simplest formulas hard formulas for QRes. In [6] a semantic technique via cost
is developed to show their hardness (as well as many more hardness results).
A related technique [4] is applicable to show their hardness for the expansion
systems VExp-Res and IR-calc. However, they become easy in QRes-LD [8].

The EQ-Sq formulas [8] are a ‘squared’ version of the EQ formulas with n
additional variables in each of the first two blocks and n? innermost Tseitin
variables. They are used to show an exponential separation between QRes-LD
without universal reduction (exponential lower bounds for EQ-Sq) and the proof
system M-Res (short proofs for EQ-Sq) [8].

Finally the blocked equality formulas BEQ introduce a blocker such that sym-
metries are destroyed and cannot be exploited to find short proofs [13]. This
technique does not only work for the equality formulas, but it is a general app-
roach to eliminate symmetries from a formula without changing its meaning.

Completion Principle, Trapdoor, and Lonsing Formulas. The last block of for-
mulas from Table 1 comprises of three formula families that are easy for all of the
described proof systems. Though QCDCL is associated with the proof systems
QRes and QRes-LD (QCDCL runs can be efficiently translated into QRes-LD
refutations as clauses learned in QCDCL can be derived in QRes-LD), this cor-
respondence is not an exact one as demonstrated by recent research [5,23]. In
particular, [23] has shown that practical QCDCL does not simulate QRes. This
builds on the completion principle formulas CR, first described in [25], which
describe an easy ‘completion’ game, played on an n X n matrix by two players
(cf. [25]). These formulas are easy for QRes, but hard for practical QCDCL using
UIP learning [23].

This result was further strengthened in [9], where QRes and QCDCL (with
arbitrary learning schemes) are shown to be incomparable. This is witnessed by
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the Parity formulas, which are hard in QRes, but easy in QCDCL (with the
right heuristics, possibly difficult to find in practice).?

In the opposite direction, the TRAPDOOR and LONSING formulas (first defined
in [9] and [30], respectively) are easy for QRes, but require exponential run-
ning time in QCDCL (even with arbitrary learning schemes). Both principles
build QBFs that incorporate the well-known propositional pigeonhole principle
(PHP). Using the right quantifier prefix, which needs to be obeyed by QCDCL
decision heuristics, they ‘trap’ QCDCL into refuting the PHP formulas (which
are exponentially hard for propositional resolution [21] and hence for (Q)CDCL),
while easy (even constant size) QRes proofs of TRAPDOOR and LONSING exist.

4 Case Study

Our tool QBFFam opens up many possibilities to conduct interesting experiments.
In particular, it can be used to investigate whether the solver implementations
indeed follow the behavior predicted by proof complexity and to compare their
strength.

As a first case study, we consider 30 formulas of the KBKF family as well as
30 formulas of the LQParity family. We selected those families because they
are well investigated in proof complexity and correspond to incomparable proof
systems as discussed above. In both cases we selected the values 10, 15-40, 50,
60, 70, 80 for n.

In our experiments, we considered five solvers in six configurations. The
QCDCL solver DepQBF (version 6.1) [31] was run with and without long-distance
enabled. We included the solver Qute [32] as a second QCDCL solver which sup-
ports dynamic dependency learning. As expansion-based solvers, we included
Raregs [24] which recursively processes the quantifier alternations to build the
propositional abstraction of a formula as well as the non-recursive expansion-
based solver ljtihad. Finally, we included the solver Caqge that implements causal
abstraction [36] and which dominated the QBFEval competitions [34]® over the
last years. All experiments were run on Intel Xeon E5-2620 v4 CPU machines
with the timeout set to 300s and the memory restricted to 7 GB.

The results of our experiments are shown in Fig. 1. The plot on the left shows
the runtimes for the KBKF family. For four of the six solvers, the formulas are very
hard, especially for the expansion-based solvers Raregs, which does not solve any
formula, and ljtihad, which solves only one formula within the time limit. Also,
for Qute and DepQBF the formulas get difficult with increasing n. Both get until
n = 20. For this formula, DepQBF needs 167 s and Caqge needs 241 s. For DepQBF
with long-distance resolution and Qute these formulas are very easy: all of them
are solved in less than one second, confirming results from proof complexity.

The situation is different for the LQParity formulas (see Fig. 1 on the right).
Here Cagqe, ljtihad, and Raregs solve all of the formulas quickly. This is also in

2 However, formulas hard for QRes-LD such as LQParity are hard for QCDCL (with
arbitrary heuristics) from a theory point of view.
3 http://www.qbfeval.org.
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accordance with the results from proof complexity. The formulas are hard for the
QCDL-based solvers, which could only solve 24 formulas (both configurations of
DepQBF) and five formulas (Qute).

This also indicates that there is a close connection between the theoretical
properties of the underlying proof systems and the practical implementations of
the solvers.

. . . . Cage .
/ Qute —*— A 100 | i
/ DepQBF
: DepQBF_LD

/ litihad

10 E|

/‘ Rareqs —e—

runtime (sec)
-
-
T
L

n n
5 10 15 20 25 30 5 10 15 20 25 30
solved formulas solved formulas

Fig. 1. Runtime comparison on KBKF formulas (left) and LQParity formulas (right).

5 Conclusion

We presented QBFFam, a tool for the generation of instances related to prominent
formula families from proof complexity. We briefly described these families and
surveyed recent results from proof complexity which help to understand the
power of proof systems, and thus the power of QBF decision procedures and
their implementations in QBF solvers. In a small case study we evaluated recent
QBF solvers on two formula families and could indeed observe that the properties
predicted by proof complexity are reflected by the solving runtimes. This opens
the way to many further interesting experiments.

In future, QBFFam can be extended to support graph-based formulas [11] or
random formulas [6]. Both also play an important role in the context of proof
complexity. Another extension of QBFFam that seems to be of practical interest
is the generation of true formulas. True QBF's are currently not investigated in
proof complexity with the argument that in QBF, proof systems for satisfiability
are dual to those of unsatisfiability. Having such formula families, however, seems
to be useful for evaluating solver implementations as well.
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Abstract. Davis-Putnam resolution is one of the fundamental theo-
retical decision procedures for both propositional logic and quantified
Boolean formulas.

Dependency quantified Boolean formulas (DQBF') are a generalisation
of QBF in which dependencies of variables are listed explicitly rather
than being implicit in the order of quantifiers. Since DQBFs can suc-
cinctly encode synthesis problems that ask for Boolean functions match-
ing a given specification, efficient DQBF solvers have a wide range of
potential applications. We present a new decision procedure for DQBF
in the style of Davis-Putnam resolution. Based on the merge resolution
proof system, it directly constructs partial strategy functions for derived
clauses. The procedure requires DQBF in a normal form called H-Form.
We prove that the problem of evaluating DQBF in H-Form is NEXP-
complete. In fact, we show that any DQBF can be converted into H-Form
in linear time.

1 Introduction

Continuing advances in the performance of propositional satisfiability (SAT)
solvers are enabling a growing number of applications in the area of electronic
design automation [28], such as model checking [6], synthesis [24], and symbolic
execution [3]. In artificial intelligence, SAT solvers are a driving force behind
recent progress in constrained sampling and counting [19], and they act as com-
binatorial search engines in competitive planning tools [10]. In most of these
cases, SAT solvers deal with problems from complexity classes beyond NP and
propositional encodings that grow super-polynomially in the size of the original
instances. Clever techniques such as incremental solving can partly alleviate this
issue, but ultimately the underlying asymptotics lead to formulas that are too
large to be solved by even the most efficient SAT solvers.
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This has prompted the development of decision procedures for more suc-
cinct generalizations of propositional logic such as Quantified Boolean Formu-
las (QBFs). Deciding satisfiability of QBFs is PSPACE-complete [25] and thus
believed to be much harder than SAT, but in practice the trade-off between
encoding size and tractability can be in favour of QBF [13]. Dependency QBF
(DQBF) in turn generalise QBF [1,2]. Whereas the nesting of quantifiers implic-
itly determines the arguments of Skolem (or Herbrand) functions of a QBF,
Henkin quantifiers explicitly specify the arguments of Skolem (or Herbrand)
functions in a DQBF. As a result, DQBF's can succinctly encode problems con-
cerning the existence of Boolean functions subject to a set of constraints. For
instance, equivalence checking of partial circuit designs (PEC) can be naturally
encoded as DQBF [16].

Existing decision procedures for DQBF either use quantifier expansion to
obtain an equivalent propositional formula or QBF, or else adapt search-based
algorithms from QBF by introducing additional constraints to make sure the
search tree is consistent with the dependency sets of the input DQBF. Seman-
tically, reasoning at the level of functions is more natural, but recent attempts
at lifting conflict-driven clause learning (CDCL) to the level of Skolem functions
are currently limited to 2QBF [21].

Our main contribution is a new decision algorithm for DQBF that oper-
ates directly at the level of functions. Based on the merge resolution (M-Res)
proof system [4], it maintains a set of clauses annotated with partial Herbrand
functions. Like the original Davis-Putnam procedure [12], it successively elim-
inates (existentially quantified) variables by creating all possible resolvents at
each step. Crucially, resolvents are created only for pairs of clauses with par-
tial Herbrand functions that are consistent and can be combined into a larger
partial Herbrand function. Once all variables have been eliminated, either the
set of clauses is empty, in which case the input DQBF is true, or it contains
the empty clause, in which case the formula is false and the Herbrand functions
in the annotation form a countermodel. In contrast to variable elimination by
Q-resolution [5,18], where innermost existentially quantified variables must be
eliminated first, our algorithm may eliminate variables in any order. While this
is not surprising in DQBF, where there is no syntactic ordering of variables, it
means that our algorithm can be used to eliminate variables of a QBF in arbi-
trary order, too—possibly at the cost of increased computational complexity.

There is a surprising obstacle in the way of generalizing variable elimination
by resolution to DQBF—it is insufficient to resolve only clauses that contain the
current pivot variable being eliminated. In fact, we may need to resolve even pairs
of clauses neither of which contains the pivot variable. The requisite combination
of weakening and resolution has previously been studied under the name w-
resolution [8,9]. In turn, w-resolution paves the way for a seemingly absurd case:
a clause can now be resolved with itself—self-resolution. While self-resolution is
not essential, we show that it is a very natural explanation for why we keep
certain clauses between individual elimination steps. That understanding casts
the algorithm in a different light; as a series of transformations, which result in
a normal form where strategies are recorded explicitly.
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Strictly speaking, our algorithm (as well as merge resolution) operates on
H-form DQBF, where Henkin quantifiers specify the arguments of universal
variables and the matrix is in conjunctive normal form [2]. NEXP-hardness of
evaluating DQBF in this form does not immediately follow from known results [1,
23], and determining the complexity of this problem was recently stated as an
open question [4]. As a further contribution, we show that it is in fact NEXP-
complete, and that DQBF in H-form and the more frequently studied S-form
(where Henkin quantifiers are used for existential variables) are interconvertible
at a linear overhead while preserving strategies. Thus our variable elimination
algorithm can be used to evaluate and construct (counter)models of arbitrary
DQBFs.

The paper is structured as follows: after preliminaries in Sect. 2, we give our
decision procedure in Sect. 3, and discuss NEXP-completeness of H-form DQBF
in Sect. 4, concluding with a summary in Sect. 5.

2 Preliminaries

H-Form DQBF Intuition. The notion of H-form DQBF is arguably counter-
intuitive, and so instead of a formal definition, we start informally. Consider an
S-form D@BF, i.e. a formula of the form Yu; - - -V, 321(Sg, ) - - - 320 (e, ) - ¢,
where each existential variable x; has a dependency set S,, C {u1,...,un}, and
¢ is a DNF. The goal with such a formula is to find a set of functions—called
a model—for the existential variables respecting the dependencies so that after
substitution into ¢, the formula becomes a tautology in the universal variables.
An example of such a formula is

¥ = VYuy Yug Elarl(ul) E|$2(U2) (’I,Tl/\ .732) V (U,l /\],‘72) V (72/\ xl) \ (Ug /\ﬂ)

along with the model 1 = u1,22 = uz—whose substitution into ¥ indeed
produces a tautology. An H-form DQBF with a CNF matrix is then simply a
negation of an S-form DQBF with a DNF matrix, where strategies are sought for
universal variables and the goal is to make the substituted formula unsatisfiable,
rather than valid.

H-form DQBF Syntax. A variable is an element z of the countable set V. A
literal is a variable z or its megation Z. The negation of a literal a is denoted
@, where Z := z for any variable z. A clause is a disjunction of literals. A
conjunctive normal form formula (CNF) is a conjunction of clauses. The set of
variables appearing in a formula v is denoted vars(z)). For ease, we often write
clauses as sets of literals, and CNFs as sets of clauses.

An H-form dependency quantified Boolean formula (DQBF) is a sentence of
the form ¥ :=3xy -+ Jz,Vuy (Hy, ) - - - Yum (Hy,, ) - ¢, where the part that holds
quantification information is called the prefiz, and the matriz ¢ is a CNF. In the
quantifier prefix, each universal variable u; is associated with a dependency set
H,,, which is a subset of the existential variables {z1,...,x,}. With vars3(¥)
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and varsy(¥) we denote the existential and universal variable sets of ¥, and with
vars(¥) their union. We deal only with DQBFs for which vars(¢y) C vars(¥%).

H-form DQBF Semantics. An assignment « to a set Z of Boolean variables
is a function from Z into the set {0, 1, *}. An assignment whose range is {0, 1}
is called total. The set of all assignments to Z is denoted (Z), and the set of all
total assignments is denoted (Z). The domain restriction of « to a subset Z’ of
its domain is written af,,. We say that « extends o/, denoted by o’ C «, when
a(z) = d/(z) for each z € dom(«’) with o/(z) € {0,1}.

The restriction of a formula v by an assignment «, denoted ¥[a], is the result
of substituting each variable z in the preimage a~1({0,1}) by a(z), followed by
applying the standard simplifications for Boolean constants, i.e. 0 — 1, 1+ 0,
dVO— o, dV1I—1, ¢A1— ¢, and ¢ AO+— 0. We say that a satisfies 1) when
Yla] =1, and falsifies ¢ when ¥[a] = 0.

For a DQBF ¥ := 3y - - Jx,Yui (Hy,) - - - Vum (Hy,, ) -9, any set of functions
h := {hy : u € varsy(¥)} of the form h, : (H,) — {{u}) is called a strategy
for ¥. For convenience, we use the alias h(a) := {hy(aly,) : u € varsy(¥)}. A
strategy for ¥ is called winning when each combined assignment «Uh(«) falsifies
1. The terms ‘winning strategy’ and ‘countermodel’ are used interchangably. A
DQBF is called false when it has a countermodel, otherwise it is called true.

3 Davis-Putnam Resolution for H-Form DQBF

In this section we describe a decision procedure for H-form DQBF in the style
of Davis-Putnam resolution. We start by explaining the high-level idea by com-
parison to propositional DP-resolution.

In a nutshell, DP-resolution for propositional logic eliminates variables by
exhaustive resolution—pick variables one at a time in arbitrary order, for every
variable produce all resolvents, and then drop all clauses containing the elimi-
nated variable.! If at the end the clause set is empty, the formula is satisfiable.
If, on the other hand, we are left with the empty clause (we have eliminated
all variables, so any clause must be empty), the formula is unsatisfiable, and we
have constructed a resolution refutation.

For DQBF we adapt this process in three ways: First, we will only eliminate
existential variables. We can still do so in arbitrary order.

Second, we treat universal variables in the spirit of the DQBF proof system
M-Res [4]—by splitting clauses into the existential part and a partial-strategy
part, initially constructed from universal literals. Strategies may prevent resolu-
tion steps if they mismatch; or they may be updated for variables that depend
on the pivot—similarly to how it is done in M-Res—with a consistency check in
place of the originally used and more strict isomorphism test. Consequently, at
the end we obtain either the empty set, in which case the formula is true, or a

! The algorithm described by Davis and Putnam [12] also considers unit clauses and
pure literals, but since these are neither necessary for completeness, nor complete
on their own, we think of DP-resolution as consisting of variable elimination.
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set containing clause-strategy pairs with empty existential parts, in which case
the formula is false, and the partial strategies form a countermodel.

Third, when eliminating an existential variable z, we will need to weaken
clauses that do not contain any literal on « with both « and T (separately), and
such weakened clauses will enter the elimination step for z. M-Res is incomplete
for DQBF without weakening, and the same issue forces us to include weakening
in our algorithm as well. No such thing is necessary in the propositional case,
intuitively because the only way how a variable can directly interact with a
clause is if it occurs in the clause. In DQBF however, existential variables can
affect dependent universal variables and thereby interact in complex ways with
clauses where they do not occur at all. An elegant way of capturing this is by
incorporating weakening directly into the resolution rule—resulting in a system
known as w-resolution [8].

We begin the algorithm exposition by defining some relations and operations
in Subsect. 3.1. The algorithm itself is described in Subsect. 3.2, and its cor-
rectness and completeness are shown in Subsect. 3.3. We discuss suitable data
structures for the storage and manipulation of strategies in Subsect. 3.4.

3.1 Strategy Operations

We introduce a consistency relation and two operations for the manipulation of
individual strategy functions.

Definition 1. Let X be a set of variables and €,6 € (X). We say that € and
d are consistent, denoted by e ~ ¢, if for every x € X for which e(x) # * and
d(xz) # * we have e(x) = 0(x).

By abuse of notation, we treat (partial) assignments as both functions and
sets of literals, i.e. an assignment € corresponds to the set of literals it satisfies,
namely {z : e(z) = 1} U {Z : e(z) = 0}. Through this correspondence we define
the union of two assignments, and we say that ¢ extends (is an extension of) €
if e C4.

Lemma 1. Let X be a set of variables and e, € {X)). The following conditions
are equivalent: (1) € and ¢ are consistent; (2) there is an assignment v € (X))
which extends both € and ¢; (3) £ U § is an assignment.

Furthermore, any assignment that extends both € and § also extends ¢ U 4.

Let ¥ be a DQBF, let u € varsy(¥) be a universal variable, and let h, and hl,

be individual strategy functions for the variable w; that is, functions from (H,)

into ({u}).

o Consistency: We say that h, and h/, are consistent (written h, ~ h],) when
hy(g) ~ h!,(e) for each € € (H,).

e Union: Provided h,, ~ h!,, their union is (hy o hl,)(g) := hy(g) U R, (€).

o If-then-else: For each x € varsg(¥), we define the if x then h, else hl,

function
(hu > b )(e) == {hu(5) if e(x)

:1’
b ife() =0, °€Hul
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3.2 Definition of the Construction

Given a DQBF Jzy - - Jx,Yuy (Hy,) - - - Vum (Hy,,) - 1, we define recursively a
collection of sets DP( %, 1), for ¢ in {0,...,n}. Each DP(%,i) is a set of clause-
strategy pairs. A clause-strategy pair is of the form (C,h), where C is a clause
with vars(C) C vars3(¥), and h is a strategy for ¥.

We will obtain the set DP(¥,7) by applying w-resolution—resolution pre-
ceded by weakening—to DP( ¥, — 1). The w-resolvent of C and D, over a pivot
zwith 2 ¢ C'and Z ¢ D, is defined as C'J, D := (C'\{z}) U (D \ {z}) [8,9]. The
w-resolvent is equal to the traditional resolvent if the pivot literals are present
in the clauses, but it additionally extends resolution to cases when the pivot is
absent from one or both premises—the condition z ¢ C and Z € D ensures that
weakening by the corresponding pivot literal does not create a tautology.

The recursive definition begins with DP(¥,0) := {(C3,h¥) : C € 9}, where
C3 and Cy are the existential and universal subclauses of C, and the strategy
h" is the collection of constant functions

u—0 ifueCy,
hS¥(e):={u—1 ifueCy, e € (Hy,),

u — * otherwise,

over u € varsy(¥). Here, DP(¥,0) is merely a representation of the matrix of ¥
as clause-strategy pairs. The universal subclauses are replaced by strategies, in
which each individual literal is represented by the falsifying constant function.

For i > 1, we define the set R(¥,4) as consisting of all resolvent clause-
strategy pairs (Co U, C1, h10) for (Co, hY) # (C1, k') € DP(¥,i — 1) satisfying
(a) z; ¢ Co and 7; & C1, (b) Cy U, C is not a tautology, and (c) hl ~ hY, for
each u with x; ¢ H,, where the strategy h? is the collection of functions

pL0.—

u

hLsah® if x; € H,,,
hlon® ifx; ¢ H,,

over u € varsy(¥). Finally we define DP( ¥, 1) as the set
R(Z,i) U{(C,h) e DP(¥,i—1):a; ¢ vars(C)},

The set R(%,i) consists of all possible w-resolvents with pivot x; formed
from clause-strategy pairs (Cy, h') and (Cp, h°) in the previous set DP(¥,i — 1),
where the individual strategy functions hl, h? must be consisent whenever u does
not depend on x;. The strategy for the resolvent is the union of A% and hY when

u is indeed independent of z;, otherwise it is ‘if z; then hl else h0.” 2

2 Note that we still take the if-then-else even if the functions are compatible, and in
particular also if one of the functions is undefined. This is slightly counter-intuitive at
first because we could just take the union in those cases, but the if-then-else results
in a more compatible strategy and is in fact necessary to ensure completeness.
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Note that, for any clause-strategy pair (C,h) € DP(¥,i), each individual
function h, depends only on the variables {x1, ..., x;}NH,. This is an important
observation, which we use later in our proof of completeness (Theorem 2).

We will be particularly interested in the final set of clause-strategy pairs
generated by this process. Hence we write DP(¥) := DP(¥,n). An immediate
consequence of the construction is that each clause-strategy pair (C, h) € DP(¥)
has the empty clause C' = 0. The construction is summarised in Aglorithm 1.

Algorithm 1. Davis-Putnam resolution for DQBF.

function DP(¥)
U* =DP(¥,0)
for z € vars3(¥) do
U* = ¥* U WEAKEN_AND_RESOLVE(z, ¥™)
U= 9"\ {(C,h) € ¥ : x € vars(C)}
end for
return ¥~ # ()
end function

function WEAKEN_AND_RESOLVE(z, ¥™)
R=10
for all (Cy,h°) # (C1,h") € ¥* x ¥* do
if x¢Co,T¢ C1 and RO ~ hllL when x ¢ H, then
YO ={(hlsanl iz e HYU{hLohS :z ¢ H,}
R=RU {(Cl Wy Co, hl’o)}
end if
end for
return R
end function

There is a crucial difference compared to propositional or even QBF DP-res-
olution. While in those cases we only resolve pairs of clauses that do contain the
pivot, here we need to resolve all pairs that have a w-resolvent (provided that
the strategies are compatible where necessary). An interesting special case that
arises out of this is self-resolution: when we take the w-resolvent of a clause with
itself. It is readily verified that a clause C' has a self-resolvent on a variable x
if, and only if, z ¢ vars(C). Self-resolving C' on any variable simply produces C
again. Moreover, since both the self-union and the if-then-else of any strategy
function is equivalent to itself, self-resolving an entire clause-strategy pair makes
no change to it. Thus, keeping the set {(C,h) € DP(¥,i — 1) : z; ¢ vars(C)} for
DP(¥,4) is tantamount to self-resolving each of those clauses and keeping only
resolvents, discarding DP(W,i — 1) fully. This allows us to see the algorithm in
a slightly different light; as a series of formula transformations. However, self-
resolving clauses is not the most intuitive thing to do, and so for the sake of
clarity and similarity to other versions of DP-resolution we assume we always
resolve different clause-strategy pairs, as written in the pseudocode of Algo-
rithm 1. We invite the reader to appreciate how adopting self-resolution and
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full discarding would eliminate case distinctions from some of the forthcoming
proofs, arguably making them more elegant, if less humanly.

3.3 Correctness and Completeness

Now we show that the Davis-Putnam construction is both correct and com-
plete, by which we mean that DP( %) is non-empty if (completeness), and only
if (correctness), W is false.

Correctness. Our proof of correctness follows the same argument as the proof
of soundness in the proof system M-Res [4].> For any pair (C,h) € DP(¥,1i), we
show that h is a partial countermodel for ¥ with respect to C'. This means that
h behaves like a countermodel on input assignments that falsify C. The notion
is captured formally in the statement of the following lemma.

Lemma 2. Given a DQBF ¥, an existential variable x;, a clause-strategy pair
(C,h) € DP(¥,i), and an assignment v € (varsz(¥)), the following holds:

v falsifies C =~y Uh(y) falsifies 1.

Proof. We prove the theorem by induction on i € {0,...,n}. Let ¥ be the
arbitrary DQBF W := 3z -+ o, Vuy (Hy, ) - - Y (Hy,, ) - 9.

Base case i = 0. Let (C3, h¥) € DP(¥,0). By definition, h®¥ (v) falsifies Cy for
each v, and the lemma statement follows immediately.

Inductive Step i > 1. Let (C,h) € DP(¥,i). Then, there are pairs (Cp,h)
and (C,h') in DP(¥,i — 1) such that C = Cy U, C; and h = Y. Aiming
for contradiction, suppose that there exists some v € (varsz(¥)) violating the
lemma statement; that is, 7 falsifies C, but v U h>%(y) does not falsify .

Now, let us assume for the moment that v(x;) = 1. For each w, let us consider
the value of K1 (y|y. ). If z; € H,, then

h®0lm,) = (hBR)OTm,) = hi(rla,)- (1)
Otherwise, if z; ¢ Hy, then hi%(vly ) = (hi o hS)(y1g, ), from which we get
ha(V T, )W) £+ = b (ylg,) = ha(Vla,) . (2)

by definition of hl o hY.

From (1) and (2), we see that h'9(y) extends h'(y). Together with the fact
that v U hb0(y) does not falsify 4, we deduce that v U h'(v) does not falsify 1.
This contradicts the inductive hypothesis, which asserts the lemma statement
for (C1,h') € DP(¥,i — 1) and the assignment -, which falsifies C; C C U {7;}.

The alternative case y(x;) = 0 follows the same lines, where the roles of C1,
h! and hl are played instead by Cp, h® and h2. One shows that v U h%(y) does
not falsify v, and a contradiction with the inductive hypothesis ensues.

3 We cannot use soundness of M-Res, because our strategy compatibility notion is
stronger.
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The correctness of DP-resolution follows from Lemma 2.
Theorem 1. Given a DQBF ¥, if DP(V¥) is non-empty, then ¥ is false.

Proof. Suppose that DP( %) is non-empty for some DQBF ¥. Then there exists
at least one pair (00,h) € DP(¥). Since every assignment falsifies 00, h is a
countermodel for ¥, by Lemma 2. Therefore ¥ is false.

Completeness. To demonstrate completeness, we must show that DP(¥) is
non-empty whenever ¥ is false. A false DQBF must have at least one counter-
model, h say. We show that h is ‘represented’ at each level of the DP construction;
that is, for each 0 < ¢ < n we can find a subset of DP(¥,i) whose strategies
collectively describe h. Consequently the final set DP(¥) must be non-empty.

Lemma 3. Let ¥ := 3z -+ Jz,Yur (Hy, ) - - - Yum (Hy,, ) -9, and let h be a coun-
termodel for ¥. For each i € {0,...,n} and each € in ({Tit1,...,2n}), there
exists some pair (C, g) € DP(¥, ) such that (a) e falsifies C, and (b) g(v) C h(y)
for every e C v € (varsz(¥)).

Proof. Base case i = 0. Let € € ({z1,...,2,}) = (varsz(¥)). Since ¢ is a full
assignment, there is only one extension v = . By definition of countermodel,
v U h(v) falsifies some C' € 1. By definition of DP(¥,0), there exists a clause-
strategy pair (Cs,¢“¥) € DP(¥,0), where 7 falsifies C5 and h(v) extends g<v (7).

Inductive Step i > 1. Let ¢ € ({xi41,...,%,}) be an assignment with extensions
g0 = e U{T;} and 1 = € U {z;}. By the inductive hypothesis, there exists a
pair (Cp, g°) € DP(¥,i — 1) such that g, falsifies C° and h(vo) extends g°(vo)
for every extension vy 2 ep, and similarly (Cy,g') € DP(¥,i —1) for ;. If
(Co,9°) = (C1,g'), we have z; & vars(Cy), so (Cy,g°) € DP(¥,i), and it is the
witness for €.

Otherwise, we claim that the pairs (Cp,¢°) and (Ci,g') are resolvable.
Firstly, T; € Cp because Cj is falsified by ¢y and x; ¢ Cy because C is fal-
sified by e1; hence the existential parts have an w-resolvent, and this resolvent
cannot be a tautology because it is falsified by €. Secondly, we need to show that
the strategies g2 and g! for variables u that do not depend on z; are consistent.
Consider u € varsy(¥) with z; € H,, and an assignment v € (vars3(¥)). We
will show that g9 (y1,) ~ g4 (¥, ) For j € {0,1}:

u

e let ; be v with values of the variables z;,...,z, overwritten to match ¢;.
Since x; gHu, we have Y[y, =71 lp,-
e Because ¢/ only depends on z1, ..., z;—1 (because we have so far only resolved

on those variables), we have g/ (v;1x,) = ¢3.(7 g, )-
e Because ¢; C 5, by the inductive hypothesis, g/, (v;lg,)) € hu(vilm,)-

Because Yolg, = 71lg,, we have hy(ylg,) = hu(11lg,), and by Lemma 1
0 ~
Gu(v0Tm,) = gu(11lg, ) Put together, we have

9o Ta) =90 (volw,) =~ ga(nly,) =g9u(a,)

Thus, ¢ ~ gl
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We claim that the resolvent (C; U, Co, %) of (Co,¢°) and (Cq,g') is the
witness for ¢ we are looking for. Clearly, ¢ falsifies C U,, Cp. To verify the second
condition, consider an extension v D €, and consider vy and ~; with the values
of z; overwritten to 0 and 1, respectively.

Consider u € varsy(¥) with a; € H,. Without loss of generality assume
¥ =70 2 €. Then, by definition of g%, we have g;°(vIy, ) = g (715, ), and by
the inductive hypothesis g3 (Y1, ) € hu(v1g, ), as required.

On the other hand, consider u € varsy(¥) with z; ¢ H,, and observe that
Yoly, = 71 lm, = Yy, Then, by definition of g1, we have

9"V Ta,) =900 9u(VTw,) = 90 (Y Ta,) U ga (1 a,) = ga(volm,) U g (v Tar,)-

Because g9 C 7o, we have g2 (Yol g,) € hu(0ls,) = hu(¥lg,), and similarly
9u(Mla,) € ha(¥l,)- Thus gu(Y1e,) U gu(¥la,) € hu(vla,) by Lemma 1.

Theorem 2. Given a DQBF ¥, if ¥ is false, then DP(¥) is non-empty.

Theorem 2 follows directly from Lemma 3 for ¢ = n since DP(¥) = DP(¥,n).
We will prove a slightly stronger version, which gives a finer lower bound on the
size of DP(¥) based on the number of minimal countermodels.

Definition 2. Let g, h be two strategies for a DQBF . We say that g extends
h, denoted by h C g, if for every total assignment v € (varsz(¥)), h(y) C g(v)-
A countermodel g is minimal, if for every countermodel h with h C g, g = h.
We denote the set of minimal countermodels of ¥ by u(¥).

Since the existential part of every pair in DP(¥) is the empty clause, we can
afford to abuse our notation and treat DP(¥) as a set of strategies. This allows
us to state the following theorem.

Theorem 3. For a DQBF ¥, u(¥) C DP(V).

Proof. By Lemma 3, every minimal countermodel g extends some strategy h in
DP(¥). By Lemma 2, h is a countermodel, and by minimality of g, h = g.

Theorem 2 now follows from Theorem 3 as any false DQBF must have a
minimal countermodel.

Example 1. Let us illustrate a run of Algorithm 1 on the following DQBF ¥:
dzq dag Vul(xl) VUQ(IQ) (71\/ 172) A (’LLl VTQ) N (’U,ig \ 561) N (UQ \/H)
Algorithm 1 first constructs the set DP(¥,0), which is

{ (z2, {ur = 1,us = x}), (Tz,{ur = 0,uy = x}),
(w1, {ur = *,up = 1}), (T1,{u1 = *,uz = 0}) }

We begin by eliminating z; (we could just as well start with x2). Resolving
the two clauses that contain literals on x is impossible due to strategy mismatch
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on ug, which is independent of z;1. Moving on to w-resolution, resolving (on
x1) the only two clauses that contain xo produces a tautology and so can be
safely ignored. This leaves us with four w-resolution steps to take: clause pairs
(1,3);(1,4);(2,3); (2;4). Consequently, the set DP(¥, 1) looks as follows:

from DP(¥,0)

{ (‘7;27 {ul = 1})a (TQ’ {ul = 0})’
(22, {us = 154 %, ug = 1}), (Tz, {ur = 054 %,ug = 1}),

(IQ,{Ul = * gé] I,UQ = 0}), (33727 {’U,l = %k [ié] O,UQ = 0})}

In the next iteration we eliminate x5. This time no weakening is necessary as
all clauses contain a literal on x5. Examining all pairs we find out that strategy
mismatch on u; prevents resolving either of the original pairs with any of the
new pairs, and that among the new pairs we can resolve only the first with the
fourth and the second with the third. That finally gives us DP(¥,2) = DP(¥):

(O, {uy =1500,u; =0531}),  (O,{ug =054 1,up = 140}).

The strategy in the first pair can also be succinctly written as uy = x1, us = T3,
and the one in the second pair is u; = T1, us = x2. It can easily be verified that
both of them are indeed countermodels, in fact minimal ones. Moreover, since
these strategies cannot be extended (they already assign a definitive value to
all variables in all cases), and every countermodel must extend a strategy from
some final pair, ¥ has no further countermodels. a

A natural question is why and how much weakening do we need to make
Algorithm 1 work. The fewer clauses to resolve, the better the performance of
the algorithm, and while Algorithm 1 works as presented thanks to Theorems 1
and 2, it would be ideal if we could limit ourselves to resolving only clauses that
contain the pivot, like in the propositional case. Example 1 shows that does not
work—without weakening, resolving on both x; and x5 would be impossible due
to strategy mismatch, and hence the algorithm would finish with the empty set,
wrongly concluding that ¥ is true. Example 2 goes a step further—it shows
that already restricting the algorithm to resolving only pairs where at least one
premise contains the pivot kills completeness.

Example 2. Consider the following DQBF ¥:

Ay Fzg Vug(21) Yug(ze) (T3 Vur Vuz) A (T2 Vur Vag) A
(TTVaa Var Vug) A (1 Ve Vu Vus).

It is readily verified that ¥ is false, with the unique countermodel u; =
and ug = xs.

Imagine now that Algorithm 1 was modified to resolve only those pairs of
clauses where the pivot is present in at least one clause. We will show that this
variant would report the formula to be true. We start with DP(%,0) as usual:
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{ (T2, {ul =0,u2 = 1})7 (T2, {ul =1lu = 1})7
(:Tl,xg,{ul =1,up = O}), (xl,xg,{ul =0,us = 0}) }

Assume we first resolve on x1. We can resolve the third and the fourth clause,
the pivot is present in both premises. Tautologies on x5 prevent all other reso-
lution steps except with the first two clauses. But x1 does not occur in either of
those clauses, so that resolution is forbidden. Thus, DP( ¥, 1) is

{ @2, {w1 =0,us = 1}), (T2, {w1 = L,uz = 0}), (2,{ug =1 B0, uy = 0}) }.

The u,-strategies are now pairwise incompatible, and hence resolution on x5
is impossible. Since all clauses contain a literal on x5, they are all deleted, and
the algorithm finishes with the empty set DP(¥), wrongly concluding that ¥ is
true.

Had we resolved the first two clauses on x; as required, DP(¥, 1) would have
instead been

{ (@2, {u1 = 0,u2 = 1}), (T2, {u1 = 1,u2 = 0}), (2, {us = 1510, uz = 0}),
(T2, {ur = 034 1,up = 1}), (Ta, {ur = 154 0,up = 1}) },

and a further resolution step is possible, after which we arrive at the correct
DP(¥) = {(O,{u; = 154 0,uy = 153 0}), containing the unique countermodel.
Notice how we have to weaken each clause that does not contain x; in both
possible ways, and take both resolvents—only one of them ends up being useful
in the next iteration, but we cannot know which one it will be upfront. ad

3.4 Representing Strategies

In this subsection we discuss some details for a potential implementation of Algo-
rithm 1. The most complicated component of the algorithm is the storage and
reasoning with strategy functions, which can in general become exponentially
large. Naturally, it is preferable to store strategies in such a way that consis-
tency checking, union, and if-then-else are as fast as possible. We will show that
ordered binary decision diagrams (OBDDs) with a fixed ordering, a well-studied
target language in knowledge compilation, are a suitable data structure for all
these tasks.

Definition 3 ([11,22]). Let V be a countable set of propositional variables and
< a total order on V. An OBDD< on'V is a finite rooted labeled directed acyclic
graph O whose each sink is labeled with either 0 or 1, whose non-sinks have out-
degree 2, are labeled with variables from V, and their outgoing edges are labeled
with the two literals of the vertex label, and such that the vertex labels along any
path are pairwise different and respect the order <.

The order < we use for the OBDD is the same as the order in which we
eliminate variables in Algorithm 1, which can be arbitrary but fixed. However,
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since our strategy functions are 3-valued, we cannot simply write them down as
an OBDD (which is 2-valued). Instead, we will rewrite each strategy g, into a
pair of Boolean strategy functions (g, , g:-) defined as

T( ){1 ifgu(’)’):]-’ gJ_( ){1 ifgu(’y)zo’

¢ 0 otherwise v 0 otherwise

and we will represent g, and g.- as OBDDs. We refer to the pair (g, , g ) as the
Boolean basis of g,,. Clearly, any strategy uniquely defines its Boolean basis, and
for any Boolean basis it holds that g, A g is unsatisfiable. Conversely, from a
Boolean basis, we can easily reconstruct the original function.

Lemma 4. Let g', g% be two Boolean functions such that g* Ag? is unsatisfiable.
Then, there is a unique 3-valued function g such that g* = g" and g?> = g*.

Proof. g is defined to output 1 when g' outputs 1, 0 when g2 outputs 1, and *
otherwise. This is well defined thanks to g' A g? being unsatisfiable, and clearly
it is the only such g.

The following proposition, which is an easy consequence of the definition,
shows how to answer consistency queries with Boolean bases, as well as how to
perform union and if-then-else on them.

Proposition 1. Let g,, h, be strategy functions for a universal variable u of a
DQBF V. Then

- gy =~ hy <= both gz A hf; and gf; A hl are unsatisfiable;
“(guohu)" =gy Vi (guohy)t =gy Vhy;
- (gu&]hu)T:gJDﬁ]hI§ (gu;th)lzgi_;qhi_f

Proposition 1 requires satisfiability checking (also known as consistency
checking), taking the conjunction and the disjunction of two functions (also
known as bounded conjunction and disjunction), and the if-then-else. OBDDs
support consistency checking and bounded conjunction and disjunction in poly-
nomial time [11]. Since the variables on which we perform if-then-else come in
a fixed order, it is clear we can compute g 5 h simply by creating a new x-
labeled vertex pointing to g and h. The constant functions in DP(¥,0) can be
represented with 1-node OBDDs, and thus we can perform all updates and all
consistency checks in polynomial time.* At the end, the algorithm will produce
the Boolean basis of a countermodel represented as a pair of OBDDs.

4 NEXP-completeness of CNF H-Form DQBF

For this section we recall an alternative syntactic form of DQBF: A DQBF in
S-form is an expression of the form Yuy - - -V, 321 (Sy, ) - - - 325, (Ss,, ) - ¢, where

4 In the size of the functions, which may, inevitably, become exponential.
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1) is a propositional formula. The roles of universal and existential variables are
swapped; we say that an S-form DQBF is true if there is a model, i.e. a set
of functions for the existential variables with the right universal dependencies
whose substitution in the matrix results in a propositional tautology. It is known
that evaluating S-form DQBF is NEXP-complete, even if the matrix is restricted
to a CNF [1,23].

It is easy to see that evaluating H-form DQBF, like evaluating S-form DQBF,
is in NEXP. Additionally, any S-form DQBF can be translated, via negation,
into an H-form DQBF, which shows that evaluating H-form DQBF with a DNF
matrix is NEXP-complete. If we want the resulting matrix to be a CNF, we must
start from an S-form DQBF in DNF. We therefore give a linear-time reduction
from S-form DQBF in CNF, which is known to be NEXP-complete, into S-form
DQBF in DNF, thereby establishing NEXP-hardness of the latter, and by exten-
sion of H-form DQBF in CNF. The reduction is in fact a direct generalization of
the Tseitin translation known from propositional logic and QBF [27]—we add
universal Tseitin variables and make no existential variable depend on them.

We say that two DQBFs ¥ and ¥’ are logically equivalent if they have the
same set of models.

Theorem 4. There is a linear-time algorithm that takes an input S-form DQBF
with a CNF matriz and outputs a logically equivalent S-form DQBF with a DNF
matrix.

Proof. Let ¥ =VYuy -+ Vuy,3z1(Sz, ) - - F2n(Sz, ) - ¥ be an S-form DQBF where
the matrix ¢y = Cy A--- A C, is a CNF. We define bNF(¥) as

Yty - VYU - Y321 (S, ) - 32n(Sa, ) - DNF()

where DNF(¢)) is the usual propositional Tseitin conversion into DNF applied to
the matrix v, and whose auxiliary variables are T := {t,...,t,}, i.e.

DNF(1)) := DNF(C1) V -+« VONF(Cr) V (t1 A+ - Aty)

where DNF(C;) = Ti\/aea Tia, Tia == (t; Na), and T; := (i, /\aECi a). Note
that this translation does indeed generalise QBF Tseitin translation.

Clearly, bNF(¥) can be computed in linear time. We now show that ¥ and
DNF( ) are logically equivalent. Since no existential variable depends on any
T-variable, the dependency structure of both formulas is the same.

Let f model ¥, and let o € (varsy(bNF(¥))). If a(ty) = - -+ = a(t,) = 1, then
the top-level term ¢ A - - - At,. is satisfied. Otherwise, let i be such that «(¢;) = 0.
Because f is a model for ¥, there is a literal a € C; for which the following
holds: a[vars, (w) U f(@lvars,(w))(a) = 1. Hence, the term T} , is satisfied. That
means f is a model for bnF( &) as well.

Conversely, let f be a model for bNF(¥). For an assignment « € (varsy(?)),
let Z, = {i : Ci[aU f(a)] =0} (we can write f(a) because no function in
f depends on any variable in T, and so « contains full information for the
application of f). We show that Z, = ) for every a € (varsy(¥)), which means
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f is a model for ¥. Let a € (varsy(¥)). Consider the 8 € (T) defined by
O(t;)) =0 < i€ Z,. It is easy to see that, whether i € Z, or not, a U U
fla U p) falsifies every term T; and T; 4, a € C;. But f is a model for pnF(¥),
so aU B U f(aU B) must satisfy some term—we conclude that it satisfies the
top-level term t; A --- A t,, and hence Z, = (.

Corollary 1. FEwvaluating S-form DQBF in DNF and H-form DQBF in CNF is
NEXP-complete.

Note that the proof of Theorem 4 goes through without modification even if
we omit the terms T;. Indeed, such a version would be a generalization of the
Plaisted-Greenbaum translation for propositional logic and QBF [20].

The computational complexity of H-form DQBF manifests in an interesting
way. Algorithm 1 proceeds in essentially the same way as QBF (and proposi-
tional) DP-resolution, eliminating variables one by one. In the QBF case, this
process runs in at most single-exponential time, since there is only a single-
exponential number of different clauses. In DQBF however, that would vio-
late the hypothesis that EXP # NEXP, and indeed, our algorithm can in gen-
eral take double-exponential time and space. This is because our objects are
clause-strategy pairs, and the number of different strategies is in general double-
exponential. Every variable elimination step can asymptotically square the num-
ber of objects in the database, and this repeated squaring, unchecked by a bound
on the total number of available objects, results in a double-exponential blow-
up. Thus, in a sense, DQBF is ‘one of the hardest’ problems that can still be
tackled with a DP-resolution-style algorithm—repeated squaring unfolds into its
worst case here and, under standard complexity assumptions, cannot work for
super-double-exponential problems anymore.

5 Conclusion

We presented a new decision procedure for DQBF in the style of Davis-Putnam
resolution [12]. Based on the M-Res proof system [4], it constructs partial Her-
brand functions along with derived clauses. The algorithm can thus be said to
reason directly at the level of strategies. This is in contrast with known decision
procedures for DQBF, which rely on quantifier expansion to reduce the prob-
lem to SAT/QBF [7,17], or adapt search-based algorithms for QBF by imposing
additional constraints that enforce consistency with DQBF semantics [14,15, 26].
Our decision procedure requires input DQBF in H-Form, as opposed to the more
commonly used S-Form [2]. We presented a linear-time algorithm that converts
S-Form DQBF into H-Form DQBF, thereby showing that this requirement can
be easily met. As a corollary, we establish NEXP-completeness of evaluating
DQBF in H-Form.
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Abstract. QCDCL is one of the main algorithmic paradigms for solving
quantified Boolean formulas (QBF). We design a new technique to show
lower bounds for the running time in QCDCL algorithms. For this we
model QCDCL by concisely defined proof systems and identify a new
width measure for formulas, which we call gauge. We show that for a
large class of QBFs, large (e.g. linear) gauge implies exponential lower
bounds for QCDCL proof size.

We illustrate our technique by computing the gauge for a number
of sample QBFSs, thereby providing new exponential lower bounds for
QCDCL. Our technique is the first bespoke lower bound technique for
QCDCL.

Keywords: QBF - QCDCL - Proof complexity - Resolution - Lower
bounds

1 Introduction

The satisfiability problem for propositional formulas (SAT) is one of the central
problems of computer science. Traditionally perceived as a hard problem due to
its NP completeness, SAT is nowadays very efficiently tackled by SAT solvers,
building on the paradigm of conflict-driven clause learning (CDCL) [27], which
solve problems in even millions of variables on many industrial problems.

The success of SAT solving has been transferred to computationally even
more challenging settings, with quantified Boolean formulas (QBF) receiving key
attention during the last decade [14]. One of the main approaches to QBF solving
lifts CDCL to the quantified level, resulting in QCDCL [34]. In addition to
QCDCL there are a number of further competing approaches to QBF solving [20,
24,28]. Due to its PSPACE completeness, QBFs allow to encode many problems
more succinctly, thus allowing to tackle even further applications [31].

Understanding which formulas are hard for (Q)CDCL is one of the most
fascinating questions, both from a theoretical and a practical point of view.
The main approach to this problem is through interpreting runs of SAT and
QBF solvers on unsatisfiable formulas as formal proofs of their unsatisfiability.
Since learned clauses in CDCL are derivable in resolution, it was noted early on
that each run of a CDCL solver on an unsatisfiable formula can be efficiently
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translated into a resolution refutation [3]. Somewhat surprisingly, the converse
holds as well, and when allowing arbitrary non-deterministic decision schemes,
CDCL and propositional resolution are equivalent [29]. However, practical CDCL
using decision schemes such as VSIDS [33] is exponentially weaker than the full
resolution system [32].

Nevertheless, practical CDCL schemes are simulated by resolution and thus
proof size lower bounds for resolution translate into lower bounds for CDCL run-
ning time. To obtain such lower bounds we can utilise the vast proof complexity
machinery of resolution lower bound techniques [22] to show a plethora of lower
bounds for combinatorial, random, and further formulas. Indeed, resolution is
arguably the best-understood proof system, intensively studied long before the
advent of SAT solving.

The situation is somewhat more intricate regarding the relation between
QCDCL and Q-resolution, the latter being the simplest and most-studied ana-
logue of propositional resolution for QBF [21]. The first result regarding their rel-
ative strength is due to Janota [19], who proved that practical QCDCL does not
simulate Q-resolution. This can be interpreted as the QBF analogue of Vinyals
result for practical CDCL vs resolution [32] (though [19] actually predates [32]).
In contrast, the celebrated result on the equivalence of non-deterministic CDCL
and resolution [29] does not lift to QBF as very recently shown in [7]: (non-
deterministic) QCDCL and Q-resolution are incomparable, i.e., there exist for-
mulas exponentially hard for Q-resolution, but easy for QCDCL, and vice versa.

This leaves us with the conundrum of how to show lower bounds for QCDCL.
Though we understand Q-resolution fairly well and have a number of dedicated
techniques for lower bounds in that system [5,6,8-10,12], unlike in the SAT case,
these do not automatically apply to QCDCL.

The existing information on QCDCL lower bounds can be summarized as
follows. In addition to the above-mentioned lower bound of [19] for practical
QCDCL, we showed in [7] that under certain conditions, lower bounds from
Q-resolution can be lifted to QCDCL. Also, while QCDCL runs on false QBF's
cannot be efficiently transformed into Q-resolution proofs, they can be translated
into long-distance Q-resolution proofs, an exponentially stronger proof system
designed to model clause learning in QCDCL [1,16]. However, we only have very
few examples of hard formulas for long-distance Q-resolution [2,9,10], which
again are lifted from Q-resolution hardness.

In summary, it is fair to say that QCDCL is rather poorly understood from
a theoretical point of view and in particular lower bound techniques that would
allow to show exponential lower bounds for QCDCL are lacking.

Our Contributions. We devise the first dedicated lower bound technique for
QCDCL (with arbitrary clause learning mechanisms including those used in prac-
tise). In contrast to previous lower bounds for QCDCL, our technique does not
import Q-resolution hardness and thus applies to different formulas, regardless
of whether they are hard for Q-resolution or not. We already mention at this
point though, that our technique is not completely general, but is restricted to
X% formulas that meet a certain XT-condition, considered already in [7].
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Technically, our approach rests on interpreting QCDCL runs in a formal
framework of proof systems, already used in [7]. Further, we define a property
of long-distance Q-resolution proofs, which we call quasi level-ordered. This is
inspired by the notion of level-ordered proofs, introduced in [20], where the order
of resolution steps in proofs must follow the quantification order in the prefix.
Quasi level-order proofs relax that condition (Definition 4).

Our lower bound technique then rests on two steps: (1) We show that for X%-
formulas with the XT-condition, QCDCL proofs can be efficiently translated into
quasi level-ordered Q-resolution proofs. (2) We define a new measure called the
gauge of a QBF and show that large (i.e. linear) gauge implies exponential size in
quasi level-ordered Q-resolution. Together, (1) and (2) imply that formulas with
the XT-property and large gauge are hard for QCDCL (our main Theorem 13).

We illustrate our technique on a couple of examples on which computing the
gauge is fairly straightforward. Thus, though showing (1) and (2) above is rather
technical, the lower bound technique itself is quite easily applicable.

It is also interesting to mention that our new notion of gauge is some kind
of width measure on clauses. Showing proof size lower bounds via width lower
bounds is a very well-explored theme in proof complexity, both propositionally
[4] and in QBF [6,11]. We show, however, that gauge and proof width are not
related in general.

Organisation. The remainder of this article is organised as follows. We start in
Sect. 2 by reviewing notions from QBF, including Q-resolution and long-distance
Q-resolution. In Sect.3 we sketch QCDCL and explain how to model it as a
formal proof system QCDCL. In Sect. 4 we introduce a new notion of quasi level-
ordered proofs and give an algorithm to translate QCDCL proofs into quasi-level
ordered Q-resolution. Section 5 introduces our lower bound method for quasi-level
ordered proofs via the gauge measure, which we apply in Sect. 6 to a number of
old and new QBF families. We conclude in Sect. 7 with some open questions.

2 Preliminaries

Propositional and Quantified Formulas. Variables and negated variables
are called literals, i.e., for a variable x we can form two literals:  and its negation
Z. We denote the corresponding variable as var(z) := var(z) := x.

A clause is a disjunction of literals, sometimes also viewed as a set of literals.
The empty clause is the clause consisting of zero literals, denoted (L). Terms are
conjunctions of literals. Again, terms can be considered as sets of literals. A CNF
(conjunctive normal form) is a conjunction of clauses. For C' =41 v ... v £, we
define var(C') := {var(¢1),...,var(¢y,)}. For a CNF ¢ = C1 A ... A C,, we define
var(¢) := |, var(C;). A clause C is called tautological, if there is a variable x
with z,z € C.

An assignment o of a set of variables X is a non-tautological set of literals,
such that for all € X there is £ € o with var(¢) = x. The restriction of a clause
C' by an assignment o is defined as C|, := T (true) if Cno # &, and Ve o, ¢
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otherwise. One can interpret o as an operator that sets all literals from o to the
Boolean constant 1. We denote the set of assignments of X by (X).

A @QBF (quantified Boolean formula) & = Q - ¢ is a propositional formula
¢ (also called matriz) together with a prefiz Q. A prefix Q121Q222 ... Qrxk
consists of variables x1,...,z; and quantifiers Q1,...,Qx € {3,V}. We obtain
an equivalent formula if we unite adjacent quantifiers of the same type. Therefore
we can always assume that our prefix is in the form of Q@ = Q1 X1Q5X5 ... QX
with non-empty sets of variables X7,..., X and quantifiers Q7,...,Q% € {3,V}
such that Qj # Qj,, for i € [s — 1]. For a variable z in Q we denote the
quantifier level with respect to Q by lv(z) = lvg(x) = 4, if z € X;. Variables
from & are called ezistential, if the corresponding quantifier is 3, and universal
if the quantifier is V.

A QBF with CNF matrix is called a QCNF. We require that all clauses from
a matrix of a QCNF are non-tautological, otherwise we just delete these clauses.
We further require that all variables in the matrix appear in the prefix. Since we
will only discuss refutational proof systems, we only consider false QCNF's.

A QBF can be interpreted as a game between two players 3 and V. These
players have to assign the respective variables one by one along the quantifier
order from left to right. The V-player wins the game if and only if the matrix of
the QBF gets falsified by this assignment. It is well known that for every false
QBF & = Q - ¢ there exists a winning strategy for the V-player.

Q-resolution and Long-Distance Q-Resolution. Let C; and Cs be two
clauses of a QCNF &. Let also £ be an existential literal with var(¢) ¢ var(C1) u
var(Cy). Then the resolvent of Cy v £ and Cs v £ over £ is defined as

(Crv )5 (Co v 0) = Cy v O

Let C:=u1v...VU, VT V...VIT, VUL V...V Vs be a clause from @, where
ULy ooy Um,V1,...,VUs are universal literals, z1,...,x, are existential literals and
v1,...,0s are exactly those literals v € C' such that v is universal and lv(v) >
lv(x;) for all i € [n]. Then we can perform a reduction step and obtain

red(C) == (U1 V ... V Uy V1 V ...V Tp).

For a CNF ¢ = {C4,...,C} we define red(¢) := {red(C;),...,red(C)}.

Q-resolution [21] is a refutational proof system for false QCNFs. A Q-resolution
proof 7 of a clause C' from a QCNF & = Q - ¢ is a sequence of clauses 7 =
Cy,...,Cy,, with C,, = C. Each C; has to be derived by one of the following
three rules:

— Aziom: C; € ¢;

— Resolution: C; = Cj B Cy for some j, k < i and = € varg(®), and C; is
non-tautological;

— Reduction: C; = red(Cj) for some j < 1.

Note that none of our axioms are tautological by definition. A refutation of
a QCNF & is a proof of the empty clause (L).
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To model clause learning in QCDCL, the proof system long-distance Q-
resolution was introduced in [1,34]. This extension of Q-resolution allows to derive
universal tautologies under specific conditions. As in Q-resolution, there are three
rules by which a clause C; can be derived. The axiom and reduction rules are
identical to Q-resolution, but the resolution rule is changed to

— Resolution (long-distance): C; = C; 51 Cy, for some j, k < i and z € vars(®).
The resolvent C; is allowed to contain a tautology u v @ if w is a universal
variable. If u € var(C}) n var(C}), then we additionally require Iv(u) > lv(x).

Note that a long-distance Q-resolution proof without tautologies is just a Q-
resolution proof.

3 QCDCL as a Formal Proof System

In this section we review quantified conflict-driven clause learning (QCDCL) and
its formalisation as a proof system from [7]. This provides the formal framework
for our subsequent proof complexity analysis.

QCDCL is the quantified version of the well-known CDCL algorithm (see
[27,33] for further details on CDCL, and [17,23,34] for QCDCL). Let & = Q-¢ be
a false QCNF. Roughly speaking, QCDCL consists of two interleaved processes:
propagation and learning.

In the propagation process we generate assignments with the goal to either
find a satisfying assignment or to obtain a conflict. We start with clauses from
¢ that force us to assign literals such that we do not falsify these clauses (called
unit clauses). The underlying idea of this process is unit propagation. One can
think of a clause z1 v ... v x,, as an implication (Z1 A ... A ZTp—1) — 2. That is,
if we already assigned the literals Z1,...,Z,_1, then we are forced to assign x,
in order to satisfy this clause. In QBF, we also insert reduction steps into this
process, i.e., we are interested in clauses that become unit after reduction. For
example, the clause (T; A ... AZp_1) — (2, v u) for an existential literal z,, and
a universal literal v with lv(z,) < lv(u) can also be used as a ground clause for
propagating x.,.

Performing unit propagation, the goal is to prevent a conflict for as long as
possible. However, it is not guaranteed that we can even perform any unit prop-
agations by just starting with the formula. Therefore we will make decisions, i.e.,
we assign literals without any solid reason. With the aid of these decisions (one
can also think of assumptions) we can provoke further unit propagations. Since
decision making is one of the non-deterministic components of the algorithm, we
only make decisions if there are no more unit propagations available. In QCDCL
these decisions follow the quantification order, i.e., we always decide a variable
from the leftmost quantifier block.

After obtaining a conflict, i.e., falsifying a clause, we start the clause learning
process. Here the underlying idea is to use Q-resolution resp. long-distance Q-
resolution. We start with the clause that caused the conflict and resolve it with
clauses that implied previous literals in the assignment in the reverse propagation
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order. At the end we get a clause such that is derived from existing clauses by
long-distance Q-resolution. We add the learned clause to ¢, backtrack to a state
before we assigned all literals of this clause and restart the propagation process.
The algorithm ends when we learn the empty clause (L) and therefore obtain a
refutation of &.

QCDCL has to handle both refutations of false formulas as well as prove the
validity of true formulas. Therefore one would additionally need to implement
cube learning (or term learning) for satisfying assignments. Since we are only
interested in refutations (otherwise we could not compare with Q-resolution), we
will omit this aspect of QCDCL.

To prove rigorous lower bounds on the running time of QCDCL we cast
QCDCL as a formal proof system. We recall the relevant details from [7], where
we fully formalised all components of QCDCL. Each QCDCL run consists of
backtracking steps and restarts. Between them we create trails, in which we
store all information on decisions and unit propagations.

Definition 1 (trails, repeated from[7]). Let & = Q- ¢ be a QCNF in n
variables. A trail T for @ is a sequence of literals (or L) of variables from @
with some specific properties. We distinguish two types of literals in T : decision
literals, that can be both existential and universal, and propagated literals, that
are either existential or L. We write a trail T as

T = (P,1)s > P0,90): A1:PA,1)s - - s P(1,91)3 - - -3 Des Dir1) s - -+ P(rogr))

where we denote decision literals by d; and propagated literals by p¢; ;). We are
not allowed to make a new decision unless there are no more propagations pos-
sible. Also, decision literals have to be level-ordered, i.e., we have to choose a
leftmost quantified variable (still unassigned) as the next decision.

There are some further requirements on T, for which we refer to [7].

For unit propagation we need the notion of wunit clauses that allow us to
assign a variable without making a decision. We call a clause C' a wunit clause if
red(C) = (z) for an existential literal x or x = L.

The next definition presents the main framework for the analysis of QCDCL
as a proof system. After having defined trails in a general way, we want to specify
the way a trail can be generated during a QCDCL run.

Definition 2 (QCDCL proof systems[7]). Let & = Q- ¢ be a QCNF. We
call a triple of sequences

L= ((7—1,...,Tm),(C1,...,Cm),(7T1,...,7Tm))

a QCDCL proof from @ of a clause C, if for all i € [m] the trail T; uses the
QCNF Q- (¢ u {C1,...,Ci_1}), where C; is a clause learnable from T; and
C,, = C. FEach m; is the long-distance Q-resolution derivation of the clause C;
from Q- (¢ {Cy,...,Ci_1}) that we learned from the trail T;.

Between two trails T; and T;+1 we backtrack to some point which we can
choose freely. Backtracking to the start (before any variable was assigned) is
called restarting. If C = (L) we call v a refutation.
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By sticking together 7y, . . ., T, we obtain a long-distance Q-resolution deriva-
tion ™ of C from ®. We identify QCDCL proofs with this exact .

We require that all trails are naturally created, which means that we are not
allowed to skip unit propagations if they are possible, as we explained before. A
more detailed description of this condition is given in [7].

We remark that though QCDCL proofs are basically long-distance Q-resolution
derivations (i.e., QCDCL is simulated by long-distance Q-resolution), these sys-
tem are not equal as QCDCL imposes a particular structure on long-distance
Q-resolution proofs. Indeed, long-distance Q-resolution is exponentially stronger

than QCDCL (cf. [7]).

4 Quasi Level-Ordered Proofs

For the remainder of this article we will entirely focus on X% formulas and
throughout fix the prefix IXVU3IT, where X, U, and T are pairwise disjoint and
non-empty sets of variables.

Our ultimate aim will be to develop a lower bound technique for such formulas
for QCDCL. Conceptually, our technique is inspired by an approach for level-
ordered proofs, which is why we recall that notion from [20].

Definition 3 ([20]). A long-distance Q-resolution proof m from a QCNF @ of a
clause C' is called level-ordered if for each path P in w and two resolution steps
in P over variables £1 and {5 the following holds: if the resolution over £y is
closer to the root C than the resolution over Ly, then lw(€1) < lw(fs).

For level-ordered proofs one can devise lower bounds as follows. A level-
ordered long-distance Q-resolution refutation 7 of a X-formula ¢ = 3XVUIT - ¢
always starts with T-resolutions and ends with X-resolutions. We then count
the clauses consisting only of X-literals at the transitions from a T-resolution
to some X-resolution. For each 7 € (X) we can find such a clause C, that is
falsified by 7.

We will use this idea in a more general setting by introducing the notion of
quast level-ordered proofs where only the existence of these C; is required.

Definition 4. A long-distance Q-resolution refutation © of a X% formula with
prefic IXVYUIT is called quasi level-ordered, if for each assignment 7 € (X)
there exists an X-clause Cr which is falsified by T and the subproof mc. C m of
C'; is level-ordered.

Clearly, level-ordered proofs are quasi level-ordered, but the converse does not
hold in general.

In Sect.5 we will devise a lower bound technique for quasi level-ordered
proofs. To get the connection to QCDCL, we show that each QCDCL refutation
of X% formulas with a special property can be efficiently transformed into a quasi
level-ordered Q-resolution refutation. The property needed is the XT-property,
which we recall from [7].
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Definition 5 ([7]). Let @ be a QCNF of the form 3XVYUIT-¢. We call a clause
C in the variables of

- X-clause, if var(C) n X # &, var(C) nU = & and var(C) n T = &,

- T-clause, if var(C) N X = &, var(C) nU = & and var(C) n T # &,

- XT-clause, if var(C) n X # &, var(C) nU = & and var(C) n'T # &,
— XUT-clause, if var(C) n X # &, var(C) nU # & and var(C) n T # .

We say that @ fulfils the XT-property if ¢ contains no XT-clauses as well
as no unit T-clauses and there do not exist two T-clauses C1,Cy € ¢ that are
resolvable.

Intuitively, this says that there is no direct connection between the X- and
T-variables, i.e., ® does not contain clauses with X- and T-variables, but no
U-variables. This XT-property allows us to prove several properties regarding
QCDCL refutations.

Lemma 6 ([7]). Let & be a QCNF that fulfils the XT-property. Then the fol-
lowing holds:

(i) It is not possible to derive XT-clauses by long-distance Q-resolution.
(i) It is not possible to resolve two XUT-clauses over an X -literal in a QCDCL
proof.
(iii) Each QCDCL refutation of ¢ is a Q-resolution refutation (not just a long-
distance Q-resolution refutation,).

Now we will work towards the transformation of QCDCL proofs into quasi
level-ordered Q-resolution refutations. This transformation is described as an
algorithm in the following theorem.

Theorem 7. Let & be a X% QCNF that fulfils the XT-property. Then each
QCDCL refutation © of @ can be efficiently transformed into a quasi level-ordered
Q-resolution refutation 7' of @ with |7'| € O(|x|*).

Proof. First, because of the XT-property each QCDCL refutation is also a Q-
resolution refutation.

Let # = C4,...,C,, = L. Note that clauses could occur more than once in
a proof since we cannot simply shorten a proof in QCDCL. Hence we will use
indices to identify clauses in a proof. Each index not only determines the clause
itself, but also its position in the proof. This is the reason why we will only use
indices in the algorithm in order to store informations about a particular clause.

Technically, we define an order that will help us determine if a resolution
Cyq < C, takes place before or after another resolution Cy < Cy in a given
proof. For this we define a total order < on {{d,e}: d,e € N, d # e} as follows:

A=< B max A < max B or (max A = max B and min A < min B).
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We use the notation A < B for A < B and A # B.
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Algorithm 1: The algorithm needs a QCDCL refutation 7 as input and
outputs a quasi level-ordered long-distance Q-resolution refutation =’.

® N O A W N -

10
11

12

13
14
15
16
17
18
19
20
21
22
23

24

25
26
27
28

Mx ={m}; Mxyr =@; L:=g; 7 :=m i:=1;
while Mx # & do

while Mx # & do
choose c € Mx maximal,
if subproof mc, of C. is level-ordered then
‘ add ¢ to L;
else
if last step in ﬂé;c was a resolution over X, say C. = Cy B C.
then
| add d and e to Mx
else
Under all transitions from X-resolutions to T-resolutions in

¢, of the form Cy 51 C, = Cy and Cf i~ Cy=Cj let {d, e}
be maximal with respect to <;

W.lo.g. let Cy be the XUT-clause and C, be the X-clause
(otherwise swap d and e);

add (d,e,c) to Mxyr;

add e to Mx;

end

end

delete ¢ from Mx;

end

M ;((%T = Mxuyr;

1:=1+1;

while MXUT 75 @ do

Choose (d,e,c) € Mxuyr;

Let C4,C4,,Cay, ..., Cq,, Cc be the path from Cy to C,. Since C,
is an X-clause, all T-literals from Cy have to be resolved away. Let
Co, =Cy B4 Ce, Co; =Cy,_, ) Cy,_, for T-variables r;, some
indices bj_1, j = 2,...,k and C,; = red(Cl,);

Add the clauses Cyy := Cq B4 Cy,, Cor i= Cy_ 51 Cy_, for
j=3,...;kand Cy = red(CaL). If somewhere the resolution
does not work due to a lacking literal 7; or x, we define the
corresponding Ca; as the clause that lacks this literal. The C’a/j are
inserted at the end of the proof.;

add aj,, to Mx;

delete (d, e, c) from Mxyr;

end

end
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We sketch how the transformation (Algorithm 1) works: Throughout the
whole process we work with two sets Mx and Mxyr. The set My contains
indices of X-clauses, where initially we start with Mx = {m} (remember that
Cp = (L)). For each ¢ € Mx we check whether the clause C. has a level-ordered
subproof. If the subproof is not level-ordered, and if the last step before C. was
an X-resolution, we just add the indices both parent clauses of C, to Mx and
delete ¢ from it. Otherwise, if the subproof is not level-ordered, but the last step
before C. was no X-resolution, we search for the last transition that violates
the level-order condition. This must be a transition from an X-resolution to a
T-resolution. After this transition there will be only T-resolutions until we reach
C.. One of the parent clauses of this X-resolution, which we call Cy and C,, is an
X-clause and the other one is an XUT-clause due to the XT-property (Lemma
6). The index of the X-clause (either d or e) is again stored in Mx, while we
delete ¢ from Myx. However, for the XUT-clauses, which are stored as triples
(d,e,c) in Mxyr (where Cy is the XUT-clause), we have to add several clauses
to the proof, including a new X-clause C,/. This clause C,/ is then added to Mx
as well, and the loop repeats until there are no more clauses in Mx left. Note
that these added clauses will be part of a dead end in the proof and therefore
are not necessary for the refutation itself. However, we need these new clauses
for a counting argument in our lower bound technique.

We will show that at the end we return a proof that is quasi level-ordered.
More specifically, the X-clauses we detect during the run whose subproofs are
level-ordered will be exactly the clauses C from the definition of quasi level-
ordered proofs. This holds because, starting from the empty clause, whenever
we detect an X-resolution we can choose which parent clause we will consider
next. Hence we can choose the polarity of the X-variable we resolve over in the
current step. At the end, this last X-clause (whose subproof is level-ordered)
only comnsists of variables with the right polarity as previously chosen. Figure 1
depicts how the algorithm transforms a proof.

O

Algorithm 1 can be easily modified to also transform long-distance Q-
resolution refutations by adding more case distinctions to line 12. However, this
might lead to an exponential blow up.

5 A Lower Bound Technique via Gauge

Now that we have proven that QCDCL is simulated by quasi level-ordered proofs,
we continue by introducing a measure for X% QCNFs that will provide an expo-
nential lower bound for quasi level-ordered refutations of these formulas.

Definition 8. For a X% QCNF & with prefiv 3IXVUI3T let Wg be the set of all
Q-resolution derivations © from @ of some X-clause such that m only contains
T-resolution and reduction steps. We define the gauge of @ as

gauge(P) := min{|C| : C is the root of some we€ Wg}.
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Cq C,
Xurt X
l.-o l.-o
C11 C3 C4 C5 C6
X X X Xur X
C7 Cl[) Cg
X X X
Co=(1)
X

Fig. 1. Sketch of the functionality of the algorithm. Below each clause C; we specify
the type of clause (X- or XUT-clause). Newly added parts are coloured red. Triangles
labeled with “l.-0.” are level-ordered subproofs, otherwise they are not level-ordered
and we can find a transition from an X-resolution to a T-resolution. The corresponding
clause C. is then one of the C; clauses for a particular 7. (Color figure online)

Intuitively, gauge(®) is the minimal number of X-literals that are necessarily
piled up in a level-ordered Q-resolution derivation in which we want to get rid of
all T-literals (hence we consider proofs of X-clauses).

Before showing how gauge lower bounds imply proof size lower bounds let us
consider an example for which we recall the CR,, formulas from [20].

Definition 9 ([20]). The QCNF CR,, consists of the quantifier prefic

Elx(l,l), e T(1,n)s T(2,1)s - L (2m)s ey (ny1)s e - ax(n,n)vuasla cey Syt et
and matriz clauses (z; ) vuv si), (Zgij) vuvt;) ford, j e [n] as well as \/ g, Si
and \/ jep, ti-

The CR,, formulas describe a ‘completion’ game on an (n X n)-matrix (cf.
[20]). Tt is readily checked that the CR,, formulas fulfil the X T-property. We can
now compute their gauge. Note that according to our convention, the T-variables
comprise of all variables s1,...,8n,t1,...,tn.
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Lemma 10. We have gauge(CR,) = n.

Proof. Since there are no X-clauses as axioms, we necessarily need to resolve
over T somehow. For this we need T-literals of negative polarity, hence each
m € Weg, contains \/ie[n] 5; or \/ie[n] t;. In each m € Weg, every T-literal has to
be resolved away. For this reason we need the corresponding clauses z; ;) v u v s;
or T(; ;) v u Vv t;. Because we cannot resolve over X in m € Wey,,, there are at
least n X-literals that are piled up and therefore gauge(CR,) = n. O

Towards our lower bound technique we now estimate the size of derivations
of X-clauses in terms of gauge.

Lemma 11. Let @ be a X5 QCNF. Let 7 be a level-ordered Q-resolution proof
from @ of a non-tautological X-clause D with |D| = c. Then |r| = 29%u9¢(®)—¢,

Proof. Let V := X\var(D). For each assignment 7 € (V) we will find a path P,
in 7, by going backwards starting from D. For each resolution step over some
x € V we choose the path whose literals are negated by 7, hence we choose the
clause that contains z if 7(z) = 0 and the other clause otherwise. If there are
resolution steps over variables from var(D), then we will always choose the literal
from D. If we reach a reduction step, we will just expand the path by this one
parental clause. If we detect a resolution step over a T-literal, we stop there.

Let C; be the clause at which we stop. Clearly, the subproof m¢_ of C; is
one of the derivations in Wg, hence |C,| = gauge(®). Then C, has to be a
non-tautological X-clause with at least gauge(®) different X-literals. Then C.
contains at least gauge(®P) —c different X-literals whose variables are in V. These
literals are negated by the assignment 7.

Now let a be the number of these clauses C; by summing over all 7. Since
for each C; there are at most | X| — gauge(®) variables that are not contained
as some literal in the clause, there are at most 21XI-8auge(?) pathg that can lead
to each C. Multiplying with the number of C, gives us at least the number of
paths 7 € (V), hence

9l X|—gauge(?) ., 5 9lX|—c

ea> Q\XI—C/QIX\—gauge@) — 9gauge(®)—c

Since each C, is a clause from 7, we get || > a > 282uee(®)—c, O

Note that the bound from Lemma 11 is an exact lower bound (no asymptotics
involved). We will now use Lemma 11 to get a lower bound for quasi level-ordered
Q-resolution refutations. We will do this with a similar counting argument as in
Lemma 11 by counting the number of clauses C; in quasi level-ordered proofs.

Proposition 12. Each quasi level-ordered Q-resolution refutation of a X%
QCNF & has size 25(90uge(®))
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Proof. Let m be the shortest quasi level-ordered refutation of @. By the definition
of quasi level-ordered proofs we can find clauses C; for each 7€ (X).

Let h := min,c(x) |C;|. By Lemma 11 we get |r| > 2828°(®)=h hence h >
gauge(®) — log |7|. Each clause C, can have at most 2/%1=" assignments a e (X)
such that C,, = C;. Let a := [{C, : 7€ (X)}|, then a - 21XI=" > 21X and thus
9gauge(P)

‘7T| >a> 2h > 2gauge(¢)710g\7r| — | ‘
71—

We conclude that |7|? € 2(gauge(®)) O

We combine Theorem 7 and Proposition 12 above and obtain a lower bound
for QCDCL on formulas with the XT-property.

Theorem 13. Each QCDCL refutation of a X% QCNF & that fulfils the XT-
property has size 22(90u9¢(®))

6 Applications of the Lower Bound Technique

We now apply our new lower bound technique via gauge to show exponential
lower bounds for QCDCL proof size (and thereby for QCDCL running time) for
a number of QBF families. First, by combining Lemma 10 with Theorem 13 we
obtain hardness for the CR,, formulas from [20].

Corollary 14. The formulas CR,, require exponential-size proofs in QCDCL.

With this result we gain an improved separation between Q-resolution and
QCDCL. It was already shown in [7] that Q-resolution and QCDCL are incompa-
rable. This involves constructing QBFs that are easy for QCDCL, but hard for
Q-resolution, and vice versa. One direction is shown via the QParity formulas
(Definition 18 below), which are hard for Q-resolution [9], but easy in QCDCL [7].
For the other direction, [7] used the Trapdoor [7] and Lonsing formulas [23], both
of which are easy for Q-resolution, but hard for QCDCL. However, both QBF fam-
ilies incorporate the propositional pigeonhole principle (PHP) and the hardness
of these formulas for QCDCL rests entirely on the hardness of PHP for propo-
sitional resolution [18]. This is somewhat unsatisfactory, as the hardness results
do not refer to quantification and in particular do not hold in the presence of
NP oracles (cf. [13,26] for a detailed formal account on how to equip QBF proofs
with NP oracles or equivalently QBF solving with SAT calls).

Our improved separation is shown in Corollary 14 above, as these formulas
are hard in QCDCL, but easy in Q-resolution [20]. Unlike the separations from [7],
this hardness result does not make any reference to propositional hardness but
also holds under NP oracles in the framework of [13].

We also note that Janota [19] already proved hardness of the QBFs CR,, for
QCDCL with UIP learning. Corollary 14 improves on that result as well as our
hardness result holds for arbitrary learning schemes in QCDCL.

As our second example we introduce the following formulas.
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Definition 15. LetENarrow, := 3x1,...,Zpp1VU1, ..., Upt13t1, ..o, tn -ty with
the matriz v, containing the clauses:

’le\/’ul\/tl, lfl\/’l_l,l\/tl7
xivuivti,lvthfivﬂivti,lvti, fori:27...,n
Tn41 V Unt1 V tny (En+1 4 ﬂ/n+1 Vit

It is easy to see that ENarrow, fulfils the XT-property. Next we will show an
exponential lower bound for ENarrow,, in QCDCL.

Lemma 16. We have gauge(ENarrow,) =n + 1.
Proof. Let m € Wenarrow, - Define the sets of clauses

Zl = {SUl V Uy th, T1 V Ul \/tl}
;= {zivui\/ﬂ-_lvti, iivﬂivﬂ_lvti} fori =2,...,n
Zn+1 = {xn-&-l V Un+1 V tn, Tp41 V Unt1 V tn}

Let C be an axiom clause in 7. Then C has to be contained in some set Z; as
above.

Case 1: C € Z;.

Then we have to get rid of t; € C, hence we need a clause from Z5. But then
we have to get rid of ¢ and so on: Z7 ~» Zg ~» ...~ Z, ~ Z,11. We conclude
that 7 has to contain at least one clause from each Z;, j € [n + 1]. Therefore we
have to pile up n + 1 X-literals.

Case 2: C € Z; for some i € {2,...,n}.

Then we have to get rid of ;_; and ¢; € C, hence we need a clause from Z;_;
and Z; 1. After this we have to resolve over #; 5 and t;;1 and so on, leading to
a chain of resolutions Zy < ...« Z; 1 v Zp v Zigq ~ oo~ Zpgq. Again,
we conclude that 7 has to contain at least one clause from each Z;, j € [n + 1].
Therefore we have to pile up n + 1 X-literals.

Case 3: C' € Zp 4.

This works similarly to Case 1, except that we start at 7,41 and go back-
wards: Z1 <~ Zg < oo L s L. O

Corollary 17. The QBFs ENarrow,, require exponential-size proofs in QCDCL.

The gauge of a formula is obviously some width measure and it seems natural
to wonder how it relates to the notion of the existential proof width® of long-
distance Q-resolution refutations of a formula as studied in [6,11,15]. However, it
turns out that these two measures are not directly related. On the one hand, it is
easy to see that ENarrow, has long-distance Q-resolution refutations of constant
existential clause width. Hence these formulas have small (constant) existential
proof width, but linear gauge.

On the other hand, there are also formulas with constant gauge and linear
proof width. For this we revisit the parity formula from [9].

! The existential width of a clause is defined as the number of existential literals in
this clause. The existential proof width is defined as the maximal existential width
over all clauses in this proof.
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Definition 18 ([9]). QParity,, consists of the prefiz 3zy ... x,YVuts .. . t, and
the matrix

1‘1\/I2\/7€27 Ty V Ty V iy, T1V TV ta, i‘l\/i‘gvfg,
TiVti—1 Vt_i, X Vt_i,1 Viti, Ty vitio1Vvit, T Vt_ifl \/LTZ' forie{?),...,n}

UV ty, UV i,

It was shown in [6,11] that QParity, requires linear proof width. Here we
modify this formula such that proof width remains unaffected, but gauge is small.
Let mQParity, be the modified variant of this formula that consists of the prefix
1, ..., T, yYuTts, . .., t, and the matrix (7) A /\CEQParity” (y v C). Obviously,
because of the unit clause (), we have gauge(mQParity,) = 1, but still linear
proof width.

We can also use the QParity,, formulas to show that large gauge alone is not
sufficient to guarantee QCDCL hardness, but some further assumption such as
the XT-condition is needed.

We continue with the equality formula from [5] as a further example of hard
formulas for QCDCL. In [7] QCDCL hardness of Equality, was already proven by
lifting Q-resolution hardness of these formulas to QCDCL. However, with our new
lower bound technique it is possible to prove QCDCL hardness directly without
importing Q-resolution lower bounds.

Definition 19 ([5]). The formula Equality, is defined as the QCNF

Ay . coxpVuy o ccup 3ty by (L Vv ) A

=

(T v vi) Alx vu; viEg)).
1

-
Il

Proposition 20. We have gauge(Equality,) = n. Consequently the formulas
are exponentially hard for QCDCL.

Proof. Let m € Wequa1ity, - Since none of the axioms are X-clauses, we have to
resolve over T somehow. For this we need the clause ¢; v ... v t,,. But that means
we have to resolve over each t; at least once in 7, and therefore we will pile up
all n X-variables. O

7 Conclusion

We initiated the study of devising lower bound methods tailored to QCDCL.
At the moment our techniques only applies to X%-formulas. Though this is a
quite relevant class of QBFs, also prominently represented in QBF benchmarks
[25,30], it would be very interesting to extend the method to QBFs of higher
quantifier complexity.

In another direction, future research should explore further conditions
(besides the XT-condition considered here) that allow to efficiently translate
QCDCL into quasi level-ordered proofs and thus enable to show lower bounds
via gauge.
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Abstract. Modern SAT solvers are based on a paradigm named conflict
driven clause learning (CDCL), while local search is an important alter-
native. Although there have been attempts combining these two meth-
ods, this work proposes deeper cooperation techniques. First, we relax the
CDCL framework by extending promising branches to complete assign-
ments and calling a local search solver to search for a model nearby.
More importantly, the local search assignments and the conflict fre-
quency of variables in local search are exploited in the phase selection and
branching heuristics of CDCL. We use our techniques to improve three
typical CDCL solvers (glucose, MapleLCMDistChronoBT and Kissat).
Experiments on benchmarks from the Main tracks of SAT Competitions
2017-2020 and a real world benchmark of spectrum allocation show that
the techniques bring significant improvements, particularly on satisfi-
able instances. For example, the integration of our techniques allow the
three CDCL solvers to solve 62, 67 and 10 more instances in the bench-
mark of SAT Competition 2020. A resulting solver won the Main Track
SAT category in SAT Competition 2020 and also performs very well on
the spectrum allocation benchmark. As far as we know, this is the first
work that meets the standard of the challenge “Demonstrate the success-
ful combination of stochastic search and systematic search techniques,
by the creation of a new algorithm that outperforms the best previous
examples of both approaches.” [35] on standard application benchmarks.

Keywords: CDCL - Local search - Application benchmarks

1 Introduction

The Satisfiability problem (SAT) asks to determine whether a given propositional
formula is satisfiable or not. In the SAT problem, propositional formulas are
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usually presented in Conjunctive Normal Form (CNF), ie., F = A, V;l;;. A
growing number of problem domains are successfully tackled by SAT solvers,
including the electronic design automation (EDA) industry [37], mathematical
theorem proving [20], Al planning [21], spectrum allocation [32], among others.
Also, SAT solvers are often used as a core component of more complex tools
such as solvers for Satisfiability Module Theory (SMT), which are indispensable
for program analysis and software verification.

Many approaches have been proposed to solve SAT, among which conflict
driven clause learning (CDCL) is the most popular one. Since their inception in
the mid-90s, CDCL-based SAT solvers have been applied, in many cases with
remarkable success, to a number of practical applications. Indeed, one of the
main reasons of the widespread use of SAT is that CDCL solvers are so effective
in practice. CDCL is evolved from the DPLL backtracking procedure [14], and
usually involves a number of key techniques, mainly including 1) clause learning
from conflicts [36], 2) exploiting the structure of conflicts during clause learning
[36], 3) learnt clause management scheme [4], 4) lazy data structures for the
representation of formulas [31], 5) effective branching heuristics, e.g., VSIDS
[31], and 6) periodically restarting [18]. Additional techniques used in recent
CDCL solvers include phase saving [34], switching between “stabilizing” mode
(seldom-restart) and frequent-restart mode [33], clause veriification [29], among
others.

On the other hand, there is another paradigm named local search, which is
a main incomplete method biased towards the satisfiable side. Local search SAT
solvers begin with a complete assignment and iteratively modify the assignment
until a model is found or a resource limit (usually the time limit) is reached.
Although local search solvers usually have poor performance on application
instances, they may be competitive on certain types of instances [10,12,26].

There have been attempts combining CDCL and local search solvers. How-
ever, in previous hybrid solvers, CDCL and local search solvers usually see each
other as a black box and the hybrid solver invokes the respective solver according
to different situations [3,5,19,24,30]. This work is devoted to deeper cooperation
of CDCL and local search for SAT, where CDCL is the main solver and local
search is used as an aiding tool. We propose three ideas to use local search to help
CDCL in different ways. The first idea is a method for plugging a local search
solver into a CDCL solver, while the other two ideas concern with using infor-
mation produced by the local search solver to enhance CDCL. We summarize
the three techniques below.

— Explore promising branches by local search (Sect. 3)

The first idea is to a novel method to plug a local search solver into a CDCL
solver. We relax the backtrack process by allowing some promising branches to
be extended to a complete assignment without backtracking, even if conflicts
are met during extending the assignment. Then, a local search solver is called
to find a model nearby. If the local search cannot find a model within a given
time limit, the CDCL search process continues as normal from the node where
the algorithm enters the non-backtracking phase.
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— Phase selection with local search assignments (Sect. 4)
Phase selection refers to pick a truth value (usually called phase) to assign the
branching variable. Most modern CDCL solvers implement a phase selection
heuristic named phase saving [34], which keeps the branching phase and uses
the saved phase when a variable is picked to branch. Recent progress shows
that using some other forms of target phase, e.g., the value under the largest
conflict-free assignment in the solver, random value and the opposite of the
saved phase, to reset the saved phase periodically could be beneficial [10]. We
propose a phase resetting technique, which mainly relies on the assignments
produced by the integrated local search solver.

— Branching with local search conflict information (Sect. 5)
We use the variables’ conflict frequency, i.e., the frequency appearing in
unsatisfied clauses during local search, to enhance the branching heuristic in
CDCL. Specifically, such information is used to modify the variables’ activity
in VSIDS heuristic and the variables’ learning rate in LRB heuristic.

We apply our techniques to three state-of-the-art CDCL solvers, including
the latest version of glucose [4], and the winner of the Main track of SAT Compe-
tition 2019 and 2020 namely MapleLCMDistChronoBT-DL [22] and Kissat_sat
[10]. The experimental results show that our techniques allow them to solve a
remarkable number of additional instances in the main track benchmark of SAT
Competition 2017-2020. For example, the integration of our techniques allow
the three CDCL solvers to solve 62, 67 and 10 more instances in the benchmark
of SAT Competition 2020. Besides, the improved version of the three CDCL
solvers also shows better results on a real world benchmark arising from a spec-
trum repacking problem in the context of bandwidth auction.

Seen from experiments, the promising branches exploration technique and the
local search based phase resetting techniques are very helpful to solve satisfiable
instances, with a price of slight degradation on unsatisfiable instances (usually
solving 2 or 3 fewer unsatisfiable instances). The local search conflict frequency
enhanced branching strategy can be positive to satisfiable and also saves back
a few unsatisfiable instances. Overall, these techniques significantly improves
the performance of the CDCL solvers, leading to a remarkable increase on the
number of total solved instances.

2 Preliminaries

2.1 Preliminary Definitions and Notations

Let V = {z1, 22, ..., 2, } be a set of Boolean variables, a literal is either a variable
x or its negation —z. A clause is a disjunction of literals. A clause that contains
only one single literal is called a unit clause. A Conjunctive Normal Form (CNF)
formula F' = C; ACs A ... A Cp, is a conjunction of clauses.

A mapping @ : V — {0,1} is called an assignment. If o maps all vari-
ables to a Boolean value, it is a complete assignment; otherwise, it is a partial
assignment. The size of an assignment «, denoted as |af, is the number of
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assigned variables in it. The value of a variable x under an assignment « is
denoted as ax]. An assignment « satisfies a clause iff at least one literal evalu-
ates to true under «, and satisfies a CNF formula iff it satisfies all its clauses.
A CNF formula F is satisfiable iff there is at least one satisfying assignment.
The empty clause [ is always unsatisfiable, and represents a conflict. SAT is the
problem of deciding whether a given CNF formula is satisfiable.

The process of conditioning a CNF formula F' on a literal ¢ amounts to
removing the clauses containing an occurrence of ¢ and all occurrences of —¢. A
key procedure in CDCL solvers is unit propagation. For a unit clause, the variable
is assigned to satisfy this unit clause, and then the formula is conditioned on this
setting. The iterative execution of such steps until no more unit clause remains
is called unit propagation.

2.2 CDCL Solvers

A CDCL solver performs a backtracking search (can be non-chronological) in
the space of partial assignments, which is organized as a tree. Each node of
the tree corresponds to a partial assignment, and the out edges represent the
two branching value (also known as branching phase) for a variable. The root
represents the empty assignment, while each leaf corresponds to a complete
assignment. CDCL solvers can prune a large part of the tree thanks to reasoning
techniques. A branch is a path from the root to an inner node. In this work, we use
a_mazx to denote the largest conflict-free assignment that has been encountered
by the solver so far.

Algorithm 1 shows the standard procedure of a CDCL solver, where « is the
current assignment, dl is the current decision level and bl denotes the backtrack
level. Arguments to the functions are assumed to be passed by reference, and
thus F' and «a are supposed to be modified during the search. The functions
are explained here. PickBranchVar consists of selecting a variable to assign and
the respective phase. UnitPropagation performs unit propagation on the formula,
and if a conflict is identified, then a conflict indication is returned. Once a conflict
is derived, the reasons are analyzed and a clause is learnt (known as learnt
conflict clause) and then added to the clause database. This is done by the
ConflictAnalysis function. Finally, BackTrack backtracks to the decision level
computed by ConflictAnalysis. Note that Algorithm 1 shows the skeleton of a
typical CDCL algorithm, and does not describe a few often used techniques,
including restarts, clause deletion polices, learnt clause simplification, among
others.

We introduce two branching heuristics that are used to pick the variable to
assign in CDCL, which are used in the studied solvers of this paper.
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Algorithm 1: Typical CDCL algorithm: CDCL(F, «)

1 dl « 0; //decision level
2 if UnitPropagation(F ,o)==CONFLICT then return UNSAT
3 while 3 unassigned variables do

/* PickBranchVar picks a variable to assign and picks the
respective value x/
4 (z,v) « PickBranchVar(F,a);
5 dl —dl + 1,
6 a—aU{(z,v)}
7 if UnitPropagation(F,o.)==CONFLICT then
8 bl — Conflict Analysis(F, o);
9 if bl < 0 then
10 L return UNSAT;
11 else
12 BackTrack(F, ., bl);
13 L dl — bl;

14 return SAT;

Variable State Independent Decaying Sum (VSIDS) [31]: Here we
describe the version used in MiniSAT [15] and most modern CDCL solvers.
Each variable has an activity attached to it. Every time a variable occurs in a
recorded conflict clause, its activity is increased. This is referred to as bumping.
After the conflict, the activity of all the variables in the system are multiplied by
a constant less than 1, thus decaying the activity of variables over time. When
selecting a branching variable, VSIDS picks the variable with the maximum
activity score.

Learning Rate Branching (LRB) [27]: It frames branching as an optimiza-
tion problem that picks a variable to maximize a metric called learning rate.
P.D) "where I is the
L(I1) >

interval of time between the assignment of z until x transitions back to being
unassigned, P(z,I) is the number of learnt clauses x participates in interval I,
and L(I) is the number of learnt clauses generated in interval I. The authors
of LRB proposed to solve the optimization problem via a Multi-Armed Bandit

algorithm.

The learning rate of a variable x at interval I is defined as

2.3 Local Search Solvers

For local search algorithms, we need to define the search space and a neighbor-
hood relation. In the context of SAT, the search space is the set of complete
assignments which can be characterized as the set of strings {0,1}", where n is
the number of variables in the formula. For SAT, the seemingly most natural
neighborhood N maps candidate solutions to their set of Hamming neighbors,
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i.e., candidate solutions that differ in exactly one variable. A local search algo-
rithm starts from a position of search space and then moves to one neighbor of
the current position in each step, trying to find a position which represents a
satisfying assignment.

2.4 Experiment Preliminaries

In this work, we use our methods to improve CDCL solvers and carry out exten-
sive experiments to evaluate the effectiveness of the methods. In this subsection,
we introduce the experiment setup including base solvers, benchmarks, running
environment and reporting methodology.

Base Solvers: We choose three state of the art CDCL solvers as the base solvers
for our studies, including glucose (v4.2.1)! [4], MapleLCMDistChronoBT-DL
(v2.1)% [22], and Kissat_sat (2414b6d)* [10]. Glucose is a milestone of mod-
ern CDCL solvers and has won several gold medals in SAT Competitions.
MapleLCMDistChronoBT-DL won the SAT Race 2019 and Kissat_sat won the
Main Track of SAT Competition 2020.

We choose CCAnr [12] as the local search solver to integrate into the CDCL
solvers glucose and MapleLCMDistChronoBT-DL, while Kissat_sat itself already
includes a local search solver YalSAT [9]. CCAnr is a local search solver with
the aim for solving structured SAT instances and has shown competitive results
on various structured instances from SAT competitions and applications.

Benchmarks: The experiments are carried out with the main track benchmarks
of the latest four SAT Competitions/Race (2017-2020). Additionally, we evaluate
the solvers on an important application benchmark suite consisted of 10000
instances® from the spectrum repacking in the context of bandwidth auction
which resulted in about 7 billion dollar revenue [32].

Experiment Setup: All experiments were conducted on a cluster of comput-
ers with Intel Xeon Platinum 8153 @2.00GHz CPUs and 1024G RAM under the
operating system CentOS 7.7.1908. For each instance, each solver was performed
one run, with a cutoff time of 5000 CPU seconds. For each solver for each bench-
mark, we report the number of solved SAT/UNSAT instances and total solved
instances, denoted as ‘#SAT’, ‘AUNSAT’ and ‘#Solved’, and the penalized run
time ‘PAR2’ (as used in SAT Competitions), where the run time of a failed run
is penalized as twice the cutoff time.

3 Exploring Promising Branches by Local Search

In this section, we present our method for plugging a local search solver into a
CDCL solver. The method helps finding a model faster, by exploring promising
branches via local search.

! http://sat-race-2019.ciirc.cvut.cz/solvers /glucose-4.2.1.zip.

2 http:/ /sat-race-2019.ciirc.cvut.cz/solvers/MapleLCMDist ChronoBT-DL-v2.1.zip.
3 https://github.com/arminbiere/kissat.git.

4 https:/ /www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz.
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First, we provide the motivation of our method. By using reasoning tech-
niques, CDCL solvers are able to prune most of the branches of the search tree.
This is useful for solving unsatisfiable instances—to prove a formula is unsatis-
fiable, a CDCL solver needs to examine the whole search space, and therefore
the more of the search tree is pruned, the more efficient the solver is. However,
when solving satisfiable formulas, some promising branches that are close to a
satisfying assignment are also pruned without any exploitation. This would make
CDCL solvers miss some opportunities of finding a solution. In our opinion, the
exploration on promising branches may improve CDCL solvers on satisfiable
formulas, and a natural way to do so is to employ local search at such branches.

Now, we present a method to explore promising branches during the search
procedure of CDCL solvers, which can improve the ability to find solutions while
keeping the completeness of the solvers. For this method, we need to identify
which branches (i.e., partial assignments) deserve exploration. We propose two
conditions below, and any assignment « satisfying at least one of them is con-
sidered as promising and will be explored:

- % > p and there is no conflict under «, where p is a parameter and is set

to 0.4 according to preliminary experiments on a random sample of instances
from recent SCs.

|a7|:1‘am| > ¢ and there is no conflict under «, where ¢ is set to 0.9 similarly.

/

O /
O
p
,,,,, 7 Continue CDCL process

& <~ from this node
-

e ) )

l \ Can't find solution

Call LS solver

Find a solution

return SAT

Fig. 1. Overall Procedure of Relaxed CDCL

With the conditions of promising assignments, the method is described as
follows (depicted in Fig.1). During the search of CDCL, whenever reaching
a node corresponding to a promising assignment, the algorithm enters a non-
backtracking mode, which uses unit propagation and heuristics in CDCL to
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assign the remaining variables without backtracking, even an empty clause is
detected. At the end, this leads to a complete assignment 3, which is fed to a
local search solver to search for a model nearby. If the local search fails to find a
model within a certain time budget, then the algorithm goes back to the normal
CDCL search from the node where it was interrupted (we call this a breakpoint).
The non-backtracking phase does not change the data structures used for CDCL
search process. In this work, each call of the local search solver is cutoff when
reaching a certain amount of memory accesses (5 x 107).

4 Phase Resetting with Local Search Assignments

In Sect. 3, we propose a method to plug a local search solver into boost CDCL
solvers. Now, we propose a phase resetting heuristic based on the assignments
obtained by the local search processes.

Phase selection is an important component of a CDCL solver. Most modern
CDCL solvers utilize the phase saving heuristic [34], which returns the phase of
a variable x corresponding to the last time x was assigned. This caching scheme
reduces the repetition caused by non-chronological backtracking. Recently, Biere
et al. proposed a phase resetting technique which overwrites all saved phases with
some other information, based on the interval of number of conflicts encountered,
which gives another boost to the performance [10].

Algorithm 2 describes a CDCL solver that implements the idea of exploring
promising branches and phase resetting technique. After each time the CDCL
solver is restarted, the technique overwrites the saved phases of all variables with
assignments produced by local search. To this end, we record the best assignment
(with the fewest unsatisfied clauses) in each run of the local search solver, and
when we say the assignment of a local search procedure (run), we refer to the
best assignment in this procedure.

For our phase resetting technique, we consider the following assignments, all
of which come from the assignments of the local search procedures.

— a-maz_LS. This refers to the assignment of the local search procedure in
which the initial solution is extended based on a_max. Thus, whenever a_max
is updated, the algorithm calls the local search solver and updates a-max_LS.

— alatest_LS. This is the assignment of the latest local search procedure.

— abest_LS. Among all local search assignments so far, we denote the best one
(with the fewest unsatisfied clauses) as a_best_LS.

It is easy to see that a_max_LS and a_best_LS serve for the aim to maximize
the depth of the branch, while a_latest_LS adds diversification in some sense,
as different local search procedures start with initial assignments built upon
different branches. Overall, it is expected this phase resetting technique with
local search assignments would work well particularly for satisfiable instances,
and our experiment results confirm this.

Phase Resetting Based on Local Search Assignment: Whenever the
CDCL is restarted, we overwrites the saved phases. For each variable x, its
phase is set according to the following probability distribution (Table1).
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Algorithm 2: Relaxed CDCL Algorithm with Phase Reset

1 dl—0, a0, aomaz — 0 ;
2 if UnitPropagation(F,a)==CONFLICT then
3 L return UNSAT
4 while 3 unassigned variables do
5 (z,v) < PickVariable(F, a);
6 | dl—di+1;
7 | a—aU{(z,v)}h
8 if UnitPropagation(F,a)==CONFLICT then
9 bl — ConflictAnalysis(F, o);
10 if bl < 0 then
11 L return UNSAT
12 else
13 a_maz — maz(a-maz,a);
14 L BackTrack(F, o, bl), dl < bl;
/* lines 15-22 corresponds to the technique in Section 3 x/
15 else if (|a|/|V| > p OR |a|/|a-maz| > g) then
16 B — «a;
17 while (3 is not complete do
18 (z,v) « PickVariable(F, 3);
10 88U {0}
20 UnitPropagation(F,3);
21 if LocalSearch(B, terminate_condition) then
22 L return SAT
23 if Meet Restart Conditions then
24 BackTrack(F, a,0) ;
25 dl — 0;
26 PhaseReset(); //corresponds to Section 4

27 return SAT;

Table 1. Probability of different phases in our phase resetting mechanism

Phase Name | a.maxz_LS[z] | alatest_LS[z] | a_best_LS[x] | no change
Probability | 20% 65% 5% 10%

5 Branching with Conflict Frequency in Local Search

CDCL is a powerful framework owing largely to the utilization of the conflict
information, and branching strategies aim to promote conflicts. In this section,
we use a variable property which we refer to as conflict frequency in local search
to improve the branching strategy of CDCL.

The best known branching strategy is VSIDS (Variable State Independent
Decaying Sum) [31], which is surprisingly effective and also works well with
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restarts. Although variants [7,8,15-17] have been proposed over the years, they
are similar in spirit to VSIDS in the sense that they prefer to pick variables
participating in recent conflicts. Briefly speaking, the VSIDS heuristic maintains
an activity score for each variable, and prefers to pick the variable with the
maximum activity score. The activity score of a variable reflects the frequency
that it occurs in conflicts, with emphasis on those in the recent period (please
refer to [31] and [15] for more details).

Recently, a new branching strategy LRB (the learning rate based branching
heuristic) [27] shows its effectiveness in the Maple series, which regularly won
gold medals in main track of SAT Competitions since 2016. LRB is based on the
concept called learning rate, which measures the portion of learnt clauses involv-
ing the variable among all learnt clauses in the period between the assignment
of x until it transitions back to being unassigned (please refer to [27] for more
details).

Intuitively, both VSIDS and LRB prefer to pick variables with higher fre-
quencies occurring in conflicts, with an emphasis in a recent period. We propose
to enhance the branching strategy by utilizing the conflict frequency of variables
in the latest local search procedure.

Definition 1. In a local search process for SAT, for a variable x, its conflict
frequency, denoted as ls_confl_freq(z), is the number of steps in which it appears
in at least one unsatisfied clause divided by the total number of steps of the local
search process.

Now we describe how to use the local search conflict frequency in the branch-
ing strategies. As ls_confl_freq(z) is a real number between 0 and 1, we first
transfers it to an integer number so that it can be combined well with VSIDS and
LRB. For each variable x, we multiply ls_confl_freq(z) with a constant integer
(100 in this work), and the resulting number is denoted as Is_con flict_num(z).
We use ls_con flict_.num(x) to enhance the branching strategies as follows. Note
that Is_con flict_num(x) is calculated according to the latest local search pro-
cedure. After each restart of the CDCL solver, ls_con flict_num(z) is used to
modify the activity score for VSIDS and learning rate for LRB.

— VSIDS: for each variable z, its activity score is increased by
Is_con flict_num(x).

— LRB: for each variable z, the number of learnt clause during its period [ is
increased by ls_con flict_num(x). That is, both P(z,I) and L(I) are increased
by ls_con flict_-num(z).

6 Experiments

We carry out extensive experiments to evaluate the effectiveness of our
methods. The experiment setup is described in Sect.2.4. For glucose and
MapleLCMDistChronoBT-DL-v2.1, we implement all the three techniques in
this work, including relaxed CDCL with local search (denoted as rx), phase
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resetting with local search (denoted as rp) and local search conflict frequency
enhanced branching (denoted as cf). For Kissat_sat, we only implement the cf
technique, as it is challenging to implement the relaxed CDCL framework in it,
due to the difficulty of identifying all current clauses (which should be provided
to local search) in the Kissat_sat solver. Nevertheless, it is easy to apply the
cf technique to Kissat, which is what we do in this work. All the source codes,
origin experiment statistics and the detailed data for Table 2 can be downloaded
online.?

Evaluations on Benchmarks of SAT Competitions. The results of evalu-
ations of all the base solvers and the different versions with our techniques are
reported in Table 2. According to the results, we have some observations.

Table 2. Experiment results on benchmarks from SAT Competitions 2017-2020, where
Maple-DL-v2.1 is short for MapleLCMDistChronoBT-DL-v2.1

solver #SAT | #UNSAT | #Solved | PAR2 | #SAT | #UNSAT | #Solved | PAR2
SC2017(351) SC2018(400)
glucose_4.2.1 83 101 184 5220.0 | 95 95 190 5745.9
glucose+rx 88 95 183 5237.0 (113 |95 208 5283.4
glucose+rx-+rp 112 |94 206 46182141 |87 228 4698.3
glucose+rx+rp+cf 110 94 204 4668.5 | 150 91 241 4438.2
Maple-DL-v2.1 101|113 214 4531.0 133 | 102 235 4533.9
Maple-DL+rx 101 112 213 45203149 | 101 250 4148.6
Maple-DL+4rx+rp | 111 | 103 214 44471158 |93 251 4147.2
Maple-DL+rx+rp+cf | 116 | 107 223 41394162 |97 259 3927.6
Kissat_sat 115|114 229 30435167 |98 265 3786.4
Kissat_sat+cf 113|113 226 4001.0 | 178 | 104 282 3400.4
CCAnr 13 N/A 13 9629.9 | 56 N/A 56 8622.0
SC2019(400) SC2020(400)
glucose_4.2.1 118 |86 204 5437.6 | 68 91 159 6494.6
glucose+rx 120 |84 204 5443.9 |93 88 181 6018.1
glucose+rx-+rp 134 |85 219 5096.3|130 |85 215 5123.7
glucose+rx+rp+cf 140 |85 225 4923.6 134 |87 221 4977.9
Maple-DL-v2.1 143 o7 240 4601.8 | 86 104 190 5835.7
Maple-DL+rx 146 |93 239 4602.1 121 | 105 226 4977.8
Maple-DL+rx+rp | 155 |94 249 4416.3 142 |99 241 4580.2
Maple-DL+rx+rp+cf | 154 |95 249 43774151 | 106 257 41711
Kissat_sat 159 |88 247 42935146 | 114 260 4048.8
Kissat_sat+cf 162 |90 252 42117157 | 113 270 3896.8
CCAnr 13 N/A 13 9678.3 | 45 N/A 45 8978.7

— The rx technique improves glucose and MapleLCMDistChronoBT-DL-v2.1
on solving satisfiable instances, particularly for the benchmarks of 2018
(increased by 18 and 16 for #SAT) and 2020 (increased by 25 and 35 for

5 https://github.com/caiswgroup /relaxed-sat.
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#SAT). On the other hand, the glucose+rx and Maple-DL+rx have slightly
worse performance than the original versions on UNSAT instances, and the
decrease on #UNSAT is only 2 on average, considering both solvers on all
benchmarks.

— By adding the rp technique, glucose+rx+rp and Maple-DL+rx+rp gain fur-
ther improvement on #SAT, which is significant for all benchmarks. Specifi-
cally, the #SAT number of glucose+rx+rp is greater than glucose+rx by 24,
28, 14 and 37 for benchmarks of 2017, 2018, 2019 and 2020 respectively, and
the increment is 10, 9, 9 and 21 for Maple-DL+rx+rp over Maple-DL+rx.
Similar to the rx technique, we observe slight degradation on solving UNSAT
instances, and the decrease on #UNSAT is 3 on average for both solvers.

— The impact of the cf technique can be seen from the comparisons
of glucose+rx+rp vs. Glucose+rx+rp+cf, Maple-DL+rx+rp vs. Maple-
DL+rx+rp+cf, and Kissat_sat vs. Kissat_sat+cf. Overall, the cf technique is
positive for solving both satisfiable and unsatisfiable instances on all bench-
marks, with the exceptions of glucose+rx+rp+cf and Kissat_sat+cf on the
2017 benchmark (dropping 2 and 3 instances). For the benchmarks of 2018,
2019 and 2020, the cf technique leads to a remarkable increment on the
#Solved number, which is (13, 6, 6) for glucose+rx+rp+cf, (8, 0, 7) for
Maple-DL+rx+rp+cf, and (17, 5, 10) for Kissat_sat-+cf. Particularly, not-
ing that Kissat_sat is the winner of Main Track in SC 2020 and represents
the latest state of the art, such improvements are remarkable by a single
technique.

— By implementing all the three techniques, very large improvements are
obtained for glucose and MapleLCMDistChronoBT-DL-v2.1 for all the bench-
marks. Particularly, glucose+rx+rp+cf solves 62 additional instances than
the original solver, and Maple-DL+rx+rp+cf solves 67 additional instances
than its original solver for the SC2020 benchmark (which has 400 instances).
We note that, Maple-DL+rx+rp+-cf is a simplified and optimized version of
our solver Relaxed LCMDCBDL_newTech which won the gold medal of Main
Track SAT category and the silver medal of the Main Track ALL category in
SC 2020.

Evaluations on Benchmarks of Spectrum Repacking. We also carry
out experiments on a suite of instances arising from an important real world
project—the spectrum repacking project in US Federal Communication Com-
mission (FCC). The instances from this project was available on line® [32]. This
benchmark contains 10 000 instances, including both satisfiable and unsatisfiable
instances. We compare each base CDCL solver with its final version using our
techniques, as well as the underlying local search solver CCAnr.

The results on this benchmark suite are reported in Table3. According to
the results, for each of the base CDCL solvers, the improved version with our
techniques has better performance than the base solver. Particularly, the Maple-

5 https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz.
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DL+rx+rp-+cf solver solves the most instances (8759+218=8977), significantly
better than all the other solvers.

Table 3. Comparing with state-of-the-art solvers on FCC. glucose+ is short for glu-
cose+rx+rp+cf, and malple+ is short for Maple-DL+rx+rp+cf.

glucose glucose+ | Maple Maple+ | kissat_sat | kissat_sat+cf CCAnr
Benchmark | #SAT #SAT #SAT #SAT #SAT #SAT #SAT
#UNSAT | #UNSAT | #UNSAT | #UNSAT | #UNSAT | #UNSAT #UNSAT
#Solved | #Solved | #Solved | #Solved | #Solved | #Solved #Solved

PAR2 PAR2 PAR2 PAR2 PAR2 PAR2 PAR2
FCC (10000) | 7330 8075 8084 8759 8192 8214 7853

187 197 215 218 207 211 0

7517 8272 8299 8977 8399 8425 7853

2555.85 | 1850.58 | 1867.13 | 1243.66 |1760.55 1734.61 2215.35

Further Analyses on the Cooperation. We perform more analyses to
study the role of local search in the hybrid solvers based on glucose and
MapleLCMDIstChronoBT-DL. This experiment does not include Kissat_sat as
we do not apply the relaxed CDCL framework to it and the statistics in this
experiment are not applicable to Kissat_sat+cf. Some important information is
provided in Table 4.

We can see that the local search solver returns a solution for some instances,
and this number varies considerably with the benchmarks. A natural question
is: Whether the improvements come mainly from the complementation of CDCL
and local search solvers that they solve different instances? If this were true, then
a simple portfolio that runs both CDCL and local search solvers would work sim-
ilarly to the hybrid solvers in this work. To answer this question, we compare
the instances solved by the hybrid solvers with those by the base CDCL solver
and the local search solver (both the CDCL and local search solver are given
50005 for each instance). We observe that, there is a large number of instances
(denoted by #SAT _bonus) that both CDCL and local search solvers fail to solve
but can be solved by the hybrid solvers. For these instances, even a virtual best
solver that picks the solver with the best result for each instance would fail. For
glucose, this number reaches 29, 36, 26 and 37 for the four benchmarks respec-
tively, while for MapleLCMDIstChronoBT-DL, this number reaches 16, 18, 15
and 36 respectively. This indicates the cooperation techniques have essential
contributions to the good performance of the hybrid solvers.

We also calculate the number of calls of the local search solver in each run.
This figure is usually from 10 to 25 for these benchmarks. As for the run time
of local search, which can be seen as the price paid for the benefit of using local
search, we calculate the portion of the time spent on local search. This figure is
between 6% and 20% for the satisfiable instances, and it drops significantly on
unsatisfiable instances, which is usually less than 7%. This is not inconsistent
with the observations that the number of local search calls is not necessarily
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Table 4. Analyses on the impact of Local Search on the CDCL solvers. Maple is short
for Maple-DL to save space, #byLS is the number of instance for which the solution
is given by the local search solver, #SAT bonus is the number of instances for which
both base CDCL solver and Local Search solver fail to solve but the hybrid solver
finds a satisfiable solution. #LS_call is the average number of calls on Local Search,
while LS_time is the average value of the proportion of time (in percentage %) spent
on local search in the whole run, and these two figures are calculated for satisfiable
and unsatisfiable instances respectively.

Solver Analysis for SAT Analysis for UNSAT
#byLS | #SAT bonus | #LS_call | LS_time(%) | #LS_call | LS_time(%)
SC2017(351)
glucose+rx 20 11 24.28 21.66 16.36 5.52
glucose+rx+rp 10 33 17.77 18.46 14.33 4.86
glucose+rx+rp+-cf | 17 29 22.7 22.19 15.3 5.81
Maple+rx 16 9 13.86 7.52 11.18 2.03
Maple+rx+rp 11 15 9.63 10.43 6.54 2.36
Maple+rx+rp+cf |6 16 12.59 7.49 8.59 2.12
SC2018(400)
glucose+rx 50 4 11.27 20.66 29.62 4.94
glucose+rx+rp 47 31 9.46 184 21.66 5.64
glucose+rx—+rp+-cf| 53 36 11.43 20.28 20.62 6.64
Maple+rx 52 7 4.8 13.02 11.69 2.81
Maple+rx+rp 56 13 4.84 15.21 8.7 3.04
Maple+rx+rp+cf |51 18 6.52 12.53 15.62 2.94
SC2019(400)
glucose+rx 14 8 26.46 10.79 17.42 6.39
glucose+rx+rp 10 26 22.68 8.67 14.59 5.14
glucose+rx+rp+-cf | 11 26 20.39 11.82 15.51 5.95
Maple+rx 14 7 12.66 2.67 12.94 1.98
Maple+rx+rp 9 14 8.6 3.17 16.59 2.53
Maple+rx+rp+cf |12 15 11.21 3.05 17.23 2.22
SC2020(400)
glucose+rx 30 9 14.94 11.75 14.67 10.27
glucose+rx+rp 23 37 13.17 10.79 9.4 9.71
glucose+rx+rp+-cf | 23 37 12.78 11.67 10.52 10.28
Maple+rx 19 13 14.21 6.69 10.24 5.25
Maple+rx+rp 30 29 8.53 6.62 11.7 6.18
Maple+rx+rp+cf |23 36 10.95 6.05 14.17 5.42

fewer on unsatisfiable instances, because the portion of the time on local search
also depends on the total time of the hybrid solver. Our statistics show that the
averaged time on solving UNSAT instances is about 1.5x to 2x that on SAT
instances for both glucose+rx+rp+cf and Maple-DL+rx+rp-+cf. In a nutshell,
the price is acceptable and usually small for the UNSAT instances, which also
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partly explains that our techniques do not have obvious negative impact on
solving UNSAT instances although they incline to the satisfiable side.

7 Related Works

There has been interest in combining systemic search and local search for solv-
ing SAT. Indeed, it was pointed as a challenge by Selman et al. [35]. Pre-
vious attempts can be categorized into two families according to the type
(DPLL/CDCL or local search) of the main body solver.

A family of hybrid solvers use a local search solver as the main body solver.
An incomplete hybrid solver hybridGM [5] calls CDCL search around local min-
ima with only one unsatisfied clause. Audemard et al. proposed a hybrid solver
named SATHYS [2,3]. Each time the local search solver reaches a local min-
imum, a CDCL solver is launched. Some reasoning techniques or information
from CDCL solvers have been used to improve local search solvers. Resolution
techniques were integrated to local search solvers [1,13]. Recently, Lorenz and
Worz developed a hybrid solver GapSAT [28], which used a CDCL solver as a
preprocessor before running the local search solver ProbSAT. The experiments
showed that, the learnt clauses produced by CDCL solver were useful to improve
the local search solver on random instances.

The other family of hybrid solvers focus on boosting CDCL solvers by local
search, and this work belongs to this line. A simple way for hybridizing local
search and CDCL is to call local search before CDCL begins, trying to solve the
instance or derive information such as variable ordering to be used in CDCL.
The hyrid solvers Sparrow2Riss [6], CCAnr+glucose [11] and SGSeq [25] belong
to this family.

Some works use local search to find a subformula for CDCL to solve. In [30], a
local search solver is used to find a part of the formula which is satisfiable, which
helps to divide the formula into two parts for the DPLL solver. In HINOTOS
[24], a local search is used to identify a subset of clauses to be passed to a CDCL
solver in an incremental way.

The most related works belong to those that call a local search solver during
the CDCL procedure. WalkSatz [19] calls a local search solver WalkSAT at each
node of a DPLL solver Satz. However, this is time consuming. This can be
done in parallel with shared memory [23]. In CaDiCal. and Kissat [10], a local
search solver is called when the solver resets the saved phases, and the phases
produced by local search are used only once immediately after the local search
process. However, the way CaDiCal and Kissat use the local search assignments
is different from our phase resetting method based on local search. CaDiCaL and
Kissat only record the current local search assignment, which is used just for once
right after the local search exists. They do not use information of previous local
search processes. In fact, we also carry out experiments to see the impact of local
search on the performance of Kissat_sat, which turns out to be limited. When
Kissat_sat works without local search, #SAT drops by 5 on average over the SC
benchmarks.
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Although previous attempts have been made trying to combine the strength
of CDCL and local search, they did not lead to hybrid solvers essentially better
than CDCL solvers on application instances. This work, for the first, meets
the standard of the challenge “create a new algorithm that outperforms the best
previous examples of both approaches” [35] on standard application benchmarks
from SAT Competitions.

8 Conclusions

This work took a large step towards deep cooperation of CDCL and local search.
We proposed three techniques for using local search to improve CDCL solvers.
The first idea is to protect promising branches from being pruned, and exploit
them using a local search solver. The second idea is to utilize the assignments of
the local search processes to reset the saved phases in the phase selection heuris-
tic. Finally, we proposed to enhance the branching strategy of CDCL solvers
by considering the conflict frequency of variables in the local search process.
These techniques significantly improve the performance of state of the art CDCL
solvers on application benchmarks. The proposed methods are generic and can
be applied to improve other CDCL solvers.

This is the first time that the combination of stochastic search and systematic
search techniques leads to essential improvements over the state of the art of both
approaches on application benchmarks, thus answering Challenge 7 of the Ten
Challenges in Propositional Reasoning and Search [35].
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ligence (BAAI), and Youth Innovation Promotion Association, Chinese Academy of
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Abstract. Modern satisfiability solvers are interwoven with important
simplification techniques as preprocessors and inprocessors. Implemen-
tations of these techniques are hampered by expensive memory accesses
which result in a large number of cache misses. This paper explores the
application of hash functions in encoding clause structures and bitwise
operations for detecting relations between clauses. The evaluation showed
a significant increase in performance for subsumption and Blocked Clause
Elimination on the Main track benchmark of the 2020 SAT competition.

Keywords: SAT - CDCL - Preprocessing - Inprocessing - Hash

1 Introduction

Modern satisfiability (SAT') solvers are complemented with various simplification
techniques before and during solving [4-7,18,19]. These techniques test impor-
tant relational properties between clauses, the implementation of which requires
expensive memory accesses. For example, in order to check whether C' C D for
two clauses (i.e., C' subsumes D), we typically have to access both the literals
and their signatures (i.e., literal marks).

The use of hash functions in the context of simplification techniques was first
documented in [19] and [4]. The authors proposed novel subsumption algorithms
incorporating signature-based pre-checks for testing whether C ¢ D. A similar
pre-check is used in the MaxSAT preprocessor MaxPre to detect non-tautological
clauses during variable elimination [9].

Signature-based approaches persist in some solvers and preprocessors today
[2], but no formal analysis of these methods has been given. Also, as of this
writing, I am unaware of literature documenting the use of similar methods in
other simplification techniques. This is in spite of the extensive research on hash
functions and their myriad applications in computer science [1,14,15]. Ironically,
the use of SAT technology in encoding, testing and optimizing hash functions
has become a hot topic of its own [8,10-13,16,17].

In this paper, I discuss the application of clause signatures in testing rela-
tional properties between clauses, especially those arising in simplification tech-
niques on formulae in conjunctive normal form (CNF). In particular, I translate
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the contrary of four clause relations (subsumption, disjointness, membership and
tautological resolvency) into their signature-based relations, which can then be
tested using bitwise logical operators. The signature-based tests are constant-
time and do not rely on accessing the underlying clause structure, thus intro-
ducing minimal computational overhead. Furthermore, the methods developed
herein are auxiliary in nature and can be integrated into existing implemen-
tations. As a direct application, I demonstrate their use in three popular sim-
plification techniques: Subsumption [3], Blocked Clause Elimination (BCE) [6]
and Bounded Variable Elimination (BVE) [4]. I further provide a probabilis-
tic analysis of signature-based methods, shedding light on their strengths and
limitations.

Lastly, T offer full (C++) implementations of subsumption, BCE and BVE
using signature-based techniques and a complete evaluation on the Main track
benchmark dataset of the 2020 SAT competition [2].

2 Preliminaries

Let V ={1,..., N} denote a set of propositional variables'. A literal | can be a

variable v or its negation ¥ and I will denote by L the set of literals on V. A clause

C C L will be any literal subset with its logical interpretation C' =1; V-V [,,.

However, I have shunned references to the logical properties of clauses and you

may think of C' simply as a set of integers. Furthermore, to simplify notation, I

have made C assume the dual role of C' and |C| (the number of literals in C).
Here are the main set-theoretic properties that I will consider.

Definition 1. A clause C is tautological if both 1 € C and 1 € C.
Definition 2. A subset C C D 1is said to subsume D.

Definition 3. Let | € C and 1 € D. The resolvent C ®; D on 1 is the set
C\ {1y uD\{i}.

Definition 4. Letl € C andl € D. C strengthens D if C @, D C D.

When querying properties in Definitions 1-4 over a set of clauses C, simpli-
fication techniques rely on efficient data structures with constant-time access to
certain subsets of clauses. The most common data structure is the occurrence
list, O, which is a list of sets O(l) = {C € C | | € C} of all clauses with an
occurrence of the literal [.

The methods I will discuss operate on signatures (or words), which are fixed-
length natural numbers of m bits. A signature, then, is a number? in the range
[0,2™), but I encourage you to think of signatures as strings or vectors of m bits.
The signature of zeroes, 0. . .0, like all zeros, is an abounding quantity and I will

! When there is a need to distinguish between a variable name and the numeral, e.g.,
the variable ‘17’ and the number 17, we will explicitly write (17):n: for the latter.
2 The binary representation of an integer is indexed right to left, i.e., 01011 = 11.
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substitute it with the innocuous abbreviation 0. Analogous to the usual Boolean
operators =, A, V,® (negation, conjunction, disjunction, exclusive disjunction)
on the Boolean values 0 and 1, signatures are subject to the bit-wise operators®
~, &, |, ®. For example, 01011& 11101 = 01001 and 01011 @ 11101 = 10110.
Signatures are partially ordered by the relation <, where a < b — a&b = q,
and so 01100 < 01110 but 01100 £ 11001.

A hash function is a mapping h : U — M from some universe, U, to the
set of signatures or hash values, M. I will consider hash functions exclusively on
the subsets C' C £ and onto the domain [0,2™). Unless explicitly mentioned,
you may assume signatures to be 64-bit natural numbers (i.e., m = 64). When
C = {1}, 1 like to write h(l) instead of h({l}).

A hash function that often occurs in practice is defined by element-wise
division (modulo m):

ha(C) — Z 92 |v] mod m (1)
veC
where |v| is the absolute value of the variable, e.g., [17| = 17| = (17)in:. The
mapping h, for C; = {7,10,13,2,8} and m = 8 is illustrated in Fig. 1. Notice
in particular the collision of indices corresponding to the literals 10 and 2. In
general, h, is not injective (hy(v) = he(u) =5 v = u) and collisions will occur
even for prodigious values of m.

{7,10,13,2,8}

v// K// \\»lb \4
1]of1]ofo]1]1]0]

Fig. 1. A mapping of the hash function h,.

Proofs in this paper involve the combinatorial quantities:

{Z}=é§é§«4y(jyk—jw @)

and

k k—i ; C i
n (1) S (1) —i— )
= (1)l< ) : — (3)
{k}22 ; ¢ jgo gk —i—j)!
which are the stirling number of the second kind and the 2-associated stirling
number of the second kind respectively. {Z} counts the number of unique sur-

jective functions that map n elements into k bins, whereas {Z}>2 counts the

3 In mixed symbol expressions, bit-wise operators take precedence, i.e., p& g = 0V
r @ s # 0 evaluates as ((p&q) =0) V ((r @ s) #0).
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number of unique surjective functions that map n elements into k& bins such that
at least two elements are mapped into each bin. In order to simplify formulas
arising in proofs, I adopt the convention {8}>2 =1.

3 Hash-Based Methods

Simplification techniques rely on fast access to relevant data structures, espe-
cially clauses, literals and their respective properties. To expedite search, good
implementations utilize efficient data structures (e.g., occurrence lists) and
lookup tables (such as vector-based literal markers). Unfortunately the underly-
ing data structures remain relatively expensive to access and tend to be scattered
in memory, causing a large number of cache misses in practice.

For moderately sized clauses (|C| < 10%), hash functions such as (1) provide
a means to encode an abstraction of a clause C' as an m-bit signature h(C).
This clause signature is a space-efficient abstraction of a set of literals and can
be stored independently of the clause container, providing a compact means of
querying properties of C' in relation to other clauses. In particular, for a suitable
family of hash functions H, the signatures of two clauses can be used to assess
(the contrary of) a number of important set relations.

Some common properties tested by simplification techniques are:

Definition 5. Subsumption, C C D, for clauses C, D.
Definition 6. Disjointness, C N D =0, for clauses C, D.

Definition 7. Tautological resolvency, C ®; D = T, for clauses C, D withl € C
andl € D.

Definition 8. Membership, | € C, for a clause C' and literal [.

Due to collisions, the properties of Definitions 5-8 cannot be answered reli-
ably; in other words, false positives may occur. However, failed queries are admis-
sible (and tend to be more common anyhow). To show this, I will presume a
family of hash functions, H, with the following properties:

e h € H maps variables independently and uniformly at random and

e h(l) = h(l), ie., | and [ map to the same index.

Definition 9. Let h(C) be the m-bit hash value of a clause C. The collision
signature w(C) of h(C) is the m-bit signature with the ith bit marked if there is
a collision in the ith bit of h(C).

For example, the clause Cy = {2,3,5,8} (with m = 5) hashes to h,(Cy) =
01101 and has the collision signature u(Cs) = 01000 with a collision on the
literals 3 and 8.
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Proposition 1. Let h € H. If h(C) & ~h(D) # 0 or u(C)& ~u(D) # 0, then
C¢D.

Proof. For suppose h(C)& ~h(D) # 0. Then h(l) & ~h(D) # 0 for some literal
l € C, which implies | ¢ D and therefore C' € D. Now let u(C) & ~u(D) # 0. We
must have h(l) & ~u(D) # 0 and h(l) = h(o) for distinct literals [,0 € C. This
implies that there is at most one literal » € D colliding with [,0 € C. Therefore
either [ ¢ D or o ¢ D and again C € D.

Proposition 2. Let h € H. h(C)&h(D)=0 = CND =0 forallh € H.

Proof. If h(C)& h(D) = 0, then h(l) & h(o) = 0 for all literal pairs (I,0) with
l € C and o € D. We conclude that C N D = {).

Proposition 3. Let h € H, 1 € C and 1 € D. If u(C)&u(D)&h(l) = 0 and
hC) & h(D) = h(l), then C ®; D is non-tautological.

Proof. h(C) & h(D) = h(l) says that h(l) is the only overlapping index (i.e.,
o€ CND = h(o) = h(l)). If, in addition, u(C)&u(D)&h(l) = 0, then
either [ is the unique literal in C' with h(l) = h(l) or [ is the unique literal in

D with h(l) = h(l). Either way, the intersection C' N D = ) and the resolvent
C ®; D= (CUD)\{l,1} is non-tautological.

Proposition 4. Let h€ H. h(C)&h(l) =0 = 1 ¢ C.
Proof. Clearly, if | € C then h(C) & h(l) # 0.

Through Propositions 1-4 we may now utilize the signature representation
(h(C),u(C)) of a clause to test for the contrary of Definitions 5-8 respectively.
As our first application, consider a typical subsumption routine (Algorithm 1)
designed to remove all clauses D € F (a set of clauses) for which there exists
a subsuming clause C' C D. Line 5 in Algorithm 1 applies Proposition 1 just
before an explicit subsumption test on line 7. Importantly, Proposition 1 can
be tested without accessing the clause structures of C' or D; we only need their
signatures and collision signatures.

As a second application, let us consider Proposition 3 for non-tautological
resolvents. One of my favourite applications of tautological resolvent querying is
in the detection of blocked clauses [6]. To this end, let C®;O(l) = {C®;D | D €
O(l} and O(1) @, O() = {C @, D | C € O(I), D € O(I)} be the extensions of the
resolvent operator to sets of clauses. A blocked clause is a clause C' with some
literal I € C whose resolvents C' ®; D with all clauses D € O(I) are tautological
(and thus C is, in a sense, redundant). Indeed, to test whether C' is blocked by a
literal | € C, we must check its resolvents C' ®; O(I), which is almost always too
costly to verify for all clauses in a formula. What makes this routine so appealing
to signature-based methods is that it suffices to provide just one clause D € O(1)
with a non-tautological resolvent C' ®; D to show that C' is not blocked by .

I have sketched a typical BCE routine in Algorithm 2, where you will find
Proposition 3 on line 6. Notice, again, how accessing the clause containers of C'
and D is deferred until an explicit check on line 11.
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Algorithm 1. Subsumption

1: Input : F // set of clauses
2. K=10 // checked clauses
3: for C € sorted (F,<) do // increasing size
4: for D € K do // ensures |D| < |C|
5: if h(D)& ~h(C) # 0 or u(D) & ~u(C) # 0 then // Proposition 1
6: continue

7 else if D C C then // explicit check
8: F=F\{C} // remove clause
9: break
10: if C € F then
11: K=Ku{C} // keep clause
12: return F

Algorithm 2. Blocked clause elimination

1: Input : F // set of clauses
2: for l € £ do

3: for C € O(1) do

4: tautology = True
5: for D € O(I) do
6: if h(C)& h(D) = h(l) and u(C) & u(D) & h(l) = 0 then // Prop. 3
T tautology = False
8: break
9: if tautology = True then
10: for D € O(]) do
11: if C®, D # T then // explicit check
12: tautology = False
13: break
14: if tautology = True then
15: F=F\{C} // remove clause
16: return F

Algorithm 3. Bounded variable elimination

1: Input : F,bound // set of clauses
2: forveV do

3: count = 0

4 for (C,D) € O(v) x O(7) do

5 if h(C)&h(D) = h(v) Au(C) & u(D)& h(v) =0 then // Proposition 3
6: count = count + 1

7 if count > |O(v) U O(D)| + bound then // bound exceeded
8: continue

9: for (C,D) € O(v) x O(v) do
10: if h(C)& h(D) # h(v) Vu(C) & u(D) & h(v) # 0 then // Proposition 3
11: if C®, D # T then // explicit check
12: count = count + 1
13: if count < |O(v) U O(v)| + bound then
14: F=(F\(Ow)uO@®)))U (O) ®, O()) // eliminate v

15: return F
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Tautological resolvent querying also emerges in BVE [4], which eliminates
variables v € V by substituting the (satisfiability-equivalent) resolvents O(l) ®;
O(1) for the clauses O(1)UO(I). In particular, only variables with |O(1)®,;O(1)| <
|O(1) U O(1)| + bound are eliminated, which amounts to counting the number
of non-tautological resolvents (since tautological resolvents may be discarded
after the substitution). Algorithm 3 sketches the routine with the application of
Proposition 3 on line 5 and on line 10.

4 Probabilistic Analysis

On account of Propositions 1-4 derived in the previous section, we can test the
complementary properties of Definitions 5-8 from the clause signatures h(C) and
u(C). But how useful are these signatures in practice? From a practical point
of view, we are interested in the probability that an arbitrary pair of clauses
satisfies the premises corresponding to Propositions 1-4.

Clearly, if m < |C|, the signatures h(C') and u(C) tend to 1...1, and the
comparisons h(C) & h(D) = 0 and u(C) & u(D) = 0 become vacuous. Therefore,
the effectiveness of h(C) and u(C) is largely dependent on the number of col-
lisions (overlaps) of literals in C' under h. This relates to the size of C' (fewer
literals incur less collision) and how well h distributes C' over m bits.

Notice that for a clause C' whose literals are selected uniformly at random
from £ (and our assumption that h € H distributes uniformly at random), we
can model the mapping h(C) as if C' were drawn from the range [0,m) instead.
Let ||w|| denote the bit sum of w (e.g., ||01101|| = 3).

Proposition 5. Let h € H. E[||h(C)|]] = m(1 — (=1)).
Proof. We model the mapping h(C) as C random and independent draws from
[0,m). Let h(C); denote the ith index in h(C). Pr[h(C); = 1] =1 — (21)C. By

linearity of expectation, E[||h(C)||] = >i, YPr[h(C); = 1] = m(1 — (m=1)e),

Proposition 6. Let h € H. E[[|u(C)]]] = m(1 — (1 — -&£5)(==1)0).

Proof. We model the mapping h(C) as C random and independent draws from
[0,m). Let u(C); denote the ith index in «(C). If u(C); = 0, then either one
or zero literals in C' are mapped to h(C');. The probability that h(C'); is zero is

p= (mT_l)C The probability that exactly one literal is mapped to index i is ¢ =

%(%)C_l. Thus, Pr{u(C); =1] = 1-p—¢=1— (1——1)( T;l)c By linearity
of expectation, E [||u(C)]]] = ZZZ)I Prlu(C); = 1] = m(1 — (1 — -<5)(==1)0).

Using Proposition 5, the expected number of collisions is E [|collisions|] =
C—E[||R(C)|]- T have plotted this together with the results of Proposition 5 and
Proposition 6 in Fig. 2 (left) for m = 64. You can see how the signature h(C) is
quickly populated after some 250 literals, beyond which all new literals collide
with some previously populated index. The collision signature, u(C), fills up
more slowly and is expected to hit its capacity after ~ 400 literals (which makes
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Fig. 2. (left) The expected size of h(C') (blue), the expected size of u(C) (orange)
and the expected number of collisions (green) for m = 64 and clauses 2 < C < 400.
(right) The distributions of ||h(C)|| (blue) and the distribution of ||u(C)|| for |C| = 150
(orange). (Color figure online)

sense, as two literals corresponding to h(l); are required to tick u(l);). Moreover,
from a SAT point of view, it is comforting to know that literal collisions are
independent of the number of overall literals |£] in a formula.

We can also find expressions for the distributions of Pr[||h(C)| = k] and
Pr[||u(C)|| = k], which I have plotted in Fig.2 for C' = 150.

Lemma 1. Let h € H. For k < |C|,

PrIA(C)] = k] = mlc{i} (Z)k'

Proof. By counting the number of clauses C with [|h(C)|| = k. We model the
mapping h(C) as C random and independent draws from the range [0,m). For
h € H there are m® ways to sample C elements from [0,m). There are ('}')
k-element subsets in m bit indices, each having k! permutations, and {g} ways
to partition C' into k disjoint subsets. Multiplying through and dividing by m®
gives the desired distribution.

Proposition 7. Let h € H. For 2k < |C|,

Pr{(C = H = - min{m_ic_%} {Ck_j}22 (O(i j) (kTy) (k+3)

Jj=0

Proof. By counting the number of clauses C with ||u(C)|| = k. We model the
mappings h(C) and u(C) as C random and independent draws from [0,m). Let
|1h(C)|| = k+j, so that exactly k4 j of the m bit indices are set by literals in C.
If ||u(C)|| = k, then j bit positions have exactly one literal mapped to them. The
remaining C' — j literals are mapped to k bits, which can be done in {C;j }>2
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ways. The partition corresponding to ||h(C)|| = k + j can be chosen in (kﬁ:])

ways and from (k+ 7)! permutations. Lastly, there are (Cclj) ways to choose the

subset of C' — j elements from C. In total, there are {C;j}ZQ (Cclj) (kﬁr:j) (k+4)!
clauses with ||h(C)|| = k+j and ||u(C)|| = k. It remains to sum over all possible
sizes k 4 j. Clearly, we must have k < k+ j < m. If C — 2k < m — k, then we
require k 4+ j < C' — k. Combining these two inequalities we have kK < k4 j <
min{m,C — k} or 0 < j < min{m — k,C — 2k}. Summing over these limits and
dividing by the total number of mappings m¢ yields the desired distribution.

Let us now return to the premise of Proposition 2 and provide a probabilistic
analysis; namely the probability that the clause signatures of two clauses are
disjoint.

Proposition 8. Let h € H. Then

Pr[h(C)&h(D) = 0] = # min}im} (i) {i}k!(m — k)P,

Proof. We model the mapping h(C) as C random and independent draws from
[0,m). Let EE = (h(C) & h(D) = 0) and consider the conditional formulation

min{C,m}
Pr(EZ]= ) Pr[EE||MO)] =k Pr[|R(O)] = K] 4)
k=1

summed over all sizes of ||h(C)]|, i.e., the range 1 < k < min(C, m). Notice that
this defines a partition of the set of possible values for hA(C'). For any particular
|h(C)|| = k, there are m — k bits that can be mapped to by h(D) without
violating EE and mP choices in total, so that Pr[EE | ||h(C)| = k] = (m —
k)P /mP. Plugging this and the result of Lemma 1 into (4) yields the desired
equation.

The probability distribution of Proposition 8 is depicted in Fig. 3 (left) for
m = 64 and clauses of size 2 < C, D < 52. It visualizes nicely how the disjointness
of large clauses (|C| > 10 and | D| > 10) is difficult to certify from their signatures
alone, which is to be expected unless m > C'+ D. On the other hand, if h(C) #
1...1 (respectively h(D) # 1...1) and |D| < 10 (respectively |C| < 10) then
Proposition 8 still predicts a reasonable probability of success for signature-based
disjointness querying.

Next, consider the signature-based subset relation from Proposition 1. The
probability that the clause signatures of C and D detect the property C' ¢ D is
given as the following Proposition.

Proposition 9. Let h € H. Pr{h(C) & ~h(D) # 0 or u(C) & ~u(D) # 0]

min{m,C} min{m,D}
min{k;,C—kq} min{ko,D—ko}

LS O o (o T T (o Tito !

k1 =0 ka=Fk1 122 =T
r1=I[C<m] ro=max{ry,[[D>m]}
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¢, = T!(k—r)!(kfr){c— (f —r)}zz.

Proof. Let HE and UE be the events h(C) &:~h@;ﬁ 0 ariu(C) &~u(D) #0
respectively and denote their complements by HC and UC (i.e., Hg is the

event h(C)& ~h(D) = 0). The union probability Pr[HC U UZ] is equivalent

to the complementary probability 1 — Pr[HC N UC} and as there are m¢+P

clause pairs in total, it remains to count the pairs satisfying Hg HEN Us UL . Now, two
clauses C, D satisfy HE if h(C) < h(D). Similarly, two clauses C, D satisfy UZ if
u(C) < u(D). Notice that u(-) < h(:) holds in general. We can count the number
of clauses C with ||h(C)|| = k and ||u(C)|| = r by distributing k — r literals into
h(C) and distributing the remaining C'— ( r) literals into r unset bits in h(C).
This can be done in Sf, = r!(kz—r)!(c (o T)){C (k=r }>2 ways. If r = 0, we let
{f}>2 = 1. Let ||h(C)|| = k1, ||h(D)]| = kg, lu(C)|| = r1 and ||u(D)|| = r2. There
are _(Z;”) choices for the subset hA(D) in an m-bit signature. For each choice,
we can distribute the kp bits of h(C) in (Zf) ways such that h(C) < h(D).
There are then (’;i) choices for u(C) < h(C) and (k2 T;) choices for distributing

™ T
the remaining ro — r1 bits of u(D) to lie outside of u(C). In summary, there

are S¢ . SP (k?z) () (ki)(krrl) pairs (C, D) with [[h(C)| = ki, [|h(D)| =

k1 To—1T1

ko, |u(C)|| = r1 and ||u(D)|| = ro satisfying HD N UC It remains to establish
the limits of the summation. Clearly, k; € [0, mm{m C}and 0 <7y < ky. When
r1 = 0, however, C' must distribute into k; distinct bits, which can only happen
if C < m. Furthermore, for ||u(C)| = 71 there must be at least (k1 — ry) +
2ry = k1 + r literals to distribute, and so I[C < m] < r; < min{k;,C — k; }.
The limits for ko and ro are similar, except that ks > k; and ro > r1. We
have k1 < ko < min{m, D} and max{r,I[D > m]} < ro < min{ks, D — ka}.
Summation over ki, ks, 1 and ry yields the desired probability.

I plot the probability of Proposition 9 in Fig.3 (right) for m = 64 and
clauses in the range 2 < C,D < 800. The diagonal line (white) shows the
boundary where |C| = |D| and in particular C ¢ D in the upper triangle,
because |C| > |D].

We see immediately that a signature-based test will most certainly fail if
|D| > 500. As we discussed above, this is due to the clause signatures filling up
for large clauses, i.e., |h(C)|| — m and |u(C)| — m as |C| — 400. This effect
persists into the upper triangle, because although Pr[C ¢ D] =1 if |C| > |D|,
the signature-based test fails for |[D| > 500 (see the white area in the upper
triangle of Fig. 3 (right)).

For clauses in the range 100 < |D| < 500, Proposition 9 predicts that a
signature-based test is indeed effective, unless |C| < |D|. This is within expec-
tation, since the region |C| < |D| houses most clauses with C C D.

For clauses in the range |C| < 20 and |D| < 200 (bottom left corner of Fig. 3
(right)), Proposition 9 predicts that most clauses with C' ¢ D are detectable
from their signatures.
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Fig. 3. The probabilities of Proposition 8 (left) and Proposition 9 (right).

Lastly, let us analyse the corresponding probability for non-tautological resol-
vent detection from Proposition 3.

Proposition 10. Let h € H, 1 € C andl € D. Then

Priu(C)&u(D)&h(l) =0 and h(C) & h(D) = h(l)]
min{C—1,m}

_ # 3 (C; 1>{C; 1}k!(m— k)P-1,

k=1

Proof. Let UE and HE be the events u(C) & u(D) & h(l) = 0 and h(C) & h(D) =
h(1) respectively. Since | € C and [ € D we have that UL <= h(C\{l}) &h(D\
{I})&h(l) = 0. We also have HEY <= h(C)&h(D)&~h(l) =0 <= h(C\
{I}) & k(D \ {l}) & ~h(l) = 0. Combining these, we find that UY A HEY <<=
h(C\ {I1})&h(D \ {I}) = 0. Applying the results of Proposition 8 on the sets
C\ {l} and D\ {I} yields the desired probability.

The probability of Proposition 10 is two literals more forgiving than Propo-
sition 8. Unfortunately, it still confirms that testing non-tautological resolvency
from clause signatures is ineffective if |C| > 10 and |D| > 10 (see Fig.4 (top-
left)).

Verifying that C' is not a blocked clause from the signatures h(C),u(C)
(lines 5-8 of Algorithm 2) amounts to finding a clause D € O(I) satisfying
Proposition 3. The probability that at least one non-tautological resolvent in

the set O(I) is found can be computed as follows.

Proposition 11. Let h € H andl € C. Then

Pr{(u(C) & u(D) & h(l) = 0 and h(C) & h(D) = h(l)) for some D € O(1)]

min{C—1,m}

T e S Y

DeO(l) k=1
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Proof. Let EE be the event u(C) &u(D) & h(l) = 0 and h(C) & h(D) = h(l).
Pr[3pE8] =1~ Pr |¥pEQ|
- 1T we[E2]
Deo(l)
=1- H (1_Pr[Eg])7
Deo()

where 3 and V are the existential and universal quantifiers over the set O(l).
Plugging in the probability from Proposition 10 gives the result.
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Fig. 4. Proposition 10 (top-left). Proposition 11 for |O(l)| = 3 (top-right). Proposi-
tion 11 for |O(1)| = 10 (bottom-left). Proposition 11 for |O(1)| = 25 (bottom-right).

Figures4 (top-right), (bottom-left) and (bottom-right), plot the probability
of Proposition 11 for occurrence lists of size |O(1)| = 3, 10,25 respectively. This
example is somewhat artificial, since every clause C' € O(l) is forced to be equal
in size. The benefits of Proposition 11 compared to Proposition 10, however,
should be apparent: Finding a counterexample in a larger list is more likely
than finding one from a smaller one. In practice, the probability of certifying
non-blockedness using clause signatures is greatly enhanced if at least one of the
clauses in C' U O(I) is small.
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5 Evaluation

By way of demonstrating the effectiveness of the signature-based methods devel-
oped in Sect. 3, I implemented Algorithms 1-3 in the popular C++ programming
language* and h, as the underlying hash function. My subsumption algorithm
(Algorithm 1) is based on a literal marking scheme and discussions in [3]. It
seemed natural to test strengthening candidates in conjunction with subsump-
tion, so I modified my implementation to test for both properties. My imple-
mentations of the BCE (Algorithm 2) and BVE procedures (Algorithm 3 with
bound = 16) utilize the same literal marking scheme to test for tautological
resolvents. To maintain the efficiency of these simplification techniques on large
formulae, it was necessary to eliminate tests on gargantuan clauses and occur-
rence lists, so as to limit both memory and computational resources. I therefore
chose to skip checks on clauses |C| > 10* and occurrence lists |O(I)| > 10%.

The benchmark I used comprises the full Main track dataset of the 2020 SAT
competition [2], which includes a variety of formulae with 10?2 — 108 clauses. Each
method was run independently as a preprocessing technique, with and without
a signature-based check, on all 400 formulae. No timeout or randomness was
involved, so as to force the runs to be as identical as possible. Furthermore,
no actual simplification was performed; only the number of simplifications was
counted. The times measured are the total run-time (including construction of
relevant data structures, e.g., occurrence lists), but excluding time spent on
reading input formulae. Computation was done on an AMD Ryzen™ " 9 3900X
and 32 GB of RAM.

Figure5 plots the resulting execution time gain 100(tpase — thash)/tbase fOr
Algorithms 1-3, where t}45, and tpqse measure the total time spent by the algo-
rithm with signature-based checks enabled and disabled respectively. I ordered
the execution times in Fig.5 in ascending order for better visualization, there-
fore the dataset indices between subplots (top),(middle) and (bottom) do not
necessarily coincide.

Figure5 (top) shows a promising gain in execution time for the Subsumption
procedure (Algorithm 1) when signature-based checks were enabled. Especially
for large formulae, the signature-based checks were able to avoid a large portion
of clause accesses. The accumulative time spent on the benchmark was 601s
with signature-based tests enabled and 2451 s without.

Figure5 (middle) shows that BCE (Algorithm 2) maintains an almost 20%
gain in efficiency on the benchmark when signature-based methods were enabled.
The difference in execution time was especially large for formulae with larger
clause-to-variable ratios, which aligns with our analysis in Sect.4 that clause-
blockedness is easier to refute for large occurrence lists. The accumulative time
spent on the benchmark was 154 s with signature-based tests enabled and 232s
without.

Figure 5 (bottom) verifies that BVE (Algorithm 3) does not consistently ben-
efit from the signature-based approach. Upon closer analysis, this was in part

4 Code available at www.github.com/incudine/sat2021.
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Fig.5. The gain in execution time 100(tpase — thash)/tbase for Algorithm 1 (top),
Algorithm 2 (middle) and Algorithm 3 (bottom) for each formula.

due to the extra time spent constructing the larger occurrence lists to include
the clause signatures. The accumulative time spent on the benchmark was 116 s
with signature-based tests enabled and 96 s without.

Lastly, Fig.6 plots the ratio of positive signature-based checks divided by
the total number of checks for Algorithms 1-3 (note that I have once again
ordered the ratios, wherefore indices between different algorithms do not nec-
essarily coincide). Importantly, it shows the fraction of explicit checks which
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Fig. 6. The fraction of positive signature checks for Algorithms 1-3.

could be avoided by testing the clause signatures. Figure 6 is in close agreement
with the experimental findings of Fig.5, as well as the theoretical analysis of
Sect. 4. In particular, explicit testing of subsumption/blockedness properties for
a large number of clauses arising in practical applications can be avoided using
signature-based methods.

6 Conclusions

I have discussed the use of hash-based methods using clause signatures and their
application in Subsumption, BCE, and BVE. The theoretical findings of Sect. 4
promote their use in Subsumption and BCE, but not in BVE. This was verified
in the evaluation, which shows a significant decrease in execution time for the
Subsumption and BCE algorithms, especially on larger formulae.

In addition to fast pre-checking of clause relations, implementations of
signature-based methods hold the advantage of not having to access clause con-
tainers. This seems to be the most salient factor in reducing runtime, although
it comes at the cost of having to construct and maintain larger occurrence lists
for storing clause signatures.
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Abstract. In this paper we show that extended Q-resolution is optimal
among all QBF proof systems that allow strategy extraction modulo an
NP oracle. In other words, for any QBF refutation system f where cir-
cuits witnessing the Herbrand functions can be extracted in polynomial
time from f-refutations, f can be simulated by extended Q-resolution
augmented with an NP oracle as described by Beyersdorff et al. We argue
that using NP oracles and strategy extraction gives a natural framework
to study QBF systems as they have relations to SAT calls and game
instances, respectively, in QBF solving.

A weaker version of QBF extension variables also put forward by Jus-
sila et al. does not have this optimality result, and we show that under
an NP oracle there is no improvement of weak extended Q-Resolution
compared to ordinary Q-Resolution.

Keywords: QBF - Proof complexity - Simulation - Resolution -
Extended Frege - NP oracles - Optimal proof systems - Strategy
extraction

1 Introduction

Quantified Boolean formulas (QBF) are an extension of propositional logic and
extend the SAT problem from NP-complete to PSPACE-complete [31]. In the
last decade the SAT community has developed a strong interest in QBF solv-
ing as a successor to SAT and the number of QBF solvers, benchmarks and
proof systems has multiplied considerably. QBF solving employs a variety of
new reasoning techniques not found in SAT in order to deal with quantification.
However, universally verifying the results of these different solvers over incom-
parable techniques remains a difficult problem. Proof systems such as extended
Q-Res [22] or the even stronger QRAT [18] have been put forward as candidates
for universal checking formats but have not yet been put to significant use.

We show that extended Q-Res has theoretical properties that make it a good
candidate for a QBF checking format under a reasonable set of assumptions, and
through these results, we can conjecture that it can simulate the proof systems
that underpin the most commonly used QBF solving techniques.
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Just as in the SAT case, proof complexity is the main theoretical framework
for analysing the relative strengths of QBF solvers. To use proof complexity,
solvers are classified by their underlying proof systems, which express the lim-
its of that solver. Because there are a variety of QBF solving methods, there
are also many different QBF proof systems. Expansion-based solvers such as
RAReQS [19] use the definition of QBF and expand into potentially exponential
size propositional formulas. Expansion solvers are captured by proof systems
such as VExp+Res [20]. Conflict-driven clause-learning (CDCL), from SAT solv-
ing, is another technique that can be adapted for a QBF setting. This deals
with quantification via a reduction rule. Combining existential resolution and
universal reduction in proof theory gives the refutationally complete system Q-
resolution (Q-Res) [26]. More general CDCL solvers that can perform stronger
unit propagations are better described by so-called long-distance Q-Resolution
(LD-Q-Res), an exponentially more powerful system|[2]. An example of a QBF
solver using CDCL is Dep-QBF [29]. The “Dep” part of Dep-QBF actually
indicates another quantification technique which uses the awareness of spuri-
ous dependencies in the ordered quantifier prefix. The theory of dependency is
also hugely important for QBF solving and theory [9,28,32] and has given rise
to other stronger variants of Q-Res that utilise the dependency schemes, such as
the reflexive resolution scheme [32].

Solvers can be modified to output certificates that are used to verify their
results. It is natural for these certificates to be valid proofs for the corresponding
proof systems. As well as being able to output proofs of truth or falsity, solvers
are often asked to provide the strategies that witness how each variable must be
set. In some applications, the strategy is the whole point of using a QBF solver. In
Feldman et al. [13], circuit design algorithms explicitly used the strategy circuits
output by QBF solvers rather than the true/false results. If these strategies
are circuits that are easy to compute from the proofs, that proof system is
said to have strategy extraction, an often desirable property for proof systems
corresponding to solvers. All proof systems in the previous paragraph have this
property.

While the above proof systems are meant to correspond to particular solvers,
there is no agreed upon universal checking format for certification for every
known type of QBF solver. One approach is to incorporate as many techniques
as possible into the proof system. The proof system IRM-calc [6] combines the
main concepts from the expansion-based VExp+Res and the CDCL-based LD-
Q-Res into one sound system. While this is interesting in understanding how
expansion and CDCL systems can interact, IRM-calc is somewhat ad hoc, and a
new technique could easily emerge which IRM-calc is not designed to deal with.
For example, IRM-calc can not deal with the resolution of universal variables [6].

Another approach is to pick one strong system and prove that each solving
technique can be simulated. This approach can be seen in the QRAT system,
where it was first shown that a number of QBF preprocessing techniques were
simulated by it [18]. Later it was shown to simulate LD-Q-Res [23] and VExp+Res
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[24]. From these results, one could estimate that QRAT is indeed strong, but we
would prefer a stronger theoretical reason for this.

If we want a QBF proof system suitable for universal certification, then the
absolute ideal situation would be that it simulates every other QBF proof system.
This is probably too ambitious as the existence of a theoretical optimal proof
system remains a contested and open problem in propositional proof complexity,
and it is an even stronger claim to suggest one exists for QBF. However, we
can restrict our search to just proof systems with strategy extraction, and the
problem becomes more manageable.

We find that with some extra help, extended Q-resolution is optimal among
the proof systems with strategy extraction. Firstly we show in Theorem 1 that
extended QU-Resolution (the ‘U’ in QU allows resolution on universal variables)
is equivalent to the system eFrege + Vred.

Theorem 1. Extended QU-Res and eFrege +Vred are p-equivalent.

eFrege + Vred has an important result where it can only have a lower bound
if eFrege has a lower bound or PSPACE ¢ P/poly [5]. While this does not give us
a simulation of another QBF proof system, it already indicates the strength of
the system. With additional propositional power we show the next theorem.

Theorem 2. For every refutational QBF Proof System S that has P/poly-
strategy extraction, there is a set of polynomial-time verifiable propositional tau-
tologies ||| such that eFrege +Vred +||¥| simulates S.

For reasons that we discuss in Sect. 3, the extra propositional tautologies
will not play a large role. Our main conjecture is that for the most interesting
systems, the simulation requires no additional help.

Conjecture 1. VExp+Res, IR-calc, LD-Q-Res, IRM-calc, QRAT(UR) and Q(D"*)-
Res are all simulated by eFrege + Vred.

We saw that extra help needed for simulations can come in the form of
propositional tautologies, but there is a second setting which achieves the same
result- the use of NP oracles in a proof system.

This idea was first proposed by Chen [10] and refined by Beyersdorff, Hinde
and Pich [8]. The Beyersdorff et al. NP derivation rule roughly allows one to
make any propositional derivation in addition to the normal rules of whatever
system we are adding the rule to. The motivation was to provide a theoretical
framework that differentiated out genuine QBF hardness for QBF proof systems.

NP oracles model what happens in practice, as QBF solving algorithms often
make black-box calls to SAT solvers. This usually does not affect strategy extrac-
tion as we see in Theorem 3.

Theorem 3. The following strategy extraction theorems hold:

~ QU-Res NP has depth-1 circuit decision list strategy extraction.
— For circuit class C, C-Frege +Vred NP has C-decision list strategy extraction.
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NP oracles remove the need for the families of propositional tautologies, and
we can express our simulation results in terms of optimality.

Theorem 4. Eztended Q-Res\® is optimal among all QBF proof systems with
strategy extraction.

The final three theorems examine a weaker form of extension in Q-Res and
QU-Res under the lens of NP oracles.

Theorem 5. Weak extended QU-Res NP does not simulate extended Q-Res.
Theorem 6. Weak extended Q-Res does not simulate QU-Res.

Theorem 7. Q-Res =NP QU-Res =NP Weak Ext.Q-Res =NP Weak Frt.QU-Res.

1.1 Organisation

In Sect.2 we recap some essential definitions on QBF. In Sect.3 we show The-
orem 1 and 2 and discuss why this leads to Conjecture 1. Section4 begins an
analysis of proof systems under NP oracles with Theorems 3 and 4. This is
finished in Sect. 5 where we prove Theorems 5, 6 and 7.

2 Preliminaries

2.1 Proof Complexity

Formally, a proof system [12] for a language L over alphabet I is a polynomial-
time computable partial function f : ™ — '* with rng(f) = L, where rng
denotes the range. A proof system maps proofs to theorems. A refutation is a
proof system where the language £ is of contradictions. The partial function
f gives a proof checking function. Soundness and completeness are given by
rng(f) C L and rng(f) 2 L, respectively. The polynomial-time computability is
an indication of feasibility.

Proof size is given by the number of characters appearing in a proof. Proof
systems are compared by simulations. We say that a proof system f simulates g
(g < f) if there exists a polynomial p such that for every g-proof 7, there is an
f-proof m¢ with f(my) = g(mg) and |7s| < p(|mg|). If 74 can even be constructed
from 7, in polynomial-time, then we say that f p-simulates g (9 <, f). Two
proof systems f and g are (p-)equivalent (g =) f) if they mutually (p-)simulate
each other.

Definition 1 (Messner, Toran [30]). A proof system in language L is (p-
Joptimal if and only if it can (p-)simulate all other proof systems for L.
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Here A = {A;...A,} and (A4, B) holds.

Fig. 1. Example of rule r in a line-based proof system

Line-Based Proofs. A proof system is line-based if every proof consists of
a sequence Lq ... L, of lines L;. The data types of lines are dependent on the
proof systems. A line-based system is verified by a set of rules R. Each rule is
a relation between a set of lines, which are known as the premises, and a single
conclusion line. Correct proofs have that for each line L;, there is some rule r in
R and a subset A of {L;|0 < j < i} such that r(A, L;) holds (see Fig. 1).

Given a line based proof system P with a set of rules Rp and a rule r, we
can write P + r to mean the proof system that consists of the rules of Rp U {r}
under the lines acceptable in P. If S is a set of propositional formulas, the proof
system P + S is the system P 4+ r, where r is a rule that allows a conclusion s
(with empty premises) if and only if s € S. Note that rules and sets of lines have
to be polynomial-time verifiable in order for the resulting system to be a proof
system. While adding a rule r to a complete system P preserves completeness,
soundness is not guaranteed and has to be reasoned for separately.

2.2 Propositional Logic

Propositional logic involves Boolean variables under operations —,A,V,0,1. A
literal is a variable or its negation, a clause is a disjunction of literals and a
conjunctive normal form (CNF) is a conjunction of clauses. A formula is satisfi-
able if there is a 0,1 assignment to variables so that the formula evaluates to 1.
Deciding whether a propositional formula is satisfiable is NP-complete.

Propositional Proof Systems. Resolution (Res) is a propositional refutation
system that works on formulas in conjunctive normal form. Resolution is line-
based, where every line is a clause. The axiom rule allows us to download any
clause in our original CNF. The inference rule takes two premise clauses C'V x
and D V -z and outputs conclusion C'V D.

Extended resolution (Ext. Res) for propositional logic [33], enables adding
clauses expressing the equality v < (—z V —y), for a fresh variable v. As NAND
gates can be defined by new variables, subsequent new variables can represent
more complicated functions.

Frege systems are line-based systems that work on propositional formulas.
Frege systems consist of an implicationally complete finite set of sound rules,
each of which is represented by a single example, which can be generalised by
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substitution. All Frege systems are known to be p-equivalent. While the lines
of Frege systems are required to be formulas, a generalised version of Frege,
denoted here by C-Frege, allows/restricts the lines to belong in circuit class C.
For example, AC’-Frege [3] is the Frege system where the lines are circuits with
unbounded fan-in but have bounded-depth. NC'-Frege is the Frege system where
the lines have bounded fan-in and logarithmic depth, this is equivalent to the
original Frege system [12] where lines are formulas. P/poly-Frege (defined as
Circuit Frege by Jefdbek [21]) is the Frege system where general circuits have
unbounded fan-in and depth. Extended Frege is known to be p-equivalent to
P /poly-Frege, so we often use the notation eFrege to denote P/poly-Frege.

2.3 Quantified Boolean Formulas

Quantified Boolean Formulas extend propositional logic with quantifiers V, 3 that
work on propositional variables [25]. For formula (or circuit) A, we define Afz/y]
so that we replace all instances of y in A with x. The standard QBF semantics
are that Va ¥ is satisfied by the same truth assignments as ¥[0/z] AW¥[1/z], and
Jdx ¥ is satisfied by the same truth assignments as ¥[0/x] V ¥[1/z].

A prenex QBF is a QBF where all quantification is done outside of the
propositional connectives. A prenex QBF ¥ therefore consists of a propositional
part ¢ called the matrix and a prefix of quantifiers I and can be written as
¥ = I1¢. Starting from left to right we give each bound variable a numerical level
(Iv) starting from 1 and increasing by one each time the quantifier changes (it
stays the same whenever the quantifier is not changed). When the propositional
matrix of a prenex QBF is a CNF, then we have a PCNF. We can feasibly
transform any QBF into prenex form. A prenex QBF without any variables in
the prefix is just a propositional formula.

A closed QBF is a QBF where all variables are bound in quantifiers. A
closed QBF must be either true or false, since if we semantically expand all the
quantifiers we have a Boolean connective structure on 0,1. TQBF and FQBF
are used to denote the languages of true and false closed QBF, respectively.

QBF Game Semantics. Often it is useful to think of a closed prenex QBF
O1X7 ... QrXk. ¢, where X; are blocks of variables, as a game between V and 3.
In the i-th step of the game, the player Q; assigns values to all the variables X;.
The existential player wins the game if and only if the matrix ¢ evaluates to 1
under the assignment constructed in the game. The universal player wins if and
only if the matrix ¢ evaluates to 0. Given a universal variable v with index i, a
strategy for w is a function, which maps the variables of lower index than w to
{0,1} (the intended response for u). A strategy for the universal player for QBF
11¢ is a set which contains exactly one strategy for each universal variable in I7. A
QBF is false if and only if there exists a winning strategy for the universal player,
i.e. if the universal player has a strategy for all universal variables that wins any
possible game [15][1, Sec. 4.2.2][31, Chap. 19]. Note that we differentiate between
a universal strategy and what is known in the literature as a Herbrand function.
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Strategies are allowed to depend on previous universal variables, whereas the
input to Herbrand functions must be purely existential (this allows us to get
Theorem 3 to work). Since strategies for each universal variable are Boolean
functions, they can be expressed as circuits. In many QBF solvers, as well as
evaluating the truth of a QBF, solvers output circui