Skip to main content

Identifying Shifts in Collective Attention to Topics on Social Media

  • Conference paper
  • First Online:
Book cover Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2021)

Abstract

The complex, ever-shifting landscape of social media can obscure important changes in conversations involving smaller groups. Discovering these subtle shifts in attention to topics can be challenging for algorithms attuned to global topic popularity. We present a novel unsupervised method to identify shifts in high-dimensional textual data. By utilizing a random selection of date-time instances as inflection points in discourse, the method automatically labels the data as before or after a change point and trains a classifier to predict these labels. Next, it fits a mathematical model of classification accuracy to all trial change points to infer the true change points, as well as the fraction of data affected (a proxy for detection confidence). Finally, it splits the data at the detected change and repeats recursively until a stopping criterion is reached. The method beats state-of-the-art change detection algorithms in accuracy, and often has lower time and space complexity. The method identifies meaningful changes in real-world settings, including Twitter conversations about the Covid-19 pandemic and stories posted on Reddit. The method opens new avenues for data-driven discovery due to its flexibility, accuracy and robustness in identifying changes in high dimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/yuziheusc/confusion_multi_change.

References

  1. Adams, R.P., MacKay, D.J.: Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742 (2007)

  2. Alkhodair, S.A., Ding, S.H., Fung, B.C., Liu, J.: Detecting breaking news rumors of emerging topics in social media. Inf. Process. Manag. 57(2), 102018 (2020)

    Article  Google Scholar 

  3. Arlot, S., Celisse, A., Harchaoui, Z.: A kernel multiple change-point algorithm via model selection. JMRL 20(162), 1–56 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Barber, J.: A generalized likelihood ratio test for coherent change detection in polarimetric SAR. IEEE GRSL 12(9), 1873–1877 (2015)

    Google Scholar 

  5. Bardet, J.M., Kengne, W.C., Wintenberger, O.: Detecting multiple change-points in general causal time series using penalized quasi-likelihood. arXiv preprint: arXiv:1008.0054 (2010)

  6. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: ICML, pp. 113–120 (2006)

    Google Scholar 

  7. Chen, E., Lerman, K., Ferrara, E.: Tracking social media discourse about the COVID-19 pandemic: development of a public coronavirus Twitter data set. JPHS 6(2), e19273 (2020)

    Google Scholar 

  8. Fryzlewicz, P., et al.: Wild binary segmentation for multiple change-point detection. Ann. Stat. 42(6), 2243–2281 (2014)

    Article  MathSciNet  Google Scholar 

  9. Halko, N.: Finding structure with randomness: stochastic algorithms for constructing approximate matrix decompositions. arXiv:0909.4061 (2009)

  10. Hido, S., Idé, T., Kashima, H., Kubo, H., Matsuzawa, H.: Unsupervised change analysis using supervised learning. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 148–159. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68125-0_15

    Chapter  Google Scholar 

  11. Hodas, N.O., Lerman, K.: How limited visibility and divided attention constrain social contagion. In: SocialCom 2012 (2012)

    Google Scholar 

  12. Jiang, J., Chen, E., Yan, S., Lerman, K., Ferrara, E.: Political polarization drives online conversations about COVID-19 in the United States. Hum. Behav. Emerg. Technol. 2, 200–211 (2020)

    Article  Google Scholar 

  13. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: ICDM, pp. 289–296. IEEE (2001)

    Google Scholar 

  14. Leichtle, T., Geith, C., Lakes, T., Taubenböck, H.: Class imbalance in unsupervised change detection: a diagnostic analysis from urban remote sensing. Int. J. Appl. Earth Obs. Geoinf. 60, 83–98 (2017)

    Article  Google Scholar 

  15. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: KDD, pp. 497–506 (2009)

    Google Scholar 

  16. Page, E.S.: Continuous inspection schemes. Biometrika 41(1–2), 100–115 (1954)

    Article  MathSciNet  Google Scholar 

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Raghavan, V., Galstyan, A., Tartakovsky, A.G.: Hidden Markov models for the activity profile of terrorist groups. Ann. Appl. Stat. 7(4), 2402–2430 (2013)

    Article  MathSciNet  Google Scholar 

  19. Rigaill, G.: A pruned dynamic programming algorithm to recover the best segmentations with 1 to \(K\_max\) change-points. J. de la Société Française de Stat. 156(4), 180–205 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Siegmund, D., Venkatraman, E.: Using the generalized likelihood ratio statistic for sequential detection of a change-point. Ann. Stat. 23(1), 255–271 (1995)

    Article  MathSciNet  Google Scholar 

  21. Truong, C., Oudre, L., Vayatis, N.: Selective review of offline change point detection methods. Sig. Process. 167, 107299 (2020)

    Article  Google Scholar 

  22. Van Nieuwenburg, E.P., Liu, Y.H., Huber, S.D.: Learning phase transitions by confusion. Nat. Phys. 13(5), 435–439 (2017)

    Article  Google Scholar 

  23. Xuan, X., Murphy, K.: Modeling changing dependency structure in multivariate time series. In: IMLS, pp. 1055–1062 (2007)

    Google Scholar 

Download references

Acknowledgments

This work was funded in part by DARPA (W911NF-17-C-0094 and HR00111990114) and AFOSR (FA9550-20-1-0224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Burghardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Rao, A., Burghardt, K., Lerman, K. (2021). Identifying Shifts in Collective Attention to Topics on Social Media. In: Thomson, R., Hussain, M.N., Dancy, C., Pyke, A. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2021. Lecture Notes in Computer Science(), vol 12720. Springer, Cham. https://doi.org/10.1007/978-3-030-80387-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80387-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80386-5

  • Online ISBN: 978-3-030-80387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics