Lecture Notes in Computer Science 12677

Founding Editors

Gerhard Goos Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino Purdue University, West Lafayette, IN, USA

Wen Gao Peking University, Beijing, China

Bernhard Steffen D TU Dortmund University, Dortmund, Germany

Gerhard Woeginger D *RWTH Aachen, Aachen, Germany*

Moti Yung

Columbia University, New York, NY, USA

More information about this subseries at http://www.springer.com/series/7408

Alexandra I. Cristea · Christos Troussas (Eds.)

Intelligent Tutoring Systems

17th International Conference, ITS 2021 Virtual Event, June 7–11, 2021 Proceedings

Editors Alexandra I. Cristea Department of Computer Science Durham University Durham, UK

Christos Troussas University of West Attica Aigaleo, Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-030-80420-6 ISBN 978-3-030-80421-3 (eBook) https://doi.org/10.1007/978-3-030-80421-3

LNCS Sublibrary: SL2 - Programming and Software Engineering

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 17th International Conference on Intelligent Tutoring Systems (ITS 2021) was to be held in Athens, Greece, during June 7–11, 2021. The hosting institution of the ITS 2021 conference was the University of West Attica; however, due to the world-wide COVID-19 pandemic it took place online.

Conforming to the current move of education, work, and leisure online, the title of ITS 2021 was "Intelligent Tutoring Systems in an Online World". Its objective was to present academic and research achievements in Computer and Cognitive Sciences, Artificial Intelligence, and, due to its recent emergence, specifically, Deep Learning in Tutoring and Education. The aim of ITS 2021 was to promote and improve learning technology systems, by combining novel and advanced technology with complex and nuanced research approaches. It offered a forum for exploring emerging and noteworthy progress in the field of Artificial Intelligence in Education.

The call for scientific papers focused on a plethora of topics of interest in the area of ITS and beyond, including the following:

- Intelligent Tutoring
- Learning Environments for Underrepresented Communities
- Artificial Intelligence in Education
- Human in the Loop, Understanding Human Learning on the Web in a Virtual (Digital) World
- Machine Behavior (MB), Explainable AI, Bias in AI in Learning Environments
- Emotions, Modeling of Motivation, Metacognition and Affect Aspects of Learning, Affective Computing and ITS
- Extended Reality (XR), Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR) in Learning Technologies
- Informal Learning Environments, Learning as a Side Effect of Interactions
- Collaborative and Group Learning, Communities of Practice and Social Networks
- Analytics and Deep Learning in Learning Systems, Educational Data Mining, Educational Exploitation of Data Mining and Machine Learning Techniques
- Sentiment Analysis in Learning Environments
- Data Visualization in Learning Environments
- Privacy, Security and Ethics in Learning Environments
- Gamification, Educational games, Simulation-based Learning and Serious Games
- Brain-computer Interface Applications in Intelligent Tutoring Systems
- Dialogue and Discourse During Learning Interactions
- Ubiquitous, Mobile, and Cloud Learning Environments
- Virtual Pedagogical Agents and Learning Companions
- Multi-agent and Service-oriented Architectures for Learning and Tutoring Environments
- Single and GroupWise Action Modeling in Learning Environments
- Ontological Modeling, Semantic Web Technologies, and Standards for Learning

- Empirical Studies of Learning with Technologies
- Instructional Design Principles or Design Patterns for Educational Environments
- Authoring Tools and Development Methodologies for Advanced Learning Technologies
- Domain-specific Learning Technologies, e.g. Language, Mathematics, Reading, Science, Medicine, Military, and Industry
- Non-conventional Interactions between Artificial Intelligence and Human Learning
- Personalized and Adaptive Learning Environments
- Adaptive Support for Learning, Models of Learners, Diagnosis and Feedback
- Recommender Systems for Learning
- Causal Modeling and Constraints-based Modeling in Intelligent Tutoring

The call for papers sought papers that presented significant new research findings in the use of advanced computing technology and interdisciplinary research to allow, promote, and enhance human learning. Full papers allowed for discussion of more mature and finalized research results, whilst short papers allowed discussions around brief novel findings. There was also a posters track, which included an excellent network for researchers to discuss research prototypes and work in progress to conference attendees.

The international Program Committee consisted of 63 leading members of the Intelligent Tutoring Systems community (20 senior and 43 regular), as well as highly promising younger researchers. Scientific papers were reviewed by three to five reviewers through a double-blind process. Only 25% of the submitted papers, were accepted as full papers, about 24% were accepted as short papers, and just 15% were accepted as posters. These percentages indicate that ITS 2021 was a top-flight, rather selective, high-quality conference.

A separate Doctoral Consortium (DC) offered a forum for Ph.D. students to present and discuss their research when it was still in the early stages of development, engage colleagues with similar goals, and collaborate with more senior members in the community (mentors). The Doctoral Consortium Chairs were Mizue Kayama, Shinshu University (Japan), and Mike Joy, University of Warwick (UK).

The full papers outlined some very important developments, the short papers explored some fascinating new theories, and the posters discussed research in progress that needs particular attention, all based on the ITS philosophy.

The main topics under which the accepted papers fall, on which basis we also structured this book, are as follows:

- Theory comprising Theory and Reviews; Models; Concept Maps
- Learner focus including Student Prediction; Learner Behavior; Feedback and Personalization; Groups, Teams, Social, Crowd and Communities Assessment
- Future ITS orientation bringing together Games and Gamification; Emotions and Affect; and xtended Reality

A variety of new techniques had been introduced or revisited, including multimodal affective computing, XR, mixed-compensation multidimensional item response, ensemble deep learning, cohesion network analysis, conversational agent, semantic web, computer-supported collaborative learning, and social networking in education. The rigor of the research was high, and it revealed several generalizable findings. Furthermore, it created space for the use of approaches like retrospective trials, experimental research, and meta-analysis, which might include new insights at future ITS conferences.

The quality of a conference is reflected by the work of its participants as well as their ability to push the boundaries, and the rigor with which they encourage the rest of the research field to move beyond. The papers of ITS 2021 stretched the limits of intelligent tutoring, much as they had in the previous years. Reinforcement learning, artificial neural networks, semantic web technologies, natural language processing, social networking, digital assistants, and recommender systems were among the fields where they had documented remarkable work.

The ITS 2021 program was reinforced by the successful organisation of a Workshop: "Intelligent Tutor Demonstrations" by Mihai Dascalu, Amruth Kumar, and Daniela M. Romano, and two half-day Tutorials: "Learning Analytics Hands-On Tutorial" by Alexandra Cristea and "Data Science for Learning Process Management" by Filippo Sciarrone. They were all selected and managed by the Workshop and Tutorial Chairs, Amruth Kumar, Ramapo College of New Jersey (USA), Mihai Dascalu, University Politehnica of Bucharest (Romania), and Daniela Romano, University College London (UK).

We would like to express our thanks to many different contributors in the midst of the overwhelming and unforeseen circumstances of the COVID-19 pandemic.

The successful preparation and implementation of the ITS 2021 conference was secured by the original work of all the authors, the devoted contribution of the various Conference Chairs, the members of the Program Committee, and the Steering Committee, in particular its Chair, Claude Frasson. The organization, coordination, and online operation of ITS 2021 achieved by the Local Organizers and the Organization Chair, Kitty Panourgia. We would also like to address our special thanks to the Conference Sponsor, the "Education Sciences" journal (MDPI), for its support. Last but not least, we would like to acknowledge the Institute of Intelligent Systems (IIS) under the auspices of which this conference was held.

Rather than concluding this preface, we would like to emphasise that one of the main outcomes of the ITS 2021 conference is a fusion of new and established scholars, innovative and highly evolved subjects, theoretical developments and business interests, broadening of areas and deepening of subgenres. This equilibrium is an utterly necessary dimension. We hope you enjoy reading the papers and using them towards generating new ideas – and citing them in your own research!

April 2021

Alexandra Cristea Christos Troussas

Organization

General Conference Chair

Cleo Sgouropoulou

University of West Attica, Greece

Honorary Chair

Riichiro Mizoguchi

Japan Advanced Institute of Science and Technology, Japan

Program Committee Chairs

Alexandra Cristea	Durham University, UK
Christos Troussas	University of West Attica, Greece

Program Advising Chairs

Maiga Chang	Athabasca University, Canada
Yugo Hayashi	Ritsumeikan University, Japan

Workshop and Tutorial Chairs

Amruth Kumar	Ramapo College of New Jersey, USA
Mihai Dascalu	Politehnica University of Bucharest, Romania
Daniela Romano	University College London, UK

Posters Chairs

Giora Alexandron	Weizmann Institute, Israel
Jane Sinclair	University of Warwick, UK

Doctoral Consortium Chairs

Mizue Kayama	Shinshu University, Japan
Mike Joy	University of Warwick, UK

Promotion, Publicity and Industry Chairs

Tatiana Gavrilova	St. Petersburg University, Russia
Richard Tong	Squirrel AI, China

Program Committee

Senior Program Committee

Roger Azevedo Bert Bredeweg Stefano A. Cerri Maiga Chang Michel Desmarais Claude Frasson Nathalie Guin Yugo Hayashi Kinshuk Kinshuk Vivekanandan Kumar Amruth Kumar Lewis Johnson Noboru Matsuda Gordon McCalla Riichiro Mizoguchi

Roger Nkambou Filippo Sciarrone Stefan Trausan-Matu Christos Troussas Julita Vassileva

Program Committee

Giora Alexandron Galia Angelova Maria Bielikova

Emmanuel Blanchard Jesus Boticario Tingwei Chen Chih-Yueh Chou Mark Core Evandro Costa Diego Dermeval Philippe Dessus Reva Freedman Benjamin Goldberg Sunčica Hadžidedić Ella Haig Elaine Harada Teixeira de Oliveira Jason Harley University of Central Florida, USA University of Amsterdam, The Netherlands University of Montpellier and CNRS, France Athabasca University, Canada Ecole Polytechnique de Montreal, Canada University of Montreal, Canada Université Claude Bernard Lyon 1, France Ritsumeikan University, Japan University of North Texas, USA Athabasca University, Canada Ramapo College of New Jersey, USA Alelo Inc., USA North Carolina State University, USA University of Saskatchewan, Canada Japan Advanced Institute of Science and Technology, Japan Université du Québec à Montréal, Canada University Roma Tre, Italy Politehnica University of Bucharest, Romania University of West Attica, Greece University of Saskatchewan, Canada

Weizman Institute, Israel Bulgarian Academy of Sciences, Bulgaria Kempelen Institute of Intelligent Technologies, Slovakia IDU Interactive Inc., Canada National University of Distance Education, Spain Liaoning University, China Yuan Ze University, Taiwan University of Southern California, USA Federal University of Alagoas, Brazil Federal University of Alagoas, Brazil Université Grenoble Alpes, France North Illinois University, USA University of South Florida, USA Durham University, UK University of Portsmouth, UK Federal University of Amazonas, Brazil McGill University, Canada

Yusuke Hayashi Gwo-Jen Hwang

- Seiji Isotani Patricia Jaques Charalampos Karagiannidis Mizue Kayama Akrivi Krouska Elise Lavoué Blair Lehman Carla Limongelli Chao-Lin Liu Fuhua Lin Yang Long Alvaro Ortigosa Kuo-Liang Ou
- Elvira Popescu Valéry Psyché Olga C. Santos Lei Shi Sergey Sosnovsky Kaoru Sumi Thepchai Supnithi

Marco Temperini Radu Vasiu Dunwei Wen

Steering Committee Chair

Claude Frasson

University of Montreal, Canada

Steering Committee

Stefano A. Cerri Maiga Chang Isabel Fernandez-Castro Gilles Gauthier Guy Gouarderes Yugo Hayashi Amruth Kumar Alan Lesgold James Lester Alessandro Micarelli University of Montpellier and CNRS, France Athabasca University, Canada University of the Basque Country, Spain University of Quebec at Montreal, Canada University of Pau and Pays de l'Adour, France Ritsumeikan University, Japan Ramapo College of New Jersey, USA University of Pittsburgh, USA North Carolina State University, USA Roma Tre University, Italy

Hiroshima University, Japan National Taiwan University of Science and Technology, Taiwan University of Sao Paulo, Brazil Universidade do Vale do Rio dos Sinos, Brazil University of Thessaly, Greece Shinshu University, Japan University of West Attica, Greece University of Lyon, France Educational Testing Service, USA Roma Tre University, Italy National Chengchi University, Taiwan Athabasca University, Canada Durham University, UK Universidad Autónoma de Madrid, Spain National Hsin-Chu University of Education, Taiwan University of Craiova, Romania Teluq University, Canada National Distance Education University, Spain Durham University, UK Utrecht University, The Netherlands Future University Hakodate, Japan National Electronics, and Computer Technology Center. Thailand Sapienza University of Rome, Italy Politechnica University of Timisoara, Romania Athabasca University, Canada

Roger Nkambou	Université du Québec à Montréal, Canada
Giorgos Papadourakis	Hellenic Mediterranean University, Greece
Elliot Soloway	University of Michigan, USA
John Stamper	Carnegie Mellon University, USA
Daniel Suthers	University of Hawaii, USA
Christos Troussas	University of West Attica, Greece
Stefan Trausan-Matu	Politehnica University of Bucharest, Romania
Beverly Woolf	University of Massachusetts, USA

Organizing Committee Chair

Kitty Panourgia Neoanalysis, Greec	e
------------------------------------	---

Organizing Committee

Aggelos Amarantos	Neoanalysis, Greece
Stefano Esposito	Neoanalysis, Greece
Elisavet Vasileiou	Neoanalysis, Greece
Isaak Tselepis	Neoanalysis, Greece
Rasa Tučinskaitė	Neoanalysis, Greece
Stefano Esposito Elisavet Vasileiou Isaak Tselepis	Neoanalysis, Greece Neoanalysis, Greece Neoanalysis, Greece

Contents

Theory and Reviews

Difficulties and Disparities to Distance Learning During Covid-19 Period	
for Deaf Students – A Proposed Method to Eradicate Inequalities	3
Konstantinos Karampidis, Athina Trigoni, Giorgos Papadourakis,	
Maria Christofaki, and Nuno Escudeiro	
Wide-Scale Automatic Analysis of 20 Years of ITS Research	8
Ryan Hodgson, Alexandra Cristea, Lei Shi, and John Graham	
Exploring the Barriers of Educational Innovation	22
Aivazidi Marina and Michalakelis Christos	
A Brief Survey of Deep Learning Approaches for Learning Analytics	
on MOOCs	28
Zhongtian Sun, Anoushka Harit, Jialin Yu, Alexandra I. Cristea,	
and Lei Shi	
Models	
IVIOUEIS	
DiKT: Dichotomous Knowledge Tracing	41
Seounghun Kim, Woojin Kim, Heeseok Jung, and Hyeoncheol Kim	
CompPrehension - Model-Based Intelligent Tutoring System	
on Comprehension Level	52
Oleg Sychev, Anton Anikin, Nikita Penskoy, Mikhail Denisov,	
and Artem Prokudin	
Learning Logical Reasoning : Improving the Student Model with a Data	
Driven Approach	60
Roger Nkambou, Janie Brisson, Serge Robert, and Ange Tato	00
Roger Internoou, vanie Drisson, berge Robert, and Inige Tailo	
Checking Method for Fake News to Avoid the Twitter Effect	68
Téo Orthlieb, Hamdi Ben Abdessalem, and Claude Frasson	
Comparing Bayesian Knowledge Tracing Model Against Naïve Mastery	
Model	73

Vanesa Getseva and Amruth N. Kumar

Exploring Bayesian Deep Learning for Urgent Instructor Intervention	
Need in MOOC Forums	78
Jialin Yu, Laila Alrajhi, Anoushka Harit, Zhongtian Sun,	
Alexandra I. Cristea, and Lei Shi	

Concept Maps

Creating and Visualising Cognitive Maps of Knowledge Diagnosis During the Processing of Learning Digital Footprint	93
Integrating Knowledge in Collaborative Concept Mapping: Cases in an Online Class Setting	99
An Evaluation of a Meaningful Discovery Learning Support System for Supporting E-book User in Pair Learning Jingyun Wang and Hiroaki Ogata	107
Towards Semantic Comparison of Concept Maps for Structuring Learning Activities	112
Student Prediction	
MOOC Next Week Dropout Prediction: Weekly Assessing Time and Learning Patterns	119

Internet of Things (IoT) Based Support System for Diabetic Learners in Saudi Arabian High Schools	131
Mona Alotaibi and Mike Joy	
Training Temporal and NLP Features via Extremely Randomised Trees for Educational Level Classification	126
Tahani Aljohani and Alexandra I. Cristea	150
Urgency Analysis of Learners' Comments: An Automated Intervention	
Priority Model for MOOC	148
Laila Alrajhi, Ahmed Alamri, Filipe Dwan Pereira,	
and Alexandra I. Cristea	

Contents	XV

Early Predictor for Student Success Based on Behavioural and Demographical Indicators	161
Efthyvoulos Drousiotis, Lei Shi, and Simon Maskell	
Predicting Certification in MOOCs Based on Students' Weekly Activities Mohammad Alshehri, Ahmed Alamri, and Alexandra I. Cristea	173
Learner Behaviour	
Recognizing Novice Learner's Modeling Behaviors Sungeun An, William Broniec, Spencer Rugaber, Emily Weigel, Jennifer Hammock, and Ashok Goel	189
Expert, Novice, and Intermediate Performance: Exploring the Relationship Between Clinical Reasoning Behaviors and Diagnostic Performance	201
Agent-Based Simulation of the Classroom Environment to Gauge the Effect of Inattentive or Disruptive Students	211
Investigating Clues for Estimating ICAP States Based on Learners' Behavioural Data During Collaborative Learning Yoshimasa Ohmoto, Shigen Shimojo, Junya Morita, and Yugo Hayashi	224
Behaviour Analytics - A Moodle Plug-in to Visualize Students' Learning Patterns	232
Toward a Webcam Based ITS to Enhance Novice Clinician Visual Situational Awareness Komi Sodoké, Roger Nkambou, Issam Tanoubi, and Aude Dufresne	239
Feedback and Personalisation	
Flexible Program Alignment to Deliver Data-Driven Feedback to Novice	247
Programmers Victor J. Marin, Maheen Riaz Contractor, and Carlos R. Rivero	247

Interaction of Human Cognitive Mechanisms and "Computational	
Intelligence" in Systems that Support Teaching Mathematics	259
Sergei Pozdniakov, Ilya Posov, and Chukhnov Anton	

Learning Path Construction Using Reinforcement Learning and Bloom's Taxonomy Seounghun Kim, Woojin Kim, and Hyeoncheol Kim	267
Customizing Feedback for Introductory Programming Courses Using Semantic Clusters Victor J. Marin, Hadi Hosseini, and Carlos R. Rivero	279
Voice Privacy with Smart Digital Assistants in Educational Settings Mohammad Niknazar, Aditya Vempaty, and Ravi Kokku	286
Selfit – An Intelligent Tutoring System for Psychomotor Development Laurentiu-Marian Neagu, Eric Rigaud, Vincent Guarnieri, Sébastien Travadel, and Mihai Dascalu	291
Assessment	
Automated Assessment of Learning Objectives in Programming Assignments Arthur Rump, Ansgar Fehnker, and Angelika Mader	299
Ex-Ante and Ex-Post Feature Evaluation of Online Courses Using the Kano Model	310
Automated Summary Scoring with ReaderBench Robert-Mihai Botarleanu, Mihai Dascalu, Laura K. Allen, Scott Andrew Crossley, and Danielle S. McNamara	321
Automated Paraphrase Quality Assessment Using Recurrent Neural Networks and Language Models Bogdan Nicula, Mihai Dascalu, Natalie Newton, Ellen Orcutt, and Danielle S. McNamara	333
Groups, Teams, Social, Crowd and Communities	
XGBoost and Deep Neural Network Comparison: The Case of Teams' Performance Filippos Giannakas, Christos Troussas, Akrivi Krouska, Cleo Sgouropoulou, and Ioannis Voyiatzis	343

Using Graph Embedding to Monitor Communities of Learners	350
Fabio Gasparetti, Filippo Sciarrone, and Marco Temperini	

Three Common Group Formations in Online Collaborative Learning Tao Wu and Maiga Chang	357
New Horizons on Online Tutoring System Inspired by Teaching Strategies and Learning Styles	364
A Comparative Evaluation of the Effect of Social Comparison, Competition, and Social Learning in Persuasive Technology on Learning <i>Fidelia A. Orji and Julita Vassileva</i>	369
Sovereignty by Personalization of Information Search: A Collective Wisdom May Influence My Knowledge Stefano A. Cerri and Philippe Lemoisson	376
Games and Gamification	
Confusion Detection Within a 3D Adventure Game Mohamed Sahbi Benlamine and Claude Frasson	387
Representation of Generalized Human Cognitive Abilities in a Sophisticated Student Leaderboard Christos Troussas, Akrivi Krouska, Filippos Giannakas, Cleo Sgouropoulou, and Ioannis Voyiatzis	398
Learning and Gamification Dashboards: A Mixed-Method Study with Teachers	406
Encouraging Teacher-Sourcing of Social Recommendations Through Participatory Gamification Design Elad Yacobson, Armando Toda, Alexandra I. Cristea, and Giora Alexandron	418
Automatic Adaptive Sequencing in a Webgame Tong Mu, Shuhan Wang, Erik Andersen, and Emma Brunskill	430
Towards Smart Edutainment Applications for Young Children. A Proposal Adriana-Mihaela Guran, Grigoreta-Sofia Cojocar, and Laura-Silvia Dioşan	439
Do Students Use Semantics When Solving Parsons Puzzles? – A Log-Based Investigation Amruth N. Kumar	444

Emotions and Affect

Tutorial Intervention's Affective Model Based on Learner's ErrorIdentification in Intelligent Tutoring Systems	453
Soelaine Rodrigues Ascari, Andrey Ricardo Pimentel, and Ernani Gottardo	
A Recommender System Based on Effort: Towards Minimising Negative Affects and Maximising Achievement in CS1 Learning Filipe D. Pereira, Hermino B. F. Junior, Luiz Rodriguez, Armando Toda, Elaine H. T. Oliveira, Alexandra I. Cristea, David B. F. Oliveira, Leandro S. G. Carvalho, Samuel C. Fonseca, Ahmed Alamri, and Seiji Isotani	466
Evaluation Test Generator Using a List of KeywordsDoru Anastasiu Popescu, Gabriel Ciprian Stanciu, and Daniel Nijloveanu	481
Voice Emotion Recognition in Real Time Applications Mahsa Aghajani, Hamdi Ben Abdessalem, and Claude Frasson	490
Affect-Aware Conversational Agent for Intelligent Tutoring of Students in Nursing Subjects	497
Extended Reality	
ARDNA: A Mobile App Based on Augmented Reality for Supporting Knowledge Exploration in Learning Scenarios	505
Extraction of 3D Pose in Video for Building Virtual Learning Avatars Kodjine Dare, Hamdi Ben Abdessalem, and Claude Frasson	512
A Non-immersive Virtual Reality Application for Children with Autism Spectrum Disorder	519
Using Augmented Reality in Computing Higher Education Sarah Alshamrani Alshaikhi and Mike Joy	526
Author Index	531