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Abstract. Recent progress on deep learning (DL)-based medical image
segmentation can enable fast extraction of clinical parameters for effi-
cient clinical workflows. However, current DL methods can still fail and
require manual visual inspection of outputs, which is time-consuming
and diminishes the advantages of automation. For clinical applications,
it is essential to develop DL approaches that can not only perform ac-
curate segmentation, but also predict the segmentation quality and flag
poor-quality results to avoid errors in diagnosis. To achieve robust per-
formance, DL-based methods often require large datasets, which are not
always readily available. It would be highly desirable to be able to train
DL models using only small datasets, but this requires a quality pre-
diction method to ensure reliability. We present a novel segmentation
framework utilizing an ensemble of deep convolutional neural networks
with Monte Carlo sampling. The proposed framework merges the advan-
tages of both state-of-the-art deep ensembles and Bayesian approaches,
to provide robust segmentation with inherent quality control. We suc-
cessfully developed and tested this framework using just a small MRI
dataset of 45 subjects. The framework obtained high mean Dice sim-
ilarity coefficients (DSC) for segmentation of the endocardium (0.922)
and the epicardium (0.942); importantly, segmentation DSC can be ac-
curately predicted with low mean absolute errors (≤0.035), in the ab-
sence of the manual ground truth. Furthermore, binary classification of
segmentation quality achieved a near-perfect accuracy of 99%. The pro-
posed framework can enable fast and reliable medical image analysis with
accurate quality control, and training of DL-based methods using even
small datasets.

Keywords: Automated quality assessment · Segmentation · Ensemble
learning · Monte Carlo sampling.
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1 Introduction

Cardiovascular diseases (CVD) are a leading cause of mortality worldwide [1].
Cardiac magnetic resonance (CMR) imaging is a powerful tool in the diagnosis
and treatment of CVD, providing comprehensive analysis of cardiac structure
and function, especially the left ventricle (LV). Accurate segmentation of the
LV is an essential step for the quantification of clinically important parameters,
such as volumes, ejection fraction and mass. Despite advances of automated
segmentation methods, manual delineations and quality assurance are still the
current clinical standard for performing and validating automated segmentation.

Automated LV segmentation has been extensively studied over the past
decade, with progress ranging from classical machine learning to advanced deep
learning (DL) approaches. The latter was recently enabled by data availability
and hardware development. There have been a number of international chal-
lenges and collective efforts to benchmark state-of-the-art segmentation accu-
racy, providing valuable CMR cine SSFP images of the LV, such as the Sunny-
brook Cardiac Dataset [2], the Automatic Cardiac Diagnosis Challenge [3], and
the UK Biobank [4].

Given the time-consuming task of manual annotation of CMR images in typi-
cal clinical workflow, there is significant interest in fully automatic segmentation.
Initial efforts required manual extraction of relevant image features with prior
knowledge to achieve satisfactory accuracy. A series of LV segmentation methods
have been proposed using the publicly available Sunnybrook Cardiac Dataset of
45 subjects [2]. Among others, the proposed approaches use deformable mod-
els [5, 6], image-based [7–9] and model-based [10, 11] methods. However, the
hand-crafted approaches can fall short in generalizability when dealing with un-
familiar new data. Furthermore, they often require manual adjustments, which
limit implementation of fully-automatic tools in modern clinical practice.

With recent advancements of DL, data-driven neural networks can learn end-
to-end for image segmentation, reducing the need for hand-crafted approaches.
Nevertheless, even state-of-the-art DL methods can still fail on unfamiliar testing
data [3]. Case-by-case visual inspection of segmentation quality is still necessary,
which is laborious, time-consuming, and defies the benefits of fully-automated
methods. Moreover, to achieve robust performance, end-to-end deep learning-
based methods require larger and more representative datasets [3,12], which can
be time-consuming to curate and not always readily available. Training of DL
models requiring only small datasets would be desirable, but demands a quality
prediction method in real-world applications, to flag poor-quality results. We
therefore present a DL approach, with automated quality prediction, which holds
the DL models accountable, even when trained on small datasets. We validated
this novel framework on the Sunnybrook Cardiac Dataset for LV segmentation.

1.1 Related Work

There is increasing interest in developing accountable DL-based segmentation
methods with inherent quality control. Bayesian approaches have been proposed
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to provide means of uncertainty estimation for prediction. In particular, Monte
Carlo sampling-based neural networks have been used to perform medical im-
age segmentation, as well as quality control [13, 14]. To implement the Monte
Carlo sampling approach, a deep convolutional neural network can be modified
by adding dropout units, which randomly “turn off” some internal connections
within the neural network [13, 14]. While dropout units are activated only for
training in standard DL, they can be activated for testing or deployment to gen-
erate many different segmentation samples. The agreement among the samples
can be exploited to predict segmentation evaluation metrics, such as Dice similar-
ity coefficient (DSC), without the need of a reference manual segmentation. [13]
has successfully demonstrated the capability of the Monte Carlo dropout (MCD)
approach for whole brain segmentation.

Alternatively, deep ensembles have also been used to estimate uncertainty
and predict segmentation quality [15–17]. Successful applications include seg-
mentation of the brain, prostate, and cardiovascular structures [15,17,18]. Simi-
lar to Monte Carlo sampling, deep ensembles also generate multiple candidates,
then exploit the agreement among candidates to predict output quality or uncer-
tainty. The difference is that a single trained neural network with Monte Carlo
dropout can theoretically generate unlimited number of segmentation candi-
dates, whereas the number of candidates generated by deep ensembles is limited
by the number of independent neural networks trained. For example, an ensem-
ble of 50 independently-trained neural networks can generate up to 50 different
segmentation candidates [18]. This makes deep ensembles more computationally
expensive to train and deploy than the Monte Carlo dropout approach. Despite
this disadvantage, deep ensembles tend to generate more diverse prediction sam-
ples, offering higher accuracy and robustness in uncertainty estimation compared
to Bayesian approaches [18,19]. In addition, selecting the segmentation candidate
with the best predicted quality as the final output for deep ensembles can im-
prove the overall accuracy and robustness [15,17]. The same mechanism has not
been applied to Bayesian approaches. Therefore, deep ensembles and Bayesian
approaches have their own merits and pitfalls.

It has been shown that using an ensemble of multiple MC-dropout models
can improve classification accuracy for handwritten digit and character recog-
nition tasks [20]. In this work, we further explore the idea of combining novel
deep ensemble frameworks such as [15, 17] and Bayesian approaches for reliable
medical image segmentation and quality control.

1.2 Contributions

The contributions of this work are as follows: (1) we propose a novel ensemble
of deep convolutional neural networks with Monte-Carlo dropout to merge the
advantages of both deep ensembles and Bayesian approaches for reliable medical
image segmentation and quality control; (2) we show that deep ensembles can
generate diverse segmentation candidates for reliable quality prediction; (3) we
add Monte Carlo dropout in the individual neural networks to efficiently gener-
ate a large number of segmentation samples; (4) the proposed framework adopts
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a novel automatic selection of the final optimal segmentation from multiple can-
didates [15, 17], and we demonstrate that the proposed framework can produce
more accurate segmentation; (5) the proposed approach predicts the quality of
segmentation accurately even when trained with a highly-limited (small) dataset.

2 Methods

2.1 Data

The Sunnybrook Cardiac Dataset [2] comprises 45 subjects divided into nor-
mal controls and 3 different pathological groups: heart failure with ischemia,
heart failure without ischemia, and hypertrophic cardiomyopathy. The dataset
was randomly split into 38 training subjects (355 images) and 7 testing sub-
jects (65 images). The testing data comprised of two subjects from each of the
3 pathological groups, and one subject from the normal control. For each sub-
ject, the short-axis cine SSFP CMR images were provided with manually drawn
contours on both endocardial and epicardial borders at end-diastole, which were

Fig. 1. (A) Overview of the ensemble framework of multiple independently-trained
U-nets and combined segmentation models; (B) illustration of generating the median
segmentation from 20 samples by each U-net, and (C) the segmentation quality control
pipeline.
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considered the ground truth for training and testing in this work. Images at end-
systole were not used for the development of this work, as only the endocardial
contours were provided, without the epicardial contours. The training data were
augmented by randomly rotating within ±10° to prevent overfitting. In total,
85200 augmented training images were generated.

2.2 Overview of the Ensemble Framework

The proposed ensemble framework (Fig. 1A) involved multiple independently-
trained U-nets [21] implemented with MCD and their combined segmentation
models generated via a label voting scheme [22], with a quality control pipeline
to predict the segmentation accuracy and to select the optimal result [15, 17].
The MCD approach (Fig. 1B) used the median of 20 generated segmentation
samples for each MCD U-net. The quality control pipeline (Fig. 1C) calculated
inter-candidate DSC for quality prediction via multiple linear regression, and
selected the final optimal segmentation.

2.3 U-Nets with Monte Carlo Dropout

In the proposed ensemble framework, 6 U-nets [21] with different numbers of
convolutional layers (7, 11, 15, 19, 23, 27) were implemented based on [15, 17]
to perform segmentation of the LV endocardium and epicardium. By varying
the number of convolutional layers across individual U-nets, it was expected
to increase prediction diversity of the ensemble for robust quality control. The
U-nets were modified by adding MCD units similar to [14]. The dropout units
were activated during both training and testing with a dropout rate of 0.5. In
this work, each U-net was set to generate 20 different segmentation samples for
each anatomical structure (the endocardium or the epicardium) in a given input,
as shown in Fig. 1B. The median segmentation candidate was calculated as the
mean of the 20 Monte Carlo samples, with thresholding at 0.5, to obtain a binary
mask. In other words, 6 median segmentations were produced from a total of
120 samples by the 6 U-nets.

2.4 Combined Segmentation Models

In addition to the 6 U-nets, 6 combined segmentation models (Fig. 2) were also
implemented via a pixelwise label voting scheme [15,17,22] to provide additional
segmentation candidates for the ensemble. Figure 2 exemplifies the process of
generating combined segmentations from 4 models. The input (Fig. 2A) is the
median segmentations independently generated by the multiple MCD U-nets.
The input segmentations are added up pixel-by-pixel (Fig. 2B) to produce mul-
tiple combined segmentations with different thresholds (Fig. 2C). In this work,
6 combined segmentations were generated for each input medical image.
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Fig. 2. Illustration of a combined segmentation of 4 models using a label voting scheme:
(A) input segmentations are added up to generate (B) a pixelwise vote map, used to
calculate (C) combined segmentations with different thresholds. In this work, 6 median
segmentations generated by the 6 U-net models with Monte Carlo dropout approach
were considered as the input segmentations.

2.5 Prediction of Segmentation Quality

For the quality control component (Fig. 1C), a multiple linear regression model
was implemented for each of the 12 candidate segmentation models (includ-
ing both U-nets with MCD and combined models) based on [15, 17] to predict
the ground truth DSC, calculated between the candidate segmentation and the
manual ground truth segmentation. The independent variables of the regression
model were inter-candidate DSCs calculated between all possible pairs of the 12
candidate segmentations. Via the regression model, the inter-candidate DSCs
can associate to the ground truth DSC. The regression parameters have been
established using the same ground truth data used for training each individual
neural network. Once trained, the regression models can predict DSC of the test
segmentation on a per-case basis and in the absence of a manual ground truth
segmentation. In this work, the proposed framework adopted a novel mechanism
to choose the best final output, with the highest predicted DSC, from multiple
candidate segmentations [15,17].

We also implemented another segmentation quality prediction method based
on [13] for comparison. This DSC prediction was calculated by averaging over
the DSCs of all possible pairs of Monte Carlo segmentation samples, available
only in the MCD models, excluding the combined models in the evaluation.

2.6 Evaluation

Each of the 12 candidate models implemented in the ensemble framework was
evaluated for its segmentation performance, measured in terms of mean DSC
(and standard deviation), independently for the endocardium and the epicardium.
For the U-nets with MCD, only the median segmentations, not the Monte Carlo
segmentation samples, were evaluated.
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For the quality control component, the regression-based DSC prediction was
evaluated independently for each candidate model for both the endocardium
and the epicardium. The mean absolute error (MAE) and the Pearson correla-
tion coefficient (r) were calculated between the predicted DSC and the observed
ground-truth DSC derived from the manual segmentation. In addition, evalua-
tion of the Monte Carlo-based DSC prediction was also reported for comparison.

3 Experiments Results

The methods were implemented in Python using TensorFlow, Keras and Scipy
modules. The neural networks were trained for 240 epochs each, taking 6 h and
48 min in total, with an additional 6 min for the DSC regression models, on
a desktop computer equipped with a NVIDIA Titan X GPU. The testing on 7
subjects (65 images) took 12 min and 7 s (i.e. 11 s per image).

3.1 Segmentation Performance

The mean DSC results for all the candidate segmentation models and the pro-
posed ensemble framework are shown for both the endocardium and the epi-
cardium (Table 1). The best mean DSC obtained by a single U-net model was
0.916 (U-net 15) in segmenting the endocardium, and 0.939 (U-net 23) in seg-
menting the epicardium. The best combined model (Combined Model 3) achieved
a mean DSC of 0.920 and 0.941 for the endocardium and the epicardium, re-
spectively. In comparison, the proposed framework outperformed all single and
combined models, with a mean DSC of 0.922 and 0.942 for the endocardium and
the epicardium, respectively. Furthermore, the framework, comprising of U-nets
with Monte Carlo dropout (MCD) in this work, also achieved better performance
than the reported results in [17], which implemented U-nets without MCD for
the ensemble using the same training and testing datasets. This demonstrates the
potential improvement on robustness and accuracy brought forth by integrating
the deep ensemble framework with the Bayesian approach, subject to further
cross-validation to mitigate the limitation of having a small testing dataset.

Figure 3 shows an example of an apical slice image in the testing dataset (Fig.
3A), with the corresponding manual segmentation of the epicardium (Fig. 3B),
and the segmentations by U-net 23 (Fig. 3C), Combined Model 3 (Fig. 3D), and
Combined Model 2 chosen by the ensemble framework (Fig. 3E). Despite U-net
23 and Combined Model 3 respectively being the best among the U-nets and the
Combined Models, they were outperformed by the proposed ensemble framework
when compared to the ground truth manual segmentation. The framework chose
the segmentation generated by Combined Model 2, as its predicted DSC (0.82)
was higher than the predicted DSCs for U-net 23 (0.77) and Combined Model
3 (0.81). This demonstrates that the on-the-fly selection of segmentation can
improve overall segmentation quality by choosing the most-optimal candidate.
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Table 1. Mean Dice similarity coefficients (DSCs) for U-nets with Monte-Carlo
Dropout (MCD), Combined Models, and the proposed ensemble framework. Standard
deviations shown in brackets.

Model Endocardium DSC Epicardium DSC

U-net 7 with MCD 0.486 (0.270) 0.569 (0.266)

U-net 11 with MCD 0.878 (0.172) 0.895 (0.166)

U-net 15 with MCD 0.916 (0.127) 0.938 (0.107)

U-net 19 with MCD 0.913 (0.128) 0.936 (0.124)

U-net 23 with MCD 0.915 (0.130) 0.939 (0.124)

U-net 27 with MCD 0.913 (0.128) 0.934 (0.127)

Combined Model 1 0.810 (0.161) 0.856 (0.131)

Combined Model 2 0.913 (0.127) 0.935 (0.123)

Combined Model 3 0.920 (0.126) 0.941 (0.122)

Combined Model 4 0.916 (0.127) 0.936 (0.126)

Combined Model 5 0.887 (0.177) 0.904 (0.175)

Combined Model 6 0.550 (0.297) 0.617 (0.286)

Proposed Framework 0.922 (0.125) 0.942 (0.122)

Fig. 3. Example of (A) an input image with (B) its corresponding manual segmentation
of the epicardium, (C) segmentation generated by the best single neural network – U-
net 23 with Monte Carlos dropout (MCD), (D) segmentation generated by the best
Combined Model – Combined Model 3, and (E) final optimal segmentation chosen
by the proposed ensemble framework – Combined Model 2, for the epicardium. The
corresponding ground truth (GT) Dice similarity coefficients (DSCs) and the predicted
(Pred) DSCs are shown.

3.2 Regression-Based DSC Prediction Accuracy

For the evaluation of the DSC prediction via multiple linear regression, the mean
absolute errors (MAE) and Pearson correlation coefficients (r) are reported in
Table 2 for both the endocardium and the epicardium. All the regression models
achieved excellent performance in predicting the ground truth DSC, with very
low MAE (from 0.011 to 0.035) and very high Pearson r (0.90 to 1.00).



Ensemble of Deep Convolutional Neural Networks 9

Table 2. Mean absolute error (MAE) and Pearson coefficient (r) for DSC prediction
using regression described in [15,17]. All r had p<0.0005.

Model Endocardium Epicardium

MAE r MAE r

U-net 7 with MCD 0.016 1.00 0.011 1.00

U-net 11 with MCD 0.026 0.97 0.018 0.97

U-net 15 with MCD 0.030 0.92 0.021 0.97

U-net 19 with MCD 0.030 0.93 0.023 0.97

U-net 23 with MCD 0.032 0.92 0.020 0.97

U-net 27 with MCD 0.028 0.93 0.024 0.96

Combined Model 1 0.035 0.94 0.021 0.97

Combined Model 2 0.032 0.90 0.023 0.97

Combined Model 3 0.032 0.91 0.022 0.97

Combined Model 4 0.030 0.94 0.021 0.96

Combined Model 5 0.027 0.97 0.023 0.97

Combined Model 6 0.019 1.00 0.014 1.00

Proposed Framework 0.034 0.90 0.023 0.97

The scatter plots (Fig. 4) also reflect the high agreement between the DSC
prediction (x-axis) and the ground truth (y-axis) for both the endocardium (Fig.
4A) and the epicardium (Fig. 4B). Most cases clustered closely along the iden-
tity line, indicating very accurate DSC predictions. Using a binary threshold at
0.7, the segmentations were classified into good (≥0.7) or poor quality (<0.7)
with an excellent accuracy of 98% and 99% for the endocardium and the epi-
cardium, respectively, consistent with the performance reported in [15]. This
demonstrates the accuracy and practicality of the proposed quality predictions
to flag potentially problematic segmentations to human attention for clinical
applications.

3.3 Comparison with Monte Carlo-Based DSC Prediction

The Monte Carlo (MC)-based DSC prediction [13] was also evaluated for com-
parison. The MC-based prediction achieved generally good performance (Table
3), but with higher MAE (from 0.52 to 0.177) and lower Pearson r (0.54 to 0.98)
when compared to the regression-based prediction (Table 2). Moreover, the scat-
ter plots (Fig. 5) show that the data points deviate farther from the identity line,
with a lower classification accuracy (95%), compared to the regression-based
prediction (Fig. 4). Thus, regression-based DSC prediction demonstrated the
expected advantages over the intrinsic MC-based agreement measures.
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Fig. 4. Scatter plots of the regression-based predicted Dice similarity coefficient (DSC)
(x-axis) versus the observed ground-truth DSC (y-axis) for (A) the endocardium and
(B) the epicardium. With the quality prediction dichotomized by a binary threshold of
0.7, the DSC prediction achieved a very high classification accuracy of 98% and 99%
for the endocardium and the epicardium, respectively. The black diagonal line is the
identity line.

Table 3. Mean absolute error (MAE) and Pearson coefficient (r) for DSC prediction
using average DSC over all possible pairs of Monte Carlo samples based on [13], avail-
able to U-nets with Monte-Carlo dropout (MCD) only. All r had p<0.0005.

Model Endocardium Epicardium

MAE r MAE r

U-net 7 with MCD 0.177 0.86 0.150 0.92

U-net 11 with MCD 0.052 0.88 0.033 0.94

U-net 15 with MCD 0.062 0.54 0.045 0.74

U-net 19 with MCD 0.068 0.89 0.048 0.96

U-net 23 with MCD 0.064 0.93 0.047 0.98

U-net 27 with MCD 0.066 0.91 0.059 0.95

An example is shown in Fig. 6 showing an input image (Fig. 6A), the cor-
responding manual segmentation (Fig. 6B), and the automatic epicardium seg-
mentation (Fig. 6C), with a table detailing the DSC prediction results (Fig.
6D). The automatic segmentation was derived from the median of the 20 seg-
mentation samples generated by the U-net 15 with MCD. The MC-based quality
control method falsely predicted a high DSC of 0.917 (Fig. 6D top row) with
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Fig. 5. Scatter plots of the Monte Carlo-based predicted Dice similarity coefficient
(DSC) (x-axis) versus the observed ground-truth DSC (y-axis) for (A) the endocardium
and (B) the epicardium for U-nets 7 to 27. With a binary threshold of 0.7, the DSC
prediction achieved a segmentation quality classification accuracy of 95% for both the
endocardium and the epicardium. The black diagonal line is the identity line.

Fig. 6. Example of an (A) input image with (B) its manual segmentation and (C) a
poor-quality automatic segmentation, obtained by averaging 20 samples generated by
U-net 15 with Monte Carlo dropout (MCD). Table (D) shows quality prediction of the
automatic segmentation by the Monte Carlo-based method (top row), the regression-
based method (middle row), with the ground truth (bottom row).
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Fig. 7. 20 Monte Carlo segmentation samples generated for the median segmentation
in Fig. 6C are shown. The samples lacked diversity in prediction as they highly resem-
ble each other, causing a high Monte Carlo-based predicted Dice similarity coefficient
(0.917) despite low agreement with the ground-truth Dice similarity coefficient (0.145).

an incorrectly predicted label of “good quality” for the automatic segmentation,
while the regression-based method predicted a low DSC of 0.301 (Fig. 6D middle
row). The regression-based method achieved a result closer to the ground truth
DSC of 0.145 (Fig. 6D bottom row), and also correctly flagged the poor-quality
segmentation.

Figure 7 and 8 are shown for further insights into the differences in prediction
performance by the two quality control methods. The MC segmentation samples
for the automatic segmentation (Fig. 6C) are shown in Fig. 7. Despite having
20 segmentation samples, the MC samples lacked diversity in prediction and
were prone to making the same segmentation mistake – falsely locating the
epicardium. This led to an undesirable consequence of predicting a high DSC
while the actual ground truth DSC was low. Figure 8 shows the 12 candidate
segmentations, which were utilized for the DSC prediction via multiple linear
regression in the proposed ensemble framework. Compared with MC samples,
the segmentations show more prediction diversity, consistent with the observed
advantage of deep ensembles reported in [19].
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Fig. 8. The proposed framework provided 12 candidate segmentations, with high pre-
diction diversity, are shown for the same input image in Fig. 6A. The segmentation
generated by U-net 15 was compared with other candidates to predict a Dice similarity
coefficient (0.301), correctly classifying the segmentation as bad quality.

4 Conclusion

In this work, we validated a novel deep ensemble segmentation framework in-
tegrated with Bayesian Monte Carlo sampling. The proposed framework can
delineate the left ventricular endocardium and epicardium with a high mean
DSC of 0.922 and 0.942, respectively. It has inherent quality control, which can
predict the segmentation quality in terms of expected DSC with excellent accu-
racy. We have shown that the regression-based DSC prediction integrated in the
framework outperformed the conventional Monte Carlo-based approach, which
lacked prediction diversity. This framework successfully merged the advantages
of deep neural network ensembles and Bayesian approximation, enabling reli-
able automatic image segmentation, even for deep learning models trained on
small datasets. This can potentially accelerate the advancement of deep learning
approaches for diagnostic imaging by reducing requirements of large training
datasets.
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