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Abstract. Dynamic Contrast Enhanced Magnetic Resonance Imaging
(DCE MRI) provides valuable information in prostate cancer detec-
tion. Existing computer-aided detection methods focus on estimating
the DCE curves as pharmacokinetic models and directly calculating the
perfusion-related measurements from the DCE signals. Substantial im-
age content contained in DCE MRI series, which captures the spatio-
temporal pattern receives less attention. This work aims to investigate
the performance of the image-based features extracted from DCE MRI
on prostate cancer detection. Various image-based features are extracted
from DCE MRI series. Their performance on prostate cancer detection
is compared with features extracted from the pharmacokinetic models
and the perfusion-related measurements. Features are concatenated and
feature selection is applied to reduce the feature dimensionality and im-
prove cancer detection performance. Evaluation is based on a publicly
available dataset. Using image-based features outperforms using either
the features extracted from the pharmacokinetic models or the perfusion-
related measurements. By applying feature selection to the aggregation of
all features, the performance of prostate cancer detection achieves 0.821,
for the area under the receiver operating characteristics curve. This study
demonstrates that compared with the commonly used pharmacokinetic
models and the perfusion-related features, image-based features provide
an additional contribution to prostate cancer detection and can poten-
tially be used as an alternative approach to model DCE MRI.

Keywords: Prostate cancer detection · Image-based features · DCE
MRI.

1 Introduction

Prostate cancer is the fourth most common cancer at a worldwide scale [1].
In the United States, aside from skin cancer, it remains the most frequently
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diagnosed cancer affecting men and the second leading cause of death from
cancer among men [2]. Prostate-specific antigen (PSA) testing and transrectal
ultrasound (TRUS) guided biopsy have been widely used for prostate cancer
screening. However, these techniques suffer from low accuracy, invasiveness and
side effects [3].

Magnetic Resonance Imaging (MRI) has been used for non-invasive assess-
ment of the prostate cancer since the 1980s [4]. In clinical practise, the Prostate
Imaging – Reporting and Data System (PI-RADS) has been adopted for scoring
the aggressiveness of the prostate cancer based on the anatomical, functional and
physiologic characteristics provided by multi-parametric MRI (mpMRI), includ-
ing T2-weighted (T2W), diffusion-weighted imaging (DWI) and its derivative
apparent-diffusion coefficient (ADC) maps, dynamic contrast enhanced (DCE)
MRI and magnetic resonance spectroscopic imaging (MRSI) [5]. In 2015, PI-
RADS Version 2 was developed to promote global standardisation and diminish
variation in prostate mpMRI examinations [6]. Studies have shown that integrat-
ing MRI into the standard TRUS approach benefits the tumour localisation and
aggressiveness assessment from biopsy [7]. However, this process requires sub-
stantial human interaction, is time consuming and suffers from observer variabil-
ity. Therefore, a computer aided prostate cancer detection system based on MRI
can improve the repeatability and accuracy in carrying out biopsy, diagnosis and
treatment planning.

It is notable that in PI-RADS Version 2, the role of DCE MRI becomes
less important than in PI-RADS Version 1, especially for the assessment of the
prostate tumour in the transition zone [6]. Nevertheless, DCE MRI possesses
advantages over the other modalities – it allows image analysis in both the
spatial and time domains. Studies have also shown that DCE MRI has better
discrimination between cancerous and normal tissue compared to conventional
T2W MRI [8]. Hence it is essential to further explore the potential of DCE MRI
in prostate cancer detection in clinical practice.

In computer aided detection, DCE MRI images were quantitatively anal-
ysed by using parametric and nonparametric approaches [9, 10]. Parametric ap-
proaches aim to estimate kinetic parameters by fitting pharmacokinetic models
to the concentration curves. The pharmacokinetic models proposed in the liter-
ature include Brix [11], Tofts [12], Hoffmann [13] and the phenomenological uni-
versalities (PUN) [14]. Nonparametric approaches calculate perfusion-related
measurements that characterise the shape and structure of the concentration
curves. The commonly used measurements include the onset time, the maxi-
mum signal intensity, wash-in rate, wash-out rate, integral under the curve and
others [9, 10].

Both parametric and nonparametric approaches model DCE series by a few
features/parameters for prostate cancer detection, which inevitably cause infor-
mation loss. By contrast, image-based features could model substantial image
content in DCE MRI images and capture both spatial and temporal enhancement
patterns, which potentially benefit the prostate cancer detection. In contrast to
the analysis of T2W, DWI and ADC maps, for which various image-based fea-
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tures were often extracted such as the edges, statistical features, filter responses,
texture descriptors and others [15, 16], the large amount of image content in DCE
MRI series has not been fully taken into account for prostate cancer detection.
In the literature, there have been few studies which extract image-based fea-
tures from DCE MRI images for prostate cancer diagnosis. Niaf et al. extracted
features such as the intensity values, texture and gradient features for prostate
cancer diagnosis [17]. However, the features were extracted from only one se-
ries (i.e. one volume) of DCE MRI images and no explanation was given about
why that particular series was selected. Therefore, in this study, we would like
to investigate the performance of the image-based features extracted from DCE
MRI on prostate cancer detection and compare the results with the commonly
used parametric and non-parametric approaches.

2 Materials and Methods

2.1 Dataset

This work is based on the Initiative for Collaborative Computer Vision Bench-
marking (I2CVB) dataset, which is publicly available at http://i2cvb.github.io/.
It provides multi-parametric MRI data including T2W, DCE, DWI and MRSI
data, acquired using a 3T whole body MRI scanner (Siemens Magnetom Trio
TIM, Erlangen, Germany). The dataset consists of the MRI images taken for
17 patients who have biopsy proven prostate cancer. In our work, we only
used the DCE MRI images for the prostate cancer detection experiments. T2W
MRI was used for preprocessing DCE MRI images, which will be described
in the following subsection. The size of the T2W MRI images ranges from
308 × 384 × 64 to 368 × 448 × 64 with the voxel resolution ranging between
0.68mm×0.68mm×1.25mm and 0.79mm×0.79mm×1.25mm. The DCE MRI
data of each patient include 40 series taken over approximately 5min; each series
has 16 slices with 3.5mm slice thickness; the image size of each slice is 192×256 or
200× 256 with the in-plane pixel resolution ranging between 1.09mm× 1.09mm
and 1.37mm× 1.37mm. The dataset also includes the delineations provided by
an experienced radiologist. For T2W MRI, the prostate gland, the tumour re-
gion, the peripheral zone and the transition zone were annotated; for DCE MRI,
only the prostate gland was annotated. Fig.1 illustrates examples of T2W and
DCE MRI data from I2CVB.

2.2 Preprocessing

In order to propagate the tumours annotated on T2W to DCE images, reg-
istration was applied to align the DCE and T2W images. Normalisation was
performed to reduce the inter-patient signal intensity variations due to the im-
age acquisition process of DCE MRI. For both the registration and normalisation
steps, we used the methods proposed by Lemâıtre [18] and the publicly available
code on GitHub (https://github.com/I2Cvb/mp-mri-prostate).
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Fig. 1. (a): Example slice of T2W MRI with the prostate gland, the peripheral zone
and the tumour annotated in white, blue and red contours, respectively. (b): Zoomed-in
region of the prostate gland in (a). (c): Matching slice of DCE MRI with the prostate
gland annotated in a white contour. (d): Zoomed-in region of the prostate gland in
(c). (e): Variation of signal intensities of cancerous and healthy tissue voxels over time
series in DCE MRI. The figure is better viewed in colour.
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2.3 Feature Extraction

Pharmacokinetic Models Pharmacokinetic models estimate a set of param-
eters that reflect the physiological exchanges between vessels and extravascular
extracellular space (EES) [19]. These have obtained considerable attention owing
to their simplicity and small number of parameters to be estimated [9]. Brix has
been one of the most commonly used models, which calculates three parame-
ters from the DCE signal: the contrast media exchange rate kep; the elimination
rate from the plasma compartment kel; and an arbitrary constant simulating
the tissue properties A [11]. The Hoffmann model was derived from the Brix
model [12]. It redefines the constant A and the three parameters kep, kel and
A can also be computed. Tofts is another commonly used model, from which
three parameters were calculated: the forward transfer constant of the contrast
media diffusing from the blood plasma Ktrans; the reverse constant of the con-
trast media returning to the blood plasma Kep; and the plasma volume fraction
vp [13]. For the Tofts model, the patient-based arterial input function (AIF) sig-
nal was estimated by selecting the most enhanced voxels from the femoral and
iliac arteries [20]. In addition, for the PUN model, three parameters β, a0 and
r can be calculated, where β and a0 control the growth rate of the curve in its
first part and r determines the behaviour and the speed of change of the curve
in the second part [14]. The performance of the four models for prostate cancer
detection were evaluated in this work.

Perfusion-related Measurements Nonparametric approaches calculate the
empirical perfusion-related measurements that correlate with the physiology of
the organ. These features have been commonly used because they are straight-
forward in definition and simple to compute [9]. We categorised these into four
sets: time features, signal intensity features, derivative and integral features and
ratio features as listed in Table 1.

Image-based Features DCE MRI consists of a set of T1-weighted MRI images
acquired over time and hence contains substantial image information. Various
image-based features can be extracted from all series of DCE MRI images such
as intensity, statistical features, gradient-based features, edges, filter responses
and texture descriptors.

Intensity The signal intensities of the whole time series of DCE MRI data are
the most basic image information. For each voxel, the intensity values across all
DCE series were used as the feature.

Statistical Features The statistical features capture the distribution of intensities
within a local patch centered at each voxel. These features include mean, median,
variance, standard deviation, mean of absolute deviation, median of absolute
deviation, skewness, kurtosis, local contrast, local probability, 25th percentile,
75th percentile and others [15].
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Table 1. Perfusion-related features calculated using nonparametric approaches.

Category Symbol Description

Time
features

t0 Onset time of the enhancement curve
tmax Time corresponding to the maximum signal intensity
τ Exponential time constant

Signal
intensity
features

S0 Intensity at the onset of the enhancement
Smax Maximum signal intensity
S95% 95% of the maximum signal intensity
Send Signal intensity at the final time point
Smax - S0 Difference between the peak and the baseline intensities

Derivative
and
integral
features

wash-in rate Signal slope from t0 to tmax

wash-out rate Signal slope from tmax to the final time point
AUC Area under the curve between t0 and the final time point
IAUC Initial area under the curve between t0 and tmax

average plateau
Average signal change during the wash-out phase
(from tmax to the final time point)

Ratio
features

PER Peak enhancement ratio calculated as (Smax − S0)/S0

MITR
Maximum intensity time ratio calculated as
(Smax − S0)/tmax

nMITR Normalised MITR calculated as (Smax − S0)/(S0tmax)

Gradient-based Features Gradient-based features are able to detect the signal
intensity changes and characterise micro-textures. The gradients of the image
intensity computed along three dimensions, the magnitude, the gradient azimuth
and elevation all belong to this category.

Edges Edges were detected by convolving edge operators like Sobel, Scharr,
Prewitt and Kirsch with the original image. Phase congruency measures the
significance of image features in the frequency domain [21]. It detects contrast
invariant features such as the maximum moment of phase congruency covariance,
the orientation image and the local weighted mean phase angle at each point in
the image.

Filter Responses Gabor filters capture specific patterns of the image by tuning
the scale, orientation and frequency of the kernels. The filter responses generated
by convolving the Gabor filter bank with the original image were used as fea-
tures. The eight maximum response (MR8) filter bank extract rotation invariant
features [22]. It consists of two anisotropic filters (an edge and a bar filter at six
orientations and three scales) and two isotropic filters (one Gaussian and one
Laplacian of Gaussian filter). The dimensionality of the features was reduced
from 38 to 8 by taking the maximum responses of the two anisotropic filters
across different orientations at each scale.

Texture Descriptors Local binary patterns (LBP) describe image texture by local
spatial patterns and gray level contrast [23]. It is invariant to monotonic gray
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Table 2. Image-based Features.

Category Features Dimensionality

Intensity signal intensities 1 × 40

Statistical
features

mean, median, variance, standard

12 × 40
deviation, mean of absolute deviation,
median of absolute deviation, skewness,
kurtosis, local contrast, local probability,

25th percentile, 75th percentile

Gradient-based
features

gradients in three dimensions;
6 × 40

magnitude, gradient azimuth, gradient elevation

Edges

Sobel 3 × 40
Scharr 3 × 40
Prewitt 3 × 40
Kirsch 2 × 40
Phase congruency 3 × 40

Filter responses
Gabor filters 6 × 40
MR8 filters 8 × 40

Texture
Descriptors

LBP 6 × 40
Texton 1 × 40
Tamura contrast 1 × 40
Haar-like features 2 × 40

level changes and efficient in both computation and texture classification. In the
texton-based approach, a texton dictionary was generated by applying clustering
algorithms to the patches extracted from all images in the dataset. Each voxel in
the image was assigned a texton identification (ID) corresponding to the closest
texton in the dictionary [22]. In our work, we used texton IDs across all DCE
series as the feature for each voxel [24]. Tamura contrast measures the variation
of the intensity in a local region [25]. Haar-like features were calculated as the
mean intensity of any cubical region or the mean intensity difference of any two
random asymmetric regions within a local patch [25].

All the image-based features described above and their corresponding di-
mensionalities are listed in Table 2. We extracted most of the features using the
parameters described in Lemâıtre’s work [18].

Anatomical Features Five anatomical features were computed: the relative
distance to the centre of the prostate, the relative distance to the contour of
the prostate, the relative position in the Euclidean and cylindrical coordinate
system and the zone location (i.e. the peripheral zone or the transitional zone)
the voxel is in.

2.4 Classification

Leave-one-patient-out cross validation was performed in our work. A random
forest classifier was adopted to classify all voxels into cancer or non-cancer. There
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Fig. 2. Comparisons of the prostate cancer detection performance using image-based
features, pharmacokinetic features and perfusion-related measurements extracted from
DCE MRI. The classification performance was measured by the mean AUC value and
the standard deviation over the dataset. The figure is better viewed in colour.

were 100 classifiers in the forest; the minimum number of features required to
split an internal node was 2; the bootstrap samples were used when building
the trees. The classification performance was evaluated by conducting a receiver
operating characteristics (ROC) analysis and calculating the area under the
curve (AUC) for each patient. By applying the random forest as the classifier,
the importance of the features can be computed using the Gini impurity across
all classifiers in the forest and the most discriminant features can be selected by
setting a threshold.

3 Results

3.1 Comparison of Image-based, Pharmacokinetic and
Perfusion-Related Features

We compared the prostate cancer detection performance using different cate-
gories of features extracted from DCE MRI: the image-based features, the phar-
macokinetic features estimated from various models and the perfusion-related
measurements. The anatomical features were always included in the evaluation
of each category of features. The results shown in Fig.2 demonstrate that the
Brix model outperforms the other three pharmacokinetic models in the prostate
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Table 3. Classification results of using selected features from the aggregation of all
features extracted from DCE MRI.

Percentile(%) 1 5 10 15 20 30 100

AUC
0.790 0.816 0.819 0.821 0.816 0.813 0.802

± 0.157 ± 0.152 ± 0.159 ± 0.153 ± 0.157 ± 0.165 ± 0.161

cancer detection; using perfusion-related features produces better results than
using the features estimated from the pharmacokinetic models; and using the
image-based features results in the best classification performance.

3.2 Aggregation of All Features

All extracted features were concatenated to perform prostate cancer detection.
Subsequently, percentile thresholds were set to select the most important features
based on the Gini impurity values calculated in the random forest classification.

Table 3 lists the classification results generated by setting different per-
centiles. By contrast to the results shown in Fig.2, it can be noted that using the
aggregation of all features (when the percentile equals to 100) outperforms using
each individual category of features. By applying feature selection, the classifi-
cation performance was further improved and the best result was obtained when
15% of the features were selected (AUC = 0.821 ± 0.153).

Fig.3 illustrates the probability maps of a few cases produced by selecting
the most often selected features in the leave-one-patient-out cross validation. By
setting the percentile as 15%, a set of features were selected for each fold in
the cross validation; all the selected features were ranked according to the times
being selected during the entire cross validation process; then the features with
higher rankings, which also accounts for 15% of the aggregation of all features,
were used to generate the results. It can be observed that the proposed method
accurately identifies the prostate cancer for cases for which the tumour exists
in the peripheral zone only (a, b), in the transitional zone only (c) and in both
regions (d, e). However, for the case shown in (f), the performance of prostate
cancer detection was poor with lots of false positives detected.

The features used to generate the results are listed in Table 4. Most of them
were selected in all folds (i.e. 17 times) in the cross validation; a few were selected
in 16 or 15 folds. Features of all four categories were selected. Among all the
image-based features, the statistical features and the filter responses contribute
the most to the prostate cancer detection; the intensity, the gradient-based fea-
tures, the edges and the texture descriptors were hardly selected.

4 Discussion

Although image-based features have been widely adopted in prostate cancer
detection using MRI images like T2W, ADC and DWI, they are rarely used
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Fig. 3. Probability maps of the prostate cancer detection produced by selecting 15% of
the aggregation of all features extracted from DCE MRI. Only the region of the prostate
gland has been shown in these example slices of 6 different cases. The annotations of the
peripheral zone and the tumour are depicted in white and red contours, respectively.
The jet overlap represents the probability map of the cancer detection, where high and
low probabilities of being cancer are indicated by red and blue colours, respectively.
The AUC value corresponding to each case is also displayed. The figure is better viewed
in colour.

to model the spatial-temporal characteristics of DCE MRI series. Experimen-
tal results have shown that compared to the commonly used approaches mod-
elling DCE MRI series, using image-based features achieves superior perfor-
mance, which indicates the additional contribution image-based features provide
in prostate cancer detection.

Because all DCE MRI series were used, it was time consuming to extract
various image-based features, which resulted in a high dimensionality. To mit-
igate this problem, a number of the most important features can be selected
by applying feature selection techniques. We extracted the features with high
discriminability and used them for the cancer detection.

The I2CVB dataset used in this work contains limited number of cases. How-
ever, it is the only publicly available DCE MRI prostate dataset that provides tu-
mour segmentations. The PROSTATEx and PROSTATEx-2 challenge datasets
also include DCE MRI. But these two datasets do not provide the original im-
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Table 4. Selected features from the aggregation of all features.

Category Selected Features Dimensionality

Pharmacokinetic
features

Brix model: A 1
PUN: β 1
Tofts: Ktrans, Kep 2

Perfusion-related
features

tmax, Smax, S95%, Send 7
wash-in rate, IAUC, MITR

Image-based
features

Intensity 2
Statistical features 179
Gradient-based features 2
Edges 1
Filter responses 142
Texture descriptors 10

Anatomical
features

Distance to the contour 1
Relative Euclidean position 2
Relative cylindrical position 3

age series but only the Ktrans images calculated from them. And for the tumour
ground truth, only the scanner coordinate position of the tumour region is pro-
vided, which makes the datasets unsuitable to investigate the performance of
the spatio-temporal features contained in DCE MRI series for prostate tumour
segmentation in our work.

As future work, we would like to analyse the impacts of the parameters used
in feature extraction on the performance of prostate cancer detection and vali-
date our approach on a larger dataset. We can also validate the effectiveness of
the image-based features extracted from DCE MRI series on other tasks such
as prostate cancer staging and Gleason grading. Based on the voxel-level clas-
sification results generated in this work, a region-level lesion segmentation and
classification can be applied to remove false positives and further improve can-
cer detection accuracy. Moreover, instead of feeding the manually engineered
features into a conventional classifier, the classification can be achieved by ex-
tracting the hierarchical features by applying deep learning algorithms. Besides
of the DCE MRI, multi-parametric MRI data, such as T2W, DWI and MRSI
data, can be incorporated into the approach to benefit prostate cancer detection.

5 Conclusions

This work investigated the performance of image-based features extracted from
DCE MRI series on prostate cancer detection. The experimental results have
demonstrated that using the image-based features outperforms other widely
used approaches, such as estimating DCE signals using pharmacokinetic models
and extracting perfusion-related measurements, because for image-based fea-
tures substantial image information was taken into account and they can model
both the spatial and temporal characteristics of the DCE series. Selecting the
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most discriminant features from all categories of features reduced the feature
redundancy, removed noisy information and produced excellent performance
for prostate cancer detection. It has been demonstrated that apart from the
commonly used features in the literature, image-based features, especially the
statistical features and the filter responses, provide additional contribution for
prostate cancer detection. The post-processing steps, the hierarchical features,
more advanced machine learning algorithms and multi-parametric MRI can be
investigated in the future to further improve prostate cancer detection.
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18. Lemâıtre, G.: Computer-Aided Diagnosis for Prostate Cancer using Multi-
Parametric Magnetic Resonance Imaging. Doctoral dissertation 2016, Universite
de Bourgogne, Universitat de Girona. p109-116.

19. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons.
2006. p12-23.
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