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Abstract. In this paper, we investigate the classification of cardiomegaly
using multimodal data, combining imaging data from chest radiography
with routinely collected Intensive Care Unit (ICU) data comprising vi-
tal sign values, laboratory measurements, and admission metadata. In
practice a clinician would assess for the presence of cardiomegaly using
a synthesis of multiple sources of data, however, prior machine learning
approaches to this task have focused on chest radiographs only. We show
that non-imaging ICU data can be used for cardiomegaly classification
and propose a novel multimodal network trained simultaneously on both
chest radiographs and ICU data. We compare the predictive power of
both single-mode approaches with the joint network. We use a subset of
data from the publicly available MIMIC-CXR and MIMIC-IV datasets,
which contain both chest radiographs and non-imaging ICU data for the
same patients. The approach from non-imaging ICU data alone achieves
an AUC of 0.684 and the standard chest radiography approach an AUC
of 0.840. Our joint model achieves an AUC of 0.880. We conclude that
non-imaging ICU data have predictive value for cardiomegaly, and that
combining chest radiographs with non-imaging ICU data has the poten-
tial to improve model performance for the same subset of patients, with
further work required to demonstrate a significant improvement.

Keywords: deep learning · chest X-ray · cardiomegaly · multimodal
approach.

1 Introduction

Cardiomegaly is an abnormal enlargement of the heart usually indicating an
underlying pathology warranting further investigation. In clinical practice, car-
diomegaly can be detected visually by examining the size of the heart on a
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postero-anterior chest radiograph. A standard parameter for diagnosis is the
cardiothoracic ratio (CTR), which is the ratio of the cardiac width (maximum
horizontal cardiac diameter) to the thoracic width (maximum horizontal distance
between the inner edges of the ribs). Automated detection of cardiomegaly orig-
inally used edge detection to measure the CTR [10] but more recently there has
been growing interest into deep learning approaches to the problem. This has
been accelerated by the availability of large, publicly available clinical imaging
datasets [24, 12]. Deep learning methods focus on using convolutional neural net-
works to either assign a binary cardiomegaly diagnosis based on the input image
[19], or to use U-Net networks to segment the heart and lungs from the image
and estimate the CTR [18, 23].

Until now, classification methods have been almost exclusively applied to
imaging datasets (primarily radiographs), which occasionally provide some de-
mographic data such as gender and age [12]. However, this is in contrast to how
clinicians would diagnose cardiomegaly. A clinician may use a chest radiograph
alone to diagnose the condition but would also consider other types of medical
data, including demographics, results from a number of blood tests, other imag-
ing information and vital sign data to assess severity and underlying pathology.

Previous approaches, which introduced multimodal network architectures,
have combined medical images with basic demographics to predict the outcome
of endovascular treatment from clinical metadata and imaging [20], or to clas-
sify skin lesions from dermoscopic images and patient age and sex [7]. Limited
amount of work has been done in relation to cardiomegaly classification from
combining imaging and non-imaging data. An example is the method proposed
by [1], in which the neural network integrates the X-ray image with the limited
non-imaging data (patient age, gender and acquisition type) in the classification
process.

In this work, we aim to improve prediction of cardiomegaly by proposing a
novel model capable of combining imaging with non-imaging Intensive Care Unit
(ICU) data. To the best of our knowledge, this is the first study that combines
chest radiographs and extensive non-imaging information collected during the
ICU stay including vital sign values, laboratory measurements, and demograph-
ics. We use a combination of the MIMIC-IV and MIMIC-CXR, which constitutes
one of the first publicly available datasets of X-rays and cardiomegaly labels with
additional modalities of vital sign values, laboratory measurements, and patient
metadata. We assess the relative predictive power of each modality, and then
compare our joint framework with the approaches that utilize imaging or non-
imaging data alone.

2 Data and Methods

2.1 Datasets

We used the publicly available MIMIC-CXR [12] and MIMIC-IV [11] datasets.
Both of these databases used the same patient IDs, stays, admissions and the
dates and times are consistent for each patient.
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Fig. 1. Aggregating feature vectors from multimodal ICU data (see Sec 2.3). We built
a consistent, high-quality dataset, which combines imaging and non-imaging data in-
cluding patient static metadata (e.g. age, gender, ethnicity, length of stay) as well as
laboratory values (e.g. glucose, magnesium, hemoglobin) and vital sign values (e.g.
heart rate, respiration rate, oxygen saturation).

MIMIC-CXR Database. MIMIC-CXR is a large publicly available database
of patient chest radiographs collected from the Beth Israel Deaconess Medical
Center (BIDMC) emergency department between 2011 and 2017. It contains
227,835 X-ray studies for 64,588 patients. Each study may contain multiple im-
ages from different view positions and in total there are 377,110 radiographs.
Every study also has an associated free-text radiology report, written at the
time of the study. Here, we used MIMIC-CXR in JPG format provided with
MIMIC-CXR-JPG [13] as it additionally contains structured labels derived from
these reports.

MIMIC-IV Database. MIMIC-IV contains data from hospital stays for pa-
tients who were admitted to the BIDMC between 2008 and 2019. MIMIC-IV is
separated into five modules: core (patient stay information), hospital (laborato-
ries and microbiology), ICU data (ICU stays and events), emergency department
and CXR (lookup tables to allow linking to MIMIC-CXR).

2.2 Preprocessing

Cardiomegaly was detected using posterior-anterior radiographs, to prevent the
artificial enlargement of the cardiac silhouette that can occur with antero-posterior
and other radiograph views. We therefore filtered the image datasets to only
include posterior-anterior views. MIMIC-CXR-JPG provides four types of car-
diomegaly labels (positive, negative, uncertain, no mention) derived using two
natural language processing tools NegBio [15] and CheXpert [9]. We removed
any images where these tools disagreed with each other over the label assigned,
to prevent introducing error. We note that we cannot conclude that a report with
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no mention of cardiomegaly indicates the absence of cardiomegaly. Therefore, we
created a subset of images, which only have either a positive or negative label
for cardiomegaly. These images were then re-sized to 244 x 244 pixels and un-
derwent normalisation of the mean and standard deviation. We also performed
standard data augmentation consisting of a random rotation of up to 10 degrees
as well as random horizontal and vertical flips to improve robustness.

We grouped vital sign values (e.g. heart rate, respiration rate, oxygen sat-
uration) and laboratory values (e.g. glucose, magnesium, hemoglobin) for each
ICU admission, before averaging them across the stay to produce a single set of
summary features. We then added patient metadata (e.g. age, gender, ethnicity,
length of stay) to each feature vector.

2.3 Combining imaging and non-imaging data

There is a unique patient ID across MIMIC-CXR-JPG and MIMIC-IV. We linked
ICU stays to radiographic studies, which took place up to 365 days before the
patient entered the ICU and up to 90 days after leaving the ICU. Cardiomegaly
is a chronic condition that usually slowly progresses if the underlying pathology
remains untreated, and it does not resolve once present without considerable
intervention. This period was therefore identified as providing a reasonable win-
dow of stability in the condition for assessment in our modelling [5]. For each
unique ICU stay, we first collected the studies from our images subset which took
place within the specified window for that same patient (See Fig. 1). We then
checked for consistency between the image labels. We assumed cardiomegaly
does not change from positive to negative within the chosen window. If a patient
has conflicting (both positive and negative) image labels within this window, we
cannot be confident which is the correct label to assign to the ICU stay, so we
remove ICU stays surrounded by conflicting cardiomegaly labels. If the labels
show consistency, we link the ICU stay and the image study which took place
closest to ICU admission. While the labels generated from free-text reports [15,
9] can be inconsistent, the presented data curation process led us to create a
high-quality dataset (both imaging and non-imaging), which was later used to
train, validate, and test the models presented in the next section.

2.4 Models

Image classification. We implemented a ResNet [8] architecture for classifying
cardiomegaly presence in X-ray images. ResNet architectures have been evalu-
ated on similar radiograph databases and shown to achieve state-of-the-art re-
sults for this task. For example, ResNet-32 achieved 0.84 cardiomegaly accuracy
[2] on the CheXpert database [9], which also uses labels automatically derived
from the reports. All networks were pre-trained on ImageNet [6]. We used a bi-
nary cross entropy loss function, Adam optimizer [14] and cyclical learning rates
[22]. Each image-based model was trained in two stages. First, we froze the con-
volutional layers of the ResNet and trained just the final fully connected layers.
Then we unfroze all of the layers and continued training. Before each stage we
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Fig. 2. Our approach for combining X-ray imaging and non-imaging ICU data.

conducted an initial learning rate test and determined optimal boundaries for
the learning rate to cycle in during training [22].

ICU data classification. We implemented XGBoost [4] to classify cardiomegaly
from ICU data consisting of vital sign values, laboratory measurements and
demographics. XGBoost has been shown to perform well at similar classification
tasks in clinical machine learning [3, 16, 17]. We use a binary cross entropy loss
function.

Multimodal classification. We propose a multimodal network for the classification
of cardiomegaly (see Fig. 2), which combines simultaneously the imaging data
(chest radiographs) and non-imaging ICU data (vital sign values, laboratory
values, static patient metadata including demographics). We use a ResNet-50
architecture in the X-ray Feature Extraction Block (XFB) to extract relevant
features from the images. The ICU data is fed into the ICU Feature Block (IFB),
which contains a neural network consisting of three fully connected layers. To
join the learned image and ICU features, we concatenate the outputs of the
XFB (32 nodes) and IFB (16 nodes) using a fully connected layer. After con-
catenation, we add two more fully connected layers to produce a label. Previous
approaches have used similar network architectures to combine medical imaging
with small amounts of patient metadata [20, 7, 1], however, here we extend on
this to include all routinely collected ICU data including vital sign values and
laboratory measurements.

The joint network was trained similarly to the ResNet model, using a binary
cross entropy loss function, Adam optimizer [14] and cyclical learning rates [22].
We also pre-trained the XFB and IFB separately before concatenating them
together. The model was then trained in two stages. First, we froze the early
layers and trained only the fully connected layers of the JFB. Then we unfroze the
entire network and continued training. Optimal bounds for the cyclical learning
rate were determined before each stage from a learning rate test.
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Table 1. Patient characteristics.

Variable Cardiomegaly All patients

ICU Stays 1,795 2,571

Male / Female 756 / 904 1077 / 1327

Age [years], mean (SD) 66.0 (14.9) 64.9 (15.6)

Ethnicity

White, N (%) 1,084 (65.3) 1,601 (66.9)

Asian, N (%) 58 (3.5) 93 (3.9)

Black, N (%) 309 (18.6) 390 (16.3)

Hispanic/Latino, N (%) 94 (5.7) 127 (5.3)

Other/Mixed/Unknown, N (%) 78 (10.2) 183 (7.6)

LOS [days], median (IQR) 2.1 (2.5) 2.0 (2.4)

3 Results

The original MIMIC-CXR contains 227,835 studies (377,110 radiographs) for
64,588 patients including 53,565 X-ray studies, with positive or negative car-
diomegaly labels, for 22,914 patients. After applying the inclusion and exclusion
criteria described in Sec. 2.2, the dataset used in this work contains 2,571 ICU
stays and 2,404 patients. A brief overview of the patient characteristics including
Sex, Age, Ethnicity and length of stay (LOS) is given in Table 1.

We divided our curated dataset (see Sec. 2.2) into 5-folds for cross-validation.
No patient appears in more than one fold and every fold has the same ratio of
positive to negative labels. Each model was trained on the same 5-folds but only
made use of the relevant modalities: ResNet (Images), XGBoost (ICU data) and
the joint network (Images and non-imaging ICU data). The results of classifica-
tion averaged across 5-folds are summarised in Table 2 using Accuracy, F1-score
and AUC (area under the receiver operating characteristic curve).

XGBoost has a number of hyperparameters which we optimised through a
grid search within the ranges defined in Table 3. The results of 5-fold cross valida-
tion for image-based ResNet-50 approach showed stronger predictive value (AUC
0.840) than the non-imaging ICU data-based XGBoost model (AUC 0.684) with
the multimodal approach showed the strongest predictive skill (AUC 0.880). For
comparison we showed the results for a model using demographics/metadata
only (AUC 0.647) and laboratory and vital sign values only (AUC 0.671).

Examples of radiographs with correct and incorrect classification are given
in Fig. 3. Finally, the heat maps from the image-based ResNet-50 model for true
positive and true negative instances of cardiomegaly are shown in Fig. 4.
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Table 2. Results for the three classes of models considered in this work on the com-

bination of demographics/metadata (D), laboratory and vital sign values (LV) and

imaging data (I). The multimodal network, which merges imaging and non-imaging

data, has the strongest predictive power showing the overall moderate improvement

over ResNet-50. The values show the mean Accuracy, F1-score and AUC (the area

under the ROC curve) for the 5-fold cross validation with the corresponding standard

deviation.

Model Data Type Accuracy F1-score AUC

Multimodal D+LV+I 0.837 (0.012) 0.886 (0.009) 0.880 (0.011)

ResNet-50 I 0.797 (0.034) 0.857 (0.028) 0.840 (0.033)

XGBoost D+LV 0.700 (0.084) 0.771 (0.029) 0.684 (0.046)

XGBoost LV 0.694 (0.020) 0.769 (0.017) 0.671 (0.036)

XGBoost D 0.642 (0.030) 0.712 (0.031) 0.647 (0.021)

Table 3. The hyperparameters for each XGBoost model were optimised within the

ranges shown below.

Hyperparameters Range

learning rate [0.0001, 0.1]

max tree depth [2, 8]

gamma [0, 2]

colsample [0, 1]

subsample [0, 1]
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Fig. 3. Examples of X-ray images showing correct and incorrect classification by our
proposed joint model: (a) true positive, (b) false negative (clinical review of a radio-
graph suggests cardiomegaly, based on pattern of cardiac silhouette), (c) false positive
(clinical review of a radiograph suggests anatomical distortion by other pathology), (d)
true negative.
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Fig. 4. Examples of heat maps from the image-based ResNet-50 model for true positive
(left two columns) and true negative (right two columns) instances of cardiomegaly.
The heat maps were created using a Grad-Cam [21] approach and show which areas of
the X-ray image were important during prediction.
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4 Discussion

4.1 Principal findings

In this work, we proposed a multimodal network which is able to use both images
and ICU data to determine the presence of cardiomegaly. Further it provides a
proof-of-concept for a multi-modal deep network approach for detecting other
cardiopulmonary diseases, in general, from a combination of images, vital sign
values, laboratory measurements and other patient metadata. We used two re-
cently published datasets to uniquely combine various modalities for the same
patients. This allowed us to build a multimodal approach with the aim to imi-
tate the thought process of a clinician. Clinicians tend to use multiple sources of
data to draw their conclusions, unlike most machine learning approaches which
have relied exclusively on chest radiographs. Finally, as cardiomegaly usually
indicates an underlying pathology that warrants further investigation and clini-
cal management, and can convey significant ill health if unrecognised, the early
detection of cardiomegaly is beneficial. The automatic detection of cardiomegaly
on radiographs taken for the investigation of other pathologies using these tools
could therefore assist as a form of preventative healthcare.

4.2 Strengths and weaknesses of the study

Advantages of using automated systems for X-ray labelling. Current clinical prac-
tice is for the requesting clinician or responsible radiologist to review and report
the chest radiograph performed. Radiologist availability and clinician time is of-
ten a limited resource and tools with the potential to optimise the application
of this limited resource have the potential to increase the efficiency of care path-
ways. A tool which can accurately label chest radiographs as containing either no
elements of concern or with relevant labels warranting further review or clinical
management would help to optimise the efficient use of clinician time.

Further, when a clinician/radiologist reviews a chest radiograph a poten-
tial cognitive bias can occur whereby once a pathology is identified secondary
pathologies are not as readily recognised. Automated tools are not subject to
this bias and so the use of such tools could help prevent the missed detection of
further pathologies on radiographs with multiple elements of concern.

Finally, as cardiomegaly usually indicates an underlying pathology that war-
rants further investigation and clinical management, and can convey significant
ill health if unrecognised, the early detection of cardiomegaly is beneficial. The
automatic detection of cardiomegaly on radiographs taken for the investigation
of other pathologies using these tools can therefore assist as a form of preventa-
tive healthcare.

Imitating an ICU doctor. We use a unique, recently published dataset that com-
bines various modalities for the same patients. This allowed us to build a mul-
timodal approach with the aim to imitate the thought process of a clinician.
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Clinicians tend to use multiple sources of data to draw their conclusions, un-
like most machine learning approaches which have relied exclusively on chest
radiographs.

Automatic labelling accuracy. The labels for our data are automatically gener-
ated from free-text reports [15, 9]. It is well known that these types of automatic
procedures result in noisy data, which may affect the estimation of the perfor-
mance of the models [13].

Time between X-rays and ICU data. Although we choose the closest X-ray to
each ICU admission the period of time in between is not a constant value. Some
X-rays and associated ICU stays will take place closer together in time than
other X-rays and ICU stays. This introduces inconsistency into our dataset.

Label bias. The cardiomegaly labels originate from free-text reports derived from
X-ray images. This may bias the estimated predictive power in favour of images
over signals.

Time series data averaged. As part of the preprocessing we averaged the ICU
time-dependent data (e.g. vital signs, laboratory measurement) into summary
vectors over the whole stay in order to construct our joint network.
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