Skip to main content

Brain-Connectivity Analysis to Differentiate Phasmophobic and Non-phasmophobic: An EEG Study

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12722))

Included in the following conference series:

Abstract

Brain-connectivity refers to a pattern of functional or effective connectivity of distinct modules of human brain due to interactions between them. In this paper, the authors have attempted to conduct a brain connectivity based analysis to study the brain circuitry in subjects from their electroencephalographic (EEG) data, while they are engaged in playing a horror video game. The main motive of our work is to understand the differences in the effective connectivity among phasmophobic and non-phasmophobic subjects. In the present analysis, we propose a modified version of the causality test, named as Convergent Cross Mapping (CCM) to perform the analysis. The proposed CCM improves the performance of the standard CCM with an added feature of finding the possible direction of causation in terms of conditional entropy or maximum information transfer among the brain signal-sources. Experimental results and statistical analysis show that the proposed method shows superior efficacy in estimating the directed brain-connectivity as compared to the very well-known classical Granger Causality, classical CCM and other off-the-shelf brain-connectivity algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Åhs, F., et al.: Arousal modulation of memory and amygdala-parahippocampal connectivity: a pet-psychophysiology study in specific phobia. Psychophysiology 48(11), 1463–1469 (2011)

    Article  Google Scholar 

  2. Åhs, F., et al.: Disentangling the web of fear: amygdala reactivity and functional connectivity in spider and snake phobia. Psychiatry Res. Neuroimaging 172(2), 103–108 (2009)

    Article  Google Scholar 

  3. Britton, J.C., Gold, A.L., Deckersbach, T., Rauch, S.L.: Functional MRI study of specific animal phobia using an event-related emotional counting stroop paradigm. Depression Anxiety 26(9), 796–805 (2009)

    Article  Google Scholar 

  4. Chowdhury, A., Dewan, D., Ghosh, L., Konar, A., Nagar, A.K.: Brain connectivity analysis in color perception problem using convergent cross mapping technique. In: Nagar, A.K., Deep, K., Bansal, J.C., Das, K.N. (eds.) Soft Computing for Problem Solving 2019. AISC, vol. 1138, pp. 287–299. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3290-0_22

    Chapter  Google Scholar 

  5. Clark, A.T., et al.: Spatial convergent cross mapping to detect causal relationships from short time series. Ecology 96(5), 1174–1181 (2015)

    Article  Google Scholar 

  6. Danti, S., Ricciardi, E., Gentili, C., Gobbini, M.I., Pietrini, P., Guazzelli, M.: Is social phobia a “mis-communication’’ disorder? Brain functional connectivity during face perception differs between patients with social phobia and healthy control subjects. Front. Syst. Neurosci. 4, 152 (2010)

    Article  Google Scholar 

  7. Das, S., Halder, A., Bhowmik, P., Chakraborty, A., Konar, A., Nagar, A.: Voice and facial expression based classification of emotion using linear support vector machine. In: 2009 Second International Conference on Developments in eSystems Engineering, pp. 377–384. IEEE (2009)

    Google Scholar 

  8. De Vries, Y.A., et al.: Childhood generalized specific phobia as an early marker of internalizing psychopathology across the lifespan: results from the world mental health surveys. BMC Med. 17(1), 1–11 (2019)

    Article  Google Scholar 

  9. Del Casale, A.: Functional neuroimaging in specific phobia. Psychiatry Res. Neuroimaging 202(3), 181–197 (2012)

    Article  Google Scholar 

  10. Demenescu, L., et al.: Amygdala activation and its functional connectivity during perception of emotional faces in social phobia and panic disorder. J. Psychiatric Res. 47(8), 1024–1031 (2013)

    Article  Google Scholar 

  11. Deppermann, S., et al.: Functional co-activation within the prefrontal cortex supports the maintenance of behavioural performance in fear-relevant situations before an itbs modulated virtual reality challenge in participants with spider phobia. Behav. Brain Res. 307, 208–217 (2016)

    Article  Google Scholar 

  12. Eaton, W.W., Bienvenu, O.J., Miloyan, B.: Specific phobias. Lancet Psychiatry 5(8), 678–686 (2018)

    Article  Google Scholar 

  13. Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica J. Econometric Soc. 37, 424–438 (1969)

    Article  Google Scholar 

  14. Grös, D.F., Antony, M.M.: The assessment and treatment of specific phobias: a review. Curr. Psychiatry Rep. 8(4), 298–303 (2006)

    Article  Google Scholar 

  15. Hilbert, K., Evens, R., Maslowski, N.I., Wittchen, H.U., Lueken, U.: Neurostructural correlates of two subtypes of specific phobia: a voxel-based morphometry study. Psychiatry Res. Neuroimaging 231(2), 168–175 (2015)

    Article  Google Scholar 

  16. Indovina, I., Conti, A., Lacquaniti, F., Staab, J.P., Passamonti, L., Toschi, N.: Lower functional connectivity in vestibular-limbic networks in individuals with subclinical agoraphobia. Front. Neurol. 10, 874 (2019)

    Article  Google Scholar 

  17. Kar, R., Konar, A., Chakraborty, A., Nagar, A.K.: Detection of signaling pathways in human brain during arousal of specific emotion. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 3950–3957. IEEE (2014)

    Google Scholar 

  18. Kunas, S.L., et al.: The impact of depressive comorbidity on neural plasticity following cognitive-behavioral therapy in panic disorder with agoraphobia. J. Affect. Disord. 245, 451–460 (2019)

    Article  Google Scholar 

  19. Lange, I., et al.: Functional neuroimaging of associative learning and generalization in specific phobia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 89, 275–285 (2019)

    Article  Google Scholar 

  20. Lueken, U., Kruschwitz, J.D., Muehlhan, M., Siegert, J., Hoyer, J., Wittchen, H.U.: How specific is specific phobia? Different neural response patterns in two subtypes of specific phobia. NeuroImage 56(1), 363–372 (2011)

    Article  Google Scholar 

  21. Luo, C., Zheng, X., Zeng, D.: Causal inference in social media using convergent cross mapping. In: 2014 IEEE Joint Intelligence and Security Informatics Conference, pp. 260–263. IEEE (2014)

    Google Scholar 

  22. Linares, I.M., Chags, M.H.N., Machado-de Sousa, J.P., Crippa, J.A.S., Hallak, J.E.C.: Neuroimaging correlates of pharmacological and psychological treatments for specific phobia. CNS Neurol. Disord. Drug Targets (Formerly Curr. Drug Targets-CNS Neurol. Disord.) 13(6), 1021–1025 (2014)

    Google Scholar 

  23. Maulsby, R.L.: Some guidelines for assessment of spikes and sharp waves in EEG tracings. Am. J. EEG Technol. 11(1), 3–16 (1971)

    Article  Google Scholar 

  24. McCracken, J.M., Weigel, R.S.: Convergent cross-mapping and pairwise asymmetric inference. Phys. Rev. E 90(6), 062903 (2014)

    Article  Google Scholar 

  25. Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115(10), 2292–2307 (2004)

    Article  Google Scholar 

  26. de Oliveira-Souza, R.: Phobia of the supernatural: a distinct but poorly recognized specific phobia with an adverse impact on daily living. Front. Psychiatry 9, 590 (2018)

    Article  Google Scholar 

  27. Pachana, N.A., Woodward, R.M., Byrne, G.J.: Treatment of specific phobia in older adults. Clin. Interv. Aging 2(3), 469 (2007)

    Google Scholar 

  28. Pascual-Marqui, R.D., et al.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl D), 5–12 (2002)

    Google Scholar 

  29. Pearson, K.: Vii. Note on regression and inheritance in the case of two parents. Proc. R. Soc. London 58(347–352), 240–242 (1895)

    Google Scholar 

  30. Pukenas, K.: An algorithm based on the convergent cross mapping method for the detection of causality in uni-directionally connected chaotic systems. Math. Models Eng. 4(3), 145–150 (2018)

    Article  Google Scholar 

  31. Rathee, D., Cecotti, H., Prasad, G.: Estimation of effective fronto-parietal connectivity during motor imagery using partial granger causality analysis. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2055–2062. IEEE (2016)

    Google Scholar 

  32. Rosenbaum, D., et al.: Neuronal correlates of spider phobia in a combined fNIRS-EEG study. Sci. Rep. 10(1), 1–14 (2020)

    Article  Google Scholar 

  33. Rosenbaum, D., et al.: Cortical oxygenation during exposure therapy-in situ fNIRS measurements in arachnophobia. NeuroImage Clin. 26, 102219 (2020)

    Article  Google Scholar 

  34. Shoker, L., Sanei, S., Latif, M.A.: Removal of eye blinking artifacts from EEG incorporating a new constrained BSS algorithm. In: Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal, pp. 177–181. IEEE (2004)

    Google Scholar 

  35. Sugihara, G., et al.: Detecting causality in complex ecosystems. Science 338(6106), 496–500 (2012)

    Article  Google Scholar 

  36. Sugihara, G., May, R.M.: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268), 734–741 (1990)

    Article  Google Scholar 

  37. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091924

    Chapter  Google Scholar 

  38. Toyama, K., Kimura, M., Tanaka, K.: Cross-correlation analysis of interneuronal connectivity in cat visual cortex. J. Neurophysiol. 46(2), 191–201 (1981)

    Article  Google Scholar 

  39. Vicente, R., Wibral, M., Lindner, M., Pipa, G.: Transfer entropy–a model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 30(1), 45–67 (2011)

    Article  MathSciNet  Google Scholar 

  40. Winkler, I., Haufe, S., Tangermann, M.: Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Functions 7(1), 1–15 (2011)

    Article  Google Scholar 

  41. Zilverstand, A., Sorger, B., Sarkheil, P., Goebel, R.: fMRI neurofeedback facilitates anxiety regulation in females with spider phobia. Front. Behav. Neurosci. 9, 148 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karmakar, S., Dewan, D., Ghosh, L., Chowdhury, A., Konar, A., Nagar, A.K. (2021). Brain-Connectivity Analysis to Differentiate Phasmophobic and Non-phasmophobic: An EEG Study. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds) Medical Image Understanding and Analysis. MIUA 2021. Lecture Notes in Computer Science(), vol 12722. Springer, Cham. https://doi.org/10.1007/978-3-030-80432-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80432-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80431-2

  • Online ISBN: 978-3-030-80432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics