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Foreword

When I started my study of mathematics at the University of Innsbruck in 1960, like
most freshmen, I was intimidated and impressed by the apparent intelligence of the
professors who gave proofs of abstract knowledge, which was far from the concrete
thinking about mathematical objects which we had seen in high-school. However,
after some time, in secret, I started to doubt the quality of some of the hand-waving
proofs and I wanted to look behind the scene. For this, in parallel and independent
of the curriculum, I started to dig through the books on logic I found in the general
library of the university. (For some reason, most of them had a yellow cover—the
Springer Books on Logic. Subconsciously, this may have been the reason why,
many years later, I decided that the cover the Journal of Symbolic Computation
should be yellow, when I founded it in 1985.)

From that time on, it became more and more clear to me that logic is the essence
of mathematical thinking and, luckily, very soon after my start as a mathematics
student I got the chance to become one of the first programmers on the first
computer at our university and the computer appeared to me as materialized logic.
Since then, for me, mathematics, logic, and computer science was just one field and
I am still fascinated and convinced by the repeated algorithmic cycles through
object and meta-levels to reach higher and higher states of insight and a more and
more efficient grasp of the thinking process. Understanding the spiral of logic for
(algorithmic) mathematics and algorithmic mathematics for logic is so important
also for steering a clear course in a time of frequent new and fancy catch words that
may suggest that logical clarity and brilliance is not any more relevant in a time of
intelligent machines.

In 1979, in contrast to the usual analysis/linear algebra approach, I dared to give
an introduction to mathematics for first semester computer science students which
was nothing else than a practical introduction to predicate logic as a working
language and a unified frame for proving and programming. Over the years, many
of my students shared this view on the fundamental theoretical and practical
importance of logic for mathematics and informatics and did remarkable work
developing ideas and tools for supporting this kind of thinking. Wolfgang Schreiner
embarked on this type of research, teaching, and software development already in
the mid-nineties and, over the years, accumulated enormous know-how and pro-
duced impressive and extensive teaching material and software tools for the
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theoretical foundation and the practical application of logic in mathematics and
computer science, notably in mathematics and computer science teaching.

Now, he presents this enormous amount of work in a coherent book. I think there
is hardly any other book that combines the foundation of logic, the applications of
logic in computer science, and software for logic in an equally rich and compre-
hensive way. I wish the book a wide distribution. Given the outstanding didactic
qualification of Wolfgang Schreiner, I am sure that the book will be extremely
helpful for students of mathematics and computer science to get a profound training
of the thinking technology that is in the center of the present age and will stay and
become even more important in the next turns of the spiral of innovation.

It is also a special pleasure for me that the book appears in the RISC book series
on symbolic computation with the Springer Verlag whose yellow books lured me
into the field of (algorithmic) logic so many years ago. When I founded the RISC
book series in 1993, for some reason, we decided that the cover should be gray.
However, the contents of the books in this series were very much yellow all the
time. It is great to see that, since Peter Paule took over the editorship and is giving
enormous drive to the series, yellow is taking over also on the covers.

Hagenberg, Austria
March 2021

Bruno Buchberger
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Preface

Motivation

The purpose of this book is to outline some basic principles that enable developers
of computer programs (computer scientists, software engineers, programmers) to
more clearly think about the artifacts they deal with in their daily work: data types,
programming languages, programs written in these languages that compute from
given inputs wanted outputs, and programs for continuously executing systems. In
practice, thinking about these artifacts is often muddled by not having a suitable
mental framework at hand, i.e., a language to appropriately express this thinking.

The core message that we want to convey is that clear thinking about programs
can be expressed in a single universal language, the formal language of logic. In
particular, with the help of logic we can achieve the following goals:

• Modeling: we can unambiguously describe the meaning of syntactic entities
such as the behavior of computer programs.

• Specifying: we can precisely formulate constraints we impose on (the meaning
of) these entities such as requirements on program executions.

• Reasoning: we can rigorously show that the entities indeed satisfy these con-
straints, e.g., that programs satisfy their specifications.

However, in order to enable this clear thinking about computer programs, we
also need a framework to relate the syntactic artifacts (that have a priori not any
content beyond their structure) to their formal meaning (characterized by logical
formulas). The description of this relationship can be generally based on three
principles:

• A grammar that describes the basic structure of syntactic phrases.
• A type system that further restricts the phrases to certain well-formed ones.
• A function that maps every well-formed phrase to its meaning.

Thus we can give arbitrary syntactic phrases a precise meaning about which we can
rigorously reason. In fact, we will use this approach of denotational semantics
uniformly throughout this book in order to define various formal languages, starting
with the language of logic itself and ending with a language of concurrent systems.
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Throughout most of this book, we understand by logic the classical first-order
variant of predicate logic, short first-order logic, the lingua franca of formal
modeling and reasoning today. While some aspects of computer programming may
practically profit from more general frameworks such as higher-order logic or
temporal logic (which we will also discuss in this book), first-order logic is con-
ceptually sufficient for most purposes and in any case provides a solid basis for
understanding all kinds of logical extensions.

Apart from its universal elegance and expressiveness, our logical approach to the
formal modeling of and reasoning about computer programs has another advantage:
due to advances in computational logic (automated theorem proving, satisfiability
solving, model checking), nowadays much of this process can be supported by
software. This book therefore accompanies its theoretical elaborations by practical
demonstrations of various systems and tools that are based on respectively make
use of the logical underpinnings. We hope that this will convincingly demonstrate
also the actual usefulness of the presented approach.

This book has been written with a broad target audience in mind that encom-
passes students and practitioners in computer science and computer mathematics; it
therefore tries to be as self-contained as possible and not assume a particular
background in logic or mathematics. However, it focuses on a “logical” perspective
to the overall areas of “formal methods” and “formal semantics” which in several
aspects differs from other presentations of this topic. To get a more comprehensive
picture (especially on alternative approaches), the reader might want to consult
additional resources; the book gives various recommendations for further reading.

Content

To introduce the basic themes of this book and demonstrate their ultimate purpose,
an introductory section Logic for Programming: A Perspective gives a short his-
torical account on the development of logical modeling and reasoning about
computer programs and presents examples of practical applications of these tech-
niques in industrial software development today.

The main contents of this book are then organized into two parts:
Part I: The Foundations. This part introduces the basic language of logic and

mathematics that is used throughout the remainder of the book. While an impatient
reader (such as the author himself!) may be inclined to skip over this part, we advise
to study at first reading at least Chapter 1 “Syntax and Semantics” which introduces
the themes that are fundamental to this book:

• context-free grammars (inductive definitions of formal languages as sets of
phrases represented by abstract syntax trees),

• type systems (logical inference systems which restrict these languages to certain
well-formed phrases),

• semantics functions (inductively defined functions which give these phrases a
meaning by mapping them to mathematical objects), and
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• the accompanying principle of structural (more general: rule) induction which
enables us to reason about these constructions.

The subsequent chapters elaborate these concepts in more detail (the impatient
reader may skip over them at first reading and consult them later on demand).
Chapter 2 “The Language of Logic” applies above principles to introduce the
syntax and semantics of first-order logic, the core language of this book. Chapter 3
“The Art of Reasoning” continues this presentation by introducing the concept of
logical proof and by introducing a variant of the sequent calculus as a formal
framework for proof construction. Chapter 4 “Building Models” describes how with
the language of logic models of reality (theories and data types) can be constructed
in which we subsequently operate. Chapter 5 “Recursion” discusses the semantics
of various forms of recursion, including inductive and coinductive definitions of
functions and relations, using a restricted variant of fixed point theory. The material
presented in these chapters (and much more) can be similarly found in various texts
on logic and mathematics for computer science, however with non-uniform notions
and notations; our goal here is to give a minimal consistent framework as a suffi-
cient and necessary basis of Part II of this book.

Part II: The Higher Planes, this part contains the actual core contents of the book:

• Chapter 6 “Abstract Data Types” discusses the formal specification of abstract
data types by logical axioms that the operations on the types must satisfy; the
types may consist of finite values characterized by their constructor operations
but also of potentially infinite values characterized by their observer operations.
For this purpose, we gradually introduce a formal type specification language
with a static type system and give it a semantics as models of first-order for-
mulas; these models may be restricted to a particular class of candidates by
special kinds of specifications (generated/free, cogenerated/cofree). We also
discuss specifying in the large by various principles to compose smaller spec-
ifications to bigger ones. The chapter does not only describe the modeling of
types but also the basic techniques for reasoning about them; it also discusses
the refinement of more abstract types to more concrete ones.

• Chapter 7 “Programming Languages” discusses the formal semantics of pro-
gramming languages. For this we extend the previously introduced type spec-
ification language to an imperative (command-based) programming language
whose semantics we describe by two approaches. In denotational semantics, we
first map commands to partial functions on program states; these functions are
defined by logical terms. Later we generalize this classical functional style to a
non-classical but much more flexible relational style where commands are
mapped to state relations defined by logical formulas. In operational semantics,
we give programs a semantics by mapping them to transition relations defined
by logical inference systems; we then show the essential equivalence of deno-
tational and operational semantics. We apply these techniques to model the
translation of the command language to a low-level machine language and prove
the correctness of the translation. Finally, we extend the command language by
the abstraction mechanism of procedures and model their semantics.
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• Chapter 8 “Computer Programs” discusses the formal verification of programs
by various closely related calculi; the chapter thus lifts the level of reasoning
from the previously discussed layer of programming languages to that of pro-
grams written in these languages. After discussing the formal specification of
computational problems as the basis of program verification, we present the
Hoare calculus and prove its soundness with respect to the semantics of the
language. We continue with Dijkstra’s predicate transformer calculus that maps
commands to functions on formulas over states; further on we complement this
approach by presenting a relational calculus that maps programs to formulas
over state pairs. A good part of the chapter is dedicated to the pragmatics of
verifying the partial correctness and termination of programs, which requires the
human to devise adequate loop invariants and termination measures; here we
give several concrete verification examples. Finally we discuss the abstract
concept of command refinement from which we derive the concrete principles of
modular reasoning about the correctness of procedure-based programs.

• Chapter 9 “Concurrent Systems” discusses the formal modeling of and rea-
soning about systems exhibiting nondeterministic behavior (concurrent/reactive
systems). For this we extend the previously introduced command language to a
language of shared systems where concurrent activities interact via a common
state as well as to a language of distributed systems whose components interact
by exchanging messages. We give these languages a semantics by mapping
them to labeled transition systems; these are described by logical formulas that
denote initial state conditions and transition relations. For specifying properties
of such systems we extend first-order logic to linear temporal logic whose
formulas are interpreted over system runs. The proof-based verification of such
properties requires the human to devise adequate system invariants; we discuss
the verification of such invariants expressing safety properties of the system and
also the verification of a particular class of liveness properties which ensure the
progress of the system execution. Finally we investigate the refinement of more
abstract systems (models) to more concrete systems (implementations).

Altogether these chapters thus present the syntax and semantics of a language that
encompasses abstract type declarations, imperative programs whose behaviors are
specified by formulas in first-order logic, and concurrent systems whose behaviors
are specified in linear temporal logic; they discuss corresponding calculi for the
verification of the programs with respect to specifications and for the refinement of
more abstract programs to more concrete ones.

Software

Each chapter is accompanied by a section that illustrates the practical relevance
of the presented theoretical material by some software system or programming
language that is based on the presented concepts respectively makes use of them:
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• The functional programming language OCaml.
• The proof assistant RISC ProofNavigator.
• The interactive theorem prover Isabelle/HOL.
• The algebraic specification language CafeOBJ.
• The common algebraic specification language CASL.
• The executable semantics framework K.
• The program verification environment RISC ProgramExplorer.
• The algorithm language and model checker RISCAL.
• The TLAþ toolbox for modeling and checking concurrent systems.

Most of these tools have been developed by other researchers; the RISC
ProofNavigator, the RISC ProgramExplorer, and RISCAL are the results of the
author’s own work. All the presented software is freely available; the reader may
download the examples presented in each section (see below) and run them on
his/her own.

Teaching and Further Study

While of course the various chapters of this book in general linearly depend on each
other in that each chapter may refer to some material presented earlier, Fig. 1 tries to
outline the main dependencies by solid arrows (the dotted arrows represent weak
dependencies); their consideration may be indeed useful in selecting material from
this book for university courses that teach some specific topics such as

• Logic, Formal Modeling: Chaps. 1–3.
• Set Theory, Fixed Point Theory: Chaps. 4–5.
• Formal Specification of Abstract Data Types: Chap. 6.
• Formal Semantics of Programming Languages: Chap. 7 (with elements of Chap. 5).
• Formal Methods in Software Development: Chap. 8.
• Formal Models of Parallel and Distributed Systems: Chap. 9.

1  Syntax and Semantics

2  The Language of Logic

3  The Art of Reasoning

4  Building Models

5  Recursion 6  Abstract Data Types

7  Programming Languages

8  Computer Programs

9  Concurrent Sytems

Fig. 1 Chapter dependencies
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Indeed the author has taught courses (respectively participated in teaching) on most
of these topics using material from this book (partially complemented by other
more in-depth material).

In fact, since this book presents an integrated view on various (related but not
identical) subjects, we had to choose from each field those aspects that we con-
sidered essential for conveying our core message: how by some universal principles
of logical modeling and reasoning a software developer can better understand the
artifacts that he/she is dealing with. This necessarily comes at the price that many
other (also important) elements had to be neglected. To partially compensate for
these gaps, each chapter concludes with a section Further Reading that suggests
specific literature (mainly textbooks) that cover the presented topic in more depth or
breadth, but typically from a different perspective. Lecturers, students, and readers
may complement our presentation with additional material from these references.

Web Page and Exercises

This book is accompanied by electronic material available from the following URL:

https://www.risc.jku.at/people/schreine/TP

In particular, this web page contains all software examples presented in this book
and exercises for the topics of the various book chapters.
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Logic for Programming: A Perspective

Wer nicht von dreitausend Jahren sich weiß Rechenschaft zu
geben, bleib im Dunkeln unerfahren, mag von Tag zu Tage
leben. (Who cannot draw on three thousand years may stay in
the dark, inexperienced, living from day to day.)

—Johann Wolfgang von Goethe (West-östlicher Divan)

Reading this book may be conceived as traveling through a landscape of unfamiliar
domains. Even if the relevance of these domains to computer programming will be
continuously emphasized and also demonstrated by various software presentations,
the reader may be more motivated to undertake this voyage, if she has some
perspective on where the journey is heading. Therefore this section will demon-
strate some real-life applications of logic to modeling and reasoning about computer
programs, in particular also examples of industrial relevance. However, of equal
importance is the dual understanding of where the journey has started; we will
therefore begin with a short historical account on the creation of logic and its
evolution to a tool of computer science. While this presentation is certainly
incomplete and also influenced by the goals of this book and the personal prefer-
ences of its author, it may convey to the reader a first big picture of the landscape
through which we are walking.

Logic and Language

Logic (from the Greek word logos which may be translated as reason) emerged in
antiquity from the human desire to distinguish a valid argument from an invalid
one. Initially such arguments were expressed in natural language and were intended
for everyday discourse, but also for discussing philosophical and scientific ques-
tions (philosophical logic); the development of formal (symbolic or mathematical)
logic occurred at much later times.

The roots of logic in the Western world (there have been alternative Eastern
traditions in India and China) go back to the ancient Greece of the 4th century BCE.
At that time, the Greek philosopher Aristotle developed in his writings later called
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Organon a theory of syllogisms; a syllogism is a particular form of logical argument
that derives from two sentences, the premises, a third sentence, the conclusion.
These sentences have the form of particular subject-predicate statements, namely,
every A is B or some A is B, respectively their negations; here A and B are terms that
represent some basic concept like human or mortal, thus every human is mortal
would be such a sentence. Although the expressiveness of this logic was quite
limited, its main realization was that the validity of a logical argument (i.e., the
correctness of a proof of its conclusion) only depends on the form of its sentences,
not the interpretation of the terms in them. Indeed, Aristotle’s logic (also called term
logic) represented the essence of logic for more than two millennia, with only minor
developments in medieval times.

A much more ambitious role for logic was envisioned in the 17th century by the
German polymath Gottfried Wilhelm Leibniz (who also invented the binary
numbers, the basis of digital computers today). He desired a characteristica uni-
versalis (a universal formal language), in which every mathematical, scientific, and
metaphysical sentence could be expressed in such a way that a calculus ratiocinator
(a logical calculation framework) could decide its truth by mechanical computation:
thus, in order to solve disputes among persons with opposing opinions, Leibniz
proposed calculemus! (Latin for let us calculate!). Indeed, Leibniz’s writings
sketched early forms of some concepts that would later appear in propositional
logic and set theory. A resonating view was expressed in the 19th century by the
English mathematician Ada Lovelace who wrote the world’s first computer pro-
grams for Charles Babbage’s analytical engine; she realized that this machine might
act upon other things besides number, were objects found whose mutual funda-
mental relations could be expressed by those of the abstract science of operations.
Thus in the future computing machines might indeed be capable of fulfilling
Leibniz’s dream (Fig. 2).

Fig. 2 The Pioneers of Logic: Aristotle, Gottlob Frege, Kurt Gödel, Alfred Tarski
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Logic and Mathematics

A first concrete step toward a more expressive kind of logic with also a more
rigorous mathematical treatment was taken in the middle of the 19th century by the
English mathematician and logician George Boole; he developed the principles of
what was later called Boolean algebra (the formal basis of modern digital circuits),
also known as propositional logic. The British mathematician Augustus De Mor-
gane further refined Boole’s system and extended it to a logic of binary relations; he
also introduced the modern use of quantifiers. Based on these results, the American
mathematician and logician Charles Peirce extended Boole’s system to a logic of
relations (the formal basis of relational databases today).

Independently of these developments in the English-speaking world, the modern
kind of logic we use today was mainly developed by the German philosopher,
logician, and mathematician Gottlob Frege; in his 1879 published Begriffsschrift
(German for concept writing) he introduced what is today called predicate logic
(later, distinctions would be made between first-order and second-order respectively
higher-order predicate logic). While Frege’s work was mainly ignored during his
life time, it was later brought to attention by other scientists, such that Frege would
be ultimately considered as the greatest logician since Aristotle. In this respect very
influential was the Principia Mathematica of the English mathematician and
philosopher Alfred North Whitehead and the British polymath Bertrand Russell;
published in 1910, this work formulated mathematics on the basis of a variant of
first-order logic and the theory of sets. This set theory had been informally
developed by the German mathematician Georg Cantor in 1874 and was in 1908
formalized as an axiomatic theory in first-order logic by the German mathematician
Ernst Zermelo; in 1922, this axiomatization was further refined by the German-born
Isreali mathematician Abraham Fraenkel.

However, as Russel had already discovered in 1901, particular formalizations of
set theory may lead to contradictions which are easy to overlook (Russel’s para-
dox); thus the question remained open, whether mathematics was really based on a
solid foundation. To settle this question, in 1920 the German mathematician David
Hilbert proposed a research endeavor (Hilbert’s program). The goal was to show
that all of mathematics can be expressed in some formal logic as an axiomatic
theory (i.e., by a list of logical formulas called axioms, this list may be infinite but
must be enumerable) that is consistent (from the axioms no contradictory sentences
can be proved) and complete (from the axioms every sentence or its negation can be
proved). In 1928, this program was extended to the Entscheidungsproblem (German
for decision problem): given any formula, a mechanical procedure should be able to
decide in a finite amount of time whether this formula is provable or not.

Indeed Hilbert’s program seemed well underway, when the Hungarian-American
polymath John von Neumann proved in 1927 the consistency of a first-order
axiomatization of a fragment of arithmetic and the Austrian logician Kurt Gödel
proved in 1929 the completeness of first-order logic. However, in 1931 the program

Logic for Programming: A Perspective xxi



was utterly smashed by Gödel: he showed in his incompleteness theorems that in
any logic every consistent axiomatization of arithmetic is necessarily incomplete,
i.e., there are mathematical statements that can neither be proved nor disproved
(this implies that second-order logic itself is incomplete, since arithmetic can be
axiomatized by a single second-order formula). Even more, Gödel showed that no
logical system can prove its own consistency. By these fundamental results, Gödel
joined the ranks of Aristotle and Frege as one of the most significant logicians in
history.

Therefore, while the formalization of mathematics today indeed rests upon
first-order logic and Zermelo Fraenkel set theory, Gödel’s incompleteness theorems
set clear limits to this approach: neither can we be sure that the formalization is
consistent (but no inconsistencies could ever be found), nor can every mathematical
question be settled. For instance, in 1963 the American mathematician Paul Cohen
showed that the “continuum hypothesis” (there is no set whose size is strictly
between that of the integers and that of the real numbers) can neither be proved nor
disproved from the first-order axioms of Zermelo-Fraenkel set theory. Thus there
exist mathematical statements that are (in a certain sense) “neither true nor false”.

But what if we contend ourselves with the more modest goal of deciding for-
mulas in simpler theories which can be axiomatized in first-order logic? Indeed one
aspect of the Entscheidungsproblem of first-order logic can be achieved (i.e., the
problem is “semi-decidable”): given a provable formula, it is indeed possible by a
mechanical procedure to find this proof in a finite amount of time. However, in
1936 the American mathematician Alonzo Church and the English polymath Alan
Turing independently showed that the overall goal is impossible to reach (i.e., the
Entscheidungsproblem is “undecidable”): if a first-order formula is unprovable, any
mechanical procedure that attempts to prove/disprove it may run forever. Thus
first-order logic can be only semi-automated: given a formula to be decided, we can
never be sure whether the procedure just needs more time to find its proof or
whether it runs forever in a doomed attempt to prove an unprovable formula (to
show these results, Church developed the “k-calculus” and Turing the “Turing
machine”, the first formal models of full-fledged “Turing-complete” programming
languages).

A completely new approach to logic was established by the Polish-born
American logician Alfred Tarski. From Aristotle to Gödel, logic had been treated as
a purely syntactical game that investigated how formulas could be proved; thus
(apart from an intuitive interpretation) a formula actually had no inherent meaning
that was independent of its provability. In 1936, however, Tarski gave logic a
formal “semantics” by the interpretation of formulas in some “model”; he thus
created the field of “model theory” that investigates the interplay between “proof
and truth”. The original notion of the “consistency” of a calculus was thus widely
replaced by the notion of its “soundness” (every proved formula is true) and the
original notion of “completeness” was correspondingly redefined (every true for-
mula can be proved). Nowadays, logic is mainly presented within the
model-theoretic framework established by Tarski.
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Logic with Computers

After the previous decades had clarified the capabilities and limitations of formal
logic, since the 1960s more and more work was dedicated to turn the theoretical
foundations into practical results by applying computer programs to logical rea-
soning. Here essentially three strands have emerged:

• Automated Reasoning Systems: these are systems that prove formulas in
first-order logic, typically by applying some sound and complete proving cal-
culus of which various have been developed since the 1930s. Since the “search
space” for finding a proof is of infinite size, the main challenge is to define an
efficient search strategy, Here a major step forward was the “resolution algo-
rithm” invented by Alan Robinson [151] which considerably limits the search
space and is applied in many modern first-order provers, e.g., the “Vampire”
prover developed by Andrei Voronkov and colleagues at the University of
Manchester [176]. However, systems may be also based on more
“human-oriented” strategies such as the “Theorema” system developed by
Bruno Buchberger and colleagues at the RISC institute of the Johannes Kepler
University Linz [175].

• Interactive Proving Assistants: fully automated reasoning systems reach their
practical limits when dealing with complex mathematical theories. Therefore,
since the 1970s research has been pursued on interactive proving assistants
where a proof is developed by a collaboration of human and machine: the
human generally directs the proof construction but lets the computer elaborates
the tedious details. Here the “Logic for Computable Functions” (LCF) devel-
oped by Michael Gordon, Robin Milner, and colleagues at the universities of
Edinburgh and Stanford was very influential [59]. LCF introduced the idea of a
“trusted core” that implements a small set of logical rules (in the functional
programming language “ML” which was developed for this purpose); this core
is represented by an abstract datatype whose constructors are the logical rules.
The core can be arbitrarily extended by derived rules in the form of proof
construction procedures that may be invoked by humans or by automated proof
search procedures; still the correctness of a proof only depends on the soundness
of the trusted core. Since these systems do not require a complete inference
systems, they typically implement a higher-order logic; notable examples are
HOL family of provers [79] and the Isabelle/HOL proving assistant [132]
developed at the University of Cambridge and the Technische Universität
München by Lawrence Paulson, Tobias Nipkow, and colleagues.

• Satisfiability Solvers: the problem of deciding the validity of a formula can be
reduced to deciding the satisfiability of its negation. This “SAT problem” for
propositional logic is NP-complete such that we cannot expect to solve it
generally faster than in exponential time. Nevertheless, since the late 1990s
heuristically fast SAT solvers have been developed that are effectively able to
solve problems with tens of thousands of Boolean variables [21]; these solvers
have found wide application in hardware design, planning, scheduling, and
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optimization. Furthermore, also for the quantifier-free fragment of first-order
logic the satisfiability problem is decidable in certain (combinations of) math-
ematical theories such as “linear arithmetic” or “uninterpreted functions with
equality”. Corresponding “Satisfiability Modulo Theories” (SMT) solvers are
nowadays used as central components in the verification of computer programs
[10]; a well-known representative of this category is the Z3 solver developed by
Leonardo De Moura and Nikolaj Bjørner at Microsoft [183].

In the area of mathematics, interactive proving assistants have been used to
establish new results such as the “four-color theorem”, the “Kepler conjecture”, or
the “Boolean Pythagorean” triples problem; however, these are structurally simple
“proofs by exhaustion” where an overwhelmingly large number of cases is checked
by arithmetic calculation respectively satisfiability solving. Conceptually more
interesting is the use of such assistants to formally verify versions of (perhaps
previously disputed) proofs such as that of the Jordan curve theorem [64]. Fully
automated reasoning systems have been mainly used to confirm the validity of
already known theorems; occasionally these systems also found more elegant
proofs than were previously known (e.g., that of a theorem in the Principia
Mathematica); a really new mathematical result was established by the automated
prover EQP that found a proof of the “Robbins conjecture” [112] by equational
reasoning. Generally, most success has been achieved by procedures targeted to
special problems such as proofs of algebraic identities which occur in combinatorics
and in the theory of special functions, such as implemented by the summation
package “Sigma” developed by Carsten Schneider at the RISC institute of the
Johannes Kepler University Linz [162].

Summarizing, new mathematical results were established with the help of auto-
mated or interactive reasoning systems mainly if they involved activities for which
computers are more suitable than humans, such as checking many cases or estab-
lishing long chains of identities. More pragmatic success was achieved in verifying
mathematical truths by formalizing existing proofs (respectively in detecting errors
and gaps in these proofs); in particular, the Mizar project established by Andrzej
Trybulec at the University of BiaÅ‚ystok has developed a large library of strictly
formalized mathematics on the basis of the Mizar proof assistant [120].

Be that as it may, while computers have become a tool for logic, they have
simultaneously also opened a new and very fruitful domain for logic, that of
computer systems and computer programs themselves.

Logic for Computer Science

With the advent of electronic computers in the 1940s, more and more complex
problems were solved by computer programs; thus, however, it became more and
more difficult to write computer programs that are indeed correct, i.e., that for all
given inputs deliver the expected outputs respectively produce the expected effects.
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Fortunately, it also became clear that it is not really necessary to run a computer
program to predict its behavior. Only poor programmers write their programs by
“trial and error”; good programmers apply some form of rational reasoning to
deduce the behavior of their programs from the texts of the programs alone. It
therefore should be possible to formalize this reasoning process in the form of a
logical theory and predict the behavior of the program by logical deduction in that
theory.

Indeed, based upon the pioneering works of the American computer scientists
John McCarthy and Robert Floyd, the British computer scientist Tony Hoare
developed in 1969 a logical inference system later called “Hoare calculus” which
provides a suitable framework for this kind of reasoning [73]. Given a “precon-
dition”, a first-order formula that describes the possible inputs of a program, and a
postcondition, a first-order formula that describes the desired outputs, a valid
deduction in the Hoare calculus ensures that every execution of the program with
inputs that satisfy the “precondition” yields outputs that satisfy the “postcondition”.
This deduction proceeds via the derivation of “verification conditions”, first-order
formulas whose truth implies the correctness of the program; thus the Hoare cal-
culus reduces the problem to reasoning about the correctness of computer programs
to the problem of proving formulas in first-order logic. However, the calculus itself
does not give a strategy to build valid deductions. This was amended in 1975, when
the Dutch computer scientist Edsger Dijkstra developed in his “predicate trans-
former semantics” an effective algorithm for deriving suitable verification condi-
tions via the computation of “weakest preconditions” or (dually) “strongest
postconditions”; it is this algorithm that was subsequently to be applied in most
systems for program verification [41].

The Hoare calculus only defines the meaning of programs implicitly via rules
that allow us to prove the correctness of programs with respect to specifications; in
this sense it represents an “axiomatic semantics” of programs. However, in 1971 the
American logician Dana Scott and the British computer scientist Christopher
Strachey gave (on the basis of the “domain theory” developed by Scott) recursive
functions and thus also iterative computer programs a “denotational semantics”, i.e.,
they assigned an explicit meaning to programs [171]; this allows (in the spirit of
Tarski’s work on the semantics of first-order logic) to prove the soundness and
completeness of the Hoare calculus with respect to the semantics of programs.
Another approach was a new form of “operational semantics” of programs devel-
oped in the 1980s by the British computer scientist Gordon Plotkin (“structural
operational semantics” [144]) and the French computer scientist Gilles Kahn
(“natural semantics” [85]). Here the semantics of a program is defined by a logical
deduction system whose inference rules mimic the execution steps of the program;
thus it becomes possible to formally relate the mathematical denotation of a pro-
gram to its operational interpretation. All in all, by these various approaches to
formalizing the semantics of programs, computer science has established a firm
basis for the execution and translation of computer programs (processors, inter-
preters, compilers).
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So far, the main consideration was programs that transform given inputs to
expected outputs; here it is only necessary to deal with two states, the input state
and the output state of a program. However, this does not really address systems
that repeatedly interact with their environment, such as the components of con-
current programs or computing systems which run through (potentially even infi-
nite) sequences of states, each of which represents a possible point of interaction
with other components. In 1977, the Israeli computer scientist Amir Pnueli pro-
posed to apply a logic originally introduced by the New Zealand-born logician and
philosopher Arthur Prior as a “temporal logic” to specify and reason about the
behavior of such systems [145]. Temporal logic can be considered as an extension
of first-order logic; while a first-order formula talks about a single program state, a
temporal formula talks about arbitrarily many such states. This approach has
become in the following decades the basis of numerous systems for concurrent
system modeling and verification.

In the 1970s and 1980s, also another general approach to dealing with the
problem of developing correct computer programs was widely pursued: the attempt
to abandon conventional programming languages in favor of using logic itself as a
much more “high-level” programming language; thus the gap between the speci-
fication of a problem and the implementation of a program solving this problem
would be closed. In a certain sense, Gödel’s proof of the completeness of first-order
logic shows that first-order logic itself is a Turing-complete programming language:
every computation can be expressed as the proof of a first-order formula. However,
finding this proof is overwhelmingly more costly than performing the computation
in a conventional language; therefore research was pursued on developing efficient
execution mechanisms for fragments of first-order logic. Instances of this idea are
“abstract data type languages” based on equational logic (in particular the “OBJ”
language family initiated by the American computer scientist Joseph Goguen [58]),
and “logic programming languages” based on “Horn clause” logic with applies a
special form of resolution (in particular the language “Prolog” developed by the
French computer scientists Alain Colmerauer and Philippe Roussel [38]). The
Japanese “Fifth Generation Computer” Systems initiative even pursued the devel-
opment of massively parallel computer systems based on concurrent logic pro-
gramming languages [173]. While these approaches of a “direct” use of logic did
ultimately not supplant conventional programming languages or computing sys-
tems, many principles developed in these endeavors formed the basis of the
“indirect” use of logic for programming; in particular the type systems of modern
programming languages and the theory of data types specification was substantially
influenced by abstract data type languages, as well as automated reasoning over
equational theories.

Returning to the topic of the verification of computer programs and systems, a
core problem with corresponding logical calculi (Hoare calculus, predicate trans-
formers, temporal logic) is that they crucially depend on additional information that
adequately characterizes the behavior of iterative computations by logical formulas.
These “invariants” are not inherent in the programs themselves but have to be
provided by some external source, in practice by the human programmer. If the
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invariants are not adequate, the derived verification conditions do not hold and their
proofs fail. Thus in practice program verification has to struggle with two kinds of
uncertainties: the fundamental uncertainty in the correctness of the program and the
additional uncertainty in the adequacy of the invariants; errors on both levels lead to
unprovable verification conditions. This was especially problematic in the 1970s
and 1980s, when automated reasoning systems and interactive proving assistants
were only able to provide adequate reasoning support for verification conditions
arising from simple “toy programs”; thus, as a third uncertainty, the failure of
proving a verification condition could also be due to the inadequacy of the proof
automation. For all these reasons, at that time the technique of program verification
by logical deduction was generally not considered of much practical relevance.

However, in the 1980s and 1990s with the technique of “model checking” an
alternative approach emerged [37]. Rather than investigating logical theories with
arbitrarily many interpretations (“models”) of generally infinite size, model
checking focuses on a single model of finite size and analyzes its properties. This
approach evolved in the area of hardware verification, because a digital circuit can
be described by such a finite model (the finitely many combinations of the states of
logic gates). Given a temporal logic formula that describes an expected property of
such a model, sophisticated encoding and analysis techniques are able to fully
automatically decide whether the model satisfies this property. Similar techniques
can be also applied to computer programs if we consider the domains of all program
variables as finite bit vectors and assume a finite bound for the number of execution
steps (“bounded model checking” [20]); furthermore, the domain of an infinite-state
system or program can be abstracted to a finite domain that is amenable to “ab-
straction model checking” [36]. While these approaches are typically not able to
verify the general correctness of a program, they may still detect typical pro-
gramming errors that lead to the abortion of programs (division by zero, null pointer
dereferences, out-of-bound array indices).

In the 2000s, however, interest in the more general approach of program veri-
fication by logical deduction revived. By that time, substantial advances had been
made in automated reasoning, especially fueled by the already discussed emerge of
practical SMT solvers [10] which are able to decide the satisfiability of
quantifier-free formulas in combinations of theories which are quite relevant in
computer programming, such as linear integer arithmetic or the theory of arrays.
Such “SMT solvers” have become the building blocks of many program verifica-
tion environments which combine a program reasoning calculus (such as Dijstra’s
weakest preconditions) that automatically derives verification conditions with an
automated reasoning system or interactive proving assistant that deals with the
quantification structure of these conditions; finally SMT solvers can be applied to
handle the resulting quantifier-free fragment. In this way, many interesting program
verification problems can be nowadays successfully solved.
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Logic and Software Development

After this historical excursion, we will fulfill our initial promise of discussing some
concrete examples of non-trivial software whose correctness has been actually
established by logical modeling and reasoning. Here we will consider only the
verification of software and altogether omit the topic of hardware verification.
Furthermore, we will focus entirely on the verification of the “functional” cor-
rectness of programs; there are also approaches to establish non-functional
requirements, such as “security” guarantees or “real-time” constraints. Furthermore,
we will not discuss the also important topic of the verification of “cyber-physical”
systems which combine digital controllers with physical sensors respectively
actuators and are therefore governed not only by the laws of computing but also by
the laws of nature.

Some of the following examples do indeed describe “industrial” applications,
others represent major research activities with a mid-term perspective of industrial
impact, some are listed because they may give a glimpse into the long term future of
industrial software development. While it is in a short space not possible to describe
these examples in great detail, we roughly sketch their underlying logical approa-
ches and relate these to the topics presented in this book.

Verified System Designs and Implementations Engineers at Ama-
zon Web Services (AWS) have since 2012 used the temporal logic modeling lan-
guage TLAþ (described on page 591 of this book) to model and verify critical
components of the AWS infrastructure [128]. This work started in the context of
Amazon’s S3 Simple Storage Service, when the designer of the replication and
fault-tolerance mechanisms of the DynamoDB data store component of that service
wrote a detailed logical model of these mechanisms and applied the TLC model
checker to verify its expected properties. Thus a subtle bug in the design of the
fault-tolerant algorithm was detected that could lead to losing data if a particular
sequence of failures and recovery steps would be interleaved with other processing;
this bug had previously passed unnoticed through extensive design reviews, code
reviews, and testing. By more formal modeling and verification, later two more
bugs were detected in other algorithms, both serious and subtle. After these initial
successes, TLAþ was presented to a broader engineering community at AWS who
applied it to a new fault-tolerant network algorithm (revealing two bugs and some
more bugs in extended and optimized versions of the algorithm) and another critical
algorithm (revealing that a proposed fix to a bug previously detected in testing
actually had not removed that bug); similar experiences were reported by other
engineers. Subsequent new algorithms and protocols would be routinely modeled
and verified with TLAþ before translating the designs to actual production code.

While AWS only verified system designs, Microsoft Research extended its
ambition toward verified system implementations. In its framework “IronFleet”, this
organization applied a TLA-like approach to build two complex distributed sys-
tems, IronRSL (a replicated state machine library) and IronKV (a key-value store),
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whose correctness (with respect to safety and liveness properties, see Sects. 9.5
and 9.6) was formally proved [67]. This verification proceeded in three layers and
utilized various techniques presented in this book: On the highest layer, the system
is described in Microsoft’s modeling and verification language “Dafny” as a state
machine in a logical form (similar to the transition systems described in Sect. 9.1).
On the middle layer, in Dafny a distributed state machine is defined, again in a
logical form (similar to the semantics of distributed systems described in Sect. 9.3).
On the lowest layer, imperative Dafny code is written for each component of the
distributed state machine; this code is then automatically translated to C# code and
compiled to the executable code of the system. To semantically connect the layers,
it is proved that each layer is refined by the next lower one. using an abstraction
function that relates the states of both layers (see the refinement techniques pre-
sented in Sects. 7.4 and 9.7). To verify the correctness of the protocol layer,
TLA-style property specifications are translated into corresponding Dafny predi-
cates over state sequences, i.e., temporal logic reasoning is reduced to first-order
reasoning (see the semantics of temporal operators specified in Sect. 9.4); for the
verification of the lowest layer, Hoare-style reasoning is applied (see Sect. 8.2). The
actual proofs are performed within the Dafny framework with the help of Micro-
soft’s SMT solver Z3 and human-provided annotations to guide the prover through
the quantifier instantiations.

Verified Program Components and Libraries Rather than attempting
to verify whole systems, more often efforts concentrate on modeling and verifying
individual critical program components. In modern object-oriented programming,
these components are mainly represented by “classes” that encapsulate data and the
methods operating on these data. For various object-oriented programming lan-
guages, “behavioral interface specification languages” have been developed [66]
that describe not only the syntactic interfaces of classes but their semantic behavior
via logical preconditions and postconditions of their methods and logical invariants
of their objects (the basics reasoning about the correctness of methods respectively
procedures are discussed in Chap. 8). Furthermore, to specify the external behavior
of classes without exposing their internal representation, it is usually necessary to
relate these classes to “models” (examples of such models are axiomatically
specified abstract data types as discussed in Chap. 6). In the ecosystem of the
object-oriented programming language Java, the “Java Modeling Language”
(JML) has emerged as the de facto standard behavioral interface specification
language which is supported by a variety of tools [34, 136].

A prominent representative of such a tool is “KeY”, a formal verifier for Java
that has since the late 1990s been jointly developed by the Karlsruhe Institute of
Technology, the Chalmers University of Technology, and the Technische Univer-
sität Darmstadt [3, 148]. KeY is internally based upon “dynamic logic”, a logic that
combines classical first-order logic with a program logic (the principles of program
reasoning are essentially the same as the calculi presented in Chap. 8). KeY has
been used to verify non-trivial Java code respectively detect errors in such code.
The original target was Java Card, a subset of Java for smartcards and embedded
devices. Until 2005, various real-life industrial examples of Java Card applications
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were formally specified and verified with KeY; subsequently, KeY was extended to
support many features of the full Java language. In 2015, an attempt to use KeY to
verify the sorting algorithm of the Java library (a hybrid combination of merge sort
and insertion sort called “Timsort”) revealed that this widely used Java method
actually had a bug; a corrected version could be successfully verified. In 2017, the
correctness of another sorting algorithm available in the Java library (Dual Pivot
Quicksort) was shown. In 2018, KeY was used to verify the correctness of
Hyperledger Fabric Chaincode, a protocol for smart contracts built upon blockchain
technology. In 2020, core components of EVA (the Java-based main support sys-
tem for elections in municipalities and counties in Norway) were formally specified
in JML and verified with KeY.

Beyond individual classes, an interesting target of verification is whole class
libraries such as the “container” libraries available in many programming lan-
guages; here the main challenge is to show the correctness of a concrete (optimized)
internal representation with respect to an abstract mathematical specification. For
instance, in 2015 researchers from MIT and ETH Zürich verified the full functional
correctness of Eiffel-Base2, a container library (with more than 130 public methods
and 8400 lines of code) for the object-oriented programming language Eiffel that
offers all the features customary in modern language frameworks [146]. The proof
was performed with the help of the automated deductive verifier AutoProof that
translated Eiffel code annotated with logical specifications and invariants into
Microsoft’s intermediate verification language “Boogie”; the Boogie verifier then
generated verification conditions that were ultimately discharged by the Microsoft’s
SMT solver Z3. The library specification relied heavily on mathematical model
types (essentially abstract data types as discussed in Chap. 6), the relationship
between the actual representation and the model type was provided by abstraction
functions (as described in Sect. 6.8).

Verified Compilers The verification of computer programs is usually based
on a logical model of the high-level language in which the source code of the
program is written. However, since this source code itself is not executable, it is
typically compiled into an actually executable form, a program in the machine
language of the underlying computer processor. This translation process itself is a
potential source of errors, i.e., the generated machine program might behave dif-
ferently than expected from the logical analysis of the original source code; thus it
is a worth-wile goal to verify the compiler itself.

This problem of compiler verification has been addressed by the “CompCert”
project initiated in 2007 by the French computer scientist Xavier Leroy; its main
outcome is a verified compiler for a large subset of the C99 programming language
which generates efficient code for the PowerPC, ARM, RISC-V, x86, and x86-64
processors [82, 101]. The compiler is written in the specification language of the
proof assistant Coq in purely functional style; from this Coq specification, exe-
cutable code in the functional language Caml is generated. While the Caml
implementation itself is unverified, the Coq specification ensures the correctness
of the translation of the C99 code to machine code via a sequence of transforma-
tions through various intermediate languages. For each of the source, intermediate,
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and target languages, a formal operational semantics is defined (see Sect. 7.3) and
for each transformation it is proved that the generated code preserves the semantics
by showing that each step of the original program is simulated by a sequence of
steps of the transformed program (see the techniques presented in Sect. 7.4). The
whole Coq specification consists of 42000 lines of which approximately 14 rep-
resent the compilation algorithms, 10 defined the formal semantics of the various
languages, and 76 represent the correctness proofs themselves. These proofs were
performed in Coq by a combination of user interaction to guide the proof and the
application of automated decision procedures to discharge proof obligations; the
proofs are recorded in the form of proof terms that apply a small set of logical rules;
their correctness can be independently verified by a trusted proof checker. Since
2015, the CompCert compiler has been commercially available; in 2017 it was used
to certify a highly safety-critical industrial application (a digital engine unit that
controls the backup diesel engines of nuclear power plants) according to the IEC
60880 standard for nuclear power plant control systems.

While CompCert still relies on an unverified implementation of Caml, the
“CakeML” project initiated in 2012 has produced a verified compiler that is written
itself in the language that it verifies, a subset of Standard ML [32, 94]. Thus the
compiler can compile itself and so produce a verified executable program that
provably implements the compiler itself; this “bootstrapping” process started (along
the lines of the techniques used in CompCert) with a specification of the compiler in
the language of the interactive theorem prover HOL4, which was also used to
perform all proofs. CakeML was applied to the end-to-end verification of various
Unix-like command line tools, a proof checker for the OpenTheory standard, and a
certificate checker for floating-point error bounds.

Verified Operating System Kernels The most complex program run-
ning on a computer is usually not an application executed on behalf of some user
but the “operating system”, i.e., software which extends the basic capabilities of the
computer processor by an additional set of services. Errors in operating systems
may have devastating consequences: apart from the danger of computer crashes and
data losses, they also represent security holes which malicious attackers may
exploit, not only locally, but remotely over the Internet. Since an operating system
is run on millions of computers worldwide, it pays off to invest some efforts to
ensure its correct behavior by formal verification. Indeed, this already happens
regularly, albeit in a limited form: the Microsoft Windows device driver frame-
works (WDF) incorporate a “static driver verifier” (SDV), an abstract model
checker that was developed by Thomas Ball and Sriram Rajamani at Microsoft
Research since 1999 and originally called SLAM (the most recent version SLAM2
was released in 2010) [9, 114]. This model checker verifies that a device driver
interacts correctly with the Windows operating system, e.g., by detecting illegal
function calls or actions that may cause system corruption. The technique applied
by SLAM is “counter-example guided abstraction refinement” which is based on
the principle of “symbolic execution”, essentially a form of Dijkstra’s predicate
transformer calculus applied to abstractions of program states; such an abstraction is
represented by the values of a set of predicates on the state. If an error is detected in
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the abstract model of the program, Microsoft’s SMT solver Z3 is applied to
determine whether its abstraction corresponds to an error in the real program; if not,
the model is refined by extending the predicate set. Based upon similar principles
(but with many improvements) are the C language model checkers “BLAST” [17]
and “CPAchecker” [16, 18]; these have been used to find bugs in kernel drivers
of the GNU/Linux operating system.

A much more ambitious goal was followed by the “seL4” project pursued at the
Australian NICTA Research Center under the direction of Gernot Heiser. In 2009,
this project developed a formally verified microkernel and hypervisor with com-
pletely proved functional correctness and security guarantees; in 2014 the seL4
microkernel was released as open source [87, 172]. The main domain of application
of seL4 are safety-critical systems such as industrial control systems, medical
devices, and autonomous vehicles; for instance, it was utilized in Boeing’s
Unmanned Little Bird (ULB) helicopter prototype [86]. The development of seL4
started with an abstract formal specification expressed in the language of the proof
assistant Isabelle/HOL (described on pages 141 and 191 of this book). This spec-
ification was essentially in the form of an abstract state machine (similar to the
transition systems described in Sect. 9.1) for which certain correctness properties
were proved on the basis of appropriate system invariants (see Sect. 9.5). Then a
prototype of the microkernel was developed in the purely functional programming
language Haskell; this prototype represented an executable form of the state
machine with concrete data structures implementing the abstract types of the
specification. After appropriate testing, the Haskell code was automatically trans-
lated into the language of Isabelle/HOL and it was proved that this translated form
of the executable specification “refined” the previously specified abstract machine
(see the refinement techniques presented in Sects. 7.4 and 9.1); thus the executable
specification preserved the correctness properties of the abstract specification. Then
the Haskell prototype was manually re-implemented in a subset of the C99 pro-
gramming language where the high-level functional constructions of Haskell were
now expressed in low-level imperative code. Based on a formal definition of the
semantics of C99 in Isabelle/HOL (essentially a small step operational semantics as
described in Sect. 7.3), this C99 code was automatically translated into its formal
semantics in Isabelle/HOL. It was then proved that this semantics refined the
executable specification; thus the C99 implementation of the seL4 microkernel
preserved the correctness properties of its abstract specification. The seL4 project
was one of the largest formal verification efforts so far; the various specification and
coding efforts took about 2.5 person years, while the proving efforts required about
11 person years (including the setup of the proving infrastructure and learning
curve); it was estimated that a subsequent effort would reduce the later figure to 6
person years, essentially twice as much as required by traditional quality assurance
methods which do not provide formal correctness guarantees.

From the above descriptions, one can see that it is comparatively rarely the case
that already existing (“legacy”) software is verified; generally more promising it is
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to design new software already with the goal of verifying its correctness in mind.
Often this “codesign” of a software and the proof of its correctness proceeds in
multiple layers where first an abstract design is specified and verified and then
gradually refined to actual code; if we can prove that each layer is properly “re-
fined” by the next layer, the lowest layer has inherited the correctness properties
from the highest one.

Further Reading

As for the history of logic till the 20th century, good general resources are the
Wikipedia pages on the corresponding persons and topics; more in-depth articles
can be found in the online Stanford Encyclopedia of Philosophy [174].

For surveys on techniques and tools for the automation of logical reasoning, see
for instance the various chapters of the handbook [152] edited by Robinson and
Voronkov, the chapters of the book [179] edited by Wiedijk, or Harrison’s hand-
book [65].

A historical account of the application of formal methods to computer science is
given in the article [23] by Bjørner and Havelund. For surveys on applications of
formal methods in industrial practice, see the paper [182] of Woodcock and others
and the more recent article [57] of Gleirscher and others. The VSTTE conference
series [35] provides numerous examples of actual software verifications.
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