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ABSTRACT

We design and implement from scratch a new fuzzer called S1vo that
refines multiple stages of grey-box fuzzing. First, Stvo refines data-
flow fuzzing in two ways: (a) it provides a new taint inference engine
that requires only logarithmic in the input size number of tests to
infer the dependency of all program branches on the input bytes,
and (b) it deploys a novel method for inverting branches by solving
directly and efficiently systems of inequalities. Second, our fuzzer
refines accurate tracking and detection of code coverage with simple
and easily implementable methods. Finally, S1vo refines selection
of parameters and strategies by parameterizing all stages of fuzzing
and then dynamically selecting optimal values during fuzzing. Thus
the fuzzer can easily adapt to a target program and rapidly increase
coverage. We compare our fuzzer to 11 other state-of-the-art grey-
box fuzzers on 27 popular benchmarks. Our evaluation shows that
S1vo scores the highest both in terms of code coverage and in terms
of number of found vulnerabilities.

1 INTRODUCTION

Fuzzing is the automatic generation of test inputs for programs
with the goal of finding bugs. With increasing investment of compu-
tational resources for fuzzing, tens of thousands of bugs are found
in software each year today. We view fuzzing as the problem of
maximizing coverage within a given computational budget. The
coverage of all modern fuzzers improves with the computation
budget allocated. Therefore, we can characterize the quality of a
fuzzer based on its rate of new coverage, say, the number of new
control-flow edges exercised, per CPU cycle on average.

Broadly, there are three types of fuzzers. Black-box fuzzers do
not utilize any knowledge of the program internals, and are some-
times referred to as undirected fuzzers. White-box fuzzers perform
intensive instrumentation, for example, enabling dynamic sym-
bolic execution to systematically control which program branches
to invert in each test. Grey-box fuzzers introduce low-overhead
instrumentation into the tested program to guide the search for bug-
triggering inputs. These three types of fuzzers can be combined.
For instance, recent hybrid fuzzers selectively utilize white-box
fuzzers in parallel to stand-alone grey-box fuzzers. Of the three
types of fuzzers, grey-box fuzzers have empirically shown promis-
ing cost-to-bug ratios, thanks to their low overhead techniques,
and have seen a flurry of improved strategies. For example, recent
grey-box fuzzers have introduced many new strategies to prioritize
seed selection, byte mutations, and so on during fuzzing. Each of
these strategies work well for certain target programs, while being
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relatively ineffective on others. There is no dominant strategy that
works better than all others on all programs presently.

In this paper, we present the design of a new grey-box fuzzer
called Stvo that generalizes well across many target programs. Stvo
embraces the idea that there is no one-size-fits-all strategy that
works universally well for all programs. Central to its design is a
"parameterization-and-optimization" engine to which many special-
ized strategies and their optimization parameters can be specified.
The engine dynamically selects between the specified strategies and
optimizes their parameters on-the-fly for the given target program
based on the observed coverage. The idea of treating fuzzing as
an optimization problem is not new—in fact, many prior fuzzers
employ optimization either implicitly or explicitly, but they do so
partially [4, 22, 30, 35]. Svo differs from these works conceptually
in that it treats parameterization as a first-class design principle—
all of its internal strategies are parameterized. The selection of
strategies and determination of all parameter values is done dy-
namically. We empirically show the power of embracing complete
parameterization as a design principle in grey-box fuzzers.

Sivo introduces 3 additional novel refinements for grey-box
fuzzers. First, Stvo embodies a faster approximate taint inference
engine which computes taint (or sensitivity to inputs) for program
branches during fuzzing, using number of tests that are only log-
arithmic in the input size. Such taint information is helpful for
directed exploration in the program path space, since inputs influ-
encing certain branches can be prioritized for mutation. Our pro-
posed refinement improves exponentially over a recent procedure
to calculate taint (or data-flow dependencies) during fuzzing [12].
Second, S1vo introduces a light-weight form of symbolic interval
reasoning which, unlike full-blown symbolic execution, does not
invoke any SMT / SAT solvers. Lastly, it eliminates deficiencies in
the calculation of edge coverage statistics used by common fuzzers
(e.g. AFL [37]), thereby allowing the optimization procedure to be
more effective. We show that each of these refinements improves
the rate of coverage, both individually and collectively.

We evaluate S1vo on 27 diverse real-world benchmarks com-
prising several used in recent work on fuzzing and in Google OSS-
fuzz [15]. We compare S1vo to 11 other state-of-the-art grey-box
fuzzers. We find that S1vo outperforms all fuzzers in terms of cover-
age on 25 out of the 27 benchmarks we tested. Our fuzzer provides
20% increase in coverage compared to the next best fuzzer, and 180%
increase compared to the baseline AFL. Furthermore, Stvo finds
most vulnerabilities among all fuzzers in 18 of the benchmarks, and
in 11 benchmark programs finds unique vulnerabilities. This pro-
vides evidence that S1vo generalizes well across multiple programs



and according to multiple metrics. We have released our fuzzer
publicly and open-source [25].

2 PROBLEM

Fuzzers look for inputs that trigger bugs in target programs. As the
distribution of bugs in programs is unknown, fuzzers try to increase
the chance of finding bugs by constructing inputs that lead to
maximal program code execution. The objective of fuzzers is thus to
construct inputs, called seeds, that increase the amount of executed
program code, called code coverage. The coverage is measured based
on the control-flow graph of the executed program, where nodes
correspond to basic blocks (sets of program statements) and edges
exist between sequential blocks. Some of the nodes are conditional
(e.g. correspond to if and switch statements) and have multiple
outgoing edges. Coverage increases when at some conditional node,
called a branch, the control flow takes a new edge which is not seen
in previous tests—this is called inverting or flipping a branch.

Grey-box fuzzers assess code coverage by instrumenting the
programs and profiling coverage data during the execution of the
program on the provided inputs. They maintain a pool of seeds that
increase coverage. A grey-box fuzzer selects one seed from its pool,
applies to it different operations called mutations to produce a new
seed, and then executes the program on the new seed. Those new
seeds that lead to previously unseen coverage are added to the pool.
To specify a grey-box fuzzer one needs to define its seed selection,
the types of mutations it uses, and the type of coverage it relies on.
All these fuzzing components, we call stages or subroutines of grey
boxes. We consider a few research questions related to different
stages of fuzzing.

RQ1: Impact of Complete Parameterization? Fuzzers optimize
for coverage. There is no single fuzzing strategy that is expected
to work well across all programs. So, the use of multiple strategies
and optimization seems natural. Existing fuzzers do use dynamic
strategy selection and optimize the parameter value selection. For
example, MOpt [22], AFLFast [4], and EcoFuzz [35] use optimization
techniques for input seed selection and mutations. But, often such
parameterization comes with internal constants, which have been
hand-tuned on certain programs, and it is almost never applied
universally in prior fuzzers. The first question we ask is what would
be the result of complete parameterization, i.e., if we encode all
subroutines and their built-in constants as optimization parameters.
The problem of increasing coverage is equivalent to the problem
of inverting more branches. In the initial stage of fuzzing, when the
number of not yet inverted branches is high, AFL mutation strate-
gies (such as mutation of randomly chosen bytes) are successful
and often help to invert branches in bulk. However, easily invert-
ible branches soon become exhausted, and different strategies are
required to keep the branch inversion going. One way is to resort
to targeted inversion. In targeted inversion, the fuzzer chooses a
branch and mutates input bytes that influence it. The following two
questions are about refining target inversion in grey-box fuzzing.
RQ2: Efficient Taint Inference? Several fuzzers have shown that
taint information, which identifies input bytes that influence a given
variable, is useful to targeted branch inversion [2, 6, 8, 12, 26, 34].
If we want to flip a particular branch, the input bytes on which
the branch condition variables depend should be mutated while

keeping the other bytes unchanged. The main challenge, however,
is to efficiently calculate the taint information. Classical methods
for dynamic taint-tracking incur significant instrumentation over-
heads whereas static methods have false negatives, i.e. they miss
dependencies due to imprecision. The state-of-the-art fuzzers aim
for light-weight techniques for dynamically inferring taint during
fuzzing itself. Prior works have proposed methods which require
number of tests linear in n, the size of the seed input [12]. This is
extremely inefficient for programs with large inputs. This leads to
our second question: Can we compute useful taint information but
with exponentially fewer tests?

RQ3: Efficient Constraint-based Reasoning? Taint only cap-
tures whether a change in certain values of an input byte may lead
to a change in the value of a variable. If we are willing to compute
more expressive symbolic constraints, determining the specific in-
put values which cause a program branch to flip is possible. The
challenge is that computing and solving expressive constraints, for
instance first-order SAT/SMT symbolic formulae, is computation-
ally expensive. In this work, we ask: Which symbolic constraints
can be cheap to infer and solve during grey-box fuzzing?

RQ4: Precise coverage measurement? Grey-box fuzzers use cov-
erage information as feedback to guide input generation. AFL, and
almost all other fuzzers building on it, use control-flow edge counts
as a common metric. Since there can be many control-flow edges
in the program, space-efficient data structures for storing runtime
coverage data are important. Recent works have pointed out AFL’s
hash-based coverage map can result in collisions [13], which has
an unpredictable impact on the resulting optimization. How do
we compute compressed edge counts with high precision using
standard compilers for instrumentation?

3 OVERVIEW OF SIVO

Grey-box fuzzers instrument the target program to gather runtime
profiling data, which in turn guides their seed generation strategies.
The objective of S1vo is to generate seeds that increase code cover-
age by using better and more of the profiling data. Stvo addresses
the four research questions with four refinements.

Parametrize-optimize approach (RQ1). Sivo builds on the idea
of complete parameterization of all fuzzing subroutines and strate-
gies, i.e. none of the internal parameters are hard-coded. Stvo selects
strategies and parameter values dynamically based on the observed
coverage statistics, using a standard optimization algorithm. Such
complete parameterization and optimization inherently makes Stvo
adaptable to the target program and more general, since specialized
strategies that work best for the program are prioritized. To answer
RQ1, we empirically show in our evaluation that this design prin-
ciple individually helps S1vo outperform other evaluated fuzzers
across multiple target programs.

Fast Approximate Taint Inference (RQ2). We devise a fast and
approximate taint inference engine TaintFAST based on probabilis-
tic group testing [10]. Instead of testing individually for each input
byte, TaintFAST tests for carefully chosen groups of bytes and then
combines the results of all tests to infer the taint for each individual
byte. This helps to reduce the test complexity of taint inference from
O(n) to O(log n) executions of the program, where n is the number



of input bytes. Thus the fuzzer can infer useful taint dependency
even for very large inputs using TaintFAST.

Symbolic Interval Constraints (RQ3). We propose inferring sym-
bolic interval constraints that capture the relationship between in-
puts and variables used in branch conditions only. Instead of deduc-
tively analyzing the semantics of executed instructions, we take an

optimistic approach and infer these constraints from the observed

values of the inputs and branch conditional variables. The value-
based inference is computationally cheap and tailored for a common

case where values of the variables are direct copies of the inputs

and when branches have comparison operations (=, #, <, <, >, >).
We show that such a constraint system can be solved efficiently as

well without the use of SAT / SMT solvers.

Compressed and Precise Edge Count Recording (RQ4). We
tackle both the collision problem and the compressed edge count
problem in tracking coverage efficiently during grey-box fuzzing.
For the former, we show a simple strategy based on using multiple
basic block labels (rather than only one as in AFL) and reduce
or entirely eliminate the collisions. For the later, to improve the
prospect of storing important edge counts we propose temporary
coverage flushing (i.e. resetting the coverage to zero). Although
this may appear to be a minor refinement in grey-box fuzzing, we
find that it has a noticeable impact experimentally.

4 DESIGN

We present the details of our four refinements in Sections 4.1-4.4
and then show the complete design of Srvo in Section 4.5.

4.1 The Complete Parameterization Paradigm

The S1vo grey-box fuzzer aims to increase the code coverage in the
fuzzed programs. Two points are central to this goal. First, fuzzed
programs come in different flavors, hence the fuzzer should be
flexible and adaptive. We tackle the first point with parametriza-
tion, i.e. by expanding the choice of available fuzzer subroutines.
Second, a fuzzer has a few stages (i.e., selection of seeds, choice of
mutations and their parameters, etc), and each one of them can be
optimized. To address this point, we apply a complete optimization
of all available parameters.

Parametrization. The more fuzzing subroutines are available, the
higher the chance that some of them may be optimal for fuzzing the
targeted program. Thus it is useful to expand the set of available
fuzzing subroutines. To do so, we:

o Add many fuzzing subroutines. For instance, in addition to
the AFL-style vanilla mutations that do not require any
dependency information (e.g. mutate random bytes), we
implement data-flow strategies that utilize input depen-
dency of program branches (e.g, mutation of dependent
bytes). Besides adding new mutations, we also add more
seed prioritization methods that determine how to sample
a seed from the pool.

o Introduce variations in each subroutines. Often this can be
done by varying internal hard-coded parameters in sub-
routines. For instance, in the mutation of random bytes,
instead of changing a single byte, Stvo can change 1, 2, 4,
8, 16, 32, or 64 bytes at once. The exact number of bytes

is considered an input parameter; it can take one of the
above 7 values (and the choice of value potentially can be
optimized). Not all variations in subroutines are effected
with changing integer parameters. For instance, the seed
selection criterion is based on speed, number of repetitions,
length of seed, and so on. These variations are enumerated
and serve as an input parameter to the seed criterion. All
such parameters to subroutines are optimized per program.

As aresult, across the whole fuzzer, there are 17 different fuzzing
subroutines with 68 variations. In comparison, the baseline AFL

has around 15 different subroutines with around 45 variations?.

Optimization. The parametrization increases the chance that po-
tentially optimal subroutines are chosen for each program. The
next step is to select which subroutines are turned on for a given
program. It is critical to understand that we are not dealing with
a single optimization problem. Fuzzing is a continuous process,
composed of iterations that select a seed and a mutation, apply
the mutation to the seed, and check on coverage increase. Thus,
in each iteration we need to optimize the selection of fuzzing sub-
routines several times—for example, the used seed criterion and
class, the mutation strategy, (potentially a number of) mutations
sub-strategies, the inputs to the mutation strategy, and so on. For
this purpose, we use multi armed bandits (MAB), a simple rein-
forcement learning algorithm. Given a set of choices, each choice
providing a certain reward when selected, MAB helps to select the
choices such that their accumulative rewards are maximized. The
rewards are unknown and stochastic, and the selection process is
continuous. Note, after MAB selects a choice, it needs to receive
as a feedback the obtained reward to update its choice selection
strategy.

Reducing the selection of fuzzing subroutines to MAB problem
is straightforward. First, note that we consider each selection as
an independent MAB problem, for instance, the optimal number
of random bytes to mutate is one MAB problem. Our objective
is to maximize the coverage, hence it is natural to use the addi-
tional coverage acquired from executing the choice as the MAB
reward. However, this metric alone may not be accurate because
some choices incur higher computational costs. Therefore, we use
the additional coverage per time unit as the reward. In the conven-
tional MAB, the distributions of rewards are stationary with some
unknown mean. In our case, as the fuzzer progresses, it requires
more computational effort to reach the remaining unexplored code
and increase coverage. In other words, the rewards for the selection
choices monotonically decrease over time. Therefore, we model our
problem as MAB with non-stationary rewards and use discounting
to solve it [19]. For more details on application of MAB in S1vo, we
refer the reader to Algorithm 1 and Section 4.5.

Besides optimizing for selections, during fuzzing we use genetic
algorithms (GA) to optimize any black-box objective functions that
arise during inversion of branches. More precisely, we reduce parts
of the inversion problem to a black-box optimization and apply GA
to speed-up the inversion. In vanilla type fuzzing, we use GA to
search for optimal positions of a fixed number of bytes to mutate.

!Despite having comparable numbers, Stvo and AFL use mostly different mutations
and thus subroutines.



For this purpose, as an objective function we use the number of
branches that are affected (i.e. change some of their variables) when
selected bytes are mutated. As the number of affected branches
increases, so does the chance of inverting one of them by mutating
the found optimal position bytes. In data-flow fuzzing, with GA
we invert non-discriminatory targeted branches. In this case, as an
objective function we use the distance of the resulting branch value
to the value that corresponds to branch inversion. For instance, for
the branch " if(x == 5) ", the objective function is |x — 5. When the
distances reaches zero, i.e. the minimum of the objective function
is reached, the branch is inverted.

4.2 Fast Approximate Taint Inference

/input is uint8_t x[1024]
x[100] + 10;
(uint32_t *)x[200];
(uint32_t *)x[236];
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Figure 1: Branches with dependent input bytes.

To infer dependency of branches on input bytes, earlier fuzzers
relied on the truth value of branch conditions: if changing the value
of a particular byte changes the truth value of a branch, then it is
inferred that the branch depends on this byte. For instance, in Fig. 1,
to correctly infer the dependency of the branch at line 6, the engine
first needs to select for mutation the input byte x[100] and then to
change its value from any other than 40 to 40. GreyOne [12] pro-
posed so-called fuzzing-driven taint inference FTI by switching the
focus from the truth value of a branch to the value of the variables
used in the branch. For instance, FTI determines the dependency of
branch at line 6 on x[100] as soon as this input bytes is mutated,
because this will lead to a change of the value of the variable A that
is used in the branch. FTT is sound (no over-taint) and incomplete
(some under-taint). Exact reasoning with provable soundness or
completeness is not a direct concern in fuzzers, since they only use
it to generate tests which are concretely run to exhibit bugs.

The prime issue with FTI, which improves significantly over
many other prior data-flow based engines, is efficiency. The taint
is inferred by mutating bytes one-by-one in FTI. Thus, to infer the
full dependency on all input bytes, the engine will require as many
executions as the number of bytes. A seed may have tens of KBs,
and there may be thousands of seeds, therefore the full inference
may quickly become a major bottleneck in the fuzzer. On the other
hand, precise or improved branch dependency may not significantly
boost fuzzer bug-finding performance, thus long inference time
may be unjustified. Hence, it is critical to reduce the inference time.
The TaintFAST engine. We use probabilistic group testing [10] to
reduce the required number of test executions for potential full in-
ference from O(n) to O(log n), where n is the number of input bytes.

Instead of mutating each byte individually followed by program
execution (and subsequent FTI check for each branch condition if
any of its variables has changed), we simultaneously mutate mul-
tiple bytes, and then execute the program with the FTI check. We
choose the mutation positions non-adaptively, according only to
the value of n. This assures that dependency for many branches
can be processed simultaneously.

Consider the code fragment at Figure 1 (here n = 1024). We begin
the inference by constructing 1024-bit binary vectors V;, where each
bit corresponds to one of the input bytes. A bit at position j is set
iff the input byte j is mutated (i.e. assigned a value other than the
value that has in the seed). Once V; is built, we execute the program
on the new input (that corresponds to V;) and for each branch check
if any of its variables changed value (in comparison to the values
produced during the execution of the original seed). If so, we can
conclude that the branch depends on some of the mutated bytes
determined by V;. Note, in all prior works, the vectors V; had a single
set bit (only one mutated byte). As such, the inference is immediate,
but slow. On the other hand, we use vectors with % = 512 set bits
and select 2 - log, 1024 = 20 such vectors. Vectors V5., V2. ;41 have
repeatedly 2/ set bits, followed by 2/ unset bits, but with different
starts. For instances, the partial values of the first 5 vectors V; are
given below on the right.

Vo =1010101010101010101010...
V1 =0101010101010101010101...
V5 =1100110011001100110011...
V3 =0011001100110011001100...
V4 =1111000011110000111100...

We execute the resulting 20 inputs and for each branch build 20-bit
binary vector Y. The bit i in Y is set if any of the branch values
changed after executing the input that corresponds to V;. For in-
stance, for the branch at line 6 of Figure 1, Y = 10100110100101101010.
Finally, we decode Y to infer the dependency. To do so, we initialize
1024-bit vector D that will hold the dependency of the branch on
input bytes—bit i is set if the branch depends on the input byte i.
We set all bits of D, i.e. we start by guessing full dependency on
all inputs. Then we remove the wrong guesses according to Y. For
each unset bit j in Y (i.e. the branch value did not change when we
mutated bytes V;), we unset all bits in D that are set in V; (i.e. the
branch does not depend on any of the mutated bytes V;).

After processing all unset bits of Y, the vector D will have set bits
that correspond to potential dependent input bytes. Theoretically,
there may be under and over-taint, according to the following
information-theoretic argument: Y has 20 bits of entropy and thus
it can encode at most 220 dependencies, whereas a branch may
depend on any of the 1024 input bytes and thus it can have 21024
different dependencies. In practice, however, it is reasonable to
assume that most of the branches depend only on a few input bytes?,
and in such a case the inference is more accurate. For branches that
depend on a single byte, the correctness of the inference follows
immediately from group testing theory>. For instance, the branch

2C-type branches that contain multiple variables connected with AND/OR statements,
during compilation are split into subsequent independent branches. Our inference is
applied at assembly level, thus most of the branches depend only on a few variables.
3The matrix with rows Vp, V4, . . . is 1-disjunct and thus it can detect 1 dependency.



at line 6 of Fig 1 will have correctly inferred dependency only on
byte x[100]. For branches that depend on a few bytes, we can
reduce (or entirely prevent) over-taint by repeating the original
procedure while permuting the vectors V;. In such a case, each
repeated inference will suggest different candidates, except the
truly dependent bytes that will be suggested by all procedures.
These input bytes then can be detected by taking intersection of all
the suggested candidates. For instance, for the branch at line 8 (that
actually depends on 8 bytes), a single execution of the procedure
will return 16 byte candidates. By repeating once the procedure
with randomly permuted positions of V;, with high probability only
the 8 actual candidates will remain.

The above inference procedure makes the implicit assumption
that same branches are observed across different executions. Other-
wise, if a branch is not observed during some of the executions, then
the corresponding bit in Y will be undefined, thus no dependency
information about the branch will be inferred from that execution.
For some branches the assumption always holds (e.g. for branches
at lines 6,8 in Figure 1). For other branches, the assumption holds
only with some probability that depends on their branch condi-
tions. For instance, the branch at line 12 may not be seen if the
branch at line 10 is inverted, thus any of the 20 bits of Y may be

undefined with a probability of 2%. In general, for any branch

32 -
that lies below some preceding brgnches, the probability that bits
in Y will be defined is equivalent to the probability that none of
the above branches will inverted by the mutations*. As a rule of
thumb, the deeper the branch and the easier to invert the preceding
branches are, the harder will be to infer the correct dependency.
To infer deeper branches, we introduce a modification based on
forced execution. We instrument the code so the executions at each
branch will take a predefined control-flow edge, rather than decide
on the edge according to the value of the branch condition. This
guarantees that the target branches seen during the execution of
the original seed file (used as a baseline for mutation), will be seen
at executions of all subsequent inputs produced by mutating the
original seed. We perform forced execution dynamically, with the
same statically instrumented program, working in two modes. In
the first mode, the program is executed normally, and a trace of all
branches and their condition values is stored. In the second mode,
during execution as the branches emerge, their condition values
are changed to the stored values, thus the execution takes the same
trace as before. No other variables aside from the condition values
are changed. Note that our procedure aims to infer taint dependen-
cies fast and optimistically; we refer readers to Section 4.7 for a
discussion on these aspects.

4.3 Solving System of Intervals

It was noted in RedQueen [2], that when branches depend trivially
on input bytes (so-called direct copies of bytes) and the branch con-
dition is in the form of equality (either = or #), then such branches
can be solved trivially. For instance, the branch at line 1 of Figure ??,
depends trivially on the byte x[@] and its condition can be satisfied
by assigning x[0] = 5 (or inverted by assigning x[0] # 5).

4This holds even in the case of FTI. However, the probabilities there are higher because
there is a single mutated byte.

1if ( x[0] == 5 )

3 1FC X011 < 100 )
gif(”x[z] > 10 ) (
T it < 200 )
8

9 if( foo(x[2]) == @)

Figure 2: Branches and systems of intervals.

Thus it is easy to satisfy or invert such branches, as long as the
dependency is correctly inferred and the branch condition is equal-
ity. Similar reasoning, however, can be applied when the condition
is in the form of inequality over integers. Consider the branch at
line 3 of Figure ??, that depends trivially on the input byte x[1].
From the type of inequality (which can be obtained from the instruc-
tion code of the branch), and the correct dependency on the input
byte x[1] and the constant 100, we can deduce the branch form
x[1] < 100, and then either satisfy it resulting in x[1] € [0,99], or
invert it, resulting in x[1] € [100, 255]. In short, we can represent
the solution in the form of integer intervals for that particular input
byte.

Often to satisfy/invert a branch we need to take into account not
one, but several conditions that correspond to some of the branches
that have common variables with the target branch. For instance, to
satisfy the branch at line 7, we have two inequalities and thus two
intervals: x[2] € [0, 200] corresponding to target branch at line 7
and x[2] € [11, 255] corresponding to branch at line 5. Both share
the same input variable x[2] with the target branch. A solution
(x[2] € [11,200]) exists because the intersection of the intervals is
not empty.

In general, Stvo builds a system of such constraints starting
from the target branch, by adding gradually preceding branches
that have common input variables with the target branch. Each
branch (in)equality is solved independently immediately, resulting
in one or two intervals (two intervals only when solving x # value,
ie. x € [0,value—1]U [value+1, maxvalue]), and then intersection
is found with the previous set of intervals corresponding to those
particular input bytes. Keeping intervals sorted assures that the
intersection will be found fast. Also, each individual intersection
can increase the number of intervals at most by 4. Thus the whole
procedure is linear in the number of branches along the executed
path. As a result, we can efficiently solve these type of constraints
and, thus, satisfy or invert branches that depend trivially on input
bytes.

Even when some of the preceding branches do not depend triv-
ially on input bytes, solving the constraints for the remaining
branches gives an advantage in inverting the target branch. In
such a case, we repeatedly sample solutions from the solved con-
straints and expect that the non-inverted branch constraints will
be satisfied by chance. As sampling from the system requires con-
stant time (after solving it), the complexity of branch inversion is
reduced only to that of satisfying non-trivially dependent branches.
For instance, to reach line 10, we first solve the lines 5, 7 to obtain




x[2] € [11,200], and then keep sampling x[2] from this interval
and hope to satisfy the branch at line 9 by chance.

4.4 More Accurate Coverage

AFL uses a simple and an elegant method to record the edges and
their counts by using an array showmap. First, it instruments all
basic blocks B; of a program by assigning them a unique random
label L;. Then, during the execution of the program on a seed, as any
two adjacent basic blocks B}, By, are processed, it computes a hash of
the edge (Bj, Bx) as E = (Lj < 1)® Ly and performs showmap[E]++.
New coverage is observed if the value |log, showmap[E]] of a non-
zero entry showmap[E] has not been seen before. If so, AFL updates
its coverage information to include the new value, which we will
refer to as the logarithmic count.

Prevent colliding edge hashes. CollAFL [13] points out that
when the number of edges is high, their hashes will start to collide
due to birthday paradox, and showmap will not be able to signal
all distinct edges. Therefore, a fuzzer will fail to detect some of the
coverage. We propose a simple solution to the collision problem.
Instead of assigning only one label L; to each basic block B;, we
assign several labels Ll.l, ..., L, but use only one of them during
an execution. The index of the used label is switched occasionally
for all blocks simultaneously. The switch assures that with a high
chance, each edge will not collide with any other edge at least for
some of the indices. The number of labels required to guarantee
that all edges will be unique with a high chance at some switch
depends on the number of edges. Due to space restrictions we omit
the combinatorial analysis. We provide a combinatorial analysis
in the Appendix A on this number. In our actual implementation
the size of the showmap is 2'° and we use m = 4 labels per basic
block — on average this allows around 8,000 edges to be mapped
uniquely (and even 20,000 with less than 100 collisions), which is
sufficiently high quantity for most of the programs considered in
our experiments. By default, the index is switched once every 20
minutes.

Improve compressed edge counts. The logarithmic count helps
to reduce storing all possible edge counts, but it may also implicitly
hinder achieving better coverage. This is because certain important
count statistics that have the same logarithmic count as previously
observed during fuzzing might be discarded.

1 count = 0;
2 for(i=0; i< x; i++)
3 count++;

4

51if( 13 == count && C1 )

6 F1();

7 else if( 14 == count && C2 )
8 F2();

Figure 3: The effects of AFL’s edge count compression.

For instance, if the for loop in Figure 3 gets executed 13 times,
then AFL will detect this as a new logarithmic count of | log, 13] = 3,
it will update the coverage, save the seed in the pool, and later when
processing this seed, the code block F1() will be executed as soon
as the condition C1 holds. On the other hand, afterwards if the

for loop gets executed 14 times, then the same logarithmic count
[log, 14] = 3 is achieved, thus the new seed will not be stored,
therefore the chance of executing the code block F2() is much lower.
In other words, to reach F2(), simultaneously the for loop needs
to be executed 14 times and C2 condition needs to hold. Hence,
F1() and F2() cannot be reached with the same ease despite having
similar conditional dependency, only because of AFL’s logarithmic
count mechanism.

To avoid this issue, we propose flushing the coverage informa-
tion periodically. More precisely, periodically we store the current
coverage information, then reset it to zero, and during some time
generate new coverage from scratch. After exhausting the time
budget on new coverage, we keep only the seeds that increase the
stored coverage, and continue the fuzzing with the accumulated
coverage.

4.5 Design of the Whole Fuzzer S1vo

Stvo implements all the refinements mentioned so far. It uses the
standard grey-box approach of processing seeds iteratively. In each
iteration, it selects a seed, mutates it to obtain new seeds, and stores
those that increase coverage.

Algorithm 1: OnelterationSivo ( Seeds, Coverage )

// choose seed class with MAB
// choose seed criterion

use_class «— MAB_select( Seed_class )

use_crit «— MAB_select( Seed_criterion )

seed «— Sample( use_class , use_crit, Seeds )  // sample seed from the pool

use_strategy «— MAB_select( Fuzzer_strategy ) // choose Data-flow or
Vanilla

if use_strategy == Data-flow then

L Taint_inference(seed) // if Data-flow then infer dependency

tot_cov_incr «— 0

while time budget left do

use_mut <— MAB_select( strategy )
use_mut_params < MAB_select( use_mut )

// choose one mutation
// choose its params
new_seed «— Mutate( seed, use_mut, use_mut_params ) // apply
mutation
new_coverage < ProduceCoverage(new_seed)
cov_increase «— || new_coverage \ Coverage ||
if cov_increase > 0 then
Seeds « Seeds | new_seed // add new seed to the pool
L Coverage « Coverage | J new_coverage // update coverage

// new coverage?

// feedback cov/sec to MAB to update the effectiveness of the chosen
mutation and its params
MAB_update( [use_mut , use_mut_params], cov_increase, while_time )
tot_cov_incr += cov_increase

// feedback total cov/sec to MAB to update the effectiveness of the chosen
seed class/criterion and fuzzing strategy
MAB_update( [use_class,use_crit,use_strategy] , tot_cov_incr , iter_time)

In S1vo (refer to the pseudo-code in Algorithm 1), the seed se-
lection is optimized: first with MAB the currently best class and
best criterion are selected, and then a seed is sampled from the pool
according to the chosen class and criterion. Afterwards, the fuzzer
with the help of MAB decides on the currently optimal fuzzing strat-
egy, either vanilla (apply mutations that do not require dependency
information) or data-flow (require dependency). If latter, Stvo first
infers the dependency (as a combination of FTT and TaintFAST).
Then, according to the chosen fuzzing strategy the fuzzer again
uses MAB to select one optimal mutation strategy. The vanilla



Procedure/Parameters

Table 1: Fuzzer procedures and their variations

Variation(s)

Description

Seed_class

SC-fast-edges
SC-fast-multiple-edges
SC-all

consider only most efficient seeds for each edge
include as well the fastest for each multiplicative edge
consider all seeds

Seed_criterion Count choose the least sampled seed
Speed sample according to number of executions per second
Length sample according to number of bytes
Crash consider only seeds that lead to crashes
Cov consider only seeds that increase edge count
Random sample randomly
Fuzzer_strategy Vanilla does not require taint inference
Data-flow requires taint inference
Vanilla Mutate-rand-bytes mutate random bytes
Copy-remove copy and remove byte sequences of current seed
Combiner combine multiple seeds at different positions
Data-flow Mutate-bytes mutate dependent bytes

Invert-branches
Invert-branches-GA
System-solver

invert target branches by mutating their dependent bytes
invert target branches with GA by minimizing objective function
invert branches with system solver

Mingler reuse previously found bytes from other seeds to this seed
Mutate-rand-bytes/Type MRB-GA use GA to determine positions of mutated bytes

MRB-simple mutate randomly chosen bytes
MRB-GA 1,2,4,8,16,32,64 number of mutated bytes
MRB-simple True,False bias selection of bytes according to their previous use
Copy-remove/Number 1,2,4,8,16,32,64 the number of copy/remove operations
Copy-remove/Mode CR-rand add random bytes/remove

CR-real copy real bytes/remove

CR-learn learn and use byte divisors seen previously

CR-prev copy/remove at positions previously successfull
Combiner/Number 2,3,4,5,6,7,8 the number of different seeds to combine

Combiner/Select

Speed/Inverse-speed
Length/Inverse-length
Select-random

Prefer seeds that are faster/slower to execute
Prefer seeds that are shorter/longer
Sample randomly

Combiner/Mode CM-random combine at random positions
CM-learn learn and use byte divisors to select position
Mutate-bytes/Number 1,2,4,8,16 number of dependent bytes to mutate at once
Mutate-bytes/Type True,False bias selection of bytes according to their previous use
System-solver/Type ST-all add at once all branches dependent on the target inversion branch
ST-one add gradually one by one the unsolved branches
Mingler/Number 1,2,3,4,5,6 number of previous byte solutions to apply at once

fuzzing strategy allows a choice of 3 different mutations: 1) muta-
tion of random bytes, 2) copy/remove of byte sequence of current
seed, and 3) concatenation of different seeds. On the other hand,
data-flow fuzzing strategy consists of 5 mutations: 1) mutation of
dependent bytes, 2) branch inversion with system solver, 3)branch
inversion by minimizing objective function, 4) branch inversion
by mutation of their dependent bytes, and 5) reusing previously
found bytes from other seeds to current seed. Most mutations have
sub-versions or parameters which are also chosen with MAB. For
instance, mutation of random bytes supports two versions: it can
use heuristics to determine the positions of the bytes (choice 1),
or use random byte positions (choice 2). If choice 1, then it needs

to select the number of mutated bytes (1, 2, 4, 8, 16, 32, or 64). Both
of these selections are determined with MAB. Each mutation is
applied to the chosen seed to obtain a new seed, and then the seed
is executed. The coverage update information is fed back to the
MAB, thus assuring that MAB can further optimize the selections.
In Table 1 we give a list of selections available at different steps of
the fuzzer.

S1vo runs the iterations and occasionally executes the code cover-
age refinements - refer to Algorithm 2. To understand the additional
parts introduced by the refinements of Sivo, in Appendix B we
provide a pseudo-code of a generic grey-box fuzzer.



Algorithm 2: Stvo

Seeds «— Initial_seeds

Coverage « ProduceCoverage(Seeds)

while true do

OnelterationSivo ( Seeds, Coverage );

if time_to_switch_index then
SwitchIndexInCoverage()

L Coverage « ProduceCoverage( Seeds )

if time_to_start_flush then
Old_coverage, Old_seeds «— Coverage, Seeds
Seeds «— Initial_seeds
Coverage < ProduceCoverage( Seeds )

if time_to_stop_flush then
New_coverage «— Coverage \ Old_coverage
Coverage « Coverage | J Old_covarege
Seeds «— Old_seeds | GetSeedsThatProduceCov(Seeds,

New_coverage)

4.6 Implementation

We implement S1vo in C++ with around 20,000 lines of code. All of
the code is written from scratch, with the exception of around 500
lines related to so-called fork server>, which is based on AFL’s code.
S1vo uses static instrumentation to obtain the data about the cover-
age and branches of the programs. More precisely, three of the four
refinements require additional instrumentation of programs to im-
plement their functionality: the accurate code coverage refinement
requires lighter instrumentation, whereas TaintFAST and system
solver refinements require heavier instrumentation. For this pur-
pose, we compile a program source code with two different LLVM
passes: one that utilizes relatively lightweight instrumentation used
only for code coverage, and one with heavier instrumentation that
provides information about the branches as well. The compilation
is done by a modified version of Clang (in a fashion similar to AFL’s
afl-clang++). The overheads introduced by the instrumentation are
given in Appendix C.

4.7 Limitations of Sivo

The taint engine TaintFAST relies on forced execution, which by
definition is not sound, thus the inference is approximate. It means,
the engine may introduce false positives/negatives, i.e. it may sug-
gest dependencies of branches on incorrect input bytes. This, how-
ever, is not a real concern in fuzzing because later it leads solely to
mutating incorrect input bytes, hence potentially it has only impact
on efficiency®, and does not affect the correctness of the fuzzer in
any other way. The accuracy of the engine varies between programs.
In certain cases (of particular traces), the forced execution crashes
the program, and thus the inference has lower accuracy (because
the corresponding Y bit is undefined). In our actual implementation
of TaintFAST, we prevent some of the crashes by detecting with
binary search sequences of input bytes that lead to crashes, and
later eliminate them from consideration.

The refinement based on system of intervals is neither sound
nor complete. Problems may appear due to incorrect inference of

5The fork server helps to speed-up execution of programs. It runs once the initialization
of system resources (required by execve), stores the state, and all subsequent executions
of the program are ran starting from the stored state.

%The impact can be reduced with various methods, e.g., the MAB-based optimization
presented in this paper.

the intervals as well as due to the fact that the system describes
only a partial dependency of the target branch on input bytes, i.e.
includes only branches that can be presented in the form of integer
intervals. Therefore, one may not assume that all of the branches
can be properly inverted using this refinement.

The remaining two refinements do not have apparent limitations,
aside from affecting the efficiency in some cases.

5 EVALUATION

We show that S1vo performs well on multiple benchmarks according
to the standard fuzzing metrics such as code coverage (Section 5.2)
and found vulnerabilities (Section 5.3). We evaluate the performance
of each refinement in Section 5.4.

5.1 Experimental setup

Experiment environment. For all experiments we use the same
box with Ubuntu Desktop 16.04, two Intel Xeon E5-2680v2 CPUs
@2.80GHz with 40 cores, 64GB DDR3 RAM @1866MHz and SSD
storage. All fuzzers are tested on the same programs, provided with
only one initial seed, randomly selected from samples available
on the internet. To keep experiments computationally reasonable,
while still providing a fair comparison of all considered fuzzers, we
performed a two-round tournament-like assessment. In the first
round, all fuzzers had been appraised over the course of 12 hours.
This interval is chosen based on Google’s FuzzBench periodical
reports, which shows that 12 hours is sufficient to decide the ranking
of the fuzzers usually [15]. The top 3 fuzzers from the first round that
perform the best on average over all evaluated programs progress
to the second round, in which they are run for 48 hours.

Baseline fuzzers. We evaluate S1vo in relation to 11 notable grey-
box fuzzers. In addition to AFL [37], we take the extended and
improved AFL family: AFLFast [4], FairFuzz [20], LAF-Intel [1],
MOpt [22] and EcoFuzz [35]. Moreover, we include Angora [6] for
its unique mutation techniques, Ankou [23] for its fitness function,
and a few fuzzers that perform well on Google’s OSS-Fuzz [15]
platform such as Honggfuzz [32], AFL++ and AFL++_mmopt [11]
(version 2.67c). To prevent unfair comparison, we omit from our
experiments two categories of fuzzers. First, we exclude popular
grey-box fuzzers that do not have an officially available imple-
mentation, such as CollAFL [13] and GreyOne [12]. We did not
implement these fuzzers from scratch due to the complexity of such
a task (e.g. the authors of GreyOne report 20K LoC implementa-
tion). Second, we exclude hybrid fuzzers because their approach
is basically orthogonal to traditional grey-box fuzzers and thus
they can be combined. For instance, the well-known hybrid fuzzer
QSYM [36] inverts branches with symbolic execution and is built
on top of AFL. With minor modification, QSYM could be built on
top of Sivo instead of AFL, and this hybrid may lead to an even
better performance.

Programs. Our choice of programs was influenced by multiple fac-
tors, such as implementation robustness, diversity of functionality,
and previous analysis in other works. Our main goal of the evalua-
tion is comparison of fuzzers according to a few criteria (including
discovery of bugs), thus we use versions of programs that have
already been tested in prior fuzzer evaluations on similar criteria.
Due to limited resources, we did not run the fuzzers on the latest



versions to look for actual CVEs. Our final selection consists of 27
programs including: binutils (e.g.: readelf, nm), parsers and parser
generators (e.g.: bson_to_json@libbson, bison), a wide variety of
analysis tools (e.g.: tcpdump, exiv2, cflow, sndfile-info@libsndfile),
image processors (e.g.: img2txt), assemblers and compilers (e.g.:
nasm, tic@libncurses), compression tools (e.g.: djpeg, bsdtar), the
LAVA-M dataset [9], etc. A complete list of the programs, their
version under test, and their input parameters is available in Ap-
pendix D.

Efficiency metrics. We use two metrics to compare the efficiency
of fuzzers: edge coverage and the number of found vulnerabilities.
To determine the coverage, we use the logarithmic edge count
because this number is the objective in the fuzzing routines of
the AFL family of fuzzers 7. For completeness, in Appendix E we
provide as well a simple edge count. The coverage data may be
inaccurate due to colliding edges when measured as in AFL. To
rectify this, we instrument the target programs to store the full
execution traces and compute precise coverage data. In Appendix E
we also show the imprecise coverage, measured as in AFL.

We measure the total number of distinct vulnerabilities found
by each fuzzer. For this purpose, first we confirm the reported
vulnerabilities, i.e. we take all seeds generated by a fuzzer and
keep those that trigger a crash by any of the sanitizers ASAN [29],
UBSAN [27] and Valgrind [24].8 Then, for each kept seed, we record
the source line in the program that triggers a crash (according to
the appropriate sanitizer). Finally, we count the number of found
distinct source lines for the crash point.

Remark. Some fuzzers [12, 13] report so-called path coverage mea-
sured as the number of produced seeds. We find this metric rather
inaccurate. For instance, a seed that inverts n branches often is
equivalent to n seeds that invert a single branch. However, the
above path coverage will consider the former as a single path, while
the latter as n paths (thus a fuzzer can easily manipulate this met-
ric). In addition, the instability of this metric can be manifested by
suppling to AFL all seeds found previously by AFL — often, the AFL
will keep much smaller number of seeds (in some cases only 50% of
the supplied seeds), because the path coverage metric is dependent
on the order of processing the seeds. Therefore, seed count should
not be considered a reliable, standalone metric.

5.2 Coverage

We run all 12 fuzzers for 12 hours each, and record the coverage dis-
covered during the fuzzing. The results are reported in Figure 4. We
can see that at the end, S1vo provides the best coverage for 25 out of
the 27 programs. On average S1vo produces 11.8% higher coverage
than the next best fuzzer when analyzed individually for each pro-
gram. In direct comparison to fuzzers, S1vo outperforms the next
best fuzzer MOpt by 20.2%, and EcoFuzz by 30.6%, and outperforms
the baseline AFL by producing 180% increase in coverage. For most
of the programs, our fuzzer very soon establishes as the top fuzzer.
In fact, the time frame needed to create advantage is so short, that

"In AFL, this is the number of set bits in the accumulative array showmap.

8 ASAN and UBSAN detect more types of vulnerabilities than Valgrind, however,
they also require additional instrumentation during the compilation of the programs.
We use ASAN and UBSAN to confirm the vulnerabilities in such programs. For the
programs that fail to compile with the additional instrumentation, we use Valgrind as
an alternative. This criterion was used for all fuzzers.
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Figure 4: Coverage for all fuzzers during 12 hours of fuzzing
(in 5 min increments).



the improved coverage refinement of Section 4.4 has still not kicked
in, whereas the MAB optimization of Section 4.1 had barely any
time to feed enough data back to the MABs. Thus, arguably the
early advantage of S1vo is achieved due to the parametrize para-
digm, as well as the remaining two refinements (TaintFAST and
the system solver method).

We test the top three fuzzers Stvo, MOpt, and EcoFuzz on 48-
hour runs and report the obtained coverage in Figure 5. We see that
Svo is the top fuzzer for 24 of the programs, with 13.4% coverage
increase on average with respect to the next best fuzzer for each
program, and 15.7%, and 28.1% with respect to MOpt and EcoFuzz.
In comparison to the 12-hour runs, the other two fuzzers managed
to reduce slightly the coverage gap, but this is expected (given
sufficient time all fuzzers will converge). However, the gap is still
significant and S1vo provides consistently better coverage.

5.3 Vulnerabilities

We summarize the number of vulnerabilities found by each fuzzer
on 25 programs during the 12-hour runs in Table 2. (We removed
two programs from Table 2, as none of the fuzzers finds vulnerabil-
ities for them.) Out of 25 evaluated programs, S1vo is able to find
the maximal number of vulnerabilities in 18 programs (72%). For
comparison, the next best fuzzer MOpt holds top positions in 11 pro-
grams (44%) in terms of vulnerability discovery. This indicates that
S1vo is significantly more efficient at finding vulnerabilities than
the remaining candidate fuzzers as well. However, Stvo achieves
less top positions in discovery of vulnerabilities compared to code
coverage, but this is not unusual as the objective of Stvo is code cov-
erage, and the correlation between produced coverage and found
vulnerabilities is not necessarily strong [17, 18].

We also measure and report in Table 2 the number of vulnera-
bilities unique to each fuzzer, i.e. bugs that are found only by one
fuzzer, and not by any other. This metric signals distinctiveness
of each fuzzer—the greater the number of unique vulnerabilities,
the more distinct the fuzzer is on vulnerability detection. Out of
25 programs, S1vo discovers at least one unique vulnerability in 11
programs. In total, Stvo finds 31 unique vulnerabilities, while the
next best fuzzer is Honggfuzz [32] with 21 vulnerabilities.

5.4 Performance of Refinements

We evaluate the four refinements individually, in terms of their
impact and necessity. To assess the impact of a refinement, i.e. to
estimate how much it helps to advance the fuzzer, we compare
the performance of the baseline version of Sivo (where all four
refinements have been removed) to the baseline version with the
one refinement added on. On the other hand, to assess the necessity
of a refinement, i.e. to estimate how irreplaceable in comparison
to the other three refinements it is, we compare the full version of
S1vo to the version with a single refinement removed. We note that
all refinements aside for the Parametrize-Optimize strategy, can be
assessed reasonably well because it is easy to switch them on or off
in the fuzzer. The same holds for Optimize, but not for Parametrize.
As S1vo is built from scratch with many new fuzzing subroutines
that are not necessarily present in AFL, it is not clear which fuzzing
subroutines and which of their variations need to be removed in
the baseline. Therefore, we only assess Optimize, and consider
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Figure 5: Coverage for top three fuzzers Stvo, MOpt, EcoFuzz
during 48 hours of fuzzing.



Table 2: The number of found vulnerabilities. The number of unique vulnerabilities (when non-zero) are reported after "/".

" on_»

indicates failure to instrument/run the program. "#Vuln." , "#Vuln. uniq" give the number of all and the number of unique
vulnerabilities, respectively. "#Top vuln." shows the number of programs for which the fuzzer finds the maximal number of
vulnerabilities. "#Prog. uniq" shows the number of programs for which the fuzzer finds some unique vulnerability.

Application - Fuzzer ‘
AFL [ AFL++ [ AFL++_mopt [ AFLFast [ FairFuzz [ LAF-Intel [ MOpt [ EcoFuzz [ Honggfuzz [ Angora [ Ankou [ Sivo
base64 2 2 2 2 2 2 2 2 2 2 1 2
bison 3 3 3 3 4/1 3 4/1 2 2 1 3 2
bson_to_json 2 1 1 1 2 2 2 1 1 2 1 2
cflow 2 1 1 2 2 1 5 3 2 1 3 6/1
exiv2 6 5 6 5 6 6 11/3 0 - - 8 8
ﬁgZdeV 29/1 24 29 26 30/1 22 35 30/2 43/4 1 40 59/7
ftpconf 2 2 2 2 2 2 2 2 2 2 2 2
img2sixel 1 1 1 1 1 0 16/1 12/1 15/3 - 7 22/6
img2txt 2 2 2 0 4 2 8/2 5/1 3 - 7/3 10/5
md5sum 1 1 1 1 2/1 1 1 1 1 1 1 1
nasm 4 4 5 4 8 4 10 8 2 5/1 9 13/1
nm 4 3 3 4 4 4 6/1 5 3 0 4 6/1
readelf 1 1 1 1 1 1 1 1 1 2/1 1 1
sassc 1 1 1 1 2 1 2 2 1 - 1 5/3
slaxproc 4 3 3 3 3 3 4 3 3 - 6/2 5/1
sndfile-info 0 0 0 0 3 0 8/2 6 13/6 - 1 7
tcpdump 0 0 0 0 0 0 3 1 1 1 7/3
testsolv 6 6 6 6 6 6 7 8/1 14/8 6 9/2
tic 2 1 2 1 2 2 3 2 2 - 0 3
tiff2pdf 2 2 1 2 1 2 4 3 1 0 3 4
tiffset 1 1 1 1 1 1 1 1 1 0 1 1
uniq 1 1 1 1 1 1 2 3 7 1 2 7
webm2pes 1 1 1 1 1 1 2 2 1 - 1 3/1
who 1 1 1 1 1 1 7 3 6 0 3 7
Wdehtml 0 0 0 0 0 0 1/1 1 0 - 1 1
#Vuln. 78 67 74 69 89 68 147 107 127 18 113 193
#Top vuln. 4 3 3 3 6 4 11 4 6 4 4 18
#Vuln. uniq 1 0 0 0 3 0 11 5 21 2 5 31
#Prog. uniq 1 0 0 0 3 0 7 4 2 2 11

Parametrize to be part of the baseline. We fuzz the 25 programs
(on which S1vo outperformed all other 11 fuzzers) for 12 hours,
and compare the found coverage to the coverage produced by the
complete version of Sivo. In Table 3, we provide the comparisons
(as a percentage drop of the coverage) of the versions. We also give
the data about the performance of the best non-Sivo fuzzer for each
program (see the column Best NoneSivo). In the last row of the table
we summarize the number of programs on which the considered
version of the fuzzer is able to out-perform all of the remaining 11
none-S1vo fuzzers (for reference, for Srvo this number is 25).
A few observations are evident from the Table 3:

e Parametrize alone is valuable. The baseline SivoBase,
i.e. the version of the fuzzer that does not have any of the
four refinements aside from Parametrize, already performs
well. It is able to achieve the most coverage for 9 of the
25 considered programs. Hence, just by introducing new
fuzzing subroutines and their variations, the fuzzer is able
to outperform in terms of coverage the other 11 fuzzers on
36% of the fuzzed programs.

e Optimize has a strong impact. Among the four refine-
ments, Optimize has the strongest impact. It helps the base-
line fuzzer to add 10 top stops resulting in 19 top positions
(refer to SivoBase+Opt column in Table 3), thus leading to
most coverage in comparison to the other 11 none-Sivo
fuzzers on 76% of the programs. On the other hand, Stvo
without Optimize (refer to Sivo-Opt), loses 14 top positions,
i.e. the fuzzer loses the top spot for 56% of the programs.
Moreover, this refinement effects all of the fuzzed programs,
with the exception of a few. The effect is significant—the
coverage drop when this refinement is not present is at
least 10% and sometimes more than 30%.

e TaintFAST has a moderate to low impact. This refine-
ment, denoted as Fl in the Table 3, helps the baseline fuzzer
to add two top spots. On the other hand, Stvo without
TaintFAST, i.e. with only the FIT engine present, loses
three top spots. TaintFAST has a strong variance (refer to
the Sivo-FI column) in terms of providing additional cov-
erage and most fuzzed programs either benefit largely, or
have no benefit at all. This is not unexpected, because the



Table 3: Percentage drop in coverage of fuzzers in comparison to Stvo. When no drop occurs, the cells are empty.

L Fuzzer
Application = —
3 S| | =] £
% 3 é é é é a Q
z| 3 & & & & 9| ®| | <
il S| 22| % 52 gl 2 g
as] [92) 17%) [92) [2) [92) 17%) wn wn wn
base64 9.1 7.2 2.4 7.2 4.7 7.2 3.3 3.3 8.4 1.7
bison 239 | 23.1 23.1 | 23.1 | 23.1 | 334 49
bsdtar 4.1 0.4 0.4 0.4
bson_to_json 0.8 | 189 3.0 | 189 | 16.1 | 189 | 17.1 4.6 2.9
cflow 9.5 | 10.9 46 | 109 | 109 | 109 | 134 3.8 5.0
djpeg 119 | 239 | 239 | 239 | 239 | 21.2 | 33.7 15.4 | 22.0
figZdev 159 | 13.3 13.3 | 13.3 | 13.3 | 23.0 1.8 6.1
ftpconf 3.5 | 10.5 0.6 9.8 99 | 105 | 12.3 1.4
img25ixe| 24.7 | 219 8.0 | 21.5 | 159 | 219 | 19.9 3.8 7.7 0.6
img2txt 9.8 9.3 9.3 9.3 9.3 8.9 8.6 8.9 7.9 | 10.3
md5sum 29 | 148 | 14.2 | 14.8 0.6 6.4 4.6 12.3
nasm 20.3 | 27.7 0.5 | 27.7 | 27.0 | 27.7 | 39.8 3.7 0.6
nm 336 | 11.8 | 11.8 | 11.8 6.6 | 11.8 | 159 | 43.6 | 27.4 | 18.8
readelf 22.0 | 15.2 7.7 5.0 7.1 7.8 1.9 0.1
sassc 109 | 254 25.4 | 215 | 23,5 | 34.6
slaxproc 3.3 | 349 31.1 | 28.0 | 30.3 | 38.5 1.9
sndfile-info 16.2 | 17.2 | 10.8 | 17.2 | 11.7 | 17.2 6.6 18.6 1.7
testsolv 94 | 43.0 | 33.1 | 423 | 109 | 24.6 | 33.3 | 34.3 | 37.2 | 10.6
tic 6.0 | 169 16.9 | 16.7 | 13.7 | 19.7 0.1
tifprdf 10.5 2.4 2.4 2.4 2.0 0.3 3.7
tiffset 4.4 8.9 7.8 8.9 8.9 0.3
uniq 7.8 | 16.4 04 | 164 3.1 164 0.2 4.8
wemepes 3.0 | 14.0 12.6 | 14.0 | 14.0 | 12.2 7.1 6.6
who 2731293 | 13.6 | 23.3 | 17.4 | 27.6 2.7 951359 | 105
Wpd2htm| 11.8 | 27.1 | 13.6 | 27.1 | 27.1 | 27.1 | 48.9 6.4 0.3 5.2
Top positions || [ o 19] i 3] o] 1] 22] 18] 21]

true benefit of TaintFAST is manifested in programs that
accept large inputs and that have branches that depend on
all of those inputs.

Solving systems of interval (SI) has a strong to mod-
erate impact. It adds 4 top stops to the baseline, and re-
moves 7 top spots from the complete version of Srvo. It
provides consistent benefits to the fuzzer — for most of
the fuzzed programs S| produces extra coverage. Presum-
ably, this is based on the fact that most programs do have
branches based on integer inequalities and that use direct
copy of input bytes.

Accurate coverage (AC) has a moderate to low im-
pact. This refinement does not have a strong impact on
providing top positions (no jumps after adding it to the
baseline, and lost 4 positions when removing it from S1vo),
but it gives well balanced improvements in coverage to the
fuzzer.

5.5 The Cause Of Observed Benefits

It is important to understand and explain why certain fuzzing tech-
niques (or in our case refinements) work well. In Section 5.4 we
speculate about the type of programs that can be fuzzed well with
some of the refinements. Showing this conclusively, however, is
difficult. Table 3 shows the percentage drop in coverage observe,
per application, obtained by adding and removing one-by-one each
of our proposed refinements. However, attributing the cause of
improved performance to individual refinements based on such
coarse empirical data could be misleading. This is because we are
measuring the joint outcome of mutually-dependent fuzzing strate-
gies. We cannot single out the cause of an observed outcome and
attribute it to each strategy, since the strategies mutate the internal
state that others use. We thus only coarsely estimate their impact
via our empirical findings and speculate that these results extend
to other programs.

6 RELATED WORK

Grey-box fuzzers, starting from the baseline AFL [37], have been
the backbone of modern, large-scale testing efforts. The AFL-family



of fuzzers (e.g. AFLGo [3], AFLFast [4], LAF-Intel [1], MOpt [22],
and MTFuzz [30]) improve upon different aspects of the baseline
fuzzer. For instance, instead of randomly selecting mutation strat-
egy, MOpt [22] uses particle swarm optimization to guide the selec-
tion. MTFuzz [30] trains a multiple-task neural network to infer the
relationship between program inputs and different kinds of edge
coverage to guide input mutation. Similarly, for the seed selection,
AFLFast [4] prioritizes seeds that exercise low-probability paths,
CollAFL [13] prioritizes seeds that have a lot of not-yet inverted
branches, and EcoFuzz [35] uses multi-armed bandits to guide the
seed selection. Common feature for all current fuzzers from the AFL-
family is that they optimize at most one of the fuzzing subroutine®.
In contrast, Stvo first parameterizes all aspects, i.e. introduces many
variations of the fuzzing subroutines, and then tries to optimize all
the selection of parameters. Even the seed selection subroutines
of EcoFuzz and Sivo differ, despite both using multi-armed ban-
dits: EcoFuzz utilizes MAB to select candidate seed from the pool,
whereas Stvo uses MAB to decide on the selection criterion and
the pool of seeds.

Several grey-box fuzzers deploy data-flow fuzzing, i.e. infer de-
pendency of branches on input bytes and use it to accomplish more
targeted branch inversion. VUzzer [26], Angora [6], BuzzFuzz [14]
and Matryoshka [7] use a classical dynamic taint inference engine
(i.e. track taint propagation) to infer dependencies. Fairfuzz [20],
ProFuzzer [34], and Eclipser [8] use lighter engine and infer par-
tial dependency by monitoring the execution traces of the seeds.
RedQueen [2] and Steelix [21] can infer only dependencies based
on exact (often called direct) copies of input bytes in the branches,
by mutating individual bytes. Among grey boxes, the best inference
in terms of speed, type, and accuracy is achieved by GreyOne [12].
Its engine called FTI is based on mutation of individual bytes (thus
fast because it does not track taint propagation) and can detect
dependencies of any type (not only direct copies of input bytes).
FTI mutates bytes one by one and checks on changes in variables
involved in branch conditions (thus accurate because it does not
need for the whole branch to flip, only some of its variables). Stvo
inference engine TaintFAST improves upon FTI and provides expo-
nential decrease in the number of executions required to infer the
full dependency, at a possible expense of accuracy. Instead of testing
bytes one by one, TaintFAST uses probabilistic group testing and
reduces the number of executions.

Data-flow grey boxes accomplish targeted branch inversion by
randomly mutating the dependent bytes. A few fuzzers deploy
more advanced strategies: Angora [6] uses gradient-descent based
mutation, Eclipser [8] can invert efficiently branches that are linear
or monotonic, and GreyOne [12] inverts branches by gradually
reducing the distance between the actual and expected value in
the branch condition. Some fuzzers, such as RedQueen and Steelix
invert branches by solving directly the branch conditions based
on equality (called magic bytes). S1vo can solve more complex
branch inversion conditions that involve inequalities, without the
use of SAT/SMT solvers. On the other hand, white boxes such as
KLEE [5], and hybrid fuzzers such as Driller [31] and QSYM [36],
use symbolic execution that relies on SMT solvers (thus it may be

This refers to optimization only — some fuzzers improve (but not optimize) multiple
fuzzing subroutines.

slow) to perform inversions in even more complex branches. The
hybrid fuzzer Pangolin [16] uses linear approximations of branch
constraints (thus more general than our intervals) called polyhedral
path abstraction and later it utilizes them to efficiently sample
solutions that satisfy path constraints. To infer the (more universal)
linear approximations, Pangolin uses a method based on SMT solver.
On the other hand, Stvo infers the (less universal) intervals with a
simpler method.

The AFL-family of fuzzers as well as many other grey boxes
track edge coverage. In addition, the AFL-family uses bucketization,
i.e. besides edges, they track the counts of edges and group them in
buckets that have ranges of powers of two. For practical purposes
AFL does not record the precise edges (this will require storing
whole execution traces which may be slow), but rather it works
with hashes of edges (which is quite fast). The process of hashing
may introduce collisions as noted by CollAFL [13]. To avoid such
collisions, CollAFL proposes during compilation to choose the free
parameters of the hashing function non-randomly, and according
to a specific strategy. AFL++ [11] uses a similar idea and provides
an open-source implementation based on link-time instrumenta-
tion. In addition, AFL++,LibFuzzer [28], and Honggfuzz [32] use
so-called sanitizer coverage available in LLVM starting from version
11 to prevent collisions by assigning the free parameters during
runtime. On the other hand, S1vo solution is to switch between dif-
ferent hashing functions during the fuzzing (i.e. at runtime). Instead
of tracking edge coverage, a few fuzzers such as Honggfuzz [32],
VUzzer [26] and LibFuzzer [28] track block coverage. Moreover,
the grey-box fuzzer TortoiseFuzz [33] uses alternative coverage
measurement metric (assigns different weights to edges based on
their potential security impact) to prioritize testcases, and achieves
higher rate of vulnerability detection.

7 CONCLUSION

We have presented four refinements for grey boxes that boost dif-
ferent fuzzing stages. First, we have shown fast taint engine that
requires only logarithmic number of tests in the number of input
bytes to infer the dependencies of branches on inputs. Second, we
have provided an efficient method for inverting branches when they
depend trivially on input bytes and their conditions are based on
integer inequalities. Third, we have proposed an improved coverage
tracking methods that are easy to implement. Finally, we have show
the parametrize-optimize paradigm that allows fuzzers to be more
flexible in adopting to target programs and thus to effectively in-
crease coverage. We have implemented the refinements in a fuzzer
called Stvo. In comparison to 11 other popular grey-box fuzzers,
S1vo scores highest with regards to coverage and to number of
found vulnerabilities.

8 ACKNOWLEDGMENTS

We thank our shepherd Erik van der Kouwe for his helpful feed-
back. Abhik Roychoudhury, Zhijingcheng Yu, Shin Hwei Tan, Lu
Yan, Andrea Fioraldi, and the anonymous reviewers gave us valu-
able comments and improvements on this work, for which we are
thankful. All opinions expressed in this paper are solely those of



the authors. This research is supported in part by the Crystal Cen-
tre at NUS and by the research grant DSOCL17019 from DSO in
Singapore.

REFERENCES

[1] 2016. Circumventing fuzzing roadblocks with compiler transformations. (2016).
https://lafintel. wordpress.com/

[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In NDSS, Vol. 19. 1-15.

[3] Marcel Bshme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-

hury. 2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security. 2329-2344.

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-

based greybox fuzzing as Markov chain. IEEE Transactions on Software Engineer-

ing 45, 5 (2017), 489-506.

[5] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209-224.

[6] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711-725.

[7] Peng Chen, Jianzhong Liu, and Hao Chen. 2019. Matryoshka: fuzzing deeply
nested branches. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security.

[8] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. 2019. Grey-box

concolic testing on binary code. In 2019 IEEE/ACM 41st International Conference

on Software Engineering (ICSE). IEEE, 736-747.

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,

Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. Lava: Large-scale

automated vulnerability addition. In S&P.

[10] Dingzhu Du, Frank K Hwang, and Frank Hwang. 2000. Combinatorial group

testing and its applications. Vol. 12. World Scientific.

[11] Andrea Fioraldi, Dominik Maier, Heiko Eif}feldt, and Marc Heuse. 2020. AFL++:

Combining incremental steps of fuzzing research. In 14th USENIX Workshop on

Offensive Technologies WOOT).

Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,

and Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In 29th

USENIX Security Symposium (USENIX Security 20). USENIX Association, Boston,

MA. https://www. usenix. org/conference/usenixsecurity20/presentation/gan.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and

Zuoning Chen. 2018. Collafl: Path sensitive fuzzing. In 2018 IEEE Symposium on

Security and Privacy (SP). IEEE, 679-696.

[14] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based directed whitebox

fuzzing. In 2009 IEEE 31st International Conference on Software Engineering. IEEE,

474-484.

Google. 2020. OSS-Fuzz - continuous fuzzing of open source software. (2020).

https://github.com/google/oss-fuzz

[16] Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang. 2020.

Pangolin: Incremental hybrid fuzzing with polyhedral path abstraction. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 1613-1627.

[17] Laura Inozemtseva and Reid Holmes. 2014. Coverage is not strongly correlated

with test suite effectiveness. In Proceedings of the 36th international conference on

software engineering. 435-445.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. 2123-2138.

[19] Levente Kocsis and Csaba Szepesvari. 2006. Discounted UCB. In 2nd PASCAL

Challenges Workshop, Vol. 2.

Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy

for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering. 475-485.

[21] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,

and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Proceedings

of the 2017 11th Joint Meeting on Foundations of Software Engineering. 627-637.

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and

Raheem Beyah. 2019. MOPT: Optimized mutation scheduling for fuzzers. In 28th

USENIX Security Symposium (USENIX Security 19). 1949-1966.

Valentin JM Manés, Soomin Kim, and Sang Kil Cha. 2020. Ankou: guiding grey-

box fuzzing towards combinatorial difference. In Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering. 1024-1036.

[24] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-

weight dynamic binary instrumentation. In PLDL.

Ivica Nikolic and Radu Mantu. SIVO: Refined gray-box fuzzer. (????). https:

//github.com/ivicanikolicsg/SivoFuzzer

[26] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing.. In

[4

o

[9

=

[12

[13

(15

[18

[20

[22

~
&

[25

NDSS, Vol. 17. 1-14.

Andrey Ryabinin. 2014. UBSan: run-time undefined behavior sanity checker.

(2014). https://lwn.net/Articles/617364/

[28] Kosta Serebryany. 2016. Continuous fuzzing with libfuzzer and addresssanitizer.
In 2016 IEEE Cybersecurity Development (SecDev). IEEE, 157-157.

[29] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. 2012. AddressSanitizer: A fast address sanity checker. In USENIX ATC.

Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. 2020.

MTFuzz: Fuzzing with a Multi-Task Neural Network. In FSE.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In

NDSS, Vol. 16. 1-16.

Robert Swiecki. 2020. Honggfuzz: Security oriented software fuzzer. Supports

evolutionary, feedback-driven fuzzing based on code coverage (SW and HW

based). (2020). https://honggfuzz.dev/

Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu, and

Purui Su. 2020. Not all coverage measurements are equal: Fuzzing by coverage

accounting for input prioritization. NDSS.

[34] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, XiaoFeng
Wang, and Bin Liang. 2019. Profuzzer: On-the-fly input type probing for better
zero-day vulnerability discovery. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 769-786.

[35] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou.
2020. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the Ad-
versarial Multi-Armed Bandit. In 29th {USENIX} Security Symposium ({ USENIX }
Security 20).

[36] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A
practical concolic execution engine tailored for hybrid fuzzing. In 27th { USENIX }
Security Symposium ({USENIX} Security 18). 745-761.

[37] Michal Zalewski. 2019. American fuzzy lop (2.52b). (2019). https://lcamtuf.
coredump.cx/afl/

[27

[30

[31

[32

[33

A ANALYSIS OF MULTI-LABEL BLOCK
ASSIGNMENT

When each basic block B; is assigned an n-bit random label L; ,
by the birthday paradox collisions on hashed edges L; <« &L
will appear once the number of edges 2’ reaches around 2! > 2% .
Roughly, the expected number of collisions is around 2! - 2% /2" =
221=" 1f we assign an additional (second) label to each basic block,
then there will be roughly 22/=" colliding edge hashes on the second
label as well. However, among the colliding hash edges on the first
and the second label, there will be only 22t-n 22t_"/2t = 3t-=2n
common edges. Thus, if 3t — 2n < 0,ie. t < 2?" then on average
there will not be any common edges, and hence for at least one of
the assignments (either the first or the second), each edge will have
unique hash. Similar analysis applies for larger number of labels.
In general, if each block is assigned m labels of n random bits each,
and the number of edges is smaller than 2m+1", then on average
each hashed edge will be unique at least for one of the labels.

We can also obtain a strict analysis is of the collision-free multi-
label assignment. To do so, we compute the probability that each
additional hashed edge does not collide with any other previous
hashed edge at least on one of the labels. If there are already k such
hashed edges, then the probability that the next k + 1 will also be
goodis1— (zﬁn)m This is computed from the opposite event (that
the k + 1-th hash collides on all m labels with some of the k hashes).
Thus the probability that all 27 edges will be unique on at least one

of the m labels is:
21 K \™
[1(-(z)) ®

k=1
We could not reduce the above formula (1) further (unlike the case
of m = 1 where Sterling approximation can be used), however we
can calculate numerical values of the probability for different values
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of the parameters n, t, m. In the case of S1vo, n = 16,m = 4, and
therefore, even when there are t = 8000 edges, the probability that
all of them will be unique on some label is around 0.701. For larger
range of computed probabilities refer to Table 4.

Table 4: Calculated values of the probability (1)

m/t 3000 4000 5000 6000 7000 8000 9000 10000
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.123 0.007 0.000 0.000 0.000 0.000 0.000 0.000
3 0.931 0.797 0.574 0.317 0.119 0.026 0.003 0.000
4 0.997 0.989 0.967 0.919 0.834 0.701 0.527 0.338
5 1.000 0.999 0.998 0.994 0.984 0.965 0.929 0.871

B PSEUDO-CODE OF GENERIC GREY-BOX
FUZZER

Algorithm 3: OnelterationGenericFuzz( Seeds, Coverage )

seed < Sample( ConstantCriterion , Seeds )

Taint_inference(seed)

while time budget left do
use_mut «<— Sample( strategy )
new_seed < Mutate( seed, use_mut, ConstantParams )
new_coverage < ProduceCoverage(new_seed)

// if dataflow fuzzer

cov_increase «— || new_coverage \ Coverage ||
if cov_increase > 0 then
Seeds «— Seeds | new_seed
L Coverage « Coverage | J new_coverage

Algorithm 4: GenericFuzzer

Seeds <« Initial_seeds
Coverage < ProduceCoverage(Seeds)

while true do
| OnelterationGenericFuzz( Seeds, Coverage );

C INSTRUMENTATION OVERHEAD

Each of the 27 evaluated programs is instrumented and compiled
with two different passes: lighter and heavier. We measured experi-
mentally the usage and the overhead of the two instrumentations
averaged over all 27 tested programs, and provide the data in Table 5.
We give the percentage of usage of the two instrumentations as well
as their overhead on top of normal, uninstrumented program and
on top of the standard AFL code coverage instrumentation, mea-
sured according to the execution times of the compiled programs.
We can see that the lighter instrumentation is 73 % slower than the
uninstrumented program and 39 % slower than AFL instrumenta-
tion, whereas heavier is 270 % and 190 % slower, respectively. On the
other hand, the versions with lighter instrumentation are executed
far more frequently (78% vs 22%), thus we can conclude that on av-
erage S1vo introduce 116 % overhead on top of the uninstrumented
programs, and 72 % on top of AFL.

Table 5: Instrumentation Statistics

Type Usage Overhead Overhead

uninstr. AFL
Lighter 78% 73% 39%
Heavier 22% 270% 190%

D TESTED PROGRAMS

Program Version Input line (as in AFL)
base64 LAVA-M -d@@

bison bison 3.0.5 @@

bsdtar libarchive 3.4.3 -acf bsdtar.tar @@
bson_to_json libbson 1.8 @@

cflow cflow 1.5 @@

djpeg libjpeg 2.0.90 -colors 234 -rgb -gif -outfile djp.gif @@
exiv2 exiv2 0.27.3 -t @@

fig2dev fig2dev 3.2.7a @@

ftpconf libconfuse 3.2.2 @@

img2sixel libsixel 1.8.2 @@

img2txt libcaca 0.99betal9 @@

md5sum LAVA-M @@

nasm nasm 2.14rc15 -f elf64 @@ -0 nasm.o
nm binutils 2.31 -DC @@

readelf binutils 2.31 -a@@

sassc libsass 3.5 @@

slaxproc libslax 0.22.0 -c @@
sndfile-info libsndfile 1.0.28 @@

tcpdump tcpdump 4.10.0rcl  -AnetttttvvXXr @@
testsolv libsolv 0.7.2 @@

tic ncurses 6.1 -0 tic.out

tiff2pdf libtiff 4.0.9 @@

tiffset libtiff 4.0.9 -s 315 whatever @@
uniq LAVA-M @@

webm2pes libwebm 1.0.0.27 @@ webm2pes.out
who LAVA-M @@

wpd2html libwpd 0.10.1 @@

E ALTERNATIVE COVERAGE

In Figure 6 we show the simple edge count for fuzzers on 12-hour
runs. S1vo is top fuzzer for 21 of the programs in the 12-hour runs.
In comparison to Figure 4, S1vo loses 4 top spots, 2 of which are
with a margin of less than 1%. In Figure 7 we show the coverage
measured imprecisely as in AFL for fuzzers on 12-hour runs. S1vo is
top fuzzer for 17 out of 24 programs (we had problems compiling 3
of the programs). In comparison to Figure 4, S1vo loses 6 top spots.
This is a result of colliding edge hashes and the inability of AFL
coverage engine to detect and handle such collisions.
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