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Abstract. The k-Median problem is one of the well-known optimization problems that formalize the
task of data clustering. Here, we are given sets of facilities F and clients C, and the goal is to open k
facilities from the set F , which provides the best division into clusters, that is, the sum of distances
from each client to the closest open facility is minimized. In the Capacitated k-Median, the facilities
are also assigned capacities specifying how many clients can be served by each facility.
Both problems have been extensively studied from the perspective of approximation algorithms. Re-
cently, several surprising results have come from the area of parameterized complexity, which provided
better approximation factors via algorithms with running times of the form f(k) ·poly(n). In this work,
we extend this line of research by studying a different choice of parameterization. We consider the
parameter ` = |F | − k, that is, the number of facilities that remain closed. It turns out that such a pa-
rameterization reveals yet another behavior of k-Median. We observe that the problem is W[1]-hard
but it admits a parameterized approximation scheme. Namely, we present an algorithm with running
time 2O(` log(`/ε)) ·poly(n) that achieves a (1+ε)-approximation. On the other hand, we show that under
the assumption of Gap Exponential Time Hypothesis, one cannot extend this result to the capacitated
version of the problem.

? Part of this work was done while the third and the fifth author were visiting University of Wroclaw. The fifth
author was supported by the Foundation for Polish Science (FNP).
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1 Introduction

Recent years have brought many surprising algorithmic results originating from the intersection
of the areas of approximation algorithms and parameterized complexity. It turns out that the
combination of techniques from these theories can be very fruitful and a new research area has
emerged, devoted to studying parameterized approximation algorithms. The main goal in this area it
to design an algorithm processing an instance (I, k) in time f(k)·|I|O(1), where f is some computable
function, and producing an approximate solution to the optimization problem in question. Such
algorithms, called FPT approximations, are particularly interesting in the case of problems for
which (1) we fail to make progress on improving the approximation factors in polynomial time,
and (2) there are significant obstacles for obtaining exact parameterized algorithms. Some results
of this kind are FPT approximations for k-Cut [22], Directed Odd Cycle Transversal [27],
and Planar Steiner Network [10]. A good introduction to this area can be found in the
survey [20].

One problem that has recently enjoyed a significant progress in this direction is the famous
k-Median problem. Here, we are given a set F of facilities, a set C of clients, a metric d over
F ∪C and an upper bound k on the number of facilities we can open. A solution is a set S ⊆ F of
at most k open facilities and a connection assignment φ : C → S of clients to the open facilities.
The goal is to find a solution that minimizes the connection cost

∑
c∈C d(c, φ(c)). The problem

can be approximated in polynomial time up to a constant factor [3,9] with the currently best
approximation factor being (2.675 + ε) [5]. On the other hand, we cannot hope for a polynomial-
time (1 + 2/e− ε)-approximation, since it would entail P=NP [21]. Therefore, there is a gap in our
understanding of the optimal approximability of k-Median.

Surprisingly, the situation becomes simpler if we consider parameterized algorithms, with k
as the natural choice of parameterization. Such a parameterized problem is W[2]-hard [1] so it is
unlikely to admit an exact algorithm with running time of the form f(k) ·nO(1), where n is the size
of an instance. However, Cohen-Addad et al. [12] have obtained an algorithm with approximation
factor (1+2/e+ε) and running time4 2O(k log k) ·nO(1). This result is essentially tight, as the existence
of an FPT-approximation with factor (1 + 2/e − ε) would contradict the Gap Exponential Time
Hypothesis5 (Gap-ETH) [12]. The mentioned hardness result has also ruled out running time of the
form f(k) · ng(k), where g = kpoly(1/ε). This lower bound has been later strengthened: under Gap-
ETH no algorithm with running time f(k) ·no(k) can achieve approximation factor (1+2/e−ε) [28].

The parameterized approach brought also a breakthrough to the understanding of Capaci-
tated k-Median. In this setting, each facility f is associated with a capacity uf ∈ Z>0 and
the connection assignment φ must satisfy

∣∣φ−1(f)
∣∣ 6 uf for every facility f ∈ S. The best

known polynomial-time approximation for Capacitated k-Median is burdened with a factor
O(log k) [1,8] and relies on the generic technique of metric tree embeddings with expected loga-
rithmic distortion [19]. All the known constant-factor approximations violate either the number
of facilities or the capacities. Li has provided such an algorithm by opening (1 + ε) · k facili-
ties [24,25]. Afterwards analogous results, but violating the capacities by a factor of (1 + ε) were
also obtained [6,17]. This is in contrast with other capacitated clustering problems such as Fa-
cility Location or k-Center, for which constant factor approximation algorithms have been
constructed [15,23]. However, no superconstant lower bound for Capacitated k-Median is known.

4 We omit the dependency on ε in the running time except for approximation schemes.
5 The Gap Exponential Time Hypothesis [18,29] states that, for some constant γ > 0, there is no 2o(n)-time algorithm

that can, given a 3SAT instance, distinguish between (1) the instance is fully satisfiable or (2) any assignment to
the instance violates at least γ fraction of the clauses.
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When it comes to parameterized algorithms, Adamczyk et al. [1] have presented a (7 + ε)-
approximation algorithm with running time 2O(k log k) · nO(1) for Capacitated k-Median. Xu et
al. [31] proposed a similar algorithm for the related Capacitated k-Means problem, where one
minimizes the sum of squares of distances. These results have been improved by Cohen-Addad and
Li [13], who obtained factor (3 + ε) for Capacitated k-median and (9 + ε) for Capacitated
k-means, within the same running time.

Our contribution In this work, we study a different choice of parameterization for k-Median.
Whereas k is the number of facilities to open, we consider the dual parameter ` = |F | − k: the
number of facilities to be closed. We refer to this problem as co-`-Median in order to avoid
ambiguity. Note that even though this is the same task from the perspective of polynomial-time
algorithms, it is a different problem when seen through the lens of parameterized complexity.
First, we observe that co-`-Median is W[1]-hard (Theorem 3), which motivates the study of
approximation algorithms also for this choice of parameterization. It turns out that switching
to the dual parameterization changes the approximability status dramatically and we can obtain
an arbitrarily good approximation factor. More precisely, we present an efficient parameterized
approximation scheme (EPAS), i.e., (1 + ε)-approximation with running time of the form f(`, ε) ·
nO(1). This constitutes our main result.

Theorem 1. The co-`-Median problem admits a deterministic (1 + ε)-approximation algorithm
running in time 2O(` log(`/ε)) · nO(1) for any constant ε > 0.

We obtain this result by combining the technique of color-coding from the FPT theory with
a greedy approach common in the design of approximation algorithms. The running time becomes

polynomial whenever we want to open all but O
(

logn
log logn

)
facilities. To the best of our knowledge,

this is the first non-trivial setting with general metric space which admits an approximation scheme.
A natural question arises about the behavior of the capacitated version of the problem in

this setting, referred to as Capacitated co-`-Median. Both in polynomial-time regime or when
parameterized by k, there is no evidence that the capacitated problem is any harder and the gap
between the approximation factors might be just a result of our lack of understanding. Somehow
surprisingly, for the dual parameterization ` we are able to show a clear separation between the
capacitated and uncapacitated case. Namely, we present a reduction from the Max k-Coverage
problem which entails the same approximation lower bound as for the uncapacitated problem
parameterized by k.

Theorem 2. Assuming Gap-ETH, there is no f(`) · no(`)-time algorithm that can approximate
Capacitated co-`-Median to within a factor of (1+2/e−ε) for any function f and any constant
ε > 0.

Related work A simple example of dual parameterization is given by k-Independent Set
and `-Vertex Cover. From the perspective of polynomial-time algorithms, these problems are
equivalent (by setting ` = |V (G)| − k), but they differ greatly when analyzed as parameterized
problems: the first one is W[1]-hard while the latter is FPT and admits a polynomial kernel [14].
Another example originates from the early work on k-Dominating Set, which is a basic W[2]-
complete problem. When parameterized by ` = |V (G)|−k, the problem is known as `-Nonblocker.
This name can be interpreted as a task of choosing ` vertices so that none is blocked by the others,
i.e., each chosen vertex has a neighbor which has not been chosen. Under this parameterization, the
problem is FPT and admits a linear kernel [16]. The best known running time for `-Nonblocker
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is 1.96` · nO(1) [30]. It is worth noting that `-Nonblocker is a special case of co-`-Median with
a graph metric and F = C = V (G), however this analogy works only in a non-approximate setting.

The Gap Exponential Time Hypothesis was employed for proving parameterized inapproxima-
bility by Chalermsook et al. [7], who presented hardness results for k-Clique, k-Dominating Set,
and Densest k-Subgraph. It was later used to obtain lower bounds for Directed Odd Cycle
Transversal [27], Directed Steiner Network [10], Planar Steiner Orientation [11],
and Unique Set Cover [28], among others. Moreover, Gap-ETH turned out to be a sufficient
assumption to rule out the existence of an FPT algorithm for k-Even Set [4].

2 Preliminaries

Parameterized complexity and reductions A parameterized problem instance is created by
associating an input instance with an integer parameter k. We say that a problem is fixed parameter
tractable (FPT) if it admits an algorithm solving an instance (I, k) in time f(k) · |I|O(1), where f
is some computable function. Such an algorithm we shall call an FPT algorithm.

To show that a problem is unlikely to be FPT, we use parameterized reductions analogous
to those employed in the classical complexity theory (see [14]). Here, the concept of W-hardness
replaces the one of NP-hardness, and we need not only to construct an equivalent instance in time
f(k) · |I|O(1), but also to ensure that the value of the parameter in the new instance depends only
on the value of the parameter in the original instance. In contrast to the NP-hardness theory, there
is a hierarchy of classes FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . and these containments are believed to
be strict. If there exists a parameterized reduction transforming a W[t]-hard problem to another
problem Π, then the problem Π is W[t]-hard as well. If a parameterized reduction transforms
parameter linearly, i.e., maps an instance (I1, k) to (I2,O(k)), then it also preserves running time
of the form f(k) · |I|o(k).

In order to prove hardness of parameterized approximation, we use parameterized reductions
between promise problems. Suppose we are given an instance (I1, k1) of a minimization problem
with a promise that the answer is at most D1 and we want to find a solution of value at most
α ·D1. Then a reduction should map (I1, k1) to such an instance (I2, k2) so that the answer to it
is at at most D2 and any solution to (I2, k2) of value at most α · D2 can be transformed in time
f(k1) · |I1|O(1) to a solution to (I1, k1) of value at most α ·D1. If an FPT α-approximation exists
for the latter problem, then it exists also for the first one. Again, if we have k2 = O(k1), then this
relation holds also for algorithms with running time of the form f(k) · |I|o(k).

Problem definitions Below we formally introduce the main studied problem and the problems
employed in reductions.

(Capacitated) co-`-Median Parameter: `
Input: set of facilities F , set of clients C, metric d over F ∪C, sequence of capacities uf ∈ Z>0,
integer `
Task: find a set S ⊆ F of at most |F |− ` facilities and a connection assignment φ : C → F \S
that satisfies

∣∣φ−1(f)
∣∣ 6 uf for all f ∈ F \ S, and minimizes

∑
c∈C d(c, φ(c))

A metric d : (F ∪C)×(F ∪C)→ R>0 is a symmetric function that obeys the triangle inequality
d(x, y) + d(y, z) ≥ d(x, z) and satisfies d(x, x) = 0. In the uncapacitated version we assume that all
capacities are equal |C|, so any assignment φ : C → F \ S is valid. In the approximate version of
Capacitated co-`-Median we treat the capacity condition

∣∣φ−1(f)
∣∣ 6 uf as a hard constraint

and we allow only the connection cost
∑

c∈C d(c, φ(c)) to be larger than the optimum.
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k-Independent Set Parameter: k
Input: graph G = (V,E), integer k
Task: decide whether there exists a set S ⊆ V (G) of size k such that for all pairs u, v ∈ S we
have uv 6∈ E(G)

Max k-Coverage Parameter: k
Input: universe U , family of subsets T1, . . . , Tn ⊆ U , integer k
Task: find k subsets Ti1 , . . . , Tik that maximizes |Ti1 ∪ · · · ∪ Tik |

3 Uncapacitated co-`-Median

We begin with a simple reduction, showing that the exact problem remains hard under the dual
parameterization.

Theorem 3. The co-`-Median problem is W[1]-hard.

Proof. We reduce from `-Independent Set, which is W[1]-hard. We transform a given graph G
into a co-`-Median instance by setting F = V (G), and placing a client in the middle of each
edge. The distance from a client to both endpoints of its edge is 1 and the shortest paths of such
subdivided graph induce the metric d.

If we did not close any facilities, the cost of serving all clients would equal |E(G)|. The same
holds if each client has an open facility within distance 1, so the set of closed facilities forms an
independent set of vertices in G. On the other hand, if we close a set of facilities containing two
endpoints of a single edge then the cost increases. Therefore the answer to the created instance is
|E(G)| if and only if G contains an independent set of size `.

We move on to designing a parameterized approximation scheme for co-`-Median. We use
notation d(c, S) for the minimum distance between c and any element of the set S. In the unca-
pacitated setting the connection assignment φS is unique for a given set of closed facilities S: each
client is assigned to the closest facility outside S. Whenever we consider a solution set S ⊆ F , we
mean that this is the set of closed facilities and denote cost(S) =

∑
c∈C d(c, F \S). We define V (f)

to be the Voronoi cell of facility f , i.e., the set of clients for which f is the closest facility. We can
break ties arbitrarily and for the sake of disambiguation we assume an ordering on F and whenever
two distances are equal we choose the facility that comes first in the ordering.

Let C(f) denote the cost of the cell V (f), i.e.,
∑

c∈V (f) d(c, f). For a solution S and f ∈ S,
g 6∈ S, we define C(S, f, g) =

∑
d(c, g) over {c ∈ V (f) |φS(c) = g}, that is, the sum of connections

of clients that switched from f to g. Note that as long as f ∈ F remains open, there is no need to
change connections of the clients in V (f). We can express the difference of connection costs after
closing S as

∆(S) =
∑
f∈S

∑
c∈V (f)

d(c, F \ S)−
∑
f∈S

C(f) =
∑
f∈S

∑
g∈F\S

C(S, f, g)−
∑
f∈S

C(f).

We have cost(S) =
∑

f∈F C(f) + ∆(S), therefore the optimal solution closes set S of size `
minimizing ∆(S).

The crucial observation is that any small set of closed facilities S can be associated with
a small set of open facilities that are relevant for serving the clients from

⋃
f∈S V (f). Intuitively,

if C(S, f, g) = O( ε
`2

) · cost(S) for all f ∈ S, then we can afford replacing ` such facilities g with
others that are not too far away.
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Definition 1. The ε-support of a solution S ⊆ F , |S| = `, referred to as ε-supp(S), is the set of
all open facilities g (i.e., g 6∈ S) satisfying one of the following conditions:

1. there is f ∈ S such that g minimizes distance d(f, g) among all open facilities,
2. there is f ∈ S such that C(S, f, g) > ε

6`2
· cost(S).

We break ties in condition (1) according to the same rule as in the definition of V (f), so there
is a single g satisfying condition (1) for each f .

Lemma 1. For a solution S of size `, we have |ε-supp(S)| ≤ 6 · `3/ε+ `.

Proof. We get at most ` facilities from condition (1). Since the sets of clients being served by
different g ∈ F \ S are disjoint and

∑
g∈F C(S, f, g) ≤ cost(S), we obtain at most 6 · `3/ε facilities

from condition (2).

Even though we will not compute the set ε-supp(Opt) directly, we are going to work with
partitions F = A ] B, such that Opt ⊆ A and ε-supp(Opt) ⊆ B. Such a partition already gives
us a valuable hint. By looking at each facility f ∈ A separately, we can deduce that if f ∈ Opt
and some other facility g belongs to A (so it cannot belong to ε-supp(Opt)) then in some cases g
must also belong to Opt. More precisely, if g ∈ A is closer to f than the closest facility in B, then
g must be closed, as otherwise it would violate condition (1). Furthermore, suppose that h ∈ A
serves clients from V (f) (assuming f is closed) of total cost at least ε

6`2
· cost(S). If we keep h open

and close some other facilities, this relation is preserved and having h in A violates condition (2).
We formalize this idea with the notion of required sets, given by the following procedure, supplied
additionally with a real number D, which can be regarded as the guessed value of cost(Opt).

Algorithm 1 Compute-required-set(A,B, f, ε, `,D) (assume f ∈ A and A ∩B = ∅)
1: sf ← miny∈B d(f, y)
2: Rf ← {g ∈ A | d(f, g) < sf} (including f)
3: while ∃g ∈ A : C(Rf , f, g) > ε

3`2
·D do

4: Rf ← Rf ∪ {g}
5: end while
6: return Rf

Lemma 2. Let Opt ⊆ F be the optimal solution. Suppose F = A]B, f ∈ Opt ⊆ A, ε-supp(Opt) ⊆
B, and cost(Opt) ≤ 2D. Then the set Rf returned by Compute-required-set(A,B, f, ε, `,D)
satisfies Rf ⊆ Opt.

Proof. Let yf be the facility in B that is closest to f . Due to condition (1) in Definition 1, all facilities
g ∈ A satisfying d(f, g) < d(f, yf ) must be closed in the optimal solution, so we initially add them
to Rf . We keep invariant Rf ⊆ Opt, so for any g ∈ F \Opt it holds that C(Opt, f, g) ≥ C(Rf , f, g).
Whenever there is g ∈ A satisfying C(Rf , f, g) > ε

3`2
·D, we get

C(Opt, f, g) ≥ C(Rf , f, g) >
ε

3`2
·D ≥ ε

6`2
· cost(Opt).

Since g does not belong to ε-supp(Opt) ⊆ B, then by condition (2) it must be closed. Hence, adding
g to Rf preserves the invariant.

Before proving the main technical lemma, we need one more simple observation, in which we
exploit the fact that the function d is indeed a metric.
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Lemma 3. Suppose c ∈ V (f0) and d(f0, f1) ≤ d(f0, f2). Then d(c, f1) ≤ 3 · d(c, f2).

Proof. An illustration is given in Figure 1. Since c belongs to the Voronoi cell of f0, we have
d(c, f0) ≤ d(c, f2). By the triangle inequality

d(c, f1) ≤d(c, f0) + d(f0, f1) ≤ d(c, f0) + d(f0, f2) ≤
d(c, f0) + d(c, f0) + d(c, f2) ≤ 3 · d(c, f2).

f0

f1
f2

c

Fig. 1. An example of a Voronoi diagram with squares representing facilities and dots being clients. Lemma 3 states
that even if d(c, f1) > d(c, f2) for c ∈ V (f0) and d(f0, f1) ≤ d(f0, f2), then d(c, f1) cannot be larger than 3 · d(c, f2).

Lemma 4. Suppose we are given a partition F = A ] B, such that Opt ⊆ A, ε-supp(Opt) ⊆ B,
and a number D ∈ R>0, such that cost(Opt) ∈ [D, 2D]. Then we can find a solution S ⊆ A, such
that cost(S) ≤ (1 + ε) · cost(Opt), in polynomial time.

Proof. We compute the set Rf = Compute-required-set(A,B, f, ε, `,D) for each facility f ∈ A.
The subroutine from Algorithm 1 clearly runs in polynomial time. Furthermore, for each f ∈ A we
compute its marginal cost of closing

mf =
∑

c∈V (f)

d(c, F \Rf )− C(f).

If |Rf | > ` then f cannot belong to any solution consistent with the partition (A,B) and in this
case we set mf =∞. Since the marginal cost depends only on f , we can greedily choose ` facilities
from A that minimize mf – we refer to this set as S.

We first argue that
∑

f∈F C(f) +
∑

f∈Smf is at most the cost of the optimal solution. By
greedy choice we have that

∑
f∈Smf ≤

∑
f∈Optmf . We have assumed cost(Opt) ≤ 2D so by

Lemma 2 we get that if f ∈ Opt, then Rf ⊆ Opt. The set of facilities F \Opt that can serve clients
from V (f) is a subset of F \ Rf and the distances can only increase, thus for f ∈ Opt we have
mf ≤

∑
c∈V (f) d(c, F \ Opt) − C(f). We conclude that

∑
f∈F C(f) +

∑
f∈Smf is upper bounded

by ∑
f∈F

C(f) +
∑

f∈Opt

∑
c∈V (f)

d(c, F \Opt)−
∑

f∈Opt

C(f) = cost(Opt). (1)

The second argument is that after switching benchmark from the marginal cost to the true cost
of closing S, we will additionally pay at most εD. These quantities differ when for a facility f ∈ S
we have ‘connected’ some clients from V (f) to g ∈ S \Rf when computing mf . More precisely, we
want to show that for each f ∈ S we have
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∑
c∈V (f)

d(c, F \ S) ≤
∑

c∈V (f)

d(c, F \Rf ) +
εD

`
. (2)

By the construction of Rf , whenever g ∈ S \ Rf we are guaranteed that there exists a facility
y ∈ B such that d(f, g) ≥ d(f, y) and, moreover, C(Rf , f, g) ≤ ε

3`2
· D. We can reroute all such

clients c to the closest open facility and we know it is not further than d(c, y). By Lemma 3 we
know that d(c, y) ≤ 3 · d(c, g) so rerouting those clients costs at most ε

`2
· D. Since there are at

most ` such facilities g ∈ S \Rf , we have proved Formula (2). Combining this with bound from (1)
implies that cost(S) ≤ cost(Opt) + εD. As we have assumed D ≤ cost(Opt), the claim follows.

In order to apply Lemma 4, we need to find a partition F = A ] B satisfying Opt ⊆ A and
ε-supp(Opt) ⊆ B. Since ε-supp(Opt) = O(`3/ε), we can do this via randomization. Consider
tossing a biased coin for each facility independently: with probability ε

`3
we place it in A, and

with remaining probability in B. The probability of obtaining a partitioning satisfying Opt ⊆ A

and ε-supp(Opt) ⊆ S equals ( ε
`3

)` times (1 − ε
`3

)O( `
3

ε
) = Ω(1). Therefore 2O(` log(`/ε)) trials give

a constant probability of sampling a correct partitioning. In order to derandomize this process, we
take advantage of the following construction which is a folklore corollary from the framework of
color-coding [2]. As we are not aware of any self-contained proof of this claim in the literature, we
provide it for completeness.

Lemma 5. For a set U of size n, there exists a family H of partitions U = A ] B such that |H| =
2O(` log(`+r)) log n and for every pair of disjoint sets A0, B0 ⊆ U with |A0| ≤ `, |B0| ≤ r, there is
(A,B) ∈ F satisfying A0 ⊆ A,B0 ⊆ B. The family H can be constructed in time 2O(` log(`+r))n log n.

Proof. Let use denote [n] = {1, 2, . . . , n} and identify U = [n]. We rely on the following theorem:
for any integers n, k there exists a family F of functions f : [n]→ [k2], such that |F| = kO(1) log n
and for each X ⊆ [n] of size k there is a function f ∈ F which is injective on X; moreover, F can
be constructed in time kO(1)n log n [14, Theorem 5.16].

We use this construction for k = ` + r. Next, consider the family G of all functions g : [(` +
r)2] → {0, 1} such that |g−1(0)| ≤ `. Clearly, |G| ≤ (` + r)2`. The family H is given by taking
all compositions {h = g ◦ f | g ∈ G, f ∈ F} and setting (Ah, Bh) = (h−1(0), h−1(1)). We have
|H| ≤ |G| · |F| = 2O(` log(`+r)) log n. Let us consider any pair of disjoint subsets A0, B0 ⊆ [n] with
|A0| ≤ `, |B0| ≤ r. There exists f ∈ F injective on A0 ∪ B0 and g ∈ G that maps f(A0) to 0 and
f(B0) to 1, so A0 ⊆ Ag◦f , B0 ⊆ Bg◦f .

Theorem 4. The co-`-Median problem admits a deterministic (1 + ε)-approximation algorithm
running in time 2O(` log(`/ε)) · nO(1) for any constant ε > 0.

Proof. We apply Lemma 5 for U = F , ` being the parameter, and r = 6 · `3/ε + `, which upper
bounds the size of ε-supp(Opt) (Lemma 1). The family H contains a partition F = A]B satisfying
Opt ⊆ A and ε-supp(Opt) ⊆ B. Next, we need to find D, such that cost(Opt) ∈ [D, 2D]. We begin
with any polynomial-time α-approximation algorithm for k-Median (α = O(1)) to get an interval
[X,αX], which contains cost(Opt). We cover this interval with a constant number of intervals of the
form [X, 2X] and one of these provides a valid value of D. We invoke the algorithm from Lemma 4
for each such triple (A,B,D) and return a solution with the smallest cost.

4 Hardness of Capacitated co-`-Median

In this section we show that, unlike co-`-Median, its capacitated counterpart does not admit a
parameterized approximation scheme.
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We shall reduce from the Max k-Coverage problem, which was also the source of lower bounds
for k-Median in the polynomial-time regime [21] and when parameterized by k [12]. However, the
latter reduction is not longer valid when we consider a different parameterization for k-Median, as
otherwise we could not obtain Theorem 1. Therefore, we need to design a new reduction, that ex-
ploits the capacity constraints and translates the parameter k of an instance of Max k-Coverage
into the parameter ` of an instance of Capacitated co-`-Median. To the best of our knowledge,
this is the first hardness result in which the capacities play a role and allow us to obtain a better
lower bound.

We rely on the following strong hardness result. Note that this result is a strengthening of [12],

which only rules out f(k) · nkpoly(1/δ)-time algorithm. This suffices to rule out a parameterized
approximation scheme for Capacitated co-`-Median, but not for a strong running time lower
bound of the form f(`) · no(`).

Theorem 5 ([28]). Assuming Gap-ETH, there is no f(k) · no(k)-time algorithm that can approxi-
mate Max k-Coverage to within a factor of (1 − 1/e + δ) for any function f and any constant
δ > 0. Furthermore, this holds even when every input subset is of the same size and with a promise
that there exists k subsets that covers each element exactly once.

We can now prove our hardness result for Capacitated co-`-Median.

Theorem 6. Assuming Gap-ETH, there is no f(`) · no(`)-time algorithm that can approximate
Capacitated co-`-Median to within a factor of (1+2/e−ε) for any function f and any constant
ε > 0.

Proof. Let U, T1, . . . , Tn be an instance of Max k-Coverage. We create an instance (F,C) of
Capacitated co-`-Median as follows.

– For each subset Ti with i ∈ [n], create a facility fseti with capacity |Ti|. For each element u ∈ U ,
create a facility felement

u with capacity |U |+ 2.

– For every i ∈ [n], create |Ti| clients cseti,1 , . . . , c
set
i,|Ti|. For each j ∈ [|Ti|], we define the distance

from cseti,j to the facilities by

d(cseti,j , f
set
i ) = 0,

d(cseti,j , f
element
u ) = 1 ∀u ∈ Ti,

d(cseti,j , f
set
i′ ) = 2 ∀i′ 6= i,

d(cseti,j , f
element
u ) = 3 ∀u /∈ Ti.

– For every element u ∈ U , create |U |+ 1 clients celement
u,1 , . . . , celement

u,|U |+1 and, for each j ∈ [|U |+ 1],

define the distance from celement
u,j to the facilities by

d(celement
u,j , felement

u ) = 0,

d(celement
u,j , fseti ) = 1 ∀Ti 3 u,

d(celement
u,j , felement

u′ ) = 2 ∀u′ 6= u,

d(celement
u,j , fseti ) = 3 ∀Ti 63 u.

– Let ` = k.
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Suppose that we have an f(`)·no(`)-time (1+2/e−ε)-approximation algorithm for Capacitated
co-`-Median. We will use it to approximate Max k-Coverage instance with |T1| = · · · = |Tn| =
|U |/k with a promise that there exists k subsets that covers each element exactly once, as follows.
We run the above reduction to produce an instance (F,C) and run the approximation algorithm for
Capacitated co-`-Median; let S ⊆ F be the produced solution. Notice that S may not contain
any element-facility, as otherwise there would not even be enough capacity left to serve all clients.
Hence, S = {fseti1

, . . . , f setik
}. We claim that Ti1 , . . . , Tik is an (1 − 1/e + ε/2)-approximate solution

for Max k-Coverage.
To see that Ti1 , . . . , Tik is an (1−1/e+ε/2)-approximate solution for Max k-Coverage, notice

that the cost of closing {f seti1
, . . . , f setik

} is exactly |Ti1∪· · ·∪Tik |+3·|U \(Ti1∪· · ·∪Tik)| because each

element-facility felement
u can only serve one more client in addition to celement

u,1 , . . . , celement
u,|U |+1 . (Note

that we may assume without loss of generality that felement
u serves celement

u,1 , . . . , celement
u,|U |+1 .) Moreover,

there are exactly |Ti1 |+ · · ·+ |Tik | = |U | clients left to be served after the closure of {fseti1
, . . . , f setik

}.
Hence, each element-facility felement

u with u ∈ Ti1∪· · ·∪Tik can serve a client of distance one from it.
All other element-facilities will have to serve a client of distance three from it. This results in the cost
of exactly |Ti1∪· · ·∪Tik |+3·|U\(Ti1∪· · ·∪Tik)|. Now, since we are promised that there exists k subsets
that uniquely covers the universe U , the optimum of Capacitated co-`-Median must be |U |.
Since our (assumed) approximation algorithm for Capacitated co-`-Median has approximation
factor (1+2/e− ε), we must have |Ti1 ∪· · ·∪Tik |+3 · |U \ (Ti1 ∪· · ·∪Tik)| ≤ |U | · (1+2/e− ε), which
implies that |Ti1 ∪ · · · ∪Tik | ≥ |U | · (1− 1/e+ ε/2). Hence, the proposed algorithm is an f(k) ·no(k)-
time algorithm that approximates Max k-Coverage to within a factor of (1− 1/e+ ε/2), which
by Theorem 5 contradicts Gap-ETH.

5 Conclusions and open problems

We have presented a parameterized approximation scheme for co-`-Median and shown that its
capacitated version does not admit such a scheme. It remains open whether Capacitated co-`-
Median admits any constant-factor FPT approximation. Obtaining such a result might be an im-
portant step towards getting a constant-factor polynomial-time approximation, which is a major
open problem.

Another interesting question concerns whether one can employ the framework of lossy kernel-
ization [26] to get a polynomial size approximate kernelization scheme (PSAKS) for co-`-Median,
which would be a strengthening of our main result. In other words, can we process an instance I
in polynomial time to produce an equivalent instance I ′ of size poly(`) so that solving I ′ would
provide a (1 + ε)-approximation for I?
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