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Preface

With the continuing, rapid progress of digital methods in communications, knowledge
representation, processing, and discovery, the unique character and needs of mathe-
matical information require unique approaches. Its specialized representations and
capacity for creation and proof, both automatically and formally as well as manually,
set mathematical knowledge apart.

The Conference on Intelligent Computer Mathematics (CICM) was initially formed
in 2008 as a joint meeting of communities involved in computer algebra systems,
automated theorem provers, and mathematical knowledge management, as well as
those involved in a variety of aspects of scientific document archives. It has offered a
venue for discussing, developing, and integrating the diverse, sometimes eclectic,
approaches and research. Since 2008, CICM has been held annually: Birmingham (UK,
2008), Grand Bend (Canada, 2009), Paris (France, 2010), Bertinoro (Italy, 2011),
Bremen (Germany, 2012), Bath (UK, 2013), Coimbra (Portugal, 2014),
Washington D. C. (USA, 2015), Bialystok (Poland, 202016), Edinburgh (UK, 2017),
Linz (Austria, 2018), Prague (Czech Republic, 2019) and Bertinoro (Italy, 2020). This
latter edition, which was originally scheduled to be held in Bertinoro, Italy, was hosted
online due to the COVID-19 pandemic. This year’s meeting was supposed to be held in
Timisoara, Romania, but again due to the pandemic, it was held online (July 26–31,
2021).

This year’s meeting exposed advances in formalizations, automatic theorem prov-
ing, applications of machine learning to mathematical documents and proof search,
search and classifications of mathematical documents, teaching and geometric rea-
soning, and logic and systems, among other topics. This volume contains the contri-
butions to this conference. From 38 formal submissions, the Program Committee
(PC) accepted 20 papers including 12 full research papers, 7 shorter papers describing
software systems or datasets and 1 paper highlighting development of systems and
tools in the last year. All papers were reviewed by at least three PC members or
external reviewers. The reviews were single-blind and included a response period in
which the authors could respond and clarify points raised by the reviewers. In addition
to the main sessions, the conference included a doctoral program, chaired by Yasmine
Sharoda, which provided a forum for PhD students to present their research and get
advice from senior members of the community. Additionally, the following workshops
were scheduled:

– The 31st OpenMath Workshop, organized by James Davenport and Michael
Kohlhase.

– The 2nd Workshop on Natural Formal Mathematics (NatFoM 2021), organized
by Peter Koepke and Dennis Müller.

– The 5th Workshop on Formal Mathematics for Mathematicians (FMM 2021),
organized by Jasmine Blanchette and Adam Naumowicz.



– The 2nd Workshop on Formal Verification of Physical Systems (FVPS 2021),
organized by Sofiene Tahar, Osman Hasan and Adnan Rashid.

– The 13th Workshop on Mathematical User Interaction (MathUI 2021), organized by
Andrea Kohlhase.

Finally, the conference included four invited talks:

– Alessandro Cimatti (Fondazione Bruno Kessler, Italy): “Logic at work, and some
research challenges for computer mathematics”.

– Michael Kohlhase (FAU Erlangen-Nürnberg, Germany): “Referential Semantics – a
Concept for Bridging between Representations of mathematical/technical Docu-
ments and Knowledge”.

– Laura Kovacs (TU Vienna, Austria): “Induction in Saturation-Based Reasoning”.
– Angus McIntyre (Emeritus Professor, Queen Mary University of London, UK):

“Doing classical number theory in weak axiomatic systems”.

A successful conference is due to the efforts of many people. We thank Madalina
Erascu and her colleagues at the West University of Timisoara, Romania, for the
difficult task of organizing a conference with the expectation of it being held face to
face but with the dynamics of COVID-19 making it difficult to accommodate in person
meetings. We are grateful to Serge Autexier for his publicity work. We also thank the
authors of submitted papers, the PC for their reviews, and the organizers of the
workshops, as well as the invited speakers and the participants of the conference.

June 2021 F. Kamareddine
C. Sacerdoti Coen
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Logics at Work, and Some Challenges
for Computer Mathematics

Alessandro Cimatti

Fondazione Bruno Kessler
cimatti@fbk.eu

Formal verification aims at the exhaustive analysis of the behaviours of a system, to
ensure that the expected properties are universally met. Formal verification has been
applied in many sectors including control software, relay interlocking, space, avionics,
hardware circuits, and production plants. We informally distinguish systems in discrete
systems and hybrid systems.

Symbolic Verification of Transition Systems. In case of discrete systems, a behaviour
can be seen as a sequence of valuations to a set of state variables. We focus on
symbolic verification, where logical methods are used to represent and explore the
system model. In the case of transition systems, a state is represented as an assignment
to a set of logical variables V. Logical formulae are used to represent sets of states, so
that I(V) represents the (initial) states satisfying I, and TðV ;V 0Þ represents sets of
transitions, with V 0 being the next state variables. In the finite-state case, V is a vector
of Boolean variables. Symbolic algorithms for automated verification [8], originally
based on Binary Decision Diagrams [7], have progressively been replaced by verifi-
cation based on satisfiability checking (SAT) [5]. SAT-based model checking tech-
niques include Bounded Model Checking [4], induction [19], interpolation [17] and
IC3 [6].

In case of infinite-state transition systems, the state variables may have infinite
range, and I and T are generally expressed as formulae in first-order logic, in the
framework of Satisfiability Modulo Theories (SMT) [3]. SMT extends the proposi-
tional case by allowing for functions and relations between individual variables, with
interpretations over relevant theories. These include linear and non-linear real and
integer arithmetic (LRA, NRA, LIA, NIA). The algorithms for the analysis of
infinite-state transition systems, also referred to as Verification Modulo Theories [11],
are not only obtained by replacing SAT solvers with SMT solvers in SAT-based
verification approaches [2, 14]. A fundamental role is played by abstractions, most
notably predicate abstraction [16]. Abstractions are dynamically refined based on the
analysis of abstract counterexamples [13], and can be either computed explicitly, or
implicitly [20], in tight integration with verification algorithms such as IC3 [10].Par-
ticularly relevant for non-linear theories is the case of incremental linearization [9],
where the abstract space is built by treating non-linearities as uninterpreted functions
with piecewise-linear bounds.

https://orcid.org/0000-0002-1315-6990


Verification of Hybrid Systems. In the case of continuous time, the situation is
significantly more complex. In fact, hybrid systems are composed of interacting dis-
crete and continuous subsystems. Within the reference modeling framework of Hybrid
Automata [1], two kinds of transitions exist: discrete transitions, where the system
instantaneously switches from a discrete mode to the next, and continuous transitions,
where time elapses while in one mode, with continuous variables evolve according to
the specified laws. With respect to the case of transition systems, the semantics of
hybrid automata comes with an implicit elapse of time, during which continuous
variables evolve according to specific laws defined by differential equations, subject to
invariants that must hold throughout the continuous transitions. The traditional
approaches are based on an explicit enumeration of the modes and the analysis of the
differential equations in the various modes. We focus on symbolic, logic-based
approaches [12, 15, 18], where deductive methods are used to analyze the continuous
dynamics.

In this setting, we can identify several interesting challenges.

Satisfiability Modulo Theories. At the level of SMT engines, a key problem is to
provide efficient and effective theory solvers for non-linear theories, to be integrated
within the standard online SMT search schema [3]. In addition to incrementality and
the ability to construct theory lemmas, a fundamental requirement could be referred to
as “non-constructive satisfiability”, i.e. the ability to prove the satisfiability of a set of
constraints without actually having to produce a model. Algorithms for incomplete
theory reasoning, providing efficiently sufficient conditions for satisfiability or for
unsatisfiability, would also be very useful.

Verification Modulo Theories. At the level of verification of transition systems over
non-linear and transcendental theories, most techniques are oriented to prove universal
properties, whereas existential properties have been devoted less attention.
Non-constructive satisfiability would be an important tool in abstraction refinement, to
prove the existence of infinite behaviours. In fact, traces can not be finitely presented in
lasso-shape form as for the finite-state case.

Hybrid Automata. A key challenge is to integrate within the existing symbolic
algorithms the large body of work on characterizing, checking, and finding differential
invariants that has been developed in the setting of dynamical systems. Depending on
the nature of the system (e.g. linear, non-linear polynomial, or featuring transcendental
functions), different invariants could be found (e.g. polynomial equalities and
inequalities).

In some cases, hybrid automata can be reduced to the analysis of infinite-state
transition systems, so that the SMT-based approaches can be leveraged. Such precise
encodings rely on the existence of a closed-form exact solution. Even in such subcases,
an important challenge is to improve the quantifier-free encoding of invariant condi-
tions [12].

Finally, it would be interesting to support the direct reasoning at the level of
differential equations in the verification algorithm, in the style of [15], but to more
advanced algorithms such as IC3. The requirement is to identify procedures for the
checks of induction (and relative induction) under the differential equations.

xii A. Cimatti
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Induction in Saturation-Based Reasoning

Laura Kovács

TU Wien, Austria
laura.kovacs@tuwien.ac.at

Keywords: Automated reasoning � Theorem proving � Induction

Extended Abstract

Seminal works on automating induction mainly focus on inductive theorem proving
[1, 2]: deciding when induction should be applied and what induction axiom should be
used. Further restrictions are made on the logical expressiveness, for example induction
over only universal properties [1, 13] and without uninterpreted symbols [10], or only
over term algebras [5, 8]. Inductive proofs usually rely on auxiliary lemmas to help
proving an inductive property. In [3] heuristics for finding such lemmas are introduced,
for example by randomly generating equational formulas over random inputs and using
these formulas if they hold reasonably often. Recent advances related to automating
inductive reasoning, such as first-order reasoning with inductively defined data types
[9], inductive strengthening of SMT properties [12], structural induction in superpo-
sition [4, 5, 6, 8, 11], open up new possibilities for automating induction. In this talk,
we describe our extensions to first-order theorem proving in support of automating
inductive reasoning.

It is common in inductive theorem proving, that given a formula/goal F, try to
prove a more general goal instead [1, 2]. Such an approach however does not apply in
the context of saturation-based first-order theorem proving, which is not based on a
goal-subgoal architecture. In our work we therefore integrate induction directly into
saturation-based proof search. We do so by turning applications of induction into
inference rules of the saturation process and adding instances of appropriate induction
schemata. To this extent, we pick up a formula F in the search space and add to the
search space new induction axioms, that is instances of induction schemata, aiming at
proving :F, or sometimes even a more general formula than :F. Our recent works
[6, 7] investigated such an approach, introducing new inference rules for induction in
saturation-based first-order theorem proving.

Our inference rules for induction in saturation capture the application of induction
to inductive formulas to be proved. However, this is insufficient for efficient theorem
proving. Modern saturation-based theorem provers are very powerful not just because
of the logical calculi they are based on, such as superposition. What makes them
powerful and efficient are (i) redundancy criteria and pruning search space, (ii) strate-
gies for directing proof search, mainly by clause and inference selection, and recent
results on (iii) theory-specific reasoning, for example with inductive data types. We

https://orcid.org/0000-0002-8299-2714


overview our results in mechanizing mathematical induction in saturation-based
first-order theorem proving in an efficient way. In particular we describe induction in
saturation by generalizing inductive formulas [6] with/without recursive functions and
integers [7].

Acknowledgements. The results described in this talk are based on joint works with Márton
Hajdú, Petra Hozzvá, Johannes Schoisswohl and Andrei Voronkov. We acknowledge funding
from the ERC CoG ARTIST 101002685, the ERC StG 2014 SYMCAR 639270, the EPSRC
grant EP/P03408X/1 and the Austrian FWF research project LogiCS W1255-N23.
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Doing Number Theory in Weak Systems
of Arithmetic

Angus Macintyre

University of Edinburgh
a.macintyre@qmul.ac.uk

Abstract. Although Godel's Theorem shows that even ZFC is incomplete for
unsolvability of diophantine equations, nothing explicit of any real interest to
number theorists has ever been shown to be unprovable. I will consider various
important statements about solvability modulo all prime powers, and exhibit a
wide class which get decided by PA (first order Peano Arithmetic) using serious
algebraic geometry inside nonstandard models of PA. So although PA is often
misrepresented as very weak, it is rather strong for basic results of 20th century
number theory.

Keywords: Number theory � Weak arithmetic
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