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Abstract. Combinatorial design theory studies set systems with cer-
tain balance and symmetry properties and has applications to computer
science and elsewhere. This paper presents a modular approach to for-
malising designs for the first time using Isabelle and assesses the usability
of a locale-centric approach to formalisations of mathematical structures.
We demonstrate how locales can be used to specify numerous types of
designs and their hierarchy. The resulting library, which is concise and
adaptable, includes formal definitions and proofs for many key properties,
operations, and theorems on the construction and existence of designs.

Keywords: Isabelle/HOL · Combinatorics · Formalisation · Interactive
Proof Assistants · Combinatorial Design Theory · Block Designs · Locales

1 Introduction

The formalisation of mathematics is an area of increasing interest, with bene-
fits including verifying correctness, deeper insights into proofs, and automation.
This has lead to substantial development of formal mathematical libraries across
several different proof assistants covering a notable portion of undergraduate
mathematics. However, one area of mathematics that remains underrepresented
is combinatorics. In particular, the field of combinatorial design theory has not
previously been formalised in any system.

Combinatorial design theory is the study of systems of finite sets which meet
certain balance and symmetry properties. Many results in design theory have
been driven by applications to fields such as communications and security, where
formal verification is of increasing interest. This paper presents a general formal
library for design theory using a modular approach in Isabelle/HOL.

Locales are Isabelle’s module system, and are well suited to the problem
of managing the complex hierarchy of design classes. While locales have been
available in the current form since the early 2000s, they typically have been used
sparingly in mathematical contexts, or alongside other tools such as type classes

? The first author is supported by a Cambridge Australia Scholarship and a Cambridge
Department of Technology Qualcomm Premium Research Scholarship. The work is
also supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178)

ar
X

iv
:2

10
5.

13
58

3v
1 

 [
cs

.L
O

] 
 2

8 
M

ay
 2

02
1



2 Chelsea Edmonds and Lawrence Paulson

and records. This project presented the opportunity to explore a locale-centric
approach to formalising mathematical structures, building on Ballarin’s prior
work in algebra [3], and using ideas from Noschinski’s graph theory library[13].

We focus on balanced and block designs to define BIBDs, the most extensively
studied class of designs, but also explore how easy it is to extend the formali-
sation to other design classes and graph theory. Our library includes the formal
definitions for many key properties and operations on designs generally. It also
explores the formal proof process for theorems on the construction and existence
of designs with certain parameters, two basic questions in design theory.

This paper begins with (2) the necessary background on design theory and
locales, then presents (3) the formalisation of fundamental concepts on designs,
followed by (4) the development of the BIBD locale hierarchy and (5) extending
the formalisation beyond BIBDs. We conclude (6) with a discussion on the locale-
centric approach to formalising mathematical structures.

2 Background

2.1 Mathematical Background

Designs are one of many different combinatorial structures which have emerged
in the last century. Formally, a design is defined as follows [16]:

Definition 1 (Design). A design is a pair (V,B) where V is a (finite) set of
points and B is a (finite) collection of non-empty subsets of V called blocks.

Designs are also referred to as incidence structures [5] and more specifically,
incidence set systems. There are four sets defined on key set system properties
which can be restricted to impose structural conditions on a design [8].

i) The set K of all block sizes in the design.
ii) The set R of replication numbers for points in the design, where the point

replication number rx is the number of blocks the point x occurs in.
iii) The set Λt of t-indices for t ≥ 0 the design. For any t subset of points, the t

points index is the number of blocks that subset occurs in.
iv) The set I of intersection numbers. For two blocks in a design, the intersection

number is the number of points the blocks intersect on.

Using different structural restrictions results in numerous classes of designs.
The designs of most interest mathematically usually involve the combination of
several restrictions, such as balanced incomplete block designs (BIBD).

Definition 2 (BIBD). Let v, k, and λ, be positive integers such that 2 ≤ k < v.
A (v, k, λ)-design is a design with v points where every block has k elements and
where every pair of points occurs in exactly λ blocks.

The balance and uniformity properties of a BIBD, as well as properties like
resolvability and symmetry, lead to further design variations such as group di-
visible designs (GDDs), pairwise balanced designs (PBDs), triple systems, and
resolvable designs [8].



A Modular First Formalisation of Combinatorial Design Theory 3

Most open questions in design theory concern either the existence of a design
with certain parameters or the construction of certain designs for which existence
is already known [16]. Numerous operations have been defined to reason on the
construction of designs, several of which this paper explores. Proofs in design
theory often draw on other fields of mathematics, and combinatorial counting
techniques, which present interesting formalisation challenges.

Set systems are the underlying construct of a design, and are the basis for
numerous other structures such as hypergraphs, matrices, geometries, codes, and
graphs [8]. As such, designs have close links to these fields, and they are often
used in proofs on designs. For example, it can be seen that an undirected simple
graph is a design, where the vertices are points and edges are 2-blocks. The
design of a graph is normally not interesting from a design theoretic standpoint,
as it often lacks the structure of many design classes. However, a r-regular graph
can be thought of as a design with replication number r. Graphs are also useful
for representing other design properties such as resolvability [6].

2.2 Isabelle and Locales

Isabelle/HOL is an interactive proof assistant built on higher order logic [14]. It
has extensive libraries of formalised mathematics, including the largest number
of results related to combinatorics from a survey of several proof assistants. These
libraries, combined with powerful built-in tools such as the Isar proof language
and Sledgehammar, make Isabelle an ideal choice for this formalisation work.

Locales are an important extension of the Isar proof language. They act as a
module system within Isabelle, providing persistent contexts which can be used
across numerous theories drawing on similar structures [1]. In the simplest form,
a locale declaration introduces parameters and assumptions. Each parameter has
a specified type and can even have associated syntax. Once defined, a locale can
be extended with definitions, notation and theorems within its context.

Locale expressions were designed to support multiple inheritance and thus
offer extensive flexibility. Existing locales can be combined to create a new locale
and extended by adding new parameters and assumptions [1]. The locale hier-
archy can be transformed using the sublocale command, which is used to show
indirect inheritance between two separately specified locales. It is also possible
to instantiate locale parameters and instances through locale expressions and in-
terpretations. A full tutorial introduction on locales is available with Isabelle [2].

3 The Basic Design Formalisation

Formalising design theory presents a number of initial challenges. Of particu-
lar note is (i) notation and definition inconsistencies in the literature, (ii) the
significant number of definitions and properties, and (iii) the complex relations
between different classes of designs, as well as other combinatorial structures.

To narrow the focus of the formalisation, addressing (ii), initial formalisation
efforts focussed on defining BIBDs and operations commonly found in computa-
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tional libraries for designs such as GAP [15]. Proofs focused on enabling reason-
ing on common design properties, constructions, and existence requirements.

To address (i), key decisions were made early in the formalisation process
covered below and in Sect. 4. For consistency, the Handbook of Combinatorial
Designs was the primary reference for definitions, with publications from well
known researchers such as Stinson [16] serving as alternatives when needed.
Challenge (iii) is the motivation for our locale-centric approach to formalising
fundamental definitions and operations for general designs, discussed below.

3.1 Pre-designs

First, a locale representing a general incidence system is defined, which intro-
duces the core components of a design: a block collection formalised using mul-
tisets, a point set, and a well-formed assumption:

locale incidence-system =
fixes point-set :: ′a set (V) and block-collection :: ′a set multiset (B)
assumes wellformed: b ∈# B =⇒ b ⊆ V

Definition 1 (see Sect. 2.1) states designs are finite, which is added as an
assumption in the finite-incidence-system locale. Lastly, a design often has the
additional condition that blocks must be non-empty [16]:

locale design = finite-incidence-system +
assumes blocks-nempty: bl ∈# B =⇒ bl 6= {}

Some design definitions further impose the condition that a design must
be non-empty [15]. This is important for some classes of designs, but constrains
others unnecessarily, and hence is defined separately in the locale proper-designs.

3.2 Basic Design Properties

The four key properties on elements of a set system are block size, intersection
numbers, point indices, and replication numbers. These are defined outside of a
locale context, as they are properties on components of the set system, rather
than the entire structure. The definition of the points index property is below:

definition points-index :: ′a set multiset ⇒ ′a set ⇒ nat where
points-index B ps ≡ size {#b ∈# B . ps ⊆ b#}

Numerous lemmas for reasoning on these properties can be defined in the
context of incidence systems and designs. Using these properties, the four key
sets outlined in (2) can be defined within the general incidence system locale.
The definition of the point indices set is given below:

definition point-indices :: int ⇒ int set where
point-indices t ≡ { points-index B ps | ps. int (card ps) = t ∧ ps ⊆ V}

Lastly, the basic design locale includes a number of abbreviations to mirror
terminology in the literature: design supports, multiplicity of blocks, incomplete
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blocks, design order v (number of points), and design size b (number of blocks).
The multiplicity and design support abbreviations are used to establish a new
locale for simple-designs, where block multiplicity is at most 1.

3.3 Basic Design Operations

Designs are often constructed by building on pre-existing designs through op-
erations. The three main operations considered for the formalisation are design
complements, multiples, and combinations. The complement of a design (V,B)
is the design (V, {V − bl.bl ∈ B}), where V − bl is the block complement of the
block bl. A multiple of a design multiplies the block multiset by some constant
n ≥ 0, and combining designs is simply the union of the point set and addition
of the block multisets. The formal definitions for these operations are defined
within the incidence system locale, such as the complement operation below,
along with a number of relevant lemmas.

definition complement-blocks :: ′a set multiset where
complement-blocks ≡ {# block-complement bl . bl ∈# B #}

Numerous basic lemmas are shown for all three operations. In particular,
multiple and combine are shown to be closed under the design conditions, and
complement will result in a design if the original blocks are incomplete. We
additionally formalised a number of simple computational operations, such as
addition and deletion of points, which are useful when constructing new designs.

4 The Block Design Hierarchy

By definition 2, a BIBD could be easily defined in a single locale with param-
eters for block size, index, and replication number, as well as assumptions on
balance, constant replication, and uniformity conditions. However, this approach
would have significant limitations. Although a replication number is widely used
in proofs of a BIBD, its value is implied by the other parameters, hence the as-
sumption is unnecessary. Additionally, this could result in a significant amount
of rework if more general designs than BIBDs need to be formalised.

The approach taken in this formalisation uses the idea of little and tiny the-
ories [9][7], discussed in Sect. 6. Each locale definition adds a single concept, and
lemmas on properties and operations are introduced in the most general locale
possible. This section explores the process of building up the locale hierarchy to
BIBDs through the gradual specification of more general locales.

4.1 Restricting Block Size

The first new parameter in a BIBD is k, the uniform size of a design’s blocks.
Formally, it is introduced through the block design locale:

locale block-design = proper-design +
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fixes u-block-size :: int (k)
assumes uniform [simp]: bl ∈# B =⇒ block-size bl = k

A key design decision was to let uniform parameters such as block size be
integers. While these are clearly positive and could be natural numbers, proofs
often require manipulating algebraic expressions involving subtraction on the
parameters, which is notably simpler to do using integers in Isabelle.

A number of lemmas are defined within the block design locale. Recurring
themes on proofs throughout the formalisation include proving inequality rela-
tionships on parameters, such as k ≤ v, and that the three main operations
defined in (3.3) result in another type of this design given certain conditions.
For a block design, multiple and combine are clearly closed, whereas comple-
ment requires an additional assumption. Two main proof strategies are used for
these lemmas: a direct proof using introduction rules, and the more expressive
interpret proof structure, discussed in Sect. 6.4.

A K-design is a generalisation of a k-design which limits the size of blocks
to a finite set of positive integers. An important specialisation of a block design
is an incomplete design where all blocks are incomplete, i.e. k < v.

4.2 Balanced Designs

The balance property and its variations are widely used across different design
classes. The most general balanced design is a t-wise balanced design or tBD,
where for some 1 ≤ t ≤ v, the points index of a t-sized subset of points equals λt.

locale twise-balance = proper-design +
fixes grouping :: int (t) and index :: int (Λt)
assumes t-non-zero: t ≥ 1 and t-lt-order: t ≤ v
and balanced [simp]: ps ⊆ V =⇒ card ps = t =⇒ points-index B ps = Λt

Note that as λ is reserved in Isabelle, Λ is used in its place. Also, as the
parameters t and λt and their assumptions are linked, there is no sensible way
to further break down the locale. Within the locale context it can easily be shown
that combining two designs with the same point set, or applying the multiple
operation, results in another tBD. A t-wise balanced design can include a set
K of valid block sizes, which is formalised by combining the tBD and K block
design locales.

BIBDs are interested in pairwise balance, where t = 2. A PBD is a clear
specialisation of a tBD which can be defined formally using the for command in
a locale definition to instantiate one parameter and simplify syntax.

locale pairwise-balance = t-wise-balance V B 2 Λ
for point-set (V) and block-collection (B) and index (Λ)

There are several variations on PBDs in the literature depending on block
size properties and the value of λ, which are easy to specify by combining locales
and the use of the sublocale declaration, following the functor proof pattern [3].
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4.3 t-designs

An important generalisation of BIBDs are t-designs. Given the modular structure
of the existing locale declarations, they can be easily specified by combining
locales on incomplete block designs and t-wise balanced designs. Additionally,
an extra assumption is required on the relationship of the parameters t and k.

locale tdesign = incomplete-design + t-wise-balance +
assumes block-size-t: t ≤ k

In addition to t-designs, the related concepts of t-covering and t-packing de-
signs are also formalised, where λt has a slightly different meaning, a typical
example of design notation inconsistencies. A t-covering design is a relaxed ver-
sion of a tBD where, for all point subsets of size t, λt is a lower bound on the
points index. A t-packing design mirrors this with an upper bound. Given the
different meaning of the parameter λt, these designs build only on block designs.
If a design is incomplete, t-packing and t-covering, then it is a t-design.

Additionally, a locale is declared for Steiner systems: t-designs where λt = 1.
Then it can be proven that all blocks in a Steiner system have a multiplicity of 1.
Hence it can be shown that Steiner systems are simple designs using sublocales.

4.4 Uniform Replication Number

When every point in a design has the same replication number, r is known as
the replication number of the design.

locale constant-rep-design = proper-design +
fixes design-rep-number :: int (r)
assumes rep-number [simp]: x ∈ V =⇒ B rep x = r

As with the other locales, we can prove that r > 0, and that the complement,
multiple, and combination operators result in another constant replication design
under certain conditions within the locale’s context.

4.5 BIBDs and Proofs

The final BIBD locale declaration builds on the t-design locale and is now simple
to define using the for command to instantiate t = 2, as with PBDs.

locale bibd = t-design V B k 2 Λ for point-set (V) and block-collection (B)
and u-block-size (k) and index (Λ)

Figure 1 gives an overview of the final locale hierarchy for BIBDs, with
sublocale relationships represented by a dotted line. Using this structure, we
used BIBDs as case study for doing more involved proofs on both existence and
construction. Many of these proofs required formalising a counting proof, the
full details of which are out of scope of this paper.

There are two necessary conditions on BIBD existence, which therefore must
hold in the locale context. These define important relationships between param-
eters: r(k − 1) = λ(v − 1) and vr = bk. Notably, this uses the design replication
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Fig. 1. The BIBD Locale Hierarchy

number, which is not yet defined in the BIBD context. However, the first condi-
tion can still be shown to hold for each point’s replication number rx, which in
turn proves r is constant. This results in the following sublocale declaration.

sublocale bibd ⊆ constant-rep-design V B (Λ ∗ (v − 1) div (k − 1))
using r-constant-2 by (unfold-locales) simp-all

These necessary conditions enable proofs of useful lemmas on inequalities
between parameters, and set up the formalisation for further construction proofs.

As with previous locales, it is simple to prove the combination and multiple
operations result in another BIBD with simply defined parameters assuming
equal point sets. The complement of a (v, k, λ)-design is a (v, v − k, b+ λ− 2r)-
design. These parameters are more complicated and so are their proofs. The final
proof for the main complement-bibd lemma is a good example of how constructive
design proofs can be presented with little effort using interpretation and the Isar
proof language (see Sect. 6).

4.6 BIBD Extensions

Symmetric BIBDs are an extension of BIBDs where b = v, as shown in Fig. 1.
An important theorem on symmetric designs is the intersection property : the
intersection number of any two blocks in the design is equal to the design index
λ. We have formalised its delicate counting proof, making use of the necessary
conditions on a BIBD.

The BIBD locale also includes definitions and lemmas on residual and de-
rived designs, which are common constructions specific to BIBDs. The formal
definitions of these operations resolve some ambiguities in the literature which
use set comprehensions and notation to describe operations on multisets. Using
the intersection property, it is possible to prove that the derived and residual
designs of a symmetric BIBD are also BIBDs. The intersection property and
sublocale command can also be used to show that symmetric designs are simple.
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5 Extending the Formalisation

This section investigates the ease of extending the formalisation to a number of
other structures in design theory and graph theory.

5.1 Resolvable Designs

A resolution class of a design is a partition of the point set using blocks. A par-
tition of the blocks into resolution classes is known as a resolution, and a design
with a resolution is resolvable. While set partitions are well covered in Isabelle,
we had to formalise multiset partitions. The concepts of a resolution class and
resolution were then easily defined within incidence-system. A resolvable design
is represented by a new locale building on designs:

locale resolvable-design = design +
fixes partition :: ′a set multiset multiset (P)
assumes resolvable: resolution P

Further classes of resolvable designs were defined by combining this locale
with block designs and BIBDs. The resolvable specification enables us to prove
a number of new relations between the parameters of these designs, such as k|v in
a resolvable block design. A proof was also completed for an alternate statement
of Bose’s inequality on resolvable BIBDs based on Stinson’s approach [16].

5.2 Group Divisible Designs

GDDs are closely related to PBDs and are often studied simultaneously. As such,
they were an ideal case study for extending the BIBD hierarchy. A GDD is a
design which has a non-empty group G which partitions the point set, and a
points index of λ or 0 for each pair depending on if points occurs together in G.

Continuing with the little theories approach, the definition is split into two
locales. Firstly, a group-design locale is declared, which introduces the parameter
G and the partition assumption. Within this locale a number of properties of
the group in GDDs are defined. This includes the concept of group types, which
represent a GDDs structure by the size of the sets in G. A GDD locale then
introduces the index parameter and assumptions:

locale GDD = group-design + fixes index :: int (Λ)
assumes index-ge-1: Λ ≥ 1
assumes index-together: 〚G ∈ G; x ∈ G; y ∈ G; x 6= y〛 =⇒ points-index
B {x, y} = 0 and index-distinct: 〚G1 ∈ G; G2 ∈ G; G1 6= G2; x ∈ G1;
y ∈ G2〛 =⇒ points-index B {x, y} = Λ

As with PBDs, GDDs are defined in different ways, commonly combined
with K block designs, or certain instantiated parameters, which can easily be
formalised using locales. Operations such as adding and deleting points, or com-
bining the group sets and blocks are common on both PBDs and GDDs. For
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example, combining the group of a K-GDD with its blocks results in a PBD
with the same point set, a block collection containing both groups and blocks
of the original GDD, and a size set K. Authors often use these constructions
without proofs and lacking necessary assumptions.

5.3 Design Isomorphisms

Two designs (V,B) and (V ′, B′) are isomorphic if there exists a bijection π such
that V ′ = π(V ) and B′ = {π(bl).bl ∈ B′}. There are two obvious ways of formal-
ising this relation: through a number of definitions, or through another locale.
The second approach enables direct and concise reasoning on an isomorphism
relation by using two labelled instances of the same locale:

locale incidence-system-isomorphism = source: incidence-system V B + target:
incidence-system V ′ B ′ for V and B and V ′ and B ′ + fixes bij-map (π)

assumes bij: bij-betw π V V ′ and block-img: image-mset ((‘) π) B = B ′

Within the locale, it is easy to show how elements in (V,B) map to (V ′, B′),
and that π−1 also defines an isomorphic relation. Furthermore, by extending the
locale to design instances, the four key properties on set systems are proven to
be identical for isomorphic designs. Even with a locale approach, it is still easy
to work with isomorphisms outside of the locale if required: below, we define the
concept of isomorphic designs on set systems using the locale definition.

definition isomorphic-designs (infixl ∼=D 50) where D ∼=D D ′←→
(∃ π . design-isomorphism (points D) (blocks D) (points D ′) (blocks D ′) π)

5.4 Graph Theory

Graph theory proves an interesting case study when looking at extending the
design hierarchy. As discussed in Sect. 2, simple graphs are designs. Can we link
the design locale hierarchy to an existing formalisation, such as the general graph
theory library in the AFP? This appears to present a number of challenges: (i)
the graph theory library was developed in 2013 by a different author, (ii) the
library includes digraphs, which are not designs, and (iii) the locale approach
for graph theory uses records, which are not used for designs.

Despite these challenges, the flexibility of locales made it straightforward to
prove that a simple graph is a design, as well as a number of other properties.
Figure 2 shows the resulting links made between the design theory and graph
theory locale developments, using sublocales.

To show that a graph is a design, we must convert the ordered edge repre-
sentation to an unordered block. The arcs-blocks definition manages the trans-
formation within the graph locale, which defines a simple graph by declaring the
edge set to be symmetric without multiples or loops. A few lemmas ensure the
translation is valid, from which it follows that a graph is a sublocale of a design.

sublocale graph ⊆ design verts G arcs-blocks
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Fig. 2. Interaction between Graph and Design Locales

Clearly, a non-empty graph is also a block design with k = 2, which is
represented by another sublocale relationship. Additionally, we extended the
existing graph theory library to define the concept of a regular-digraph and
regular graph, which are of particular interest in design theory. In particular,
a non-empty regular graph is a sublocale of a constant representation number
design.

sublocale non-empty-reg-graph⊆constant-rep-design verts G arcs-blocks r

6 The Modular Approach

This paper has thus far demonstrated how locales can be used to build up an
extensive hierarchy to formally reason on designs. This section discusses the ben-
efits and limitations of the approach taken and recurring reasoning techniques.

6.1 The Formal Design Hierarchy

This paper presents seemingly the first formalisation of design theory. As such,
initial investigations focused on examining the approach taken by similar li-
braries on mathematical structures. There does exist a formalisation of Latin
squares [4] in Isabelle. While these are a very specific type of design, their for-
malisation does not reflect this and is not extendable to designs generally. Rather,
it highlights the need for flexibility when defining different design classes.

Type classes [10] were briefly considered, however the constraints on parame-
ters meant they didn’t offer the same flexibility as locales. The “record + locale”
approach first considered in (3.1) is based on Noschinski’s graph theory library
and the HOL-Algebra library. This approach uses a record to define structural
elements and definitions, and locales for supporting concise syntax by parameter
annotation [3]. It was originally designed when definitions could not be declared
within a locale and is still widely used. Changes to locales in 2009 [11] how-
ever, enabled local theory specification, so definitions are now possible within
a local context while still globally accessible. As such, structures can now be
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defined over a number of parameters within a locale without any noticeable lim-
itations. This reduces the need for records and the required workarounds, while
also simplifying notation and definitions for the structure.

The small AFP development on matroids, another combinatorial structure,
uses this more locale-centric approach [12], but more interesting is Ballarin’s
take to formalising algebra [3]. He uses locales to define structures as well as
operations and relationships on multiple instances of a locale, similar to the
design isomorphism definition.

The final locale hierarchy of the design library can be seen in Fig. 3, with some
minor omissions. Figure 3 presents the numerous types of designs available in
the formalisation and the complex inheritance network. The final formalisation
defines 36 purely design related locales, as well as five new locales on graph
theory. The larger graph theory library used only 21 locales.

6.2 The Little Theories Approach

Using the little theories approach, and drawing on ideas from the more radical
tiny theories approach where suitable, each new locale declaration in the design
library does some of three things: (i) combines multiple pre-existing locales, (ii)
adds new parameters and assumptions related to a single new concept, or (iii)
instantiates one or more parameters to a concrete value.

This approach drew inspiration from both Noschinski and Ballarin [13,3],
and yielded a number of benefits, preventing unnecessary duplication when new
designs were introduced. More importantly, it increased the flexibility and ex-
tensibility of the library. As can be seen from the case studies in Sect. 5 where
the formalisation was extended, it was easy to integrate locales from the original

Fig. 3. Design Theory Locale Development
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hierarchy with new concepts. The sublocale command proved particularly use-
ful in manipulating the hierarchy. Additionally, each extension took significantly
less time than the original development due to the inherited material.

6.3 Notational Benefits

One of the key benefits that Ballarin discussed when comparing the locale-centric
algebra approach with the existing library was notation, and its readability in
comparison to a textbook [3]. The locale-centric approach yields similar results
for design theory. For example, in mathematical literature, a t-design is referred
to as a t-(v, k, λt)-design. In Isabelle, it would be represented by t-design V B k
Λt, where v can still be used to refer to the cardinality of V .

In fact, all the usual single letter parameters are available with a design
context, and definitions were done in locales where possible, thus the majority
are simple and readable as is. The for command further increased readability
by removing unnecessary parameters from specialisations. Overall, this results
in concise notation both within a locale context and on instances of a locale,
which should be readable for anyone familiar with design theory. Such nota-
tion also simplifies lemma statements, avoiding repeated assumptions, as well
as proof goals. We expect that further extensions to different structures such as
hypergraphs could benefit from locale notation features such as rewrites.

6.4 Reasoning on Locales

The flexibility of locales offers many benefits for reasoning. However, it is worth
noting a number of proof patterns specific to working with locale definitions.

Locales come with two proof tactics: unfold-locales, which unfolds all the
assumptions in the current context hierarchy, and intro-locales, which unfolds to
the axiomatic definitions of each locale in the current hierarchy. The intro-locales
tactic was often used on proofs on the combine and multiple operations, which
avoided the need to unfold all axioms for each proof.

Interpretations are likely the most powerful proof tool for locales, and can
decrease the complexity of proofs by providing an instance of a locale to refer
to. The complement-bibd lemma described in (4.5) is an example.

lemma complement-bibd:
assumes k ≤ v − 2
shows bibd V (complement-blocks) (v − k) (b + Λ − 2∗r)

proof −
interpret des: incomplete-design V (complement-blocks) (v − k)
using assms complement-incomplete by blast

show ?thesis proof (unfold-locales, simp-all)
show 2 ≤ des.v using assms block-size-t by linarith
show

∧
ps. ps ⊆ V =⇒ card ps = 2 =⇒

points-index (complement-blocks) ps = b + Λ −
2 ∗ (Λ ∗ (des.v − 1) div (k − 1)) using complement-bibd-index by simp
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show 2 ≤ des.v − k using assms block-size-t by linarith
qed

The interpret command yields an instance of an incomplete design with the
complement parameters. To prove the conclusion, after applying unfold locales
and simplification, we get three sub-goals instead of the 10 unfold locales gives
without interpretation. This is both easy to approach and read.

Another useful pattern that assists automation is defining custom introduc-
tion rules, particularly around reverse sublocale relationships. For example, an
introduction rule can be proven stating that parameters which satisfy the axioms
of t-covering and t-packing designs also satisfy the t-design axioms. Ballarin’s
functor pattern [3], which connects two linear locale hierarchies related by a
functor using a series of sublocale declarations, is also used in the formalisation.
An example of this can be seen from the GDD variations in Fig. 3.

Lastly, we also note the ease of reasoning on multiple labelled instances of
a locale, within another locale. The prime example of this is in the design-
isomorphism theory. This is a technique that could be explored further for other
operations and relationships, such as the concept of sub-designs.

6.5 Limitations

A few limitations of the locale-centric approach to mathematics are worth noting.
First, locale specifications were not designed to be used extensively outside of
the locale. However, the approach requires this, which particularly causes issues
with sublocales. A sublocale proof does not generate any additional facts, and
as such cannot be referenced; to reference this relationship for reasoning outside
of the locale, one must define a separate lemma with a nearly identical proof.

While the interpret command within proofs is incredibly useful, it would be
beneficial to see extensions to locale proof tactics to aid automation and proof
structure. Many interpret declarations are trivial consequences of known facts,
but they must be written out in full.

Lastly, the little theories approach can cause locale hierarchies to become
complex. We need ways to keep track of relationships between locales during de-
velopment. In particular, sublocale relationships must be maintained and added
carefully when frequently combining locales at different levels in the hierarchy.

7 Conclusion and Future Work

Through the use of locales, this paper demonstrates how the complex hierarchy of
design theoretic structures can be formalised in a proof assistant, presenting the
first such formalisation for this field. It is intended that this library will be used to
further explore some of the unique challenges combinatorial proofs currently pose
to formalisation. The locale-centric modular approach discussed has proven to be
an effective method of concisely and accurately defining numerous fundamental
properties and classes of designs, and reasoning on key theorems and inheritance
relationships. Additionally, the case studies presented in Sect. 5 demonstrates the
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formalisation’s flexibility and extensibility for future work on design theory and
other related combinatorial structures, fulfilling the aim of establishing a general
adaptable library for designs. This library will be made available in full through
the Isabelle Archive of Formal Proofs. Beyond the obvious potential to continue
formalising new classes of designs, other future work includes further exploring
locale-centric proof techniques and improvements, experimenting with links to
hypergraphs, and investigating the formalisation of theorems on designs which
involve more advanced and varied proof techniques.
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