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A Heuristic Prover for Elementary Analysis in 

Theorema

Tudor Jebelean, RISC-Linz, Austria

Abstract. We present the application of certain heuristic techniques for the automation of proofs in

elementary  analysis.   the  techniques  used  are:  the  S-decomposition  method  for  formulae  with

alternating  quantifiers,  quantifier  elimination  by  cylindrical  algebraic  decomposition,  analysis  of

terms  behavior  in  zero,  bounding  the  ϵ-bounds,  semantic  simplification  of  expressions  involving

absolute value, polynomial arithmetic,  usage of equal arguments to arbitrary functions,  and auto-

matic reordering of proof steps in order to check the admisibility of solutions to the metavariables.

The proofs are very similar to those produced automatically, but they are edited for readability and

aspect,  and  also  for  inserting  the  appropriate  explanation  about  the  use  of  the  proof  techniques.

The proofs are:  convergence of product of  two sequences,  continuity of  the sum of two functions,

uniform continuity of the sum of two functions, uniform continuity of the product of two functions,

and continuity of the composition of functions.

Convergence of Product of Two Sequences

Definitions

Convergence

(D1) ∀
f:⟶ C[f] ⇔ ∃

a∈ ∀
e∈
e>0

∃
M∈ℕ ∀

n∈ℕ
n≥M Abs[f[n] - a] < e

Product of functions

(D2) ∀
f1,f2:⟶ f1 * f2 :⟶ ∧ ∀

x∈ f1 * f2[x] = f1[x] * f2[x]
Product of two convergent sequences is convergent

Formula to prove

G ∀
f1,f2:⟶
C[f1],C[f2]

C[f1 * f2]

Proof presentation and explanation of techniques

For proving (G) we take  f1, f2 :⟶ arbitrary but fixed, we assume :

(A1) C[f1]



(A2) C[f2]

and we prove :

(G) C[f1 * f2]

From (A1), using f1 :⟶, by the definition (D1) we obtain :

1 ∃
a∈ ∀

e∈
e>0

∃
M∈ℕ ∀

n∈ℕ
n≥M Abs[f1[n] - a] < e

From (A2), using f2 :⟶, by the definition (D1) we obtain :

2 ∃
a∈ ∀

e∈
e>0

∃
M∈ℕ ∀

n∈ℕ
n≥M Abs[f2[n] - a] < e

Using f1, f2 :⟶, by the definition (D2) we obtain (f1 * f2) :⟶.

Using (f1 * f2) :⟶, by the definition (D1), for proving (G) it suffices to prove:

3 ∃
a∈ ∀

e∈
e>0

∃
M∈ℕ ∀

n∈ℕ
n≥M Absf1[n] * f2[n] - a < e

By (1), (2) we can take a1, a2 ∈ ℝ such that :

(4) ∀
e∈
e>0

∃
M∈ℕ ∀

n∈ℕ
n≥M Abs[f1[n] - a1] < e

(5) ∀
e∈
e>0

∃
M∈ℕ ∀

n∈ℕ
n≥M Abs[f2[n] - a2] < e

Witness for existential goal : a?⟶a1 * a2

This is determined by equating to 0 the expressions: 

f1[n] - a1, f2[n] - a2, f1[n] * f2[n] - a?

For proving (3) it is sufficient to prove :

(6) ∀
e∈
e>0

∃
M∈ℕ ∀

n∈ℕ
n≥M Absf1[n] * f2[n] - a1 * a2 < e

For proving (6) we take e0 ∈ ℝ arbitrary but fixed, we assume :

(7) e0 > 0

and we prove :

8 ∃
M∈ℕ ∀

n∈ℕ
n≥M Absf1[n] * f2[n] - a1 * a2 < e0

Instantiation term for universal assumptions : e?

First we prove :

9 e? > 0

New version of goal (after solving e? later):

9.1 Min1, e0

1 + Abs[a1] + Abs[a2]
 > 0

This follows from (7) using elementary properties of ℝ.

Background test in Mathematica :
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In[ ]:= QE∀{a1,a2} ∀{e0} e0 > 0 ⇒ Min1, e0

1 + Abs[a1] + Abs[a2]
 > 0


Out[ ]= True

Using (9), from (4) and (5) we obtain :

10 ∃
M∈ℕ ∀

n∈ℕ
n≥M Abs[f1[n] - a1] < e?

11 ∃
M∈ℕ ∀

n∈ℕ
n≥M Abs[f2[n] - a2] < e?

By (10) and (11) we can take  M1, M2 ∈ ℕ such that :

12 ∀
n∈ℕ
n≥M1 Abs[f1[n] - a1] < e?

13 ∀
n∈ℕ
n≥M2 Abs[f2[n] - a2] < e?

Witness for existential goal : M?

In order to prove (8) it suffices to prove:

14 ∀
n∈ℕ
n ≥ M?

Absf1[n] * f2[n] - a1 * a2 < e0

For proving (14) we take n0 ∈ ℕ arbitrary but fixed, we assume :

15 n0 ≥ M?

and we prove :

16 Absf1[n0] * f2[n0] - a1 * a2 < e0

Instantiation term for universal assumptions : n?

Solution by equal terms under unknown function : n? ⟶ n012 ∀
n∈ℕ
n≥M1 Abs[f1[n] - a1] < e?

In the assumptions the variable n occurs under the “unknown” (was universally quantified) function 

symbol f1.

In the goal (16) we have f1[n0].

Later: Replace terms with unknown functions by symbols.

First we prove :

17 (n0 ≥ M1) ∧ (n0 ≥ M2)

Solution for witness for existential goal 14 : M? ⟶ Max[M1, M2]

We prove the conditions of assumptions (12) and (13) using the condition (15) of goal (14). 

Use quantifier elimination: 
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In[ ]:= QE∀{M1,M2} ∃{M} ∀{n} (n ≥ M) ⇒ n ≥ M1 ∧ n ≥ M2
Out[ ]= True

After removing the quantifiers of M, M1, M2:

In[ ]:= QE∀{n} (n ≥ M) ⇒ n ≥ M1 ∧ n ≥ M2
Out[ ]= M1 ≤ M && M2 ≤ M

Solution:

M ⟶ Max[M1, M2]

New version of assumption :

15.1 n0 ≥ Max[M1, M2]

The goal (17) follows from (15) using elementary properties of ℝ.

In[ ]:= QE∀{n} n ≥ Max[M1, M2] ⇒ n ≥ M1 ∧ n ≥ M2
16 ms (16 + 0)

Out[ ]= True

Using (17), from (12) and (13) we obtain :

18 Abs[f1[n0] - a1] < e?

19 Abs[f2[n0] - a2] < e?

Algebraic manipulations

These steps are performed in the background, they are not visible in the final proof.

In order to obtain a polynomial problem, we replace each term whose head is an unknown function 

by a new symbol:

(In the parallel quantified formula, the new symbol will be quantified like n0)

f1[n0]⟶ x1 f2[n0]⟶ x2

New assumptions:

18.1 Abs[x1 - a1] < e?

19.1 Abs[x2 - a2] < e?

New goal:

16.1 Abs[(x1 * x2) - a1 * a2] < e0

Solution for instantiation term for universal assumptions : e? ⟶ e0

1 + Abs[a1] + Abs[a2]

Method: Use simplification of expressions and solving

In (18.1) and (19.1) replace argument of Abs by new symbols:
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x1 - a1 = y1 x2 - a2 = y2

Solve for the quantified variables:

x1 = y1 + a1 x2 = y2 + a2

Replace in assumptions and goal:

18.2 Abs[y1] < e?

19.2 Abs[y2] < e?

16.2 Abs[(y1 + a1) * (y2 + a2) - (a1 * a2)] < e0

Straightforward computation:

In[ ]:= Expand[(y1 + a1) * (y2 + a2) - (a1 * a2)]

Out[ ]= a2 y1 + a1 y2 + y1 y2

16.3 Abs[a2 y1 + a1 y2 + y1 y2] < e0

Rewrite LHS by increasing it (semantic simplification of expressions involving absolute value):

Abs[a2 y1 + a1 y2 + y1 y2] ⟶ Abs[a2 y1] + Abs[a1 y2] + Abs[y1 y2]⟶
Abs[a2] Abs[y1] + Abs[a1] Abs[y2] + Abs[y1] Abs[ y2]⟶
Abs[a2] e? + Abs[a1] e? + e? e? ⟶ Abs[a2] e? + Abs[a1] e? + e?⟶ Abs[a2] + Abs[a1] + 1 * e?

Assume e? ≤ 1
Solve for  e?:

Abs[a2] + Abs[a1] + 1 * e? = e0

New version of assumptions:

20 Abs[x1 - a1] < Min1, e0

Abs[a2] + Abs[a1] + 1


21 Abs[x2 - a2] < Min1, e0

Abs[a2] + Abs[a1] + 1


The goal (22) follows from the assumptions (20) and (21) using elementary properties of ℝ.

Finalization of the proof

In the final proof the corresponding step is announced as :

By elementary properties of ℝ we transform the goal (16) into :

20 Abs[a2 * (x1 - a1) + a1 * (x2 - a2) + (x1 - a1) (x2 - a2)] < e0

(Remark : this corresponds to the hidden goal (16.3).)

By (18), (19), and elementary properties of ℝ, assuming e? < 1 we have:

Abs[a2 * (x1 - a1) + a1 * (x2 - a2) + (x1 - a1) * (x2 - a2)] ≤
Abs[a2 * (x1 - a1)] + Abs[a1 * (x2 - a2)] + Abs[(x1 - a1) * (x2 - a2)] =

Abs[a2] * Abs[x1 - a1] + Abs[a1] * Abs[x2 - a2] + Abs[x1 - a1] * Abs[x2 - a2] <

Abs[a2] * e? + Abs[a1] * e? + e? * e? < Abs[a2] * e? + Abs[a1] * e? + e? =

e? * Abs[a2] + Abs[a1] + 1 = e0

which proves the goal.
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Continuity of Sum of Two Functions

Definitions

Continuity

(D1) ∀
f:⟶ C[f] ⇔ ∀

x∈ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
y∈

Abs[x-y]<δ Abs[f[x] - f[y]] < ϵ
Sum of functions

(D2) ∀
f1,f2:⟶ f1 + f2 :⟶ ∧ ∀

x∈ f1 + f2[x] = f1[x] + f2[x]
Sum of continuous functions is continuous

Formula to prove

G ∀
f1,f2:⟶
C[f1],C[f2]

C[f1 + f2]

Proof presentation

For proving (G) we take  f1, f2 :⟶ arbitrary but fixed, we assume :

(A1) C[f1]

(A2) C[f2]

and we prove :

(G) C[f1 + f2]

From (A1), using f1 :⟶, by the definition (D1) we obtain :

1 ∀
x∈ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀

y∈
Abs[x-y]<δ Abs[f1[x] - f1[y]] < ϵ

From (A2), using f2 :⟶, by the definition (D1) we obtain :

2 ∀
x∈ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀

y∈
Abs[x-y]<δ Abs[f2[x] - f2[y]] < ϵ

Using f1, f2 :⟶, by the definition (D2) we obtain (f1 + f2) :⟶.

Using (f1 + f2) :⟶, by the definition (D1), for proving (G) it suffices to prove:

3 ∀
x∈ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀

y∈
Abs[x-y]<δ Absf1 + f2[x] - f1 + f2[y] < ϵ

Using f1, f2 :⟶, x, y ∈ ℝ, by the definition (D2), for proving (3) it suffices to prove:

(4) ∀
x∈ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀

y∈
Abs[x-y]<δ Absf1[x] + f2[x] - f1[y] + f2[y] < ϵ0
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For proving (4) we take x0 ∈ ℝ arbitrary but fixed and we prove :

(5) ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Absf1[x0] + f2[x0] - f1[y] + f2[y] < ϵ

Using x0 ∈ ℝ, we instantiate (1) and we obtain :

(6) ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Abs[f1[x0] - f1[y]] < ϵ

Using x0 ∈ ℝ, we instantiate (2) and we obtain :

(7) ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Abs[f2[x0] - f2[y]] < ϵ

For proving (5) we take ϵ0 ∈ ℝ arbitrary but fixed, we assume :

8 ϵ0 > 0

and we prove :

9 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Absf1[x0] + f2[x0] - f1[y] + f2[y] < ϵ0

We consider :

ϵ1 = ϵ0  2

First we prove  ϵ1 ∈ ℝ and:

10 ϵ1 > 0

These follow from ϵ0 ∈ ℝ, (8), and elementary properties of ℝ.

Using  ϵ1 ∈ ℝ and (10), we instantiate (6) and we obtain :

11 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Abs[f1[x0] - f1[y]] < ϵ1

Using  ϵ1 ∈ ℝ and (10), we instantiate (7) and we obtain :

12 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Abs[f2[x0] - f2[y]] < ϵ1

By (11) we can take  δ1∈ ℝ,  such that :

13 δ1 > 0 ∧ ∀
y∈

Abs[x0-y]<δ1
Abs[f1[x0] - f1[y]] < ϵ1

By (12) we can take  δ2∈ ℝ such that :

14 δ2 > 0 ∧ ∀
y∈

Abs[x0-y]<δ2
Abs[f2[x0] - f2[y]] < ϵ1

We consider :

δ0 = Min[δ1, δ2]
First we prove  δ0 ∈ ℝ and:

15 δ0 > 0

These follow from δ1, δ2 ∈ ℝ, (13.1), (14.1) and elementary properties of ℝ.

Using δ0 ∈ ℝ and (15), in order to prove (9) it suffices to prove:
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16 ∀
y∈

Abs[x0-y]<δ0
Absf1[x0] + f2[x0] - f1[y] + f2[y] < ϵ0

For proving (16) we take y0 ∈ ℝ arbitrary but fixed, we assume :

17 Abs[x0 - y0] < δ0
and we prove :

18 Absf1[x0] + f2[x0] - f1[y0] + f2[y0] < ϵ0
First we prove :

19 Abs[x0 - y0] < δ1 ∧ Abs[x0 - y0] < δ2
This follows from x0, y0, δ0, δ1, δ2 ∈ ℝ, (17) and elementary properties of ℝ.

Using y0 ∈ ℝ and (19.1), we instantiate (13.2) and we obtain:

20 Abs[f1[x0] - f1[y0]] < ϵ1
Using y0 ∈ ℝ and (19.2), we instantiate (14.2) we obtain:

21 Abs[f2[x0] - f2[y0]] < ϵ1
Using elementary properties of ℝ we transform (18) into:

22 Absf1[x0] - f1[y0] +f2[x0] - f2[y0] < ϵ0
Using elementary properties of ℝ, from (20) and (21) we obtain:

Absf1[x0] - f1[y0] +f2[x0] - f2[y0] ≤ (* by Abs + *)≤ Abs[f1[x0] - f1[y0]] + Abs[f2[x0] - f2[y0]] < (* by 20, 21 *)

< ϵ1 +ϵ1 = ϵ0  2 + ϵ0  2 = ϵ0
which proves the goal.

Proof discovery

Brown text constitutes comment and is not part of the proof.

[1]  Inference  rule  “arbitrary  but  fixed”  :  For  proving  an  universally  quantified  formula  with  type

declarations  and  conditions,  use  arbitrary  but  fixed  constants  instead  of  the  quantified  variables,

assume they satisfy the type declarations and the conditions, and prove the unquantified formula.

For proving (G) we take  f1, f2 :⟶ arbitrary but fixed, we assume :

(A1) C[f1]

(A2) C[f2]

and we prove :

(G) C[f1 + f2]

Expanding the assumptions and the goal by definition. When instantiating the definition, check the

type declaration and the conditions for the instantiating term. 

From (A1), using f1 :⟶, by the definition (D1) we obtain :

1 ∀
x∈ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀

y∈
Abs[x-y]<δ Abs[f1[x] - f1[y]] < ϵ
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From (A2), using f2 :⟶, by the definition (D1) we obtain :

2 ∀
x∈ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀

y∈
Abs[x-y]<δ Abs[f2[x] - f2[y]] < ϵ

Using f1, f2 :⟶, by the definition (D2) we obtain (f1 + f2) :⟶.

Using (f1 + f2) :⟶, by the definition (D1) in order to prove (G) it suffices to prove:

3 ∀
x∈ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀

y∈
Abs[x-y]<δ Absf1 + f2[x] - f1 + f2[y] < ϵ

[2] Inference rule “rewriting by equality”: A subterm which matches the LHS of a universally quanti-

fied equality is replaced by the instantiated RHS of the equality, after checking that the instantiat-

ing terms satisfy the type declarations and the conditions of the universal quantifiers. (The rule can

be applied similarly for using the equality from right to left.)

Using f1, f2 :⟶, x, y ∈ ℝ, by (D2), for proving (3) it suffices to prove:

(4) ∀
x∈ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀

y∈
Abs[x-y]<δ Absf1[x] + f2[x] - f1[y] + f2[y] < ϵ0

[3]  Strategy  “S-decomposition”:  When  the  assumptions  and  the  goal  have  identical  alternating

quantifiers,  eliminate quantifiers  in  parallel  step by step,  using a  block of  inference rules  for  each

quantifier.

[4]  “S-decomposition”  block of  inferences  for  the  universal  quantifier:  When  the  assumptions  and

the goal  are universally  quantified,  use first  the rule “arbitrary but fixed”[1]  for  the goal,  and then

the rule “instantiation”[5] for the assumptions.

Inference rule “arbitrary but fixed” [1].

For proving (4) we take x0 ∈ ℝ arbitrary but fixed and we prove :

(5) ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Absf1[x0] + f2[x0] - f1[y] + f2[y] < ϵ

[5]  Inference rule “instantiation”:  When an assumption is  universally quantified, instantiate it  with

an  appropriate  ground  term,  after  checking  that  the  term  satisfies  the  type  declaration  and  the

condition. In this case we instantiate (1).

[6] Method “equal arguments to arbitrary functions”: The appropriate instantiation term needed as

an argument for an arbitrary function occurring in an assumption must equal a term which already

occurs in the proof as the argument of this function occurring in the goal (because otherwise it will

not be possible for the proof to succeed). In this case we choose x0 because f1[x0] occurs in the goal.

Using x0 ∈ ℝ, we instantiate (1) and we obtain :

(6) ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Abs[f1[x0] - f1[y]] < ϵ

Inference rule “instantiation” [5]:  we instantiate (2).

Method “equal arguments to arbitrary functions”[6]: we choose x0 because f2[x0] occurs in the goal.

Using x0 ∈ ℝ, we instantiate (2) and we obtain :

(7) ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Abs[f2[x0] - f2[y]] < ϵ
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“S-decomposition” block of inferences for the universal quantifier [4].

Inference rule “arbitrary but fixed”[1].

For proving (5) we take ϵ0 ∈ ℝ arbitrary but fixed, we assume :

8 ϵ0 > 0

and we prove :

9 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Absf1[x0] + f2[x0] - f1[y] + f2[y] < ϵ0

Inference rule “instantiation” [5]:  we instantiate (6) and (7).

[7] Method: “meta-variables”: in order to find an appropriate term for the instantiation of an univer-

sal assumption (or the witness term for an existential goal), use a new meta-variable instead of the

term (can be seen as a name for the unknown term) and continue the proof. Later in the proof find

the  appropriate  term  (“solve”  the  meta-variable),  and  check  that  the  solution  is  admissible  --

contains  only  constants  which  have  been  already  present  in  the  proof  at  the  moment  when  the

meta-variable  was  introduced.  Also  check  that  the  value  satisfies  the  type  declaration  and  the

condition of the quantifier. In this case we use the meta-variable ϵ1 and the solution is found at step

(23):

ϵ1 = ϵ0  2

First we prove  ϵ1 ∈ ℝ and:

10 ϵ1 > 0

These follow from ϵ0 ∈ ℝ, (8), and elementary properties of ℝ.

Using  ϵ1 ∈ ℝ and (10), we instantiate (6) and we obtain :

11 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Abs[f1[x0] - f1[y]] < ϵ1

Using  ϵ1 ∈ ℝ and (10), we instantiate (7) and we obtain :

12 ∃δ∈δ>0 ∀
y∈

Abs[x0-y]<δ
Abs[f2[x0] - f2[y]] < ϵ1

[8] “S-decomposition” block of inferences for the existential quantifier: When the assumptions and

the goal are existentially quantified, use first the rule “take such a”[9] for the assumptions, and then

the rule “witness”[11] for the goal.

[9] Inference rule “take such a”: When an assumption is existentially quantified, use new constants

instead  of  the  quantified  variables,  assume  they  satisfy  the  type  declarations  and  the  conditions,

and use (as assumption) the unquantified formula.

By (11) we can take  δ1∈ ℝ,  such that :

13 δ1 > 0 ∧ ∀
y∈

Abs[x-y]<δ1
Abs[f1[x0] - f1[y]] < ϵ1

By (12) we can take  δ2∈ ℝ such that :

14 δ2 > 0 ∧ ∀
y∈

Abs[x0-y]<δ2
Abs[f2[x0] - f2[y]] < ϵ1
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[10] Inference rule “split assumed conjunction”: The conjuncts of an assumption can be used later

in  the  proof  as  individual  assumptions.  In  this  case  they  will  be  used  later  as  (13.1),  (13.2),  (14.1),

and (14.2).

[11] Inference rule “witness”: When goal is existentially quantified, use an appropriate ground term

as witness instead of the existential variable, check that the term satisfies the type declaration and

the condition, and then prove the unquantified formula. In this case the goal is (9).

Method: "meta-variables". We use the meta-variable δ0  for the witness term. The solution is found

at step (19):

δ0 = Min[δ1, δ2]
First we prove  δ0 ∈ ℝ and:

15 δ0 > 0

These follow from δ1, δ2 ∈ ℝ, (13.1), (14.1) and elementary properties of ℝ.

Using δ0 ∈ ℝ and (15), in order to prove (9) it suffices to prove:

16 ∀
y∈

Abs[x0-y]<δ0
Absf1[x0] + f2[x0] - f1[y] + f2[y] < ϵ0

“S-decomposition” block of inferences for the universal quantifier [4].

Inference rule “arbitrary but fixed” [1].

For proving (16) we take y0 ∈ ℝ arbitrary but fixed, we assume :

17 Abs[x0 - y0] < δ0
and we prove :

18 Absf1[x0] + f2[x0] - f1[y0] + f2[y0] < ϵ0
Inference rule “instantiation” [5]:  we instantiate (13.2) and (14.2).

Method “equal arguments to arbitrary functions” [6]: we choose y0 because f2[y0] occurs in the goal.

First we prove :

19 Abs[x0 - y0] < δ1 ∧ Abs[x0 - y0] < δ2
[12]  Method  “replace  equal  ground  terms  by  constants”:  when  the  same  ground  term  occurs  in

several  places in the formulae composing the current proof situation,  we replace it  by a new con-

stant. In this case the current proof situation consists in assumption (17) and goal (19). We replace

Abs[x0 - y0] by p and we transform the proof situation into:

17.1 p < δ019.1 p < δ1 ∧ p < δ2
[13]  Method  “solve  meta-variable”:  use  for  the  meta-variable  a  value  which  makes  a  simple  proof

situation  to  succeed,  then  check  the  appropriate  conditions  —  see  [7].  In  this  case  the  solution  is

Min[δ1, δ2].  Now  we  go  back  to  the  proof  step  (15)  and  check  that  the  constants  δ1,  δ2  are

already present in the proof at this step, and that the solution satisfies the type declaration (δ∈ℝ)

and the condition (δ>0) of the main quantifier of goal (9).

In the proof presentation this sub-proof is hidden and we will just write as argument for (19):
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This follows from x0, y0, δ0, δ1, δ2 ∈ ℝ, (17) and elementary properties of ℝ.

Inference rule "split assumed conjunction"[10]. Since (19) has been proved, we can use it now as an

assumption, and split it into (19.1) and (19.2).

Using (19.1), from (13.2) we obtain:

20 Abs[f1[x0] - f1[y0]] < ϵ1
Using (19.2), from (14.2) we obtain:

21 Abs[f2[x0] - f2[y0]] < ϵ1
At  this  moment  all  quantifiers  are  eliminated  by  the  “S-decomposition”  strategy  [3].  The  proof

situation contains only ground formulae: assumptions (20), (21) and goal (18).

Method  “replace  equal  ground  terms  by  constants”  [12].  We  replace  f1[x0],  f2[x0],  f1[y0],

f2[y0]  by x1, x2, y1, y2, respectively. The new proof situation is:

20.1 Abs[x1 - y1] < ϵ121.1 Abs[x2 - y2] < ϵ118.1 Abs[(x1 + x2) - (y1 + y2)] < ϵ0
[14] Method “use constants for terms with known behaviour”: replace certain ground terms occur-

ring  in  the  assumptions  by  constants,  and  then  use  equation  solving,  substitution,  and  computa-

tion in  order  to  transform the corresponding subterms in  the goal.  In  this  case we replace x1 - y1

and x2 - y2 by a1, a2, respectively.

In[ ]:= Eqs = {a1 ⩵ x1 - y1, a2 ⩵ x2 - y2};

In  order  to  update  the  goal  we  eliminate  y1,  y2  because  they  correspond  to  constants  introduced

later in the proof — in this way we have better chances that the solution is admissible.

In[ ]:= Sols = First[Solve[Eqs, {y1, y2}]]

Out[ ]= {y1 → -a1 + x1, y2 → -a2 + x2}

In[ ]:= Expand[(x1 + x2) - (y1 + y2) /. Sols]

Out[ ]= a1 + a2

The new proof situation is:

20.2 Abs[a1] < ϵ121.2 Abs[a2] < ϵ118.2 Abs[a1 + a2] < ϵ0
In the proof presentation this process is hidden, we just write the expression in (18.2) by substitut-

ing back to the original terms:

Using elementary properties of ℝ we transform (18) into:

22 Absf1[x0] - f1[y0] +f2[x0] - f2[y0] < ϵ0
[15]  Method  “rewrite  goal  by  inequalities”:  in  order  to  prove  an  inequality,  replace  subterms  by

bigger subterms.

Abs[a1 + a2] ≤ (* by Abs + *)
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Abs[a1] + Abs[a2] < (* by 20'', 21'' *)ϵ1 + ϵ1
From the transformations above we have the new assumption:

23 Abs[a1 + a2] < 2 * ϵ1
Method  "replace  equal  ground  terms  by  constants"  [12].  We  transform  (23)  and  the  current  goal

(18’’):

23.1 c < 2 * ϵ118.3 c < ϵ0
Method "solve meta-variable”[13]. In order to succeed in the proof situation above, we find ϵ1:

ϵ1 = ϵ0  2

Now we go back to step (10) and check that the constant e0  occurring in the solving term is already

present in the proof, and that the type declaration and the conditions of the universal quantifiers in

(6) and (7) are satisfied.

Now the proof is finished because the main goal was proven (by an appropriate choice of a solution

for the meta-variable). 

In the proof presentation this  process is  hidden,  instead the following argument is  given,  which is

produced by substituting in the expressions above the original ground terms:

Using elementary properties of ℝ, from (20) and (21) we obtain:

Absf1[x0] - f1[y0] +f2[x0] - f2[y0] ≤ (* by Abs + *)≤ Abs[f1[x0] - f1[y0]] + Abs[f2[x0] - f2[y0]] < (* by 20, 21 *)

< ϵ1 +ϵ1 = ϵ0  2 + ϵ0  2 = ϵ0
which proves the goal.

Uniform Continuity of Sum of Two Functions

Definitions

Uniform continuity

(D1) ∀
f:⟶ U[f] ⇔ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀

x,y∈
Abs[x-y]<δ Abs[f[x] - f[y]] < ϵ

Sum of functions

(D2) ∀
f1,f2:⟶ f1 + f2 :ℕ⟶ ∧ ∀

x∈ f1 + f2[x] = f1[x] + f2[x]
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Sum of uniformly continuous functions is uniformly continuous

Formula to prove

G ∀
f1,f2:⟶
U[f1], U[f2]

U[f1 + f2]

Proof presentation

For proving (G) we take  f1, f2 :⟶ arbitrary but fixed, we assume :

(A1) U[f1]

(A2) U[f2]

and we prove :

(G) U[f1 + f2]

From (A1), using f1 :⟶, by the definition (D1) we obtain :

1 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f1[x] - f1[y]] < ϵ
From (A2), using f2 :⟶, by the definition (D1) we obtain :

2 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f2[x] - f2[y]] < ϵ
Using f1, f2 :⟶, by the definition (D2) we obtain (f1 + f2) :ℕ⟶.

Using (f1 + f2) :ℕ⟶, by the definition (D1), for proving (G) it suffices to prove:

3 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1 + f2[x] - f1 + f2[y] < ϵ
Using f1, f2 :⟶, x, y ∈ ℝ, by the definition (D2), for proving (3) it suffices to prove:

(4) ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1[x] + f2[x] - f1[y] + f2[y] < ϵ0
For proving (4) we take ϵ0 ∈ ℝ arbitrary but fixed, we assume :

(5) ϵ0 > 0

and we prove :

(6) ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1[x] + f2[x] - f1[y] + f2[y] < ϵ0
We consider :

ϵ1 = ϵ0  2

First we prove  ϵ1 ∈ ℝ and:

(7) ϵ1 > 0

These follow from ϵ0 ∈ ℝ, (5), and elementary properties of ℝ.

Using  ϵ1 ∈ ℝ and (7), we instantiate (1) and we obtain :
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8 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f1[x] - f1[y]] < ϵ1
Using  ϵ1 ∈ ℝ and (7), we instantiate (2) and we obtain :

9 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f2[x] - f2[y]] < ϵ1
By (8) we can take  δ1∈ ℝ,  such that :

10 δ1 > 0 ∧ ∀
x,y∈

Abs[x-y]<δ1
Abs[f1[x] - f1[y]] < ϵ1

By (9) we can take  δ2∈ ℝ such that :

11 δ2 > 0 ∧ ∀
x,y∈

Abs[x-y]<δ2
Abs[f2[x] - f2[y]] < ϵ1

We consider :

δ0 = Min[δ1, δ2]
First we prove  δ0 ∈ ℝ and:

12 δ0 > 0

These follow from δ1, δ2 ∈ ℝ, (10.1), (11.1) and elementary properties of ℝ.

Using δ0 ∈ ℝ and (12), in order to prove (6) it suffices to prove:

13 ∀
x,y∈

Abs[x-y]<δ0
Absf1[x] + f2[x] - f1[y] + f2[y] < ϵ0

For proving (13) we take x0, y0 ∈ ℝ arbitrary but fixed, we assume :

14 Abs[x0 - y0] < δ0
and we prove :

15 Absf1[x0] + f2[x0] - f1[y0] + f2[y0] < ϵ0
First we prove :

16 Abs[x0 - y0] < δ1 ∧ Abs[x0 - y0] < δ2
This follows from x0, y0, δ0, δ1, δ2 ∈ ℝ, (14) and elementary properties of ℝ.

Using x0, y0 ∈ ℝ and (16.1), from (10.2) we obtain:

17 Abs[f1[x0] - f1[y0]] < ϵ1
Using x0, y0 ∈ ℝ and (16.2), from (11.2) we obtain:

18 Abs[f2[x0] - f2[y0]] < ϵ1
Using elementary properties of ℝ we transform (15) into:

19 Absf1[x0] - f1[y0] +f2[x0] - f2[y0] < ϵ0
Using elementary properties of ℝ, from (17) and (18) we obtain:

Absf1[x0] - f1[y0] +f2[x0] - f2[y0] ≤ (* by Abs + *)≤ Abs[f1[x0] - f1[y0]] + Abs[f2[x0] - f2[y0]] < (* by 17, 18 *)

< ϵ1 +ϵ1 = ϵ0
which proves the goal.

techreport.nb     15



Proof discovery

Brown text constitutes comment and is not part of the proof.

[1] Inference rule “arbitrary but fixed” : For proving an universally quantified formula with type 

declarations and conditions, use arbitrary but fixed constants instead of the quantified variables, 

assume they satisfy the type declarations and the conditions, and prove the unquantified formula.

For proving (G) we take  f1, f2 :⟶ arbitrary but fixed, we assume :

(A1) U[f1]

(A2) U[f2]

and we prove :

(G) U[f1 + f2]

Expanding the assumptions and the goal by definition. When instantiating the definition, check the 

type declaration and the conditions for the instantiating term. 

From (A1), using f1 :⟶, by the definition (D1) we obtain :

1 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f1[x] - f1[y]] < ϵ
From (A2), using f2 :⟶, by the definition (D1) we obtain :

2 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f2[x] - f2[y]] < ϵ
Using f1, f2 :⟶, by the definition (D2) we obtain (f1 + f2) :ℕ⟶.

Using (f1 + f2) :ℕ⟶, by the definition (D1) in order to prove (G) it suffices to prove:

3 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1 + f2[x] - f1 + f2[y] < ϵ
[2] Inference rule “rewriting by equality”: A subterm which matches the LHS of a universally quanti-

fied equality is replaced by the instantiated RHS of the equality, after checking that the instantiat-

ing terms satisfy the type declarations and the conditions of the universal quantifiers. (The rule can 

be applied similarly for using the equality from right to left.)

Using f1, f2 :⟶, x, y ∈ ℝ, by (D2), for proving (3) it suffices to prove:

(4) ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1[x] + f2[x] - f1[y] + f2[y] < ϵ0
[3] Strategy “S-decomposition”: When the assumptions and the goal have identical alternating 

quantifiers, eliminate quantifiers in parallel step by step, using a block of inference rules for each 

quantifier[4], [7].

[4] “S-decomposition” block of inferences for the universal quantifier: When the assumptions and 

the goal are universally quantified, use first the rule “arbitrary but fixed”[1] for the goal, and then 

the rule “instantiation”[5] for the assumptions.

Inference rule “arbitrary but fixed” [1].

For proving (4) we take ϵ0 ∈ ℝ arbitrary but fixed, we assume :
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(5) ϵ0 > 0

and we prove :

(6) ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1[x] + f2[x] - f1[y] + f2[y] < ϵ0
[5] Inference rule “instantiation”: When an assumption is universally quantified, instantiate it with 

an appropriate ground term, after checking that the term satisfies the type declaration and the 

condition. In this case we instantiate (1) and (2).

[6] Method: “meta-variables”: in order to find an appropriate term for the instantiation of an univer-

sal assumption[5] (or the witness term for an existential goal[10]), use a new meta-variable instead 

of the term (can be seen as a name for the unknown term) and continue the proof. Later in the 

proof find the appropriate term (“solve” the meta-variable), and check that the solution ias admissi-

ble -- contains only constants which have been already present in the proof at the moment when 

the meta-variable was introduced. Also check that the value satisfies the type declaration and the 

condition of the quantifier. In this case we use the meta-variable ϵ1 and the solution is found at step 

(20):

ϵ1 = ϵ0  2

First we prove  ϵ1 ∈ ℝ and:

(7) ϵ1 > 0

These follow from ϵ0 ∈ ℝ, (5), and elementary properties of ℝ.

Using  ϵ1 ∈ ℝ and (7), we instantiate (1) and we obtain :

8 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f1[x] - f1[y]] < ϵ1
Using  ϵ1 ∈ ℝ and (7), we instantiate (2) and we obtain :

9 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f2[x] - f2[y]] < ϵ1
[7] “S-decomposition” block of inferences for the existential quantifier: When the assumptions and 

the goal are existentially quantified, use first the rule “take such a”[8] for the assumptions, and then 

the rule “witness”[10] for the goal.

[8] Inference rule “take such a”: When an assumption is existentially quantified, use new constants 

instead of the quantified variables, assume they satisfy the type declarations and the conditions, 

and use (as assumption) the unquantified formula.

By (8) we can take  δ1∈ ℝ,  such that :

10 δ1 > 0 ∧ ∀
x,y∈

Abs[x-y]<δ1
Abs[f1[x] - f1[y]] < ϵ1

By (9) we can take  δ2∈ ℝ such that :

11 δ2 > 0 ∧ ∀
x,y∈

Abs[x-y]<δ2
Abs[f2[x] - f2[y]] < ϵ1

[9] Inference rule “split assumed conjunction”: The conjuncts of an assumption can be used later in 

the proof as individual assumptions. In this case they will be used later as (10.1), (10.2), (11.1), and 
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(11.2).

[10] Inference rule “witness”: When goal is existentially quantified, use an appropriate ground term 

as witness instead of the existential variable, checking that the term satisfies the type declaration 

and the condition, and then prove the unquantified formula. In this case the goal is (6).

Method: "meta-variables"[6]. We use the meta-variable δ0 for the witness term. The solution is 

found at step (16):

δ0 = Min[δ1, δ2]
First we prove  δ0 ∈ ℝ and:

12 δ0 > 0

These follow from δ1, δ2 ∈ ℝ, (10.1), (11.1) and elementary properties of ℝ.

Using δ0 ∈ ℝ and (12), in order to prove (6) it suffices to prove:

13 ∀
x,y∈

Abs[x-y]<δ0
Absf1[x] + f2[x] - f1[y] + f2[y] < ϵ0

“S-decomposition” block of inferences for the universal quantifier [4].

Inference rule “arbitrary but fixed” [1].

For proving (13) we take x0, y0 ∈ ℝ arbitrary but fixed, we assume :

14 Abs[x0 - y0] < δ0
and we prove :

15 Absf1[x0] + f2[x0] - f1[y0] + f2[y0] < ϵ0
Inference rule “instantiation” [5]:  we instantiate (10.2) and (11.2).

[11] Method “equal arguments to arbitrary functions”: the appropriate instantiation term needed as 

an argument for an arbitrary function occurring in an assumption must equal a term which already 

occurs in the proof as the argument of this function occurring in the goal (because otherwise it will 

not be possible for the proof to succeed). In this case we choose x0,  y0 because f1[x0], f2[x0], f1[y0], 

f1[y0] occur in the goal.

First we prove :

16 Abs[x0 - y0] < δ1 ∧ Abs[x0 - y0] < δ2
[12] Method “replace equal ground terms by constants”: when the same ground term occurs in 

several places in the formulae composing the current proof situation, we replace it by a new con-

stant. In this case the current proof situation consists in assumption (17) and goal (19). We replace 

Abs[x0 - y0] by p and we transform the proof situation into:

14.1 p < δ016.1 p < δ1 ∧ p < δ2
[13] Method “solve meta-variable”: use for the meta-variable a value which makes a simple proof 

situation to succeed, then check the appropriate conditions — see [6]. In this case the solution is 

Min[δ1, δ2]. Now we go back to the proof step (12) and check that the constants δ1, δ2 are 

already present in the proof at this step, and that the solution satisfies the type declaration (δ∈ℝ) 

and the condition (δ>0) of the main quantifier of goal (6).
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In the proof presentation this sub-proof is hidden and we will just write as argument for (16):

This follows from x0, y0, δ0, δ1, δ2 ∈ ℝ, (14) and elementary properties of ℝ.

Inference rule "split assumed conjunction"[10]. Since (16) has been proved, we can use it now as an 

assumption, and split it into (16.1) and (16.2).

Using x0, y0 ∈ ℝ and (16.1), from (10.2) we obtain:

17 Abs[f1[x0] - f1[y0]] < ϵ1
Using x0, y0 ∈ ℝ and (16.2), from (11.2) we obtain:

18 Abs[f2[x0] - f2[y0]] < ϵ1
At this moment all quantifiers are eliminated by the “S-decomposition” strategy [3]. The proof 

situation contains only ground formulae: assumptions (17), (18) and goal (15).

Method “replace equal ground terms by constants” [12]. We replace f1[x0], f2[x0], f1[y0], 

f2[y0]  by x1, x2, y1, y2, respectively. The new proof situation is:

17.1 Abs[x1 - y1] < ϵ118.1 Abs[x2 - y2] < ϵ115.1 Abs[(x1 + x2) - (y1 + y2)] < ϵ0
[14] Method “use constants for terms with known behaviour”: replace certain ground terms occur-

ring in the assumptions by constants, and then use equation solving, substitution, and computa-

tion in order to transform the corresponding subterms in the goal. In this case we replace x1 - y1 

and x2 - y2 by a1, a2, respectively.

In[ ]:= Eqs = {a1 ⩵ x1 - y1, a2 ⩵ x2 - y2};

In order to update the goal we eliminate y1, y2. We can as well eliminate x1, x2, but this does not 

matter because the corresponding Skolem constants (x0, y0) are introduced at the same step in the 

proof. (The heuristics consists in eliminating the constants corresponding to the Skolem constants 

introduced later in the proof, in order to maximize the chances for the admissibility of the solution.)

In[ ]:= Sols = First[Solve[Eqs, {y1, y2}]]

Out[ ]= {y1 → -a1 + x1, y2 → -a2 + x2}

In[ ]:= Expand[(x1 + x2) - (y1 + y2) /. Sols]

Out[ ]= a1 + a2

The new proof situation is:

17.2 Abs[a1] < ϵ118.2 Abs[a2] < ϵ115.2 Abs[a1 + a2] < ϵ0
In the proof presentation this process is hidden, we just write the expression in (16.2) by substitut-

ing back to the original terms:

Using elementary properties of ℝ we transform (15) into:

19 Absf1[x0] - f1[y0] +f2[x0] - f2[y0] < ϵ0
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[15] Method “rewrite goal by inequalities”: in order to prove an inequality, replace subterms by 

bigger subterms.

Abs[a1 + a2] ≤ (* by Abs + *)

Abs[a1] + Abs[a2] < (* by 17, 18 *)ϵ1 + ϵ1
From the transformations above we have the new assumption:

20 Abs[a1 + a2] < 2 * ϵ1
Method "replace equal ground terms by constants" [12]. We transform (20) and the current goal 

(15.2):

20.1 c < 2 * ϵ115.3 c < ϵ0
Method "solve meta-variable”[13]. In order to succeed in the proof situation above, we find ϵ1:

ϵ1 = ϵ0  2

Now we go back to step (7) and check that the constant e0 occurring in the solving term is already 

present in the proof, and that the type declaration and the conditions of the universal quantifiers in 

(1) and (2) are satisfied.

Now the proof is finished because the main goal was proven (by an appropriate choice of a solution 

for the meta-variable). 

In the proof presentation this process is hidden, instead the following argument is given, which is 

produced by substituting in the expressions above the original ground terms:

Using elementary properties of ℝ, from (17) and (18) we obtain:

Absf1[x0] - f1[y0] +f2[x0] - f2[y0] ≤ (* by Abs + *)≤ Abs[f1[x0] - f1[y0]] + Abs[f2[x0] - f2[y0]] < (* by 17, 18 *)

< ϵ1 +ϵ1 = ϵ0
which proves the goal.

Uniform Continuity of Product of Two Functions

Definitions

Uniform continuity

(D1) ∀
f:⟶ U[f] ⇔ ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀

x,y∈
Abs[x-y]<δ Abs[f[x] - f[y]] < ϵ

Product of functions

(D2) ∀
f1,f2:⟶ f1 * f2 :⟶ ∧ ∀

x∈ f1 * f2[x] = f1[x] * f2[x]
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Product of uniformly continuous functions is uniformly continuous

This  proof  fails.  In  fact,  the  product  of  uniformly  continuous  functions  is  not  always  uniformly

continuous.  The  failed  proof  attempt  demonstrates  the  importance  of  checking  the  appropriate-

ness of the solutions of meta-variables.

Formula to prove

G ∀
f1,f2:⟶
U[f1], U[f2]

U[f1 + f2]

Proof presentation

For proving (G) we take  f1, f2 :⟶ arbitrary but fixed, we assume :

(A1) U[f1]

(A2) U[f2]

and we prove :

(G) U[f1 + f2]

From (A1), using f1 :⟶, by the definition (D1) we obtain :

1 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f1[x] - f1[y]] < ϵ
From (A2), using f2 :⟶, by the definition (D1) we obtain :

2 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f2[x] - f2[y]] < ϵ
Using f1, f2 :⟶, by the definition (D2) we obtain (f1 * f2) :⟶.

Using (f1 * f2) :⟶, by the definition (D1), for proving (G) it suffices to prove:

3 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1 * f2[x] - f1 * f2[y] < ϵ
Using f1, f2 :⟶, x, y ∈ ℝ, by the definition (D2), for proving (3) it suffices to prove:

(4) ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1[x] * f2[x] - f1[y] * f2[y] < ϵ0
For proving (4) we take ϵ0 ∈ ℝ arbitrary but fixed, we assume :

(5) ϵ0 > 0

and we prove :

(6) ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1[x] * f2[x] - f1[y] * f2[y] < ϵ0
We cannot find an appropriate ground term for the instantiation of (1) and (2), thus the proof fails.

Proof discovery

Brown text constitutes comment and is not part of the proof.
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[1]  Inference  rule  “arbitrary  but  fixed”  :  For  proving  an  universally  quantified  formula  with  type

declarations  and  conditions,  use  arbitrary  but  fixed  constants  instead  of  the  quantified  variables,

assume they satisfy the type declarations and the conditions, and prove the unquantified formula.

For proving (G) we take  f1, f2 :⟶ arbitrary but fixed, we assume :

(A1) U[f1]

(A2) U[f2]

and we prove :

(G) U[f1 * f2]

Expanding the assumptions and the goal by definition. When instantiating the definition, check the

type declaration and the conditions for the instantiating term. 

From (A1), using f1 :⟶, by the definition (D1) we obtain :

1 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f1[x] - f1[y]] < ϵ
From (A2), using f2 :⟶, by the definition (D1) we obtain :

2 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f2[x] - f2[y]] < ϵ
Using f1, f2 :⟶, by the definition (D2) we obtain (f1 * f2) :⟶.

Using (f1 * f2) :⟶, by the definition (D1) in order to prove (G) it suffices to prove:

3 ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1 * f2[x] - f1 * f2[y] < ϵ
[2] Inference rule “rewriting by equality”: A subterm which matches the LHS of a universally quanti-

fied equality is replaced by the instantiated RHS of the equality, after checking that the instantiat-

ing terms satisfy the type declarations and the conditions of the universal quantifiers. (The rule can

be applied similarly for using the equality from right to left.)

Using f1, f2 :⟶, x, y ∈ ℝ, by (D2), for proving (3) it suffices to prove:

(4) ∀ϵ∈ϵ>0 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1[x] * f2[x] - f1[y] * f2[y] < ϵ0
[3]  Strategy  “S-decomposition”:  When  the  assumptions  and  the  goal  have  identical  alternating

quantifiers,  eliminate quantifiers  in  parallel  step by step,  using a  block of  inference rules  for  each

quantifier[4], [7].

[4]  “S-decomposition”  block of  inferences  for  the  universal  quantifier:  When  the  assumptions  and

the goal  are universally  quantified,  use first  the rule “arbitrary but fixed”[1]  for  the goal,  and then

the rule “instantiation”[5] for the assumptions.

Inference rule “arbitrary but fixed” [1].

For proving (4) we take ϵ0 ∈ ℝ arbitrary but fixed, we assume :

(5) ϵ0 > 0

and we prove :
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(6) ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Absf1[x] * f2[x] - f1[y] * f2[y] < ϵ0
[5]  Inference rule “instantiation”:  When an assumption is  universally quantified, instantiate it  with

an  appropriate  ground  term,  after  checking  that  the  term  satisfies  the  type  declaration  and  the

condition. In this case we instantiate (1) and (2).

[6] Method: “meta-variables”: in order to find an appropriate term for the instantiation of an univer-

sal assumption[5] (or the witness term for an existential goal[10]), use a new meta-variable instead

of  the  term  (can  be  seen  as  a  name  for  the  unknown  term)  and  continue  the  proof.  Later  in  the

proof find the appropriate term (“solve” the meta-variable), and check that the solution is admissi-

ble,  namely contains only constants which have been already present in the proof at  the moment

when the meta-variable was introduced. (Admissibility may be achieved by reordering the steps of

the  proof  -  see  proof  of  continuity  of  composition).  Also  check  that  the  value  satisfies  the  type

declaration  and  the  condition  of  the  quantifier.  In  this  case  we  use  the  meta-variable  ϵ1  and  the

solution is found at step (19):

ϵ1 = Min1, ϵ0
Abs[f1[x0]] + Abs[f2[x0]] + 1


However this solution is not appropriate for the proof, because it contains the constant x0  which is

not  yet  present  in  the  proof.  Therefore  the  proof  fails,  however  we  continue  it  below  in  order  to

show how the solution to the meta-variable is found and why it is not possible to reorder the steps

of the proof in order to achieve admissibility.

First we prove  ϵ1 ∈ ℝ and:

(7) ϵ1 > 0

The proof of (7) must be done after an appropriate solution to the meta-variable is found, which will

not be the case, however the proof now continues.

Using  ϵ1 ∈ ℝ and (7), we instantiate (1) and we obtain :

8 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f1[x] - f1[y]] < ϵ1
Using  ϵ1 ∈ ℝ and (7), we instantiate (2) and we obtain :

9 ∃δ∈δ>0 ∀
x,y∈

Abs[x-y]<δ Abs[f2[x] - f2[y]] < ϵ1
[7] “S-decomposition” block of inferences for the existential quantifier: When the assumptions and

the goal are existentially quantified, use first the rule “take such a”[8] for the assumptions, and then

the rule “witness”[10] for the goal.

[8] Inference rule “take such a”: When an assumption is existentially quantified, use new constants

instead  of  the  quantified  variables,  assume  they  satisfy  the  type  declarations  and  the  conditions,

and use (as assumption) the unquantified formula.

By (8) we can take  δ1∈ ℝ,  such that :

10 δ1 > 0 ∧ ∀
x,y∈

Abs[x-y]<δ1
Abs[f1[x] - f1[y]] < ϵ1

By (9) we can take  δ2∈ ℝ such that :
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11 δ2 > 0 ∧ ∀
x,y∈

Abs[x-y]<δ2
Abs[f2[x] - f2[y]] < ϵ1

[9] Inference rule “split assumed conjunction”: The conjuncts of an assumption can be used later in

the proof as individual assumptions. In this case they will be used later as (10.1), (10.2), (11.1), and

(11.2).

[10] Inference rule “witness”: When goal is existentially quantified, use an appropriate ground term

as witness instead of  the existential  variable,  checking that the term satisfies the type declaration

and the condition, and then prove the unquantified formula. In this case the goal is (6).

Method:  "meta-variables"[6].  We  use  the  meta-variable  δ0  for  the  witness  term.  The  solution  is

found at step (16):

δ0 = Min[δ1, δ2]
First we prove  δ0 ∈ ℝ and:

12 δ0 > 0

These follow from δ1, δ2 ∈ ℝ, (10.1), (11.1) and elementary properties of ℝ.

Using δ0 ∈ ℝ and (12), in order to prove (6) it suffices to prove:

13 ∀
x,y∈

Abs[x-y]<δ0
Absf1[x] * f2[x] - f1[y] * f2[y] < ϵ0

“S-decomposition” block of inferences for the universal quantifier [4].

Inference  rule  “arbitrary  but  fixed”  [1].  The  constant  x0  which  is  necessary  for  the  instantiation  at

the step (7) is introduced in the proof only now, thus it cannot be used before.

For proving (13) we take x0, y0 ∈ ℝ arbitrary but fixed, we assume :

14 Abs[x0 - y0] < δ0
and we prove :

15 Absf1[x0] * f2[x0] - f1[y0] * f2[y0] < ϵ0
Inference rule “instantiation” [5]:  we instantiate (10.2) and (11.2).

[11] Method “equal arguments to arbitrary functions”: the appropriate instantiation term needed as

an argument for an arbitrary function occurring in an assumption must equal a term which already

occurs in the proof as the argument of this function occurring in the goal (because otherwise it will

not be possible for the proof to succeed).  In this case we choose x0,   y0  because f1[x0],  f2[x0],  f1[y0],

f1[y0] occur in the goal.

First we prove :

16 Abs[x0 - y0] < δ1 ∧ Abs[x0 - y0] < δ2
[12]  Method  “replace  equal  ground  terms  by  constants”:  when  the  same  ground  term  occurs  in

several  places in the formulae composing the current proof situation,  we replace it  by a new con-

stant. In this case the current proof situation consists in assumption (17) and goal (19). We replace

Abs[x0 - y0] by p and we transform the proof situation into:

14.1 p < δ016.1 p < δ1 ∧ p < δ2
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[13]  Method  “solve  meta-variable”:  use  for  the  meta-variable  a  value  which  makes  a  simple  proof

situation  to  succeed,  then  check  the  appropriate  conditions  —  see  [6].  In  this  case  the  solution  is

Min[δ1, δ2].  Now  we  go  back  to  the  proof  step  (12)  and  check  that  the  constants  δ1,  δ2  are

already present in the proof at this step, and that the solution satisfies the type declaration (δ∈ℝ)

and the condition (δ>0) of the main quantifier of goal (6).

In the proof presentation this sub-proof is hidden and we will just write as argument for (16):

This follows from x0, y0, δ0, δ1, δ2 ∈ ℝ, (14) and elementary properties of ℝ.

Inference rule "split assumed conjunction"[10]. Since (16) has been proved, we can use it now as an

assumption, and split it into (16.1) and (16.2).

Using x0, y0 ∈ ℝ and (16.1), from (10.2) we obtain:

17 Abs[f1[x0] - f1[y0]] < ϵ1
Using x0, y0 ∈ ℝ and (16.2), from (11.2) we obtain:

18 Abs[f2[x0] - f2[y0]] < ϵ1
At  this  moment  all  quantifiers  are  eliminated  by  the  “S-decomposition”  strategy  [3].  The  proof

situation contains only ground formulae: assumptions (17), (18) and goal (15).

Method  “replace  equal  ground  terms  by  constants”  [12].  We  replace  f1[x0],  f2[x0],  f1[y0],

f2[y0]  by x1, x2, y1, y2, respectively. The new proof situation is:

17.1 Abs[x1 - y1] < ϵ118.1 Abs[x2 - y2] < ϵ115.1 Abs[(x1 * x2) - (y1 * y2)] < ϵ0
[14]  Method  “use  constants  for  terms  with  known  behavior”:  replace  certain  ground  terms  occur-

ring  in  the  assumptions  by  constants,  and  then  use  equation  solving,  substitution,  and  computa-

tion in  order  to  transform the corresponding subterms in  the goal.  In  this  case we replace x1 - y1

and x2 - y2 by a1, a2, respectively.

In[ ]:= Eqs = {a1 ⩵ x1 - y1, a2 ⩵ x2 - y2};

In order to update the goal we eliminate y1, y2.

In[ ]:= Sols = First[Solve[Eqs, {y1, y2}]]

Out[ ]= {y1 → -a1 + x1, y2 → -a2 + x2}

In[ ]:= Expand[(x1 * x2) - (y1 * y2) /. Sols]

Out[ ]= -a1 a2 + a2 x1 + a1 x2

The new proof situation is:

17.2 Abs[a1] < ϵ118.2 Abs[a2] < ϵ115.2 Abs[x1 * a2 + x2 * a1 + a1 * a2] < ϵ0
[15]  Method  “rewrite  goal  by  inequalities”:  in  order  to  prove  an  inequality,  replace  subterms  by

bigger subterms.
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Abs[x1 * a2 + x2 * a1 - a1 * a2] ≤ (* by Abs + *)

Abs[x1 * a2] + Abs[x2 * a1] + Abs[a1 * a2] = (* by Abs * *)

Abs[x1] * Abs[a2] + Abs[x2] * Abs[a1] + Abs[a1] * Abs[ a2] < (* by 17'', 18'' *)

Abs[x1] * ϵ1 + Abs[x2] * ϵ1 + ϵ1 * ϵ1
[16] Method “bound the epsilon-bound”: the conditional bound for the absolute value (as here ϵ1) 

can be bounded by any positive value, because the original formula will still be satisfied if the 

bound is smaller. In this case we use the bound 1, and we add ϵ1 ≤ 1 to the current goal.

Abs[x1] * ϵ1 + Abs[x2] * ϵ1 + ϵ1 * ϵ1 ≤ (* by ϵ1≤1 *)

Abs[x1] * ϵ1 + Abs[x2] * ϵ1 + ϵ1
[17] Method “find meta-variable by factoring”: transform the subterm of the goal containing the 

meta-variable in an expression which can be factored.

Abs[x1] * ϵ1 + Abs[x2] * ϵ1 + ϵ1 = ϵ1 * Abs[x1] + Abs[x2] + 1
From the transformations above we have the new assumption:

19 Abs[x1 * a2 + x2 * a1 - a1 * a2] < ϵ1 * Abs[x1] + Abs[x2] + 1
Method "replace equal ground terms by constants" [12]. We transform (19) and the current goal 

(15’’):

19.1 c < ϵ1 * Abs[x1] + Abs[x1] + 1
15.3 c < ϵ0 ∧ ϵ1 ≤ 1

Method "solve meta-variable”[13]. In order to succeed in the proof situation above, we find ϵ1:

ϵ1 = Min1, ϵ0
Abs[x1] + Abs[x2] + 1

 = Min1, ϵ0
Abs[f1[x0]] + Abs[f2[x0]] + 1


Now  we  go  back  to  step  (7)  and  check  that  the  constants  (e0, x0,  f1, f2)  occurring  in  the  solving

term  are  already  present  in  the  proof,  and  that  the  type  declaration  and  the  conditions  of  the

universal quantifiers in (1) and (2) are satisfied. The constant x0  is not present in the proof at step

(7), because it is introduced only at step (14). 

We try to reorder the steps of the proof in order to achieve admissibility.  For this we introduce an

ordering on the set of Skolem constants {ϵ0,  δ1, δ2, x0, y0}  and metavariables {ϵ1, δ0},  that sets as

smaller an element which must be generated earlier than another in the proof. Thus we have:

a ≺ b  iff ((a occurs in the formula from which b is created) or (a occurs in the solution for b))

The first criterion gives us the following constraints:ϵ1 ≺ δ1 formulae 8 10ϵ1 ≺ δ2 formulae 9 11ϵ0 ≺ δ0 formulae 11 13ϵ0, δ0 ≺ x0, y0 formulae 13 14 15
The second criterion gives us the following constraints:δ1, δ2 ≺ δ0 solution δ0
x0 ≺ ϵ1 solution ϵ1
We can construct the cycle :ϵ1 ≺ δ1 ≺ δ0 ≺ x0 ≺ ϵ1
thus it is impossible to find an ordering that satisfies all the constraints.

Therefore the proof fails.
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Note that we could proceed after step (15’) alternatively: In order to update the goal we eliminate

x1, x2:

In[ ]:= Sols = First[Solve[Eqs, {x1, x2}]]

Out[ ]= {x1 → a1 + y1, x2 → a2 + y2}

In[ ]:= Expand[(x1 * x2) - (y1 * y2) /. Sols]

Out[ ]= a1 a2 + a2 y1 + a1 y2

We will find now in a similar way a solution for the meta-variable ϵ1  which contains y0, which is also

not acceptable because this constant is also introduced too late in the proof, and we can see above

that a cycle can be constructed with x0 ≺ ϵ1 also.

Continuity of Composition of Functions

Continuity of a function (on ℝ):

D1 ∀
f:⟶ C[f]⟺ ∀

x∈ ∀
e∈
e>0

∃
d∈
d>0

∀
y∈

Abs[x-y]<d

Abs[f[x] - f[y]] < e

Composition of functions:

D2 ∀
f,g:⟶ f∘g :⟶ ∧ ∀

x∈ f∘g[x] = f[g[x]]

We prove:

∀
f,g:⟶
Cf,C[g]

C[f∘g]
Brown text constitutes comment and is not part of the proof.

1. The steps concerning arbitrary but fixed f, g: ℝ⟶ℝ, decomposition of goal, and expansion by 

definition are similar to the other proofs. After these we have the proof situation:

Assumptions:

A1 .1 ∀
x∈ ∀

e∈
e>0

∃
d∈
d>0

∀
y∈ ∀

y∈
Abs[x-y]<d

Abs[f[x] - f[y]] < e

A2 .1 ∀
x∈ ∀

e∈
e>0

∃
d∈
d>0

∀
y∈ ∀

y∈
Abs[x-y]<d

Abs[g[x] - g[y]] < e

Goal:

G1 ∀
x∈ ∀

e∈
e>0

∃
d∈
d>0

∀
y∈ ∀

y∈
Abs[x-y]<d

Abs[f[g[x]] - f[g[y]]] < e

2. For proving (G1) we take a.b.f. x0 ∈  and we prove :

G2 ∀
e∈
e>0

∃
d∈
d>0

∀
y∈

Abs[x0-y]<d

Abs[f[g[x0]] - f[g[y]]] < e

3. Instantiate (A1 .1)withg[x0] and (A2 .1) with x0.

(heuristics : equal arguments to arbitrary functions) :

Check x0 , g[x0] in  : yes by steps 1 and 2.
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A1 .2 ∀
e∈
e>0

∃
d∈
d>0

∀
y∈

Abs[g[x0]-y]<d

Abs[f[g[x0]] - f[y]] < e

A2 .2 ∀
e∈
e>0

∃
d∈
d>0

∀
y∈

Abs[x0-y]<d

Abs[g[x0] - g[y]] < e

4. For proving (G2) we take a.b.f. e0 ∈  and we prove :

G3 ∃
d∈
d>0

∀
y∈

Abs[x0-y]<d

Abs[f[g[x0]] - f[g[y]]] < e0

Some of the steps below use the technique of metavariables : the prover cannot determine the 

instantiation term or the witness at this moment, but one uses a metavariable as the name of the 

unknown term and the prover finds the appropriate term (solution) later in the proof. After this it is 

checked that the solutions are admissible (all Skolem constants present in the solution have to be 

already present in the proof), as well as the type and the condition.

The ordering of the steps 4 to 8 cannot be determined at this moment (only that 6 comes after 5 

and 8 comes after 7). They can be generated in any order, and in case of incorrect order they will be 

reordered as explained after the end of the proof. 

5. Instantiate (A1 .2) with e1
* (determined as e0 at step 13)

Check solutions admisible: yes (e0 introduced at step 4.)

Check e0 ∈ , e0 > 0 : yes by step 4.

A1 .3 ∀
y∈

Abs[g[x0]-y]< d

Abs[f[g[x0]] - f[y]] < e1
*

6. By (A1 .3) take d1 ∈ , d1 > 0, such that :

A1 .4 ∀
y∈

Abs[g[x0]-y]< d1

Abs[f[g[x0]] - f[y]] < e1
*

7. Instantiate (A2 .2) with e2
* (determined as d1 at step 12)

Check solutions admisible : yes (d1 introduced at step 6).

Check d1 ∈ , d1 > 0 : yes by step 6.

A2 .3 ∃
d∈
d>0

∀
y∈

Abs[x0-y]<d

Abs[g[x0] - g[y]] < e2
*

 

8. By (A2 .3) take d2 ∈ , d2 > 0, such that :

A2 .4 ∀
y∈

Abs[x0-y]< d2

Abs[g[x0] - g[y]] < e2
*

9. For proving (G3) is suffices to prove (witness d0
* determined as d2 at step 11).

Check solution admissible: yes, d2 introduced at step 8.
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Check d2 ∈ , d2 > 0 : yes, see step 8.

G4 ∀
y∈

Abs[x0-y]< d0
*

Abs[f[g[x0]] - f[g[y]]] < e0

10. For proving (G4) we take y0 ∈  arbitrary but fixed, we assume :

A3 Abs[x0 - y0] < d0
*

and we prove :

G5 Abs[f[g[x0]] - f[g[y0]]] < e0

11. Instantiate (A2 .4) with y0 (because this occurs as argument in the goal).

Check y0 ∈  : Yes - see steps 9 and 1.

By checking the condition of the quantifier we obtain the solution for d0
*.

Check condition : Abs[x0 - y0] < d2. Yes, by A3, if we take d0
*⟶d2.A2 .5 Abs[g[x0] - g[y0]] < e2

*

12. Instantiate (A1 .4) with g[y0] (because this occurs as argument in the goal).

Check g[y0] ∈ . Yes - see steps 9 and 1.

Check condition : Abs[g[x0] - g[y0]] < d1. Yes, by A2 .5, if we take e2
*⟶d1.A1 .5 Abs[f[g[x0]] - f[g[y0]]] < e1

*

13. In (A1.5) we set e1
*⟶e0 and we obtain the goal: success.

The the order in which the metavariables and the Skolem constants are introduced in the proof is 

constrained by the inference steps: e1
* ≺ d1  (because step 6 generates d2 from an formula which 

contains e1
*) and similarly for  e2

* ≺ d2 (step 8),  and it is also constrained by the occurence of the 

skolem constants in the solutions to the metavariables:  d2 ≺ d0
* ,   d1 ≺ e2

* ,  e0 ≺ e1
* .

These constraints must be observed by  a final ordering, in this case we have:

e0 ≺ e2
* ≺ d2 ≺ e1

* ≺ d1 ≺ d0
*  and the inference steps are ordered according to this.

If such a final ordering cannot be found, then the proof fails.
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