
Automated Generation of Exam Sheets for
Automated Deduction

Petra Hozzová , Laura Kovács , and Jakob Rath

TU Wien, Austria
{petra.hozzova,laura.kovacs,jakob.rath}@tuwien.ac.at

Abstract. Amid the COVID-19 pandemic, distance teaching became
default in higher education, urging teachers and researchers to revise
course materials into an accessible online content for a diverse audience.
Probably one of the hardest challenges came with online assessments of
course performance, for example by organizing online written exams. In
this teaching-related project paper we survey the setting we organized
for our master’s level course “Automated Deduction” in logic and compu-
tation at TU Wien. The algorithmic and rigorous reasoning developed
within our course called for individual exam sheets focused on problem
solving and deductive proofs; as such exam sheets using test grids were
not a viable solution for written exams within our course. We believe the
toolchain of automated reasoning tools we have developed for holding on-
line written exams could be beneficial not only for other distance learning
platforms, but also to researchers in automated reasoning, by providing
our community with a large set of randomly generated benchmarks in
SAT/SMT solving and first-order theorem proving.

1 Motivation

Amid the COVID-19 pandemic, higher education has moved to distance teaching.
While online lecturing was relatively fast to implement via webinars, recordings,
streaming and online communication channels, coming up with best practices
to assess course performance was far from trivial. Even with very sophisticated
technical infrastructure (use of which, on the other hand, would be unethical to
require from course participants), avoiding collusion in the virtual environment is
very hard to achieve, if possible at all. While work on online feedback generation
has already been initiated, see e.g. [7,15], not much work on online examinations
has emerged so far.

In this paper we survey our teaching-related project work in organizing online
written exams, where the exam solutions require rigorous logical reasoning and
proofs rather than using mechanized test grids. In particular, we are faced with
the challenge of organizing online written exams for our master’s level course
“Automated Deduction” in logic and computation at TU Wien1. This course intro-
duces algorithmic techniques and fundamental results in automated reasoning, by
1 https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=
2002&dsrid=601&courseNr=184774&semester=2020S

The final authenticated version of this article available online at
https://doi.org/10.1007/978-3-030-81097-9_15 .

http://orcid.org/0000-0003-0845-5811
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0003-0346-6749
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=2002&dsrid=601&courseNr=184774&semester=2020S
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=2002&dsrid=601&courseNr=184774&semester=2020S

2 Petra Hozzová, Laura Kovács, Jakob Rath

focusing on specialised algorithms for reasoning in various fragments of first-order
logics, such as propositional logic, combinations of ground theories, and full
first-order logic with equality. As such, topics of the course cover theoretical and
practical aspects of SAT/SMT solving [4,13,5] and first-order theorem proving
using superposition reasoning [12,9].

By no means are we claiming that the framework we developed for online
examination is optimal. Given the time constraints of examination periods, we
aimed for an online exam setting that (i) reduces collusion among students and
(ii) requires the same workload on each participant. Note that there is a trade-off
between (i) and (ii) – very similar problems require comparable effort to be
solved, while solving very different problems requires unequal effort. Therefore
our goal was to strike a balance between (i) and (ii).

The algorithmic reasoning developed within our course called for exam sheets
focused on problem solving and deductive proofs; hence, exam sheets using test
grids were not a viable solution for written exams within our course. We have
therefore used and adapted the automated reasoning approaches introduced in
our course to automate the generation of individual exam sheets for students
enrolled in our course, by making sure that the exam tasks remain essentially
the same in each generated exam sheet. As such, we have randomly generated
individual exam problems on

– SAT solving, by imposing (mostly) syntactical constraints on randomly
generated SAT formulas (Section 2.1);

– Satisfiability modulo theory (SMT) reasoning, by exploiting reasoning in a
combination of theories and varying patterns of SMT problem templates
(Section 3.1);

– First-order theorem proving, by adjusting simplification orderings in superpo-
sition reasoning and using redundancy elimination in first-order proving, both
in the ground/quantifier-free and non-ground/quantified setting (Section 2.2
and Section 3.2).

For each of the SMT and first-order problems we generated, we used respective
SMT and first-order solvers to perform an additional sanity check (Section 4).
Our toolchain and the generated benchmarks/exams are available at

https://github.com/AutomatedDeductionTUW/exagen

We believe our framework is beneficial not only for other distance learning
platforms, but also to researchers in automated reasoning as we provide a large set
of randomly generated benchmarks in SAT/SMT solving and first-order theorem
proving to our scientific community. While our teaching-related project delivery is
specific to formal aspects of automated reasoning, we note that our work can be
extended with further constraints to scale it to other courses in formal methods.

This paper is structured as follows. In Sections 2-3 we discuss the high-
level approach to generating the exam problems. Section 4 surveys the main
implementation principles supporting our solution. Finally, in Section 5 we
compare the teaching outcomes of our online written exam with those coming

https://github.com/AutomatedDeductionTUW/exagen

Automated Generation of Exam Sheets for Automated Deduction 3

from previous in-class examinations. Based on these outcomes, we believe our
online examination maintained the overall course quality in the study curricula.

2 Random Problem Generation

We first describe our solution for generating automated reasoning benchmarks in
a fully automated and random manner. We used this setting to generate exam
problems on SAT solving and first-order theorem proving by filtering out problem
instances that are either too hard or too easy. Throughout this paper, we assume
basic familiarity with standard first-order logic and refer to the literature [2,9]
for further details.

2.1 Boolean Satisfiability (SAT)

In our exam problem on SAT solving (Problem 1 of Figure 1), students were asked
to (a) determine which atoms are of pure polarity in the formula, (b) compute a
polarity-optimized clausal normal form (CNF) [14], and (c) decide satisfiability
of the computed CNF formula by applying the DPLL algorithm.

Randomly generating propositional formulas in a naive setting would lead to a
huge variety of formulas, spanning both formulas for which the above questions are
trivial to answer (e.g., clauses as propositional tautologies) and others requiring
much more effort (e.g., arbitrary formulas using only “↔”). More work was thus
needed to ensure comparable workload for solving exam sheets.

To this end, we identified several syntactical characteristics that the exam
problems on SAT solving should exhibit, and filtered the generated formulas by
these, as summarized partially below.

(i) The SAT formula contains exactly seven logical connectives and exactly three
different propositional variables.

(ii) There is at least one atom that appears with a pure polarity.
(iii) The connectives “↔”, “→”, and “¬” appear at least once, with “↔” appearing

at most twice. At least one of “∧” and “∨” appears.
(iv) Recall that the polarity-optimized clausal normal form involves a set of

definitions, each of which is of the form n ◦ ϕ with ◦ ∈ {→,←,↔}, a fresh
propositional variable n, and a formula ϕ. We restrict the SAT formula such
that at least two of the choices for ◦ appear in its CNF.

(v) The SAT formula has at most six models.

Our aim was to create problems of similar difficulty as in previous iterations of
the course, which is why we used exams from previous years as a reference point.
Some of the criteria, such as the number of connectives and variables, come from
this previous experience. Other criteria, such as the restrictions on connectives
and atom polarity, have been refined iteratively by checking the output for trivial
or too complicated instances.

4 Petra Hozzová, Laura Kovács, Jakob Rath

Automated Deduction – SS 2020
Final Exam – June 17, 2020 Version 2020-06-17 / 36

Problem 1. (25 points) Consider the formula:

(r ∧ ¬(q → p)) ∨ (q ↔ ¬(p→ q))

(a) Which atoms are pure in the above formula?

(b) Compute a clausal normal form C of the above formula by applying the CNF transformation algorithm with
naming and optimization based on polarities of subformulas;

(c) Decide the satisfiability of the computed CNF formula C by applying the DPLL method to C. If C is satisfiable,
give an interpretation which satisfies it.

Problem 2. (25 points) Consider the formula:

b = c ∧ f(b+ 1) 6= b+ 2 ∧ read(A, f(c+ 1)) = c

∧ (read(A, f(b+ 1)) = b+ 3 ∨ read(write(A, b+ 2, f(c)), f(c+ 1)) = c+ 2)

where b, c are constants, f is a unary function symbol, A is an array constant, read , write are interpreted in the array
theory, and +, −, 1, 2, 3, . . . are interpreted in the standard way over the integers.

Use the Nelson-Oppen decision procedure in conjunction with DPLL-based reasoning in the combination of the the-
ories of arrays, uninterpreted functions, and linear integer arithmetic. Use the decision procedures for the theory of
arrays and the theory of uninterpreted functions and use simple mathematical reasoning for deriving new equalities
among the constants in the theory of linear integer arithmetic. If the formula is satisfiable, give an interpretation that
satisfies the formula.

Problem 3. (25 points) Consider the KBO ordering � generated by the precedence f � a� b� g and the weight
function w with w(f) = 0, w(b) = 1, w(g) = 1, w(a) = 3. Let σ be a well-behaved selection function wrt �.
Consider the set S of ground formulas:

f(g(b)) = a ∨ f(g(a)) = a

g(b) = a

g(a) = a

g(b) 6= g(b) ∨ f(a) 6= a

Show that S is unsatisfiable by applying saturation on S using an inference process based on the ground superposition
calculus Sup�,σ (with the inference rules of binary resolution BRσ included). Give details on what literals are selected
and which terms are maximal.

Problem 4. (25 points) Consider the following inference:

P (h(g(g(d, d), b))) ∨ ¬P (h(f(d))) ∨ f(d) 6= h(g(a, a)) ¬P (h(g(x, b))) ∨ f(d) 6= h(g(y, y))

¬P (h(f(d))) ∨ f(d) 6= h(g(a, a))

in the non-ground superposition inference system Sup (including the rules of the non-ground binary resolution infer-
ence system BR), where P is a predicate symbol, f , g, h are function symbols, a, b, d are constants, and x, y are
variables.

(a) Prove that the above inference is a sound inference of Sup.

(b) Is the above inference a simplifying inference of Sup? Justify your answer based on conditions of clauses being
redundant.

Fig. 1. An example of a randomly generated exam sheet of automated deduction.

Automated Generation of Exam Sheets for Automated Deduction 5

Although the combination of the above conditions (i)-(v) might seem very
restrictive, we note that there are 20 390 076 different SAT formulas satisfying
the above criteria. Further, if we do not want to distinguish formulas that differ
only by a permutation of atoms, 3 398 346 formulas remain. We are thus able to
generate a large number of unique SAT formulas to be used in online examinations
and beyond. Problem 1 of Figure 1 showcases one SAT reasoning challenge we
automatically generated for one online examination sheet.

We finally note that, while experimenting with the different constraints (i)-(v)
above, we encountered the following issues that may arise if the restrictions on
the randomly generated formula are too strict:

– The sample space might be empty or very sparse. In practice, it seems to the
user as if the problem generator got stuck, usually resulting in the process
being killed by the user. For example, consider the restriction on polarities of
propositional variables. Combined with the other restrictions, it is impossible
to get a formula that contains atomic propositions of purely positive and
purely negative polarity at the same time.

– The second issue manifests less drastically but is perhaps more problematic:
the sample space may be too uniform, leading to the generation of trivial
and/or very similar formulas. In particular, we encountered this problem
when we restricted the number of models to exactly one, or zero. We note
that there simply are not that many ways to rule out eight interpretations
using only seven connectives.

2.2 Non-Ground Superposition with Redundancy

Moving beyond Boolean satisfiability, we developed a random problem generator
for first-order formulas with equality, in the setting of superposition-based first-
order theorem proving with redundancy elimination [12,9]. In this problem, a
concrete inference2 was given to the students, and their task was to (a) prove
that the inference is sound and (b) that the inference is a simplification inference
(Problem 4 of Figure 1).

We recall that a simplification inference is an inference that removes clauses
from the proof search space, whereas a generating inference adds new clauses to
the search space [9]. In our work, we considered the simplification inference of
subsumption resolution

A ∨ C ¬B ∨D
D or

¬A ∨ C B ∨D
D (1)

where A,B are atoms and C,D are clauses such that A and B are unifiable
with the most general unifier θ, and we have Aθ ∨ Cθ ⊆ B ∨D. Due to the last
condition, the second premise ¬B ∨D (or B ∨D) of (1) is redundant and can
be deleted from the search space after applying (1) within proof search.

2 I.e., an instance of an inference rule as opposed to the rule itself

6 Petra Hozzová, Laura Kovács, Jakob Rath

We randomly generated first-order instances of the inference rule (1), as dis-
cussed next. Our setting could however be easily extended to other simplification
inferences, such as subsumption demodulation [6], and even generating inferences.

(i) To randomly generate first-order terms and literals, we fixed a first-order
signature consisting of predicate and function symbols and specified a set of
logical variables. We controlled the shape of the generated terms by giving
bounds on the depth of the term, that is the maximal nesting level of function
calls (e.g., a constant symbol b has depth 0, while the term g(f(x), d) has
depth 2).

(ii) To obtain random instances of (1), we first generated non-ground clauses
C1 := L1 ∨ L2 corresponding to an instance of the first premise of (1). To
this end, we generated a random uninterpreted literal L1 containing exactly
one variable occurrence, and a random equality literal L2 containing at least
two occurrences of a different variable.

(iii) We next generated the clause C2 := L1θ ∨ L2θ ∨ L3 as an instance of the
second premise of (1) where θ is a randomly generated grounding substitution,
L3 is a randomly generated ground literal, and L is the complementary3

literal to L.
(iv) We set C3 := L3 ∨ L2θ as an instance of the conclusion of (1), yielding thus

the inference
C1 C2
C3 as an instance of (1).

We found that with the concrete signature used for our exam, based on the
above steps (i)-(iv), our approach can generate more than 1011 different instances
of the inference (1). Problem 4 of Figure 1 lists one such an instance.

3 Random Variation of Problem Templates

We now describe our framework for generating random quantifier-free first-order
formulas with and without theories, that was used in the SMT reasoning and
ground superposition proving tasks of our exam. For both of these tasks, we used
quantifier-free first-order formula templates and implemented randomization over
these templates by considering theory reasoning and simplification orderings.

Using this approach we achieved highly controlled output: exam problems
which did not require any additional filtering. However, we note that the number
of generated problems was limited, and to obtain additional problems, we would
have to modify the templates.

3.1 Satisfiability Modulo Theories (SMT)

We considered first-order formula templates in the combined, quantifier-free
theories of equality, arrays and linear integer arithmetic, corresponding to the
3 I.e., L = ¬L and ¬L = L.

Automated Generation of Exam Sheets for Automated Deduction 7

weight of: f g a b precedence weight of: f g a b precedence
w1,f : 1 3 2 1 p1,f : a� b� f � g w1,g : 3 1 2 1 p1,g : a� b� g � f

w2,f : 0 3 2 1 p2,f : f � a� g � b w2,g : 3 0 2 1 p2,g : g � a� f � b

w3,f : 0 1 3 1 p3,f : f � a� b� g w3,g : 1 0 3 1 p3,g : g � a� b� f

w4,f : 1 2 3 1 p4,f : g � f � a� b w4,g : 2 1 3 1 p4,g : f � g � a� b

Table 1. Weights and precedences for the ground superposition problem.

logic AUFLIA of SMT-LIB [1]. We aimed at generating SMT formulas over
which reasoning in all three theories was needed, by exploiting the DPLL(T)
framework [13] in combination with the Nelson-Oppen decision procedure [11]
(Problem 2 of Figure 1).

With naive random generation, it might however happen that, for example,
array reasoning is actually not needed to derive (un)satisfiability of the generated
SMT formula. We therefore constructed an SMT formula template and randomly
introduced small perturbations in this template, so that the theory-specific
reasoning in all generated SMT instances is different while reasoning in all
theories is necessary. For doing so, we considered an SMT template with two
constants of integer sort and replaced an integer-sorted constant symbol c by
integer-sorted terms c + i, where i ∈ {−3,−2, . . . , 3} is chosen randomly. We
flattened nested arithmetic terms such as (c+ i) + j to c+ k, where i, j, k are
integers and k = i + j. As a result, we generated 49 different SMT problems;
we show one such formula, together with the corresponding reasoning tasks, in
Problem 2 of Figure 1.

3.2 Ground Superposition
For generating quantifier-free first-order formulas with equalities, over which
ground and ordered superposition reasoning had to be employed (Problem 3 of
Figure 1), we aimed at (i) generating unsatisfiable sets S of ground formulas with
uninterpreted functions symbols, such that (ii) refutation proofs of S had similar
lengths and complexities. Similarly to Section 3.1, we fixed a template for S and
only varied its instantiation and the Knuth-Bendix ordering (KBO) [8] � to be
used for refuting S within the superposition calculus. To this end, we considered
variations of weight function w and symbol precedence � over S, yielding thus
different KBOs � to be used for refuting S. The main steps of our approach are
summarized below.

(i) We fixed the template for S to be the following set of four clauses

E(F (X)) = a ∨ E(G(Y)) = a (2)
F (X) = a [∨H(b) 6= H(b)] (3)
G(Y) = a [∨H(b) 6= H(b)] (4)
E(a) 6= a [∨H(b) 6= H(b)], (5)

where E,F,G,H ∈ {f, g}, X,Y ∈ {a, b}, and the literal in [] is added to the
clauses optionally.

8 Petra Hozzová, Laura Kovács, Jakob Rath

condition i1, I1 i2, I2 i3, I3

F 6= G and X 6= Y 1, E 2, E 3, E
F 6= G and X = Y 1, H 2, E 4, H
F = G and X 6= Y 1, H 2, H 3, E

Table 2. Assignment of KBOs to instances of the ground superposition problem.

(ii) We created instances of S of this template ensuring that no clause in S is
redundant, by considering the following constraints.
• E 6= H and F (X) 6= G(Y);
• Either X or Y is not a. Similarly, either F or G is not E;
• The literal H(b) 6= H(b) is in exactly one of the clauses (3), (4), (5).

As a result, we produced 12 instances of S satisfying the above properties.

(iii) We considered the term algebras induced by the generated instances of S and
designed KBOs � such that refuting the respective instances of S using �
requires ordering terms both using weight w and precedence �. In addition,
we imposed that either F (X) � a � G(Y) or G(Y) � a � F (X) holds. With
such orderings �, the shortest refutations of instances of S are of the same
length, and in at least one application of superposition, a is replaced by
either F (X) or G(Y) in the resulting clause. We generated eight different
KBOs � fulfilling these conditions. The weights and precedences used to
generate the KBOs are displayed in Table 1. The table shows all weight
and precedence combinations, denoted as wi,I , pi,I for i ∈ {1, 2, 3, 4} and
I ∈ {f, g}.4 Each instance of S was combined with three different KBOs,
generated by pairs (wi1,I1 , pi1,I1), (wi2,I2 , pi2,I2), (wi3,I3 , pi3,I3). The values of
i1, I1, i2, I2, i3, I3 are chosen based on the values of F,G,X, Y , as expressed
by the conditions in Table 2.

Ultimately, we obtained 36 different problems (combinations of instances of
S and �) for the ground superposition reasoning task of our exam. Problem 3 of
Figure 1 shows such an instance.

4 Implementation

We implemented our approach to randomly generating SAT, SMT, and non-
ground first-order problems in Haskell, whereas our ground superposition problem
generator was implemented in Python. All together, our toolchain involved about
2 300 lines of code, including additional scripts for putting parts together. We
4 Note that for all values of i, wi,f (f) = wi,g(g) and wi,f (g) = wi,g(f), and the
precedences pi,f , pi,g are the same except for the precedence of f, g. However, for
convenience, the table contains both wi,f and wi,g, as well as pi,f and pi,g for all
values of i.

Automated Generation of Exam Sheets for Automated Deduction 9

encoded each randomly generated SMT and first-order formula into the SMT-
LIB input format [1] and, for sanity checks, ran the SMT solver Z3 [10] and the
first-order theorem prover Vampire [9] for proving the respective formulas. In
addition, each formula has been converted to LATEX, yielding randomly generated
exam sheets – one such exam sheet is given in Figure 1.

Regarding the filtering of generated formulas using the constraints discussed
in Section 2, we implemented restrictions on the shape of formulas (items (i)
and (iii) in Section 2.1) as constraints during formula generation, while other
critera were realized as post-generation filters. Regarding post-generation filtering,
we did not require very efficient algorithms since the formulas under consideration
are very small. For example, for the restriction on the number of models we used
a naive satisfiability test based on evaluating the formula under each possible
interpretation. Thanks to this approach it is easy to add new filters/constraints.

For the random problem generation setting of Section 2, we applied design
principles of the Haskell library QuickCheck [3]. With QuickCheck, randomly
generated data can easily be defined in an embedded generator language. However,
because of our many filtering criteria, we wanted the generator to additionally
support backtracking. We were also interested in determining the size of the
filtered sample space. To this end, we created a simple typeclass MonadChoose
in the style of the monad transformer library (mtl), with a single primitive
operation choose for choosing an element from a list of possible choices:

class MonadPlus m => MonadChoose m where
choose :: [a] -> m a

Our generator implementations are generic over the monad, constrained by
MonadChoose. The following listing shows (a slightly simplified) part of the
inference generator discussed in Section 2.2.

genExamInference :: MonadChoose m => m Inference
genExamInference = do
-- Define signature (partially omitted)
let vars = ["x", "y", "z"]
let opts = GenOptions{ vars = vars, ... }

-- Choose variables to appear in l1 and l2
v1 <- choose vars
v2 <- choose (filter (/= v1) vars)

-- Generate literals
-- l1: exactly one occurrence of v1
l1 <- mfilter ((==1) . length . toListOf variables)

$ genUninterpretedLiteral opts{ vars = [v1] }
-- l2: at least two occurrences of v2
l2 <- mfilter ((>=2) . length . toListOf variables)

$ genEqualityLiteral opts{ vars = [v2] }
-- l3: ground literal
l3 <- genUninterpretedLiteral opts{ vars = [] }

10 Petra Hozzová, Laura Kovács, Jakob Rath

-- (rest omitted)
return inference

genEqualityLiteral, genUninterpretedLiteral
:: MonadChoose m => GenOptions -> m Literal

-- (literal generators omitted)

We used two concrete implementations to evaluate generators:

1. RandomChoice, a monad that implements choose as uniform random
choice with backtracking support. Conceptually, this is like the standard list
monad where choose works like the regular monadic bind for lists except
that it first shuffles the list with a random permutation. This evaluation
method is used to generate random exams.

2. The standard list monad to enumerate the sample space. This second evalua-
tion method helps verifying that the sample space is sufficiently large.

5 Evaluation of Online Exam Outcomes

In Summer 2020, all together 31 students took the online written exam in
“Automated Deduction”. We note that in Summer 2018 and Summer 2019, there
have been 17 and respectively 31 students taking the in-class exam of the course.
We believe that the online lecturing and examination in Summer 2020 did not
have negative impact on the students’ course performance.

In the online written examination of Summer 2020, the students solved their
respective unique exam assignments on paper and submitted scanned versions of
their solutions online. The types of exam problems from Summer 2020 were the
same as in previous editions of the course. However, contrary to previous years,
different students had different exam assignments, to minimise opportunity for
collusion between students.

While building the pipeline described in this paper required much more work
than creating just one exam sheet, our approach was more efficient than it
would be to create 31 different exam sheets manually. Additionally, our approach
guaranteed that the exam problems were unique, yet required comparable effort
to solve. Also, reusing our pipeline in the future requires only minimal changes.

Further, the types of the problems in our exam are not trivial to grade,
since the solutions require applying complicated reasoning algorithms on paper,
and the grade has to take into account the whole process, not just the result.
However, the use of templates of Section 3 made the grading fairly similar to
grading multiple solutions of the same problem by providing a clear pattern to
follow. This observation extends to the problem on non-ground superposition
(Subsection 2.2), because the argument required in the solution does not depend
majorly on the generated parts, even though we did not use an explicit template.
The situation is different for the problem on boolean satisfiability (Subsection 2.1).
There, the solution varies greatly with the input formula, and grading a different
instance requires mentally stepping through the problem again. One might

Automated Generation of Exam Sheets for Automated Deduction 11

suggest to also generate fully worked solutions to this problem, however it is not
immediately clear that this would be helpful: at various points, the students may
choose among multiple correct possibilities, each of which leads to differences in
subsequent parts of the solution.

The average exam score was 79.9%, compared to 80% in 2019 and 76%
in 2018. Based on the comparable exam averages, we believe our online written
examination from Summer 2020 did not bring any significant change in the overall
course performances of students enrolled in the course.

Finally, eight students filled out a feedback survey for the course in Summer
2020. All of them reported high levels of satisfaction with the course, with one
student explicitly praising the online exam format. Our course in Summer 2020
has been also nominated for the Best Distance Learning Award 2020 of the TU
Wien.

6 Conclusion

We describe a randomized approach and toolchain for generating exam problems
in automated reasoning, in particular in the setting of SAT, SMT, and first-order
theorem proving. Our approach was used to generate individual exam sheets
focused on problem solving within automated deduction, and could be adapted
to other constraints and course frameworks.

Acknowledgments

We acknowledge funding supporting this work, in particular the ERC CoG
ARTIST 101002685, the ERC StG 2014 SYMCAR 639270 and the Austrian FWF
research project LogiCS W1255-N23.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available at
www.SMT-LIB.org

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

3. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. In: Proc. ICFP. pp. 268–279 (2000)

4. Davis, M., Logemann, G., Loveland, D.W.: A Machine Program for Theorem-
Proving. Commun. ACM 5(7), 394–397 (1962)

5. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
Fast Decision Procedures. In: Proc. of CAV. pp. 175–188 (2004)

6. Gleiss, B., Kovács, L., Rath, J.: Subsumption Demodulation in First-Order Theorem
Proving. In: Proc. IJCAR (2020), to appear

7. Gulwani, S., Radicek, I., Zuleger, F.: Automated Clustering and Program Repair
for Introductory Programming Assignments. In: Proc. PLDI. pp. 465–480 (2018)

12 Petra Hozzová, Laura Kovács, Jakob Rath

8. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Com-
putational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)

9. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: Proc.
CAV. pp. 1–35 (2013)

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Proc. TACAS. pp.
337–340 (2008)

11. Nelson, G., Oppen, D.C.: Simplification by Cooperating Decision Procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

12. Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Handbook
of Automated Reasoning, pp. 371–443 (2001)

13. Tinelli, C.: A DPLL-Based Calculus for Ground Satisfiability Modulo Theories. In:
Porc. JELIA. pp. 308–319 (2002)

14. Tseytin, G.S.: On the Complexity of Derivation in Propositional Calculus, chap.
Studies in Constructive Mathematics and Mathematical Logic, pp. 115–1125. Steklov
Mathematical Institute (1970)

15. Wang, K., Singh, R., Su, Z.: Search, Align, and Repair: Data-Driven Feedback
Generation for Introductory Programming Exercises. In: Proc. PLDI. pp. 481–495
(2018)

	Automated Generation of Exam Sheets for Automated Deduction

