Skip to main content

Improving Stateful Premise Selection with Transformers

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12833))

Included in the following conference series:

  • 765 Accesses

Abstract

Premise selection is a fundamental task for automated reasoning in large theories. A recently proposed approach formulates premise selection as a sequence-to-sequence problem, called stateful premise selection. Given a theorem statement, the goal of a stateful premise selection method is to predict the set of premises that would be useful in proving it. In this work we use the Transformer architecture for learning the stateful premise selection method. We outperform the existing recurrent neural network baseline and improve upon the state of the art on a recently proposed dataset.

This work was supported by the ERC Advanced grant no. 742870. We would like to thank Kazuki Irie for constructive feedback on the manuscript as well as Róbert Csordás and Dieuwke Hupkes for useful advice about the Transformer architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code for reproducing the results displayed here is available at https://github.com/krstopro/stateful-premise-selection-with-transformers.

References

  1. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  2. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formaliz. Reason. 3(2), 153–245 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  4. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_23

    Chapter  Google Scholar 

  5. Irving, G., Szegedy, C., Alemi, A.A., Een, N., Chollet, F., Urban, J.: Deepmath - deep sequence models for premise selection. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016). https://proceedings.neurips.cc/paper/2016/file/f197002b9a0853eca5e046d9ca4663d5-Paper.pdf

  6. Kaliszyk, C., Rabe, F.: A survey of languages for formalizing mathematics. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 138–156. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_9

    Chapter  MATH  Google Scholar 

  7. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. 53(2), 173–213 (2014)

    Article  MathSciNet  Google Scholar 

  8. Kaliszyk, C., Urban, J.: Mizar 40 for Mizar 40. J. Autom. Reason. 55(3), 245–256 (2015)

    Article  MathSciNet  Google Scholar 

  9. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: OpenNMT: open-source toolkit for neural machine translation. In: Proceedings of ACL 2017, System Demonstrations, pp. 67–72. Association for Computational Linguistics, Vancouver, Canada (Jul 2017). https://www.aclweb.org/anthology/P17-4012

  10. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  11. Loos, S., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search. In: LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, pp. 85–105 (2017). http://arxiv.org/pdf/1701.06972.pdf. ISSN 2398–7340

  12. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421 (2015)

    Google Scholar 

  13. Megill, N., Wheeler, D.A.: Metamath: A Computer Language for Mathematical Proofs (2019). http://us.metamath.org/downloads/metamath.pdf

  14. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Appl. Log. 7(1), 41–57 (2009)

    Article  MathSciNet  Google Scholar 

  15. Olsák, M., Kaliszyk, C., Urban, J.: Property invariant embedding for automated reasoning. In: Giacomo, G.D., et al. (eds.) ECAI 2020–24th European Conference on Artificial Intelligence, 29 Aug – 8 Sept 2020, Santiago de Compostela, Spain, Aug 29 – Sept 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020). Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 1395–1402. IOS Press (2020). https://doi.org/10.3233/FAIA200244

  16. Paliwal, A., Loos, S., Rabe, M., Bansal, K., Szegedy, C.: Graph representations for higher-order logic and theorem proving. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 2967–2974 (2020)

    Google Scholar 

  17. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  18. Piotrowski, B., Urban, J.: ATPboost: learning premise selection in binary setting with ATP feedback. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 566–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_37

    Chapter  Google Scholar 

  19. Piotrowski, B., Urban, J.: Stateful premise selection by recurrent neural networks. In: Albert, E., Kovacs, L. (eds.) LPAR23, LPAR-23: 23rd International Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series in Computing, vol. 73, pp. 409–422. EasyChair (2020). 0). https://doi.org/10.29007/j5hd. https://easychair.org/publications/paper/g38n

  20. Polu, S., Sutskever, I.: Generative language modeling for automated theorem proving. CoRR abs/2009.03393 (2020). https://arxiv.org/abs/2009.03393

  21. Schlag, I., Irie, K., Schmidhuber, J.: Linear transformers are secretly fast weight memory systems. CoRR abs/2102.11174 (2021). https://arxiv.org/abs/2102.11174

  22. Schmidhuber, J.: Reducing the ratio between learning complexity and number of time varying variables in fully recurrent nets. In: Gielen, S., Kappen, B. (eds.) ICANN 1993, pp. 460–463. Springer, London (1993). https://doi.org/10.1007/978-1-4471-2063-6_110

    Chapter  Google Scholar 

  23. Fermüller, C.G., Voronkov, A. (eds.): LPAR 2010. LNCS, vol. 6397. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-8

    Book  MATH  Google Scholar 

  24. Sutcliffe, G.: The TPTP world – infrastructure for automated reasoning. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 1–12. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_1

    Chapter  Google Scholar 

  25. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27, 3104–3112 (2014)

    Google Scholar 

  26. Tsivtsivadze, E., Urban, J., Geuvers, H., Heskes, T.: Semantic graph kernels for automated reasoning. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 795–803. SIAM (2011)

    Google Scholar 

  27. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reason. 37(1–2), 21–43 (2006)

    Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krsto Proroković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Proroković, K., Wand, M., Schmidhuber, J. (2021). Improving Stateful Premise Selection with Transformers. In: Kamareddine, F., Sacerdoti Coen, C. (eds) Intelligent Computer Mathematics. CICM 2021. Lecture Notes in Computer Science(), vol 12833. Springer, Cham. https://doi.org/10.1007/978-3-030-81097-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81097-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81096-2

  • Online ISBN: 978-3-030-81097-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics