
Balanced-by-construction regular and
ω-regular languages

Luc Edixhoven[0000−0002−6011−9535](�) and Sung-Shik
Jongmans[0000−0002−4394−8745]

1 Open University, Heerlen, Netherlands
2 Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands

{led,ssj}@ou.nl

Abstract. Parenn is the typical generalisation of the Dyck language to
multiple types of parentheses. We generalise its notion of balancedness to
allow parentheses of different types to freely commute. We show that bal-
anced regular and ω-regular languages can be characterised by syntactic
constraints on regular and ω-regular expressions and, using the shuffle on
trajectories operator, we define grammars for balanced-by-construction
expressions with which one can express every balanced regular and ω-
regular language.

Keywords: Dyck language · Shuffle on trajectories · Regular languages

1 Introduction

The Dyck language of balanced parentheses is a textbook example of a context-
free language. Its typical generalisation to multiple types of parentheses, Parenn,
is central in characterising the class of context-free languages, as shown by the
Chomsky-Schützenberger theorem [1]. Many other generalisations of the Dyck
language have been studied over the years [2,4,5,8,9].

The notion of balancedness in Parenn requires parentheses of different types
to be properly nested: [1[2]2]1 is balanced but [1[2]1]2 is not. In this paper,
we consider a more general notion of balancedness, in which parentheses of the
same type must be properly nested but parentheses of different types may freely
commute. This notion of balancedness is of particular interest in the context of
distributed computing, where different components communicate by exchanging
messages: if we assign a unique type of parentheses to every communication chan-
nel between two participants, and interpret a left parenthesis as a message send
event and a right parenthesis as a receive event, then balancedness characterises
precisely all sequences of communication with no lost or orphan messages.

Specifically, we are interested in specifying languages that are balanced by
construction, which correspond to communication protocols that are free of lost
and orphan messages. More precisely, we aim to answer the question: can we
define balanced atoms and a set of balancedness-preserving operators with which
one can express all balanced languages?

2 L. Edixhoven and S.-S. Jongmans

Our main result is that we answer this question positively for the classes of
regular and ω-regular languages. Our contributions are as follows:

– In Section 2 we show how balancedness of regular languages corresponds to
syntactic properties of regular expressions.

– In Section 3 we show that, by using a parametrised shuffle operator, we can
define a grammar of balanced-by-construction expressions with which one
can express all balanced regular languages.

– In Section 4 we extend these results to ω-regular languages and expressions.

Related work and detailed proofs appear in a technical report [3].

Notation N = {1, 2, . . .}, N0 = {0, 1, . . .} and Z is the set of integers. Let Σn
be the alphabet {[1,]1, . . . , [n,]n}. Its size is typically clear from the context,
in which case we omit the subscript. We write λ for the empty word. We write
Σ∗ for the set of finite words over Σ. We write Σω for the set of infinite words
{w | w : N→ Σ} over Σ. We write Σ∞ = Σ∗∪Σω. We write w(i) to refer to the
symbol at position i in w. We write w(i, . . . , j) for the substring of w beginning
at position i and ending at position j. Let v, w ∈ Σ∞. Then v is a prefix of
w, denoted v � w, if v = w or if there exists v′ ∈ Σ∞ such that vv′ = w. We
write |w|, |w|σ ∈ N0 ∪ {ℵ0} respectively for the length of w and for the number
of occurrences of symbol σ in w. Let E be the set of all regular expressions over⋃
n≥1Σn. For e1, e2 ∈ E, we write e1 ≡ e2 iff L(e1) = L(e2).

2 Balanced regular languages

In this section, we formally define our notion of balancedness and characterise
balanced regular languages in terms of regular expressions.

Balancedness A word w ∈ Σ∗ is i-balanced if |w|[i = |w|]i and if, for all prefixes
v of w, |v|[i ≥ |v|]i . It is balanced if it is i-balanced for all i. We extend this
terminology to languages and expressions in the expected way.

Regular expressions Using standard algebraic rules, we can rewrite any regular
expression representing a non-empty language into an equivalent expression that
does not contain ∅. Therefore, without loss of generality, we may assume that
regular expressions do not contain ∅, unless they are simply ∅.

To every regular expression e and for every i, we assign a value which we call
its i-balance, denoted∇(e, i). We show that this value corresponds to the number
of unmatched left i-parentheses in every word of its language (see Lemma 1(i)),
if such a number exists. Also, to differentiate between words such as [i]i and
]i[i, we assign a second value to regular expressions which we call its minimum
i-balance, denoted ∇min(e, i), which we show to correspond to the smallest i-
balance among every prefix of every word in its language (see Lemma 1(ii–iii)).

Formally, we define partial functions ∇,∇min : E × N 7→ Z as in Figure 1.
Lemma 1 states that ∇(e, i) and ∇min(e, i) have the intended properties we

Balanced-by-construction regular and ω-regular languages 3

∇(λ, i) = 0 ∇([i, i) = 1 ∇(]i, i) = −1 ∇([j , i) = ∇(]j , i) = 0

∇(e1 + e2, i) = ∇(e1, i) if ∇(e1, i) = ∇(e2, i)

∇(e1 · e2, i) = ∇(e1, i) +∇(e2, i) ∇(e∗, i) = 0 if ∇(e, i) = 0

∇min(λ, i) = ∇min([i, i) = 0 ∇min(]i, i) = −1 ∇min([j , i) = ∇min(]j , i) = 0

∇min(e1 + e2, i) = min(∇min(e1, i),∇min(e2, i))

∇min(e1 · e2, i) = min(∇min(e1, i),∇(e1, i) +∇min(e2, i)) ∇min(e∗, i) = ∇min(e, i)

Fig. 1. The i-balance and minimum i-balance of regular expressions, where i 6= j.

described and Lemma 2 states that if the number of unmatched i-parentheses of
words in L(e) is uniquely defined, then both ∇(e, i) and ∇min(e, i) are defined.
We note that ∇ is partial. For instance, ∇([1 + λ, 1) and ∇([∗1, 1) are both
undefined since their languages contain [1 and λ, which have different numbers
of unmatched left i-parentheses. As ∇min relies on ∇, ∇min is partial as well.

Lemma 1. If ∇(e, i) and ∇min(e, i) are defined, then:

(i) |w|[i − |w|]i = ∇(e, i) for every w ∈ L(e);
(ii) |v|[i − |v|]i ≥ ∇min(e, i) for every prefix v of every w ∈ L(e); and
(iii) |v|[i − |v|]i = ∇min(e, i) for some prefix v of some w ∈ L(e).

Lemma 2. If |v|[i − |v|]i = |w|[i − |w|]i for every v, w ∈ L(e) and L(e) 6= ∅,
then ∇(e, i) and ∇min(e, i) are defined.

The proofs are straightforward by structural induction on e. Applying them
gives us the following characterisation:

Theorem 1. Let e ∈ E. Then e is balanced iff ∇(e, i) = ∇min(e, i) = 0 for every
i or if e = ∅.

3 Balanced-by-construction regular languages

The main contribution of this section is a grammar of balanced-by-construction
expressions, E� in Figure 2, with which one can express all balanced regular
languages. It differs from regular expressions in two ways:

– Parentheses can syntactically occur only in ordered pairs instead of sepa-
rately, so the atoms are all balanced.

– We add a family of operators �n
θ (e1, . . . , en), called shuffle on trajectories,

in order to interleave words of subexpressions.

The shuffle on trajectories operator is a powerful variation of the traditional
shuffle operator, which adds a control trajectory (or a set thereof) to restrict
the permitted orders of interleaving. This allows for fine-grained control over
orderings when shuffling words or languages. The binary operator was defined

4 L. Edixhoven and S.-S. Jongmans

e ::= ∅ | λ | [1 ·]1 | [2 ·]2 | . . . | e1 + e2 | e1 · e2 | e∗ | �1
θ (e1) | �2

θ (e1, e2) | . . .
θ ::= ∅ | λ | 1 | 2 | . . . | θ1 + θ2 | θ1 · θ1 | θ∗

Fig. 2. A grammar E� for expressing balanced regular languages.

— and its properties thoroughly studied — by Mateescu et al. [6]; the slightly
later introduced multiary variant [7] is formally defined as follows.

Let w1, . . . , wn ∈ Σ∗ and let t ∈ {1, . . . , n}∗ be a trajectory. Then:

�
n
t (w1, . . . , wn) =

{
σ�n

t′ (w1, . . . , w
′
i, . . . , wn) if t = it′ ∧ wi = σw′i,

λ if t = w1 = . . . = wn = λ.

The operator naturally generalises to languages and expressions:

�
n
T (L1, . . . , Ln) = {�n

t (w1, . . . , wn) | t ∈ T,w1 ∈ L1, . . . , wn ∈ Ln} .
L(�n

θ (e1, . . . , en)) = �n
L(θ)(L(e1), . . . , L(en)).

As the operator’s arity is clear from its operands, we generally omit it. For the
trajectories, we allow any regular expression over N.

Note that�n
t (w1, . . . , wn) is defined only if |t|i = |wi| for every i. If |t|i = |wi|,

we say that t fits wi. For example,�121332([1]1, [2]2, [3]3) = [1[2]1[3]3]2 and
�121([1]1, [2]2) is undefined since 121 does not fit [2]2. Similarly, �12+21([1 +
[2]2,]1) ≡ [1]1 +]1[1, �12+22([1,]1) ≡ [1]1 and �(12)∗(([1]1)∗, ([2]2)∗) ≡
([1[2]1]2)∗, while �12+11([1, λ) ≡ �(12)∗([1]1, [2(]2[2)∗) ≡ ∅ since in both
cases no trajectory fits at least one word in every operand. Additionally, we say
that T fits Li if every t ∈ T fits some wi ∈ Li and that θ fits ei if L(θ) fits L(ei).

In the remainder of this section, we show that the grammar E� can express
all (completeness) and only (soundness) balanced regular languages.

Soundness Showing that every expression in E� represents a balanced regular
language is straightforward. The base cases all comply and both balanced and
regular languages are closed under nondeterministic choice, concatenation and
finite repetition. The shuffle on trajectories operator yields an interleaving of
its operands: a simple inductive proof will show closure of balanced languages
under the operation. Mateescu et al. show that regular languages are closed un-
der binary shuffle on regular trajectory languages by constructing an equivalent
finite automaton [6, Theorem 5.1]; their construction can be generalised in a
straightforward way to fit the multiary operator, which shows that:

Theorem 2. {L(e) | e ∈ E�} ⊆ {L | L is a balanced and regular language}.

Completeness To show that every balanced regular language has a representation
in E�, we take a balanced regular expression e, rewrite it into a disjunctive
normal form e1 + . . . + en such that all ei contain no ∅ or choice operators —
unless e = ∅, but since ∅ ∈ E� we do not need to consider that specific case.

Balanced-by-construction regular and ω-regular languages 5

k
i = ([i]i)

k([i]i)
∗

λ
k
i = (k

i)∗ ω
i = ([i]i)

ω

+
k
i = k

i [i − k
i =]i

k
i ± k

i =]i
k
i [i ?

k
i = (± k

i)∗ ± ω
i = (]i[i)

ω

Fig. 3. Factors, with i ∈ N, k ∈ N0; balanced factors in the top row, unbalanced factors
in the bottom row. We omit the superscript when it is not relevant. The ω-factors will
be used in Section 4.

(+
k
i , −

`
i)→ k+`+1

i (+
k
i , ±

`
i)→ +

k+`+1
i (± k

i , −
`
i)→ − k+`+1

i

(− k
i , +

`
i)→ ± k+`

i (+
k
i , ?

`
i)→ +

k
i (?

k
i , −

`
i)→ − `

i

(± k
i , ±

`
i)→ ± k+`+1

i (?
k
i , ?

`
i)→ ?

min(k,`)
i (± k

i , ?
`
i), (?

`
i , ±

k
i)→ ± k

i

(+
k
i , ±

ω
i)→ ω

i

Fig. 4. Merging common pairs of factors, with i ∈ N and k, ` ∈ N0.

We then show that, for every i, ei ≡ �θ(ei,1, . . . , ei,m) for some ei,1, . . . , ei,m,
where every ei,j is essentially of the form ([k]k)∗ for some k.

To do this, we show the more general result that, in fact, any regular expres-
sion containing no ∅ or +, and whose every i-balance is defined, can be written
as the shuffle of the expressions in Figure 3, which we call factors. Additionally,
this can be done in such a way that the number of unbalanced i-factors is limited
by the expression’s i-balance and minimum i-balance, which implies that if the
expression is balanced then it can be written as a shuffle of balanced factors
— which is in E�. To prove this inductively for the concatenation case, we use
that �θ1(e1, . . . , en) ·�θ2(en+1, . . . , en+m) ≡ �θ3(e1, . . . , en, en+1, . . . , en+m) for
some θ3. We then merge certain pairs of factors to retain the correspondence be-
tween unbalanced factors and i-balance; for example, + i and − i into i.

Lemma 3 justifies this merging operation and specifies the conditions under
which it may be applied. We note that in particular these conditions, with the
right T , hold for the pairs of factors in Figure 4. Using this, Lemma 4 justifies
the rewriting of regular expressions into shuffles of factors.

Lemma 3 (Merge). Let L = �T (L1, . . . , Lm). If

(a) T fits every Li,
(b) for every t ∈ T , if t(i) = m− 1 and t(j) = m then i < j, and
(c) for all v, w ∈ Lm−1Lm, if |v| = |w| then v = w,

then L = �T ′(L1, . . . , Lm−1Lm) for some T ′ such that T ′ fits L1, . . . , Lm−1Lm.

Proof. Let ϕ be a homomorphism such that ϕ(m − 1) = 1, ϕ(m) = 2 and
ϕ(i) = λ for all other i. Let ψ be a homomorphism such that ψ(m) = m− 1 and
ψ(i) = i for all other i. We proceed to show that L = �ψ(T)(L1, . . . , Lm−1Lm).
Since T fits every Li, ψ(T) also fits L1, . . . , Lm−1Lm. ut

Lemma 4 (Rewrite). Let posi(e1, . . . , en), negi(e1, . . . , en), neuti(e1, . . . , en)
be the number of + i, − i and [± i or ?

i] among e1, . . . , en.

6 L. Edixhoven and S.-S. Jongmans

Let e ∈ E containing no +, whose i-balance is defined for every i. Then there
exist θ and factors e1, . . . , en such that e ≡ �θ(e1, . . . , en) and, additionally,

(a) posi(e1, . . . , en)− negi(e1, . . . , en) = ∇(e, i) for every i,
(b) −negi(e1, . . . , en)− neuti(e1, . . . , en) = ∇min(e, i) for every i,
(c) there are not both + i and − i among e1, . . . , en for some i, and
(d) θ fits every ei.

Proof. This is a proof by induction on the structure of e.
The base cases λ, [i and]i are covered by �1

λ(0
i), �

1
1(+ 0

i) and �1
1(− 0

i).
Since e contains no +, this leaves us with two inductive cases:

– Let e = ê∗. The induction hypothesis gives us some ê1, . . . , ên and θ̂ sat-
isfying all conditions for ê. It should be clear that L((�θ̂(ê1, . . . , ên))∗) ⊆
L((�θ̂(ê

∗
1, . . . , ê

∗
n))∗) ⊆ L(�θ̂∗(ê

∗
1, . . . , ê

∗
n)). Since ∇(e, i) is defined for all i,

∇(ê, i) = 0 for all i. It then follows from (a) and (c) that ê1, . . . , ên contain
no + i or − i, so all ê∗i are also factors.
To prove inclusion in the other direction, we show in two steps that
L(�θ̂∗(ê

∗
1, . . . , ê

∗
n)) ⊆ L((�θ̂(ê

∗
1, . . . , ê

∗
n))∗) ⊆ L((�θ̂(ê1, . . . , ên))∗).

The balances, minimum balances and factor counts are unchanged, so (a–c)

are satisfied. Finally, since θ̂ fits every êi, θ̂
∗ fits every ê∗i , so (d) also holds.

– Let e = ê1 · ê2. The induction hypothesis gives us some e1,1, . . . , e1,m1
and

θ1 satisfying all conditions for ê1, and similarly for ê2. Let ϕ be a homomor-
phism such that ϕ(i) = i + m1. Then e′ = �θ1ϕ(θ2)(e1,1, . . . , e1,m1 , e2,1, . . . ,
e2,m2) ≡ e and e′ satisfies (d), but not necessarily (a–c). We resolve the lat-
ter by merging operands e1,j , e2,k where applicable by Lemma 3. We merge
pairs of factors from Figure 4, taking care to prioritise pairs containing both
+ i and − i over pairs containing only one of these, and pairs containing

only one over pairs containing none. By Lemma 3, the resulting expression
is equivalent to e′ and satisfies (d). It also satisfies (a–c). ut

Since a balanced regular expression has an i-balance and minimum i-balance
of 0 for every i (Theorem 1), the following theorem follows directly from Lemma 4.

Theorem 3. {L(e) | e ∈ E�} ⊇ {L | L is a balanced and regular language}.

As an example, consider e = [1([1]1 +]1[1)(]1[1)∗]1. We first rewrite e as
[1[1]1(]1[1)∗]1 + [1]1[1(]1[1)∗]1. We proceed to show how to construct an
expression in E� for the first part of the disjunction:

[1[1]1(]1[1)∗]1 ≡ �1(+ 0
1)�1 (+ 0

1)�1 (− 0
1)(�1(− 0

1)�1 (+ 0
1))∗ �1 (− 0

1)

≡ �12(+ 0
1, + 0

1)�1 (− 0
1)(�1(− 0

1)�1 (+ 0
1))∗ �1 (− 0

1)

≡ �121(1
1, + 0

1)(�1(− 0
1)�1 (+ 0

1))∗ �1 (− 0
1)

≡ �121(1
1, + 0

1)(�11(± 0
1))∗ �1 (− 0

1)

≡ �121(1
1, + 0

1)�(11)∗ (? 0
1)�1 (− 0

1)

≡ �121(22)∗(
1
1, + 0

1)�1 (− 0
1)

≡ �121(22)∗2(1
1,

1
1).

Balanced-by-construction regular and ω-regular languages 7

4 Balanced-by-construction ω-regular languages

We generalise the notion of balancedness to also include bounded infinite words
and ω-languages: a word w ∈ Σ∞ is i-balanced iff |w|[i = |w|]i , |v|[i ≥ |v|]i for all
finite prefixes v of w, and w is bounded, as defined below. A language L ⊆ Σ∞
is i-balanced if all of its words are and if it is bounded. This is extended to
balancedness and expressions in the expected way. We note that all finite words
and balanced regular languages are bounded by default; boundedness is only a
restriction on infinite words and ω-languages.3

Boundedness A word w ∈ Σ∞ is i-bounded by n ∈ N0 if |v|[i − |v|]i ≤ n for
all finite prefixes v of w. A language is i-bounded by n if all of its words are. A
word or language is bounded if it is i-bounded for all i. The minimal i-bound of
a word or language is the smallest n for which it is i-bounded. We extend these
definitions to expressions in the expected way.

We note that by this definition [i([i]i)
ω is balanced, but [∗i ([i]i)

ω is not
since it is not bounded, even though all of its words are.

4.1 Balanced ω-regular expressions

We use Ω for the set of all ω-regular expressions. It is defined as follows:

∅ ∈ Ω

e ∈ E λ /∈ L(e)

eω ∈ Ω

e1 ∈ E e2 ∈ Ω

e1 · e2 ∈ Ω

e1, e2 ∈ Ω

e1 + e2 ∈ Ω
(1)

As before, we assume without loss of generality that an ω-regular expression
e does not contain ∅, unless e = ∅, to simplify definitions and proofs.

Our characterisation of balanced ω-regular expressions is a generalisation of
that of balanced regular expressions. We note two main complications:

– We need to distinguish between finite and infinite numbers of parentheses:
[1([1]1)ω is balanced but [1([2]2)ω is not. We introduce two predicates
for expressions: ξ(e, i) and ξω(e, i), as defined in Figure 5. Intuitively, and
as shown in Lemma 5, ξ(e, i) iff every word in L(e) contains at least one
i-parenthesis, and ξω(e, i) iff every word in L(e) contains infinitely many.

– Not every subexpression of a balanced ω-regular expression can be assigned
a unique i-balance: (λ + [i)([i]i)

ω is balanced, but (λ + [i) has no unique
i-balance. Instead, we now assign an upper bound ∇U and a lower bound ∇L
to an expression’s i-balance instead of a single value. These are defined in
Figure 6. The definition of minimum i-balance is unchanged, other than the
addition of ∇min(eω, i) = ∇min(e, i) and the redefinition of ∇min(e1 · e2, i) =
min(∇min(e1, i),∇L(e1, i) + ∇min(e2, i)). We note that, for any regular ex-
pression e ∈ E, ∇L(e, i) = ∇U (e, i) = ∇(e, i).

3 Our choice for boundedness stems from our interest in communication protocols
(Section 1), where channels often require buffers of finite size.

8 L. Edixhoven and S.-S. Jongmans

ξ([i, i) ξ(]i, i)

ξ(e1, i) ∨ ξ(e2, i)
ξ(e1 · e2, i)

ξ(e1, i) ξ(e2, i)

ξ(e1 + e2, i)

ξ(e, i)

ξ(eω, i)

ξω(e2, i)

ξω(e1 · e2, i)
ξω(e1, i) ξω(e2, i)

ξω(e1 + e2, i)

ξ(e, i)

ξω(eω, i)

Fig. 5. The i-occurrence of regular and ω-regular expressions.

∇†(λ, i) = 0 ∇†([i, i) = 1 ∇†(]i, i) = −1 ∇†([j , i) = ∇†(]j , i) = 0

∇†(e1 · e2, i) =

{
∇†(e2, i) if ξω(e2, i)

∇†(e1, i) +∇†(e2, i) otherwise

∇†(e∗, i) = ∇†(eω, i) = 0 if ∇†(e, i) = 0

∇L(e1 + e2, i) = min(∇L(e1, i),∇L(e2, i)) ∇U (e1 + e2, i) = max(∇U (e1, i),∇L(e2, i))

Fig. 6. The i-balance bounds of ω-regular expressions, where i 6= j and † ∈ {L,U}.

Lemma 5. Let e ∈ E ∪ Ω such that e 6= ∅. Then:

(i) ξ(e, i) if and only if |w|[i + |w|]i > 0 for every w ∈ L(e);
(ii) ξω(e, i) if and only if |w|[i + |w|]i = ℵ0 for every w ∈ L(e).

We extend Lemmas 1 and 2 about properties of i-balance and minimum
i-balance to i-balance bounds and ω-regular expressions in Lemmas 6 and 7.

Lemma 6 (cf. Lemma 1). Let e ∈ E∪Ω. If ∇L(e, i), ∇U (e, i) and ∇min(e, i)
are defined, then:

(i) For every w ∈ L(e), |w|[i and |w|]i are either both finite or both infinite;
(ii) For every w ∈ L(e), if |w|[i , |w|]i are finite, then ∇L(e, i) ≤ |w|[i − |w|]i ≤
∇U (e, i);

(iii) If e ∈ E, then there exist w1, w2 ∈ L(e) such that |w1|[i − |w1|]i = ∇L(e, i)
and |w2|[i − |w2|]i = ∇U (e, i);

(iv) If ξω(e, i), then ∇L(e, i) = ∇U (e, i) = 0;
(v) |v|[i − |v|]i ≥ ∇min(e, i) for every finite prefix v of every w ∈ L(e);
(vi) |v|[i − |v|]i = ∇min(e, i) for some finite prefix v of some w ∈ L(e);

(vii) L(e) is i-bounded.

Lemma 7 (cf. Lemma 2). Let e ∈ E∪Ω. If e 6= ∅, e is i-bounded and if there
exists some n such that |(|v|[i−|v|]i)−(|w|[i−|w|]i)| ≤ n for all v, w ∈ L(e) with
finite i-parenthesis counts, then ∇L(e, i), ∇U (e, i) and ∇min(e, i) are defined.

The proofs are straightforward by structural induction on e. Applying these
lemmas gives us the following characterisation:

Theorem 4. Let e ∈ E ∪ Ω. Then e is balanced iff ∇L(e, i) = ∇U (e, i) =
∇min(e, i) = 0 for every i or if e = ∅.

Balanced-by-construction regular and ω-regular languages 9

4.2 Balanced-by-construction ω-regular languages

The grammar in Figure 2 can be extended with ω as in (1) to obtain an expression
grammar Ω� for balanced ω-regular languages [3, Appendix B].

Since the inductive definition of the shuffle on trajectories operator does not
support words of infinite length, we redefine it as follows. Let w1, . . . , wn ∈ Σ∞
and let t ∈ {1, . . . , n}∞. If t fits w1, . . . , wn, i.e., if |t|i = |wi| for every i, then
�t(w1, . . . , wn) = w(1)w(2) . . . w(|t|) if t has finite length and w(1)w(2) . . . if t
has infinite length, where w(i) = wj(k) for j = t(i) and k = |t(1, . . . , i)|j . As
before, this naturally extends to languages and expressions.

Soundness Balanced languages being closed under shuffle follows immediately
from its definition. To show that �T (L1, . . . , Ln) is ω-regular if T is ω-regular
and all Li are either regular or ω-regular, we can further generalise the construc-
tion used by Mateescu et al. [6] to build a Muller automaton for the resulting
language. Recall that a Muller automaton differs from a finite automaton only
in its acceptance criterion: instead of a single set of final states it has a set of
sets of final states F , and it accepts all infinite words for which the set of states
that are visited infinitely often is an element of F .

The construction of the new Muller automaton is analogous to the construc-
tion of a finite automaton for a shuffle of regular languages and differs only in
the construction of F . Let Q be the set of states of our new Muller automaton.
Let Fi be the acceptance criterion of the automaton for Li, whether a finite au-
tomaton or a Muller automaton. If Li is regular, then without loss of generality
we may assume that no state in Fi has any outgoing transition. Furthermore,
since ω-regular languages are closed under intersection and the language of all
trajectories containing infinitely many i is ω-regular for every i, we may also as-
sume without loss of generality that T only contains trajectories with infinitely
many occurrences of every i.

We define F as the cross product of all the Fi: F is the set of sets of states
such that, if Li is ω-regular then the projection of these states on i is an element
of Fi, and if Li is regular then the projection of these states on i is a single state
in Fi. Formally: if ϕi((qt, q1, . . . , qn)) = qi and ϕi(S) = {ϕi(q) | q ∈ S}, then
F = {S | S ⊆ Q ∧ (ϕi(S) ∈ Fi ∨ (ϕi(S) ⊆ Fi ∧ |ϕi(S)| = 1))}. The automaton
for T forces that every Muller automaton for some Li takes infinitely many steps.
By our assumption that the final states of finite automata have no outgoing
transitions, all finite automata only take a finite number of steps. It follows
that our constructed Muller automaton accepts the language of �T (L1, . . . , Ln),
which then is ω-regular. In other words:

Theorem 5. {L(e) | e ∈ Ω�} ⊆ {L | L is a balanced ω-regular language}.

Completeness Our approach to showing that every balanced ω-regular expression
has an equivalent expression in Ω� mirrors that of Section 3: we first rewrite
an expression into a disjunctive normal form and then recursively construct an
expression in Ω� for every term of the disjunction by merging pairs of factors.

10 L. Edixhoven and S.-S. Jongmans

Let e 6= ∅ be a balanced ω-regular expression. Without loss of generality,
we may assume that e = e1e

ω
2 + . . . + e2m−1e

ω
2m, where every ei is a regular

expression containing no +. Otherwise, we can rewrite it as such. We show how
to construct an expression in Ω� for e1e

ω
2 .

Since ∇L(e, i) = ∇U (e, i) = ∇min(e, i) = 0 by Theorem 4, it follows that
∇min(e1, i) = ∇L(e2, i) = ∇U (e2, i) = 0. Then, by Lemma 4, we can write e1 as
a shuffle of i, λ i, + i and e2 as a shuffle of i, λ i, ± i, ?

i. The idea is to:
(a) rewrite eω2 in terms of i, λ i,

ω
i , ±

ω
i and then; (b) merge every + i in

e1 with a ± ω
i in eω2 into ω

i , using Lemma 3. We run into two complications:

– In step (a), eω2 may not necessarily be expressible as a single shuffle of factors:
if e2 = [1]1([2]2)∗, then eω2 contains both words with finite and infinite
numbers of [2,]2. The latter requires a factor ω

2 , while the former requires
its absence. To remedy this, we write eω2 as a disjunction of shuffles of factors;
one for every combination of finite and infinite versions of i, λ i. This is
further detailed in Lemma 8.

– In step (b), the number of ± ω
i in a term of eω2 may not necessarily match

the number of + i in e1: if e1 = [1 and e2 = [1]1, then e1 contains one + 1

and e2 contains one factor 1. To solve this, we use two observations:
• We can apply Lemma 3 to split a i into + i and − i.
• eω2 ≡ (e2 · e2)ω, so we can essentially multiply the factors in e2.

Thus, we can always split a i into + i and − i, then create copies of them
and merge them back into one i and one ± i. Since we can merge all
other factors with their own copy, this effectively adds one ± i. Now that
we have at least one, we can create more: we create a copy of every factor,
then merge every factor with its own copy except for some number of ± i.
This is further detailed in Lemma 9.

Lemma 8. Let e = �θ(e1, . . . , en) ∈ E� be a shuffle of factors i, λ i, ± i

such that θ fits every ej and contains no +. Then eω ≡ ê1 + . . . + êm, where
êk = �θk(ek,1, . . . , ek,n) is a shuffle of factors i, λ i,

ω
i , ±

ω
i for every k

such that the number of ± i in e is the same as the number of ± ω
i in êk for

every i, and θk fits every ek,j.

Proof. Let ϕ : E 7→ 2E∪Ω such that ϕ(k
i) =

{
k
i ,

ω
i

}
, ϕ(λ

k
i) =

{
λ
k
i ,

ω
i

}
and ϕ(± k

i) = { ± ω
i }. We can then show that eω ≡ ê1 + . . . + êm, where

{ê1, . . . , êm} = {�θω (e′1, . . . , e
′
n) | e′1 ∈ ϕ(e1), . . . , e′n ∈ ϕ(en)}.

Moreover, since ϕ maps ± i to ± ω
i , the number of factors ± ω

i in every
êk matches the number of factors ± i in e. However, if êk = �θω (e′1, . . . , e

′
n),

then θω may not necessarily fit every e′j : if e′j is one of i, λ i, then there are
t ∈ L(θω) with infinitely many j, while every word in L(e′j) is finite. Instead of
θω, we can use the trajectory θ∗ · ψ(θ)ω, where ψ is a homomorphism such that
ψ(j) = λ if e′j is one of i, λ i and ψ(j) = j otherwise. This covers exactly the
part of θω that fits every e′j . ut

Lemma 9. Let �θ(e1, . . . , en) ≡ e ∈ E be a shuffle of factors i, λ i, ± i, ?
i

such that θ fits every ej and contains no +, and ξ(e, i). If there are ` factors

Balanced-by-construction regular and ω-regular languages 11

± i, ?
i among e1, . . . , en, then for every k ≥ ` (such that k > 0), there exists

some shuffle of factors ê = �θ̂(ê1, . . . , êm) such that eω ≡ êω, ê contains k

factors ± i and no ?
i and θ̂ fits every êj.

Proof. This proof consists of three steps. First, we need to make sure that we
have at least one ± i. Second, we replace any remaining factors ?

i with ± i.
Third, we create additional copies of ± i as needed.

1. Suppose that there are no ± i among e1, . . . , en. Then our first step con-
sists of creating one. Since ξ(e, i) and θ contains no +, there exists some
ej ∈ { i, λ i, ?

i} such that |t|j > 0 for every t ∈ L(θ). Without loss of
generality, we may assume that j = n.
If en = ? k

i , since |t|n > 0 for every t then e ≡ �θ(e1, . . . , ±
k
i) and we

can proceed with step 2. Otherwise, if en = λ
k
i , then e ≡ �θ(e1, . . . ,

k
i)

and if en = 0
i , then e ≡ �θ(e1, . . . ,

1
i). Going forward, we may thus

assume that en = k
i with k ≥ 1. Since |t|n > 0 for every t ∈ L(θ) and

θ contains no +, it follows that θ = θ1 · θ2 such that both θ1 and θ2 only
contain trajectories with odd numbers of n. We can then apply the proof of
Lemma 3 to show that e ≡ �θ3(e1, . . . , en−1, +

k1
i , −

k2
i) for some θ3, k1, k2.

If e1, . . . , en−1 contain a ?
i, then without loss of generality we may assume

that en−1 = ?
k3
i . We may assume that there exists some t ∈ L(θ) such

that |θ|n−1 = 0; otherwise we would have selected this factor as en earlier
in this step and then proceeded with step 2. It follows that all trajectories
in θ1 and θ2, and therefore in θ3, contain even numbers of n. Then, in the
same way that we split k

i into +
k1
i and − k2

i before, we can show that

e ≡ �θ4(e1, . . . , en−2, ?
k4
i , ?

k5
i , +

k1
i , −

k2
i) for some θ4, k4, k5. As seen in

Figure 4, we can then merge ?
k4
i with − k2

i and ?
k5
i with +

k1
i to obtain

e ≡ �θ5(e1, . . . , en−2, +
k1
i , −

k2
i) for some θ5. This takes care of the special

case where k = ` > 0 but there are no factors ± i. We may thus assume
without loss of generality that e ≡ �θ6(e1, . . . , +

k1
i , −

k2
i) for some θ6.

Since we still lack a ± i, we use that eω ≡ (e · e)ω to construct e′ =
�θ6(e1, . . . , +

k1
i , −

k2
i) · �θ6(e1, . . . , +

k1
i , −

k2
i) ≡ �θ7(e1, . . . , +

k1
i , −

k2
i ,

e1, . . . , +
k1
i , −

k2
i) for some θ7. We can then merge the first +

k1
i with the

second − k2
i into k1+k2+1

i and merge the second +
k1
i with the first − k2

i

into ± k1+k2
i . We can merge every other factor with its own copy, which gives

us e′ ≡ �θ8(e′1, . . . ,
k1+k2+1
i , ± k1+k2

i) and e′ω1 ≡ eω.
2. Now that we have at least one ± i, we can reuse methods applied in the

first step to replace any remaining ?
i: create a copy of every factor using

eω ≡ (e ·e)ω, then merge the two copies of ?
i with the copies of some ± i as

in Figure 4. By merging every other factor with its own copy, we effectively
replace one ?

i with one ± i. We repeat this step until there are no ?
i left.

3. Finally, by copying every factor and then merging every factor with its own
copy except for a number of ± i, we can create any additional number of ± i,
until we have some ê = �θ̂(ê1, . . . , êm) with k ± i. Since every rewriting step
preserves equivalence of the ω-closures and the fitting of the trajectories, it
follows that êω ≡ eω and that θ̂ fits every êj . ut

12 L. Edixhoven and S.-S. Jongmans

Summarising, given e1 · eω2 , by applying Lemmas 9 and 8 we can rewrite e1

as a shuffle of factors i, λ i, + i, and eω2 as a disjunction of shuffles of factors

i, λ i,
ω
i , ±

ω
i , such that the number of ± ω

i in every term of the disjunction
equals the number of + i in e1. By applying the laws of distributivity, we can then
rewrite e1 · eω2 as a disjunction of concatenations of shuffles. Since the numbers
of + i and ± ω

i match in every term of this disjunction, we can apply Lemma 3
to merge every pair into ω

i . Since all factors are now balanced, every balanced
ω-regular language has a corresponding expression in Ω�:

Theorem 6. {L(e) | e ∈ Ω�} ⊇ {L | L is a balanced ω-regular language}.
As an example, we show how to build an expression in Ω� for e = [1([1]1)ω.

[1([1]1)ω ≡ �1(+ 0
1)(�11(1

1))ω

≡ �1(+ 0
1)(�1(+ 0

1)�1 (− 0
1))ω

≡ �1(+ 0
1)(�1(+ 0

1)�1(− 0
1)�1 (+ 0

1)�1 (− 0
1))ω

≡ �1(+ 0
1)(�1(+ 0

1)�11 (± 0
1)�1 (− 0

1))ω

≡ �1(+ 0
1)(�1221(1

1, ±
0
1))ω

≡ �1(+ 0
1)�(1221)ω (ω

1 , ±
ω
1)

≡ �1(2112)ω (ω
1 ,

ω
1).

References

1. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Computer Programming and Formal Systems, Studies in Logic and the Founda-
tions of Mathematics, vol. 26, pp. 118 – 161. Elsevier (1959)

2. Duchon, P.: On the enumeration and generation of generalized Dyck words. Discret.
Math. 225(1-3), 121–135 (2000). https://doi.org/10.1016/S0012-365X(00)00150-3

3. Edixhoven, L., Jongmans, S.S.: Balanced-by-construction regular and ω-regular lan-
guages (technical report). Tech. Rep. OUNL-CS-2021-1, Open University of the
Netherlands (2021)

4. Labelle, J., Yeh, Y.: Generalized Dyck paths. Discret. Math. 82(1), 1–6 (1990).
https://doi.org/10.1016/0012-365X(90)90039-K

5. Liebehenschel, J.: Lexicographical generation of a generalized Dyck language. SIAM
J. Comput. 32(4), 880–903 (2003). https://doi.org/10.1137/S0097539701394493

6. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories:
Syntactic constraints. Theor. Comput. Sci. 197(1-2), 1–56 (1998).
https://doi.org/10.1016/S0304-3975(97)00163-1

7. Mateescu, A., Salomaa, K., Yu, S.: On fairness of many-dimensional trajectories. J.
Autom. Lang. Comb. 5(2), 145–157 (2000). https://doi.org/10.25596/jalc-2000-145

8. Moortgat, M.: A note on multidimensional Dyck languages. In: Categories and
Types in Logic, Language, and Physics. Lecture Notes in Computer Science,
vol. 8222, pp. 279–296. Springer (2014). https://doi.org/10.1007/978-3-642-54789-
8 16

9. Prodinger, H.: On a generalization of the Dyck-language over a two letter
alphabet. Discret. Math. 28(3), 269–276 (1979). https://doi.org/10.1016/0012-
365X(79)90134-1

https://doi.org/10.1016/S0012-365X(00)00150-3
https://doi.org/10.1016/0012-365X(90)90039-K
https://doi.org/10.1137/S0097539701394493
https://doi.org/10.1016/S0304-3975(97)00163-1
https://doi.org/10.25596/jalc-2000-145
https://doi.org/10.1007/978-3-642-54789-8_16
https://doi.org/10.1007/978-3-642-54789-8_16
https://doi.org/10.1016/0012-365X(79)90134-1
https://doi.org/10.1016/0012-365X(79)90134-1

	Balanced-by-construction regular and omega-regular languages

