
ar
X

iv
:2

10
5.

09
29

1v
3

 [
cs

.F
L

]
 1

 S
ep

 2
02

1

Deciding FO2 Alternation for Automata

over Finite and Infinite Words

Viktor Henriksson
1
and Manfred Kufleitner

2

1 Loughborough University, Loughborough, UK
b.v.d.henriksson@lboro.ac.uk

2 University of Stuttgart, Stuttgart, Germany
kufleitner@fmi.uni-stuttgart.de

We consider two-variable first-order logic FO2 and its quantifier alternation hier-
archies over both finite and infinite words. Our main results are forbidden patterns
for deterministic automata (finite words) and for Carton-Michel automata (infinite
words). In order to give concise patterns, we allow the use of subwords on paths
in finite graphs. This concept is formalized as subword-patterns. For certain types
of subword-patterns there exists a non-deterministic logspace algorithm to decide
their presence or absence in a given automaton. In particular, this leads to NL al-
gorithms for deciding the levels of the FO2 quantifier alternation hierarchies. This
applies to both full and half levels, each over finite and infinite words. Moreover,
we show that these problems are NL-hard and, hence, NL-complete.

1 Introduction

Many interesting varieties of finite monoids can be defined by a finite set of identities of ω-
terms. By Eilenberg’s Variety Theorem [7], every variety of finite monoids corresponds to
a unique variety for regular languages. In particular, identities of ω-terms can be used for
describing classes of regular languages. If L ⊆ A∗ is given by a homomorphism ϕ : A∗ → M
to a finite monoid together with an accepting set P ⊆M such that L = ϕ−1(P), then one can
check in nondeterministic logarithmic spaceNL whetherM satisfies a fixed identity of ω-terms;
see e.g. [26, Theorem 2.19] or [8]. If L is given by a (deterministic or nondeterministic) finite
automaton, then this algorithms yields a PSPACE-algorithm for deciding whether L satisfies
the identity (by applying the NL algorithm to the transition monoid of the automaton; in
the case of nondeterministic automata, this monoid can be represented by Boolean matrices).
Since universality of nondeterministic automata is PSPACE-complete [14], there is no hope
for more efficient algorithms if L is given by a nondeterministic automaton.

The star-free languages can be defined by a very short identity of ω-terms [23]. In 1985, Stern
showed that deciding whether a given deterministic automaton accepts a star-free language is
coNP-hard, leaving open whether it was in fact PSPACE-complete [25]. This was later given
an affirmative answer by Cho and Huynh [3]. For other important varieties, the situation is very
different. In the same paper, Stern gave polynomial time algorithms for deciding membership

1

http://arxiv.org/abs/2105.09291v3

of the J -trivial (also referred to as piecewise testable) languages and languages of dot-depth
one [25] when the languages are given by deterministic finite automata. The exact complexity
for these problems was again given by Cho and Huynh, showing that they are NL-complete [3].

Forbidden patterns are a common approach for efficiently solving the membership problem.
Stern’s polynomial time algorithms build on pattern characterizations [24]. Characterizations
of R and L-trivial languages using forbidden patterns were given by Cohen et al. [4], and
Schmitz et al. used the approach for characterizing the first levels of the Straubing-Thérien
hierarchy [10, 22].

The pattern approach usually relies on the DFA of a language. Since deterministic Büchi
automata cannot express all ω-regular languages, this has inhibited the adaptation of the
pattern approach in the study of ω-regular languages. In 2003, Carton and Michel introduced
a type of automata [2], (originally called complete unambigous Büchi automata, but nowadays
known as Carton-Michel automata) which they showed to be expressively complete for ω-
regular languages. These automata associate every word to a unique path, making it an ideal
candidate for using patterns in the context of ω-regular languages. Preugschat and Wilke [21]
pioneered this approach by giving characterizations of fragments of temporal logic relying
partly on patterns. Their method involved separating the finite behaviour of the language
from the infinite behaviour; the finite behaviour was then characterized using patterns, while
the infinite behaviour was characterized using conditions on loop languages.

The variety of languages definable in FO2, i.e., first order logic with only two variables, is
well studied. Thérien and Wilke [27] showed that this variety was the collection of languages
whose syntactic monoid was in DA. In particular, this established an equivalence between
FO2 and Σ2 ∩Π2 over finite words.

One can consider the quantifier alternation hierarchy inside FO2. Due to the restriction on
the number of variables, one needs to consider parse trees rather than translating formulae into
prenex normal form. Over finite words, Weis and Immerman gave a combinatorial character-
ization of the join levels of this hierarchy [28]; algebraic characterizations were given by Weil
and the second author [17] and independently by Krebs and Straubing [15]. The half-levels
were characterized by Fleischer, Kufleitner and Lauser [9].

For ω-regular languages, algebraic characterizations often utilize Arnold’s congruence. How-
ever, not every interesting class of languages can be characterized directly using this congru-
ence; see e.g. [18]. On the other hand, combining algebraic properties with topology has proven
a fruitful alternative in some cases where algebra alone is not enough; see e.g. [6, 12, 16]. In
particular, this approach was used in yet unpublished work by Boussidan and the second au-
thor for the characterization of the join levels of the alternation hierarchies, and by the authors
for the characterization of the half-levels [11].

This article is outlined as follows. In Section 2, we give brief introductions to the three
main areas of this article, formal languages, monoids and logic. We devote Section 3 to the
development of a formalism for subword-patterns: patterns where we can not only use identical
words as labels of different paths, but also subwords. Patterns taking subwords into account
were used, e.g. in [22]. Our formalism is a variation of that of Kĺıma and Polák [13], but
considering automata instead of ordered semiautomata. For DFAs, this difference is superficial
since the relevant semi-DFA can be obtained via minimization. Minimizing a Carton-Michel
automaton (based on the reverse deterministic transition relation) does not necessarily produce
a Carton-Michel automaton. For patterns which do not take final states into account, such
as those used in [21], this is not a problem. However, this contribution contains patterns for
which it matters.

2

In Section 4, we use the mentioned formalism to give DFA patterns for the algebraic varieties
used in the characterizations of the quantifier alternation hierarchies inside FO2. Section 5
contains an interlude in which we give some technical details on how patterns for DFAs can
be transfered to patterns for reverse-DFA. This is crucial for our treatment of patterns for
Carton-Michel automata in Sections 6 and 7.

We split the problem of deciding membership for Carton-Michel automata into two parts,
dealing with the finite and infinite behaviour respectively. The finite behaviour, as well as the
formalization of this split, is dealt with in Section 6. We deal with the so-called fin-syntactic
monoid, and show that its membership of some variety can be characterized by the same
pattern as in the finite case.

In dealing with the infinite behaviour in Section 7 we consider two behaviours. First, we
consider the inf-syntactic monoid, show that it is enough to show its membership in DA and
give a pattern for deciding this. Next, we consider topology and give patterns for open and
closeness in the Cantor and alphabetic topology.

Finally, Section 8 deals with complexity. We show that for any subword-pattern which has
stable superwords, presence in a given DFA or Carton-Michel automata is in NL. This in
particular shows that membership in FO2

m for these inputs is in NL for all m. We also show
NL-hardness, showing that these problems are NL-complete.

2 Preliminaries

2.1 Languages and Automata

For an alphabet A we denote by A∗ the set of finite words over A and by Aω the set of infinite
words over A. A subset L ⊆ A∗ or L ⊆ Aω is a language. If u = a1 . . . an ∈ A∗ is a word,
then u = an . . . a1, and if L ⊆ A∗ is a language, then L = {u | u ∈ L}. The alphabet of u ∈ A∗,
alph(u), is the set of letters which occurs in u, and the imaginary alphabet of α ∈ Aω, im(α),
is the set of letters a which occurs on infinitely many positions of α. For a word u ∈ A∗, we
denote by uω = uuu · · · the infinite iteration of u.

A language variety is a system V which to each alphabet A associate a set of languages
VA ⊆ 2A

∗

in such a way that:

(i) L,L′ ∈ VA implies L ∩ L′ ∈ VA, L ∪ L′ ∈ VA,

(ii) L ∈ VA implies A∗ \ L ∈ VA,

(iii) L ∈ VA implies u−1Lv−1 = {w ∈ A∗ | uwv ∈ L} ∈ VA.

(iv) for every map h : B∗ → A∗, L ∈ VA implies h−1(L) ∈ VB .

A language of the form u−1Lv−1 is called a residual. In particular, if v = ε, then it is a
left-residual and if u = ε a right-residual. If conditions (i), (iii) and (iv) but not necessarily
(ii) is satisfied, we call it a positive variety.

A deterministic finite automaton (DFA) is a tuple A = (Q,A, ·, i, F) where:

• Q is a finite set of states,

• A is an alphabet,

• · : Q×A→ Q is a transition function,

3

• i ∈ Q is an initial state,

• F ⊆ Q is a set of final states.

A semi -DFA is a DFA without the initial state i and the final states F , and a semi-DFA is
partial if · is a partial function.

We can extend · to a function Q×A∗ → Q by j · (a1 . . . an) = ((j · a1) · . . .) · an. For u ∈ A∗,
we say that A accepts u if i · u ∈ F . We define

L(A) = {u ∈ A∗ | A accepts u} .

Then A accepts L if L = L(A).
Since the number of states in a (partial semi-)DFA A is finite, there exists a number ηA such

that j · uηAuηA = j · uηA for all u ∈ A∗. When A is clear from context, we simply write η.
Given two partial semi-DFAs A = (Q,A, ·) and A′ = (Q′, A, ·′), f : Q → Q′ is a homomor-

phism of partial semiautomata if f(j · a) = f(j) ·′ a for all j ∈ Q, a ∈ A such that j · a is
defined. A homomorphism of partial semiautomata is a homomorphism of DFAs if the partial
semiautomata are also DFAs, say A = (Q,A, ·, i, F) and A′ = (Q′, A, ·′, i′, F ′), and f(i) = i′

and f−1(F ′) = F .
A reverse DFA is a tuple A = (Q,A, ◦, I, f) where Q and A are as in a DFA, ◦ : Q×A→ Q

is a reverse transition function, I ⊆ Q is a set of initial states, and f ∈ Q is a final state.
Note that there is no formal difference between a transition and a reverse transition function.
The difference lies in the interpretation and the extension to A∗; we write a ◦ j for the value
at (j, a) and we define a1 . . . an ◦ j = a1 ◦ (· · · ◦ (an ◦ j)). Thus the function is applied in the
reverse order, starting with an. If u ◦ f ∈ I, then A accepts u. If A = (Q,A, ·, i, F) is a DFA,
then A = (Q,A, ·, F, i) is a reverse DFA and accepts L(A). Conversely, if A = (Q,A, ◦, I, f) is
a reverse DFA, then A = (Q,A, ◦, f, I).

Carton-Michel Automata We introduce Carton-Michel automata, a particular type of
Büchi automata. Let A = (Q,A, ◦, I, F) be a Büchi automaton. A run of A is an infinite path
in A. Each such run is labeled by an infinite word by reading the letters corresponding to each
edge of the path. A run is final if it visits a final state infinitely often. The run is accepting
if it is final and starts at an initial state. A word is accepted by A if it labels some accepting
run, and the language accepted by A, denoted L(A), is the collection of all such words.

A Carton-Michel automaton A is a Büchi automaton where every infinite word has a unique
final run. In particular, this means that for each word α ∈ A∞, we can associate a state in A.
We denote this state ⊲α. The following theorem gives one of the key points of Carton-Michel
automata.

Theorem 1 (Carton and Michel [2]). Every ω-regular language is accepted by some Carton-
Michel automata.

A subautomaton B of A is trim if it is a Carton-Michel automata and for every state j ∈ B,
there exists αj ∈ A∗ such that j = ⊲αj. As noted by Carton and Michel, a trim Carton-Michel
automata is reverse deterministic [2].1

1Note that the Carton-Michel automata used by Preugschat and Wilke for their pattern approach [21] have a
slight technical difference, where the automata are assumed to be reverse-deterministic. These definitions
coincide on all trim Carton-Michel automata.

4

Topology A set T ⊆ 2A
∗

is a topology if ∅, A∗ ∈ T and T is closed under finite intersections
and arbitrary unions. A language L ⊆ A∗ is open if L ∈ T , and closed if its complement is in
T . A set B ⊆ 2A

∗

is a base for a topology if A∗ =
⋃

L∈B L and if for all L1, L2 ∈ B, there exists
B′ ⊆ B such that L1 ∩ L2 =

⋃

K∈B′ K. The sets of unions of elements in B is a topology, the
topology generated by B.

For a DFA A = (Q,A, ·, i, F), we say that j ≤A k if j ·u ∈ F implies k ·u ∈ F for all u ∈ A∗.
We say that i ≡A j if i ≤A j and j ≤A i. We use the same notation for reverse DFAs and
Carton-Michel automata; we say j ≤A k if u ◦ j ∈ I implies u ◦ k ∈ I, and j ≡A k if j ≤A k
and k ≤A j.

The Cantor topology Ocantor is the topology generated by the base {uAω}u∈A∗ , and the
alphabetic topology Oalph is the topology generated by {uBω}u∈A∗,B⊆A. We denote by B(T)
the Boolean closure of a topology.

2.2 Monoids, Varieties and Recognition

Let M be a monoid generated by a set A. The Cayley-graph of M is the semiautomata
G = (M,A, ·) where · is defined by m · a = ma for all m ∈M , a ∈ A. The Cayley-graph has a
root (and natural initial state) given by the unit of M .

Every monoid M has a number ωM such that sωM sωM = sωM for all s ∈ M . We call ωM

the idempotent power. If M is clear from context, we only write ω. An element e ∈ M is
idempotent if e = eωM . A pair (s, e) is linked if e is idempotent and se = s.

Given a binary relation � on a monoid M , the relation is stable if s � t implies psq � ptq.
A conjugacy is a relation which is reflexive and stable. Every stable relation � induces a
conjugacy ∼ by s ∼ t if s � t and t � s. A monoid with a stable partial order is an ordered
monoid. A homomorphism h : M → N between ordered monoids is monotone if s ≤ t implies
h(s) ≤ h(t). Note that ordered monoids generalizes monoids, since any monoid can use the
equality relation as an order. If � is stable on M , then M/� is the monoid consisting of the
equivalence classes of the induced conjugacy, and the order induced by �.

An important tool in the study of finite monoids are the Green’s relations. We introduce
the relations R, L and J . Let s, t ∈M , then

• s ≤R t if sM ⊆ tM ,

• s ≤L t if Ms ⊆Mt,

• s ≤J t if MsM ⊆MtM ,

and s R t if s ≤R t and t ≤R s. The relations L and J are defined analogously from ≤L and
≤J respectively.

Varieties The ordered monoid N divides M , if there exists a submonoid M ′ ⊆ M and a
surjective monotone homomorphism h : M ′ → N . A class V of finite ordered monoids is a
variety of ordered monoids if M,N ∈ V implies M × N ∈ V and M ′ ∈ V for all M ′ which
divides M . A variety of unordered monoids is defined analogously, but for unordered monoids
and homomorphisms which are not necessarily monotone. Unless specified otherwise, we use
the following notation: suppose V is a variety of (ordered) monoids; then V is the (positive)
variety of languages whose syntactic monoids are in V.

Let Ω be a set of variables. The set of ω-terms, T (Ω), over Ω is defined inductively: Ω∪{1} ⊆
T (Ω) and if x, y ∈ T (Ω) then xy ∈ T (Ω) and xω ∈ T (Ω). Here xω is a formal symbol, not

5

related to the infinite concatenation, and not strictly the same as the ω denoting the idempotent
power. The meaning of the symbol will be clear from context. An interpretation is a function
I : Ω → M . Any such function can be extended to a function I : T (Ω) → M by setting
I(ts) = I(t)I(s) and I(tω) = (I(t))ωM for all t, s ∈ T (Ω). If s, t ∈ T (Ω), then M satisfy s ≤ t
if I(s) ≤ I(t) for all interpretations. Satisfiability of s = t is defined analogously. We define
Js ≤ tK to be the collection of monoids which satisfy s ≤ t, and we define Js = tK analogously.
Any collection defined in this way is a positive variety (and in the latter case also a nonpositive
variety).

The following varieties are of particular importance throughout this contribution:

• DA = J((yx)ωy(yx)ω = (xy)ωK,

• R = J(yx)ωy = (yx)ωK, L = Jy(xy)ω = (xy)ωK,

• J1 = Jz2 = z, xy = yxK, J+ = J1 ≤ zK

We record the following well-known property of DA (see e.g. [5]).

Lemma 1. Let M ∈ DA and let µ : A∗ → M be a homomorphism. Then alph(u) ⊆ alph(v)
implies µ(v)ωµ(u)µ(v)ω = µ(v)ω for all u, v ∈ A∗.

One way to generate new varieties from known ones is by using the Malcev product. Gener-
ally, Malcev products are defined using relational morphism. However, for the two semigroup
varieties K and D, a more direct approach using the relations ∼K and ∼D is sufficient. This
approach was refined in [11] to define a chain of ordered monoids. Let s, t ∈M , then:

• s ∼K t if for all idempotent elements e, we have es, et <J e or es = et,

• s ∼D t if for all idempotent elements f , we have sf, tf <J f or sf = tf ,

• s �KD t if for all p, q ∈ M : p R ptq implies p R psq, ptq L q implies psq L q, and
p R pt ∧ tq L q implies psq ≤ ptq.

Given a variety V, we say that M ∈ K M○V if M/∼K ∈ V, M ∈ D M○V if M/∼D ∈ V and
M ∈ VKD if M/�KD ∈ V. Let:

• R1 = L1 = R ∩ L, Rm+1 = K M○ Lm, Lm+1 = D M○ Rm,

• Si1 = J+, Sim+1 = (Sim)
KD

.

It is well known that R2 = R, L2 = L (see e.g. [19]).

Syntactic Monoids Given a language L ⊆ A∗, we define u ≤L v for u, v ∈ A∗ if for all
p, q ∈ A∗, puq ∈ L ⇒ pvq ∈ L. The syntactic morphism of L is the natural projection
µ : A∗ → A∗/≤L, and A∗/≤L is the syntactic monoid. Similarly, if L ⊆ Aω, we define u ≤L v
if for all p, q, w ∈ A∗,

puqwω ∈ L⇒ pvqwω ∈ L and p(uw)ω ∈ L⇒ p(vw)ω ∈ L.

The syntactic morphism and monoid are analogous to the finite case. For a language L with a
syntactic morphism µ : A∗ →M , we say that the morphism ν : A∗ → N recognizes L if there
exists a monotone homomorphism h : N → M such that µ = h ◦ ν. If ν : A∗ → M is clear
from context and s ∈M , then we use the notation [s] = ν−1(s).

6

Table 1: Decidability criteria for a language L with syntactic monoid M

Finite Words Infinite Words

Σ2
1 M ∈ Si1

M ∈ Si1
L ∈ Ocantor

FO2
1 M ∈ R ∩ L

M ∈ R ∩ L

L ∈ B(Ocantor)

Σ2
2 M ∈ Si2

M ∈ Si2
L ∈ Oalph

FO2
m, m ≥ 2 M ∈ Rm+1 ∩ Lm+1

Σ2
m, m ≥ 3 M ∈ Sim

2.3 Fragments of Logic

Let A = {a1, . . . , an} be an alphabet. We consider the fragment FO2 of first order logic over
the signature (≤, a1, . . . , an) where we only allow the use (and reuse) of two different variables.
This fragment can be restricted further, by considering the number of allowed alternations.
Consider the syntax

ϕ0 ::= ⊤ | ⊥ | λ(x) = a | λ(y) = a | x = y | x < y | y < x | ¬ϕ0 | ϕ0 ∨ ϕ0 | ϕ0 ∧ ϕ0

ϕm ::= ϕm−1 | ¬ϕm−1 | ϕm ∨ ϕm | ϕm ∧ ϕm | ∃xϕm | ∃yϕm

where a ∈ A, and x and y are (fixed) variables. The fragment Σ2
m consists of all formulae ϕm,

the fragment Π2
m of all negations of formulae in Σ2

m and the fragment FO2
m of the Boolean

combinations of formulae in Σ2
m.

Each of these logical fragments defines a language variety. These varieties have decidability
characterizations for both finite words [17, 9] and infinite words [1, 11]. These criteria are
presented in Table 1.

3 Subword-Patterns

In this section, we introduce subword-patterns. Our formalism is inspired by that of Kĺıma
and Polák [13], with two main differences; we work with DFAs instead of ordered semi-DFAs,
and we allow our patterns to take subwords into account.

In DA, there is semantic equivalence between being a subword of and a factor of sufficiently
long words. Thus, the patterns introduced in Section 4 can be rewritten to equivalent patterns
which do not rely on subwords. However, the patterns obtained in this way are less readable
than their equivalent subword-patterns, arguably giving less insight into the actual behaviour
of the varieties in consideration.

For the definition of subword-patterns, we rely on homomorphism of semi-DFAs. The fol-
lowing definition is standard, and gives a way to define homomorphisms between semi-DFAs
which originally had different alphabets.

Definition 1. Let A = (Q,A, ·) be a semi-DFA, and let h : B∗ → A∗ be a homomorphism.
The h-renaming of A is the semi-DFA Ah =

(

Q,B, ·h
)

where i ·h b = i · h(b).

7

We give the formal definition of a subword-pattern. Intuitively, we can think of the edges of
the pattern as paths in a given automata and the relation � as being the subword relation on
the words labeling these paths.

Definition 2. Let X be a set with a partial order �. A type 1 subword-pattern P = (S, j 6=
k) or type 2 subword-pattern P = (S, j 6≤ k) consists of a finite partial semiautomaton
S = (V,X, ·) and two states j, k ∈ V . If P = (S, j 6= k), we say that P is present in an
automaton A if there exists a homomorphism h : X∗ → A∗ where x � y implies that h(x) is a
subword of h(y) and a semiautomata homomorphism g : S → Ah such that g(j) 6≡A g(k) and
for all ℓ ∈ V , the state g(ℓ) is reachable from the initial state of A. Analogously, we say that
P = (S, j 6≤ k) is present if there exist h and g such that g(j) 6≤A g(k). Since the type of the
pattern is clear from the notation, we usually do not reference its type.

We say that a pattern is rooted if there is some state r ∈ V such that every i satisfies i = r ·x
for some x ∈ X∗. Finally, two patterns P1, P2 are equivalent if for all A, the pattern P1 is
present in A if and only if P2 is.

Let us consider the following example. Let X = {y,Ay} with Ay � y and let PDA =
(S, j 6= k) where S is

j k

y

Ay

y

This pattern is present in an automata A, if there are two cycles starting at different states,
but labeled by the same word, as well as a path between them labeled by a word which
is a subword of the aforementioned one. The following proposition shows that this pattern
characterises having syntactic monoid in DA.

Proposition 1. Let A be an automata, and let M be the syntactic monoid of L(A). Then
M ∈ DA if and only if PDA is not present in A.

Proof. Let µ : A∗ → M be the syntactic morphism of L(A). Suppose PDA is present in
A. Then there exists u, v, p, q ∈ A∗ such that u = h(Ax), v = h(x), alph(u) ⊆ alph(v) and,
without loss of generality, pvnuvnq ∈ L(A) for all n while pvnq /∈ L(A) for all n. We get
µ(v)ωµ(u)µ(v)ω 6= µ(v)ω, which by Lemma 1 implies M /∈ DA.

On the other hand, suppose M /∈ DA. Then there are u, v, p, q ∈ A∗ such that, without
loss of generality, p(vu)ωMn1u(vu)ωMn2q ∈ L while p(vu)ωMn3q /∈ L for all n1, n2, n3. Define
h(x) = (vu)2ωM η and h(Ax) = u(vu)ωM η. By the definition of η, it follows that choosing
g(j) = ι ·p(vu)ωη , g(k) = g(j) ·h(Ax) is a well defined homomorphism of semi-automata. Since
g(j) 6≡A g(k), we have the desired pattern.

In Section 5 we give a formal treatment of patterns for reverse-DFAs (which is necessary in
order to deal with Carton-Michel automata, see Section 6). We note that the following results,
which are given for DFAs, have symmetric versions for reverse-DFAs.

In general, the presence of patterns is a feature of the particular automata, and not the

8

language. For example, consider the following two automata recognizing the same language:

A :
a

b

a

b

a

b

a, b

a, b

A′ :
a, b

a

b

a, b

a, b

Let P = (S, j 6= k) be given by:

S :

k

j

x, y

x

y

We note that P is present in A′ but not in A (see also [13, Example 3.4]). We are interested
in patterns which are indeed a feature of the language rather than the particular automata,
and thus we make the following definition. It is essentially the same as the H-invariant config-
urations of Kĺıma and Polák [13].

Definition 3. A (subword-)pattern is a language pattern if for all A,A′ such that L(A) =
L(A′), we have P present in A if and only if it is present in A′.

Definition 4. Let P be a collection of language patterns. Then 〈P〉 is the set of languages
L(A) such that A does not have any of the patterns P ∈ P. For a finite set of patterns
{P1, . . . ,Pn}, we use the notation 〈P1, . . . ,Pn〉 rather than 〈{P1, . . . ,Pn}〉.

We show that language patterns gives rise to language varieties. This result, and the proof
thereof, is analogous to that by Kĺıma and Polák for H-invariant configurations [13].

Proposition 2. Let P be a collection of language patterns. Then 〈P〉 is a language variety.

Proof. Since the class of varieties is closed under intersection, it is enough to show the statement
for a single pattern P = (S, j 6≤ k).

Let A = (Q,A, ·, i, F) be an automaton accepting L ∈ 〈P〉. We first consider the left-residual
u−1L. By setting i′ = i · u we get A = (Q,A, ·, i′, F) recognising u−1L. It is clear that any
pattern in A′ is also in A, so u−1L ∈ 〈P〉.

For the right residual Lv−1, let F ′ be the set of states j in Q such that j · v ∈ F . Let
A′ = (Q,A, ·, i, F ′), then A′ accepts Lv−1. If P is present in A′, then there exists witnesses
g, h and w such that g(j)·w ∈ F ′ while g(k)·w /∈ F ′. But then g(j)·wv ∈ F while g(k)·wv /∈ F .
Hence g, h witnesses that P is present in A.

Next, let A1,A2 be automata recognising L1, L2 ∈ 〈P〉, and let A be the product automata
with F = {(ℓ,m) | ℓ ∈ F1 and m ∈ F2}. The homomorphisms g : S → Ah are given exactly
by the pairs g(n) = (g1(n), g2(n)) where g1 : S → Ah

1 , g2 : S → Ah
2 and h are arbitrary

homomorphisms. Suppose that (g1(n), g2(n)) · w ∈ F while (g1(n
′), g2(n

′)) · w /∈ F . Then
without loss of generality g1(n) · w ∈ F1, while g1(n

′) · w /∈ F1 showing that the pattern exists
also in A1. A similar argument is applicable for the case when F = {(ℓ,m) | ℓ ∈ F1 or m ∈ F2}.

9

Finally, suppose A = (Q,A, ·, i, F) and let f : B∗ → A∗ be a homomorphism. The automata
Af = (Q,A, ·f , i, F) recognises f−1(L(A)). Suppose it has the pattern P, witnessed by a
homomorphism h : X∗ → B∗ and a semiautomata homomorphism g : S → Af◦h. Since
g(j) 6≤Af g(k), there is u ∈ B∗ such that g(j) ·f u ∈ F , while g(k) ·f u /∈ F . It follows that
g(j) · f(u) ∈ F while g(k) · f(u) /∈ F , and thus f ◦ h and g are witnesses for the pattern being
in A.

We extend simple and balanced patterns to subword-patterns. If � is the identity, then
conditions (iv) and (v) are trivial, and the definition reduces to that in [13].2

Definition 5. Let S = (V,X, ◦) be a partial semiautomaton, and P = (S, j ≤ k) a subword-
pattern. Then P is simple if it is a tree after removing all self-loops.

Let L = {x ∈ X | ℓ ◦ x = ℓ for some ℓ ∈ V } and let

K = {(x, y) ∈ X × L | ℓ 6= ℓ ◦ x = ℓ ◦ xy for some ℓ ∈ V } .

I.e., L is the collection of variables which occurs as some loop in S, and K is the collection of
all pairs (x, y) occurring together with ℓ 6= ℓ′ as follows:

ℓ′ℓ yx

(1)

The pattern P is balanced if

(i) for all y ∈ L, there exists x ∈ X such that (x, y) ∈ K,

(ii) for all (x, y) ∈ K, if (x, y′) ∈ K then y′ = y,

(iii) for all (x, y) ∈ K, if ℓ ◦ x is defined, then ℓ ◦ xy = ℓ ◦ x. In other words, whenever x
occurs in S, then it occurrs together with y as in (1),

(iv) for all y ∈ L, if y � z, then z ∈ L,

(v) for all (x, y) ∈ K, if x � z for x 6= z then y � z.

The rest of the section is devoted to generalising a result of Kĺıma and Polák that simple and
balanced patterns are language patterns.3 The generalisation is straight-forward and follows
the same line of argument as that of [13].

Definition 6. Let P be a balanced pattern on X. For a homomorphism h : X∗ → A∗, we
define hn by:

hn(x) =











(h(x))2n if x ∈ L,

h(x)(h(y))n if (x, y) ∈ K and x 6= y

h(x) otherwise.

2The reduction is up to a slight technical difference; we assume that every loop is preceded by an edge from a
different state, which is not assumed in Kĺıma and Polák. Any simple and balanced pattern in the sense of
Kĺıma and Polák yields an equivalent simple and balanced pattern in our sense by (if necessary) adding a
transition (with a new variable) in front of the root.

3Or that they are H-invariant in the language of [13]

10

This is well defined because of condition (ii) in Definition 5. By condition (iv) and (v), we
also have that if h satisfies the subword property, i.e. x � y implies h(x) is a subword of h(y),
then hn also satisfies this property.

The following lemma shows that for Simple and Balanced patterns, we have a lot of candi-
dates for the witnesses g and h showing presence in the DFA A. In particular, every homo-
morphism h and every state ℓ in A gives rise to such a candidate; all that is left is to check
whether g(j) 6≤A g(k) (respectively g(j) 6≡A g(k)) for any such candidate.

Lemma 2. Let A = (Q,A, ·, i, F) be an automaton and let P be a simple and balanced pattern
with underlying semiautomaton S = (V,X, ◦) and root r ∈ V . Let h : X∗ → A∗ and ℓ ∈ Q
be arbitrary. Setting g(r) = ℓ, g(r ◦ y) = ℓ · hη(y) gives a well defined homomorphism of
semiautomata g : S → Ahη .

Proof. Let S ′ = (V,X, ◦′) be S with all loops removed. Since S ′ is a tree, there is for each
state ℓ ∈ V a unique x ∈ X∗ such that r ◦′ x = ℓ. Thus, g(ℓ) = g(r ◦′ x) = ℓ · hη(x) is well
defined for all ℓ. All that is left is to show that every loop in S maps to a loop in A. Let
y ∈ L, and ℓ ∈ V such that ℓ · y = ℓ. By condition (i) in Definition 5, we have ℓ′ ∈ V , x ∈ X
such that ℓ′ 6= ℓ and ℓ′ · x = ℓ. We have g(ℓ) = g(ℓ′) · h(x)(h(y))η . By the definition of η, this
implies that (h(y))η , and thus (h(y))2η is a loop at g(ℓ).

A common use case for the chain of function hn will be as follows. We have an automaton
A with witnesses g and h showing the existence of some simple and balanced pattern. Now,
we want to find a candidate witness in some other automaton B, and show that it is indeed a
witness. To facilitate such arguments, we rely on the fact that h and hηB are both witnesses
in A.

Lemma 3. Suppose P = (S, j 6≤ k) is a simple and balanced pattern and suppose h and g are
such that g : S → Ah is a homomorphism. Then gn : S → Ahn defined by gn(ℓ) = g(ℓ) is also
a homomorphism. In particular, if g and h are witnesses for P being present in A, then gn,hn
are also witnesses for all n.

Proof. We show that g(ℓ) · h(x) = g(ℓ) · hn(x) for all ℓ ∈ V , x ∈ X, which implies the desired
result. For x such that neither (x, y) ∈ K nor x ∈ L, there is nothing to show. Suppose x is
such that (x, y) ∈ K, and let ℓ′ = ℓ ◦ x. By condition (iii), we have that y is a loop at ℓ′ and
it follows that h(y) needs to be a cycle at g(ℓ′). Thus

g(ℓ) · hn(x) = g(ℓ) · h(x) (h(y))n = g(ℓ′) · (h(y))n = g(ℓ′) = g(ℓ) · h(x).

The argument for x ∈ L is similar.

It follows from these two lemmas that every simple and balanced pattern is a language
pattern.

Proposition 3 (See [13, Proposition 3.8]). Every simple and balanced subword-pattern is a
language pattern.

Proof. Let P = (S, j 6≤ k) be a simple and balanced pattern with S = (V,X, ◦). Let A =
(Q,A, ·, i, F) and A′ = (Q′, A, ·′, i′, F ′) both accept L ⊆ A∗. Assume that P is present in A,
witnessed by h : X → A∗ and g : S → Ah. Let r be the root of P, and choose p such that
g(r) = i · p. There exists x, y ∈ X∗ such that r ◦ x = j, r ◦ y = k. Furthermore, there exists

11

q such that g(j) · q ∈ F while g(k) · q /∈ F . Thus ph(x)q ∈ L while ph(y)q /∈ L. It follows by
Lemma 3 that phn(x)q ∈ L while phn(y)q /∈ L for all n.

Let η = ηA′ . By Lemma 2, we can find a homomorphism g′ : S → A′ such that g′(r) = i′ ·′ p,
and g(r ◦ z) = g(r) ·′ hη(z) for all z ∈ X∗. In particular, g(j) = i′ · phη(x), g(k) = i′ · phη(y).
Since i′ · phη(x)q ∈ F ′ and i′ · phη(y)q /∈ F ′, we have g(j) 6≤A g(k), showing existence of P in
A′. The result for type 1 patterns is analogous.

4 Hierarchies of Subword-Patterns

In this section, we show how to use patterns which characterize a variety V ⊆ DA to create
new patterns characterizing K M○ V, D M○V and VKD. Patterns characterizing Rm, Lm and
Sim becomes an immediate corollary. We also give these patterns explicitly.

Given a pattern P, we construct patterns Pk, Pd and Pkd. These are obtained by appending
new states either at the root of P as in (2) below (for Pk), at the two states which were
compared in P as in (3) below (for Pd), or both (for Pkd).

rr′

e

e

(2)

j

j′

k

k′

f

f

f

f
(3)

When appending states as in (3), we compare j′ and k′ in the new pattern. The variables
e and f are new, and defined to satisfy x � e, f for all variables x of the original pattern P.
Formally, we have the following definition.

Definition 7. Let P = (S, j 6= k) be a rooted pattern where S = (V,X, ◦) with the root r. Let
Xk = X ∪ {e} where x ≺ e for all x ∈ X, and let Vk = V ∪ {r′}. Let Sk = (V ′,X ′, ◦k) where
r′ ◦k e = r, r ◦k e = r and ℓ ◦k x = ℓ ◦ x for all ℓ ∈ V , x ∈ X for which ℓ ◦ x is defined. We
define Pk = (Sk, j 6= k).

Next, let Xd = X∪{f}, Vd = V ∪{j′, k′} and let j◦df = j′, k◦df = k′, j′◦df = j′, k′◦df = k′

and ℓ ◦d x = ℓ ◦ x for all ℓ ∈ V , x ∈ X for which ℓ ◦ x is defined. Then Sd = (V ′′,X ′, ◦d) and
Pd = (Sd, j

′ 6= k′).
Finally, let Xkd = X ∪{e, f} where x ≺ e, x ≺ f for all x ∈ X, and let Vkd = V ∪{r′, i′, j′}.

We define r′ ◦kd e = r, r ◦kd e = r, j ◦kd f = j′, k ◦kd f = k′, j′ ◦kd f = j′, k′ ◦kd f = k′ and
ℓ ◦kd x = ℓ ◦ x for all ℓ ∈ V , x ∈ X for which ℓ ◦ x is defined. Then Skd = (V ′,X ′′, ◦kd) and
Pkd = (Skd, j

′ 6= k′).
We make analogous definitions for type 2 patterns P = (S, j 6≤ k).

As an example, we consider the simple and balanced pattern P ′
DA

obtained by adding a root
and a transition y going into the state j. Let y and Ay as in P ′

DA
. The pattern (P ′

DA
)kd is

given by

jrr′

j′

k

k′

e y

Ayye

y

f

f

f

f

It is straightforward to show that (PDA)kd is in fact equivalent to PDA.

12

Note that if P is simple and balanced, then the patterns Pk, Pd and Pkd are all simple and
balanced. The constructions also preserve another property. We want to consider patterns
where the alphabet of one path is a subset of the other (for type 2 patterns), or where they
are the same (for type 1 patterns). This is ensured by the following property.

Definition 8. Let P = (S, j 6≤ k) be a simple pattern such that whenever x is on the path
from r to j, then there exists y on the path from r to k such that x � y. We say that P is
one-alphabeted. If P = (S, j 6= k), then it is one-alphabeted if both the above holds and the for
all x on a path from r to k, there is y on the path from r to j such that x � y.

We show that if there is a collections of simple, balanced and one-alphabeted patterns
characterizing monoid varieties inside of DA, then these constructions can be used to obtain
pattern characterizations for Malcev products with K and D and varieties constructed using
the �KD-relation. This requires the following two lemmas.

Lemma 4. Let A = (Q,A, ·, i, F) be a DFA and let L = L(A) have the syntactic morphism
µ : A∗ →M ∈ DA. Let P be a simple and balanced pattern. Then the following holds:

(i) If Pk is present in A, then P is present in the Cayley-graph of M/∼K,

(ii) If Pd is present in A, then P is present in the Cayley-graph of M/∼D,

(iii) If Pkd is present in A, then P is present in the Cayley-graph of M/�KD,

where we define presence in the Cayley-graph to mean that it is possible to make a choice of
final states F such that the pattern is present in the corresponding automata.

Proof. Let C = (M/∼K, A, ◦) be the Cayley-graph of M/∼K. Suppose Pk is present in A
witnessed by h : X ′∗ → A∗ and g : Sk → Ah. By Lemma 3, hηC : X ′∗ → A∗ together
with g is also a witness. Let r ∈ V be the root of P, r′ ∈ V ′ be the root of Pk and let
x, y ∈ X ′∗ such that r ·′ x = j, r ·′ y = k where ·′ is the transition function of the underlying
semiautomaton of P. Choose p such that g(r′) = i · p. Then there exist q such that,without
loss of generality phηC (e)

ωMhηC (x)q ∈ L while phηC (e)
ωMhηC (y)q /∈ L. Since M ∈ DA and

alph(hηC (x)) ⊆ alph(hηC (e)), Lemma 1 gives µ(hηC (e
ωMx)) J µ(hηC (e

ωM)). Thus we have
µ(hηC (x)) 6∼K µ(hηC (y)).

The latter implies that 1 ◦ hηC (x) 6= 1 ◦ hηC (y) in the Cayley-graph of M/∼K where 1 is the
unit of M/∼K. Since P is simple and balanced, we can use Lemma 2 to extend g′(r) = 1 to a
homomorphism g′ : S → ChηC . Setting A′ = (M/∼K, A, ◦, 1, {1 ◦ hηC (x)}) gives g

′(i) 6≡A′ g′(j)
which shows that P is present in C. The other cases are similar.

Lemma 5. Let A be a DFA, and suppose µ : A∗ → M is its syntactic morphism. Suppose
that P is a simple, balanced and one-alphabeted pattern. If P is type 1, then

(i) If Pk is not present in A, then P is not present in any automata B accepting any L
recognised by M/∼K,

(ii) If Pd is not present in A, then P is not present in any automata B accepting any L
recognised by M/∼D,

and if P is either type 1 or type 2, then

13

(iii) If Pkd is not present in A, then P is not present in any automata B accepting any L
recognised by M/�KD.

Proof. We show the result (i), with (ii) and (iii) being similar. Let P = (S, j 6= k), r be the
root of P, and r′ the root of Pk. Suppose P is present in some B with h, g as witnesses. By
Lemma 3, we can also use hηA as a witness. Let x, y ∈ X∗ be such that j = r ◦x and k = r ◦ y.
Let u = hηA(x), v = hηA(y). Since P is one-alphabeted, it follows that alph(u) = alph(v).

Since g(r) · u = g(j) 6≡B g(k) = g(r) · v, it follows from the minimality of the syntactic
morphism that µ(u) 6∼K µ(v). This implies that there exists w such that either v or u is a
factor of it and such that for all n, we have pwnωMuq ∈ L(A)⇔ pwnωM vq /∈ L(A) for some p
and q. In particular, since u and v have the same alphabet, we can choose w such that both
u and v are subwords of it.

Let h′(e) = wωM , h′(z) = h(z) for all z ∈ X. Using Lemma 2, we set g′(r′) = i · p and get a

well defined homomorphism g′ : Sk → A
h′
ηA . We get

g′(j) = g′(r′) · h′ηA(ex) = i · pwηAωMu 6≡A i · pwηAωM v = g′(r′) · h′ηA(ey) = g′(k),

showing that the pattern Pk is present in A.

Combining these lemmas yields the following theorem, which is the main result of this
section.

Theorem 2. Let P be a collection of simple, balanced and one-alphabeted patterns with P ′
DA
∈

P. Suppose V = 〈P〉. If all patterns in P are type 1, then

(i) the language variety corresponding to K M○ V is 〈Pk〉,

(ii) the language variety corresponding to D M○ V is 〈Pd〉,

and for P containing any combination of type 1 and type 2 patterns, we have

(iii) the language variety corresponding to VKD is 〈Pkd〉,

Proof. We again show (i), with (ii) and (iii) being analogous. Consider A and let M be the
syntactic monoid of L(A). Suppose A has one of the patterns Pk ∈ Pk. Either it is (PDA)k
which is equivalent to PDA. Then M /∈ DA and thus M /∈ K M○ V since K M○ DA = DA. If
it is not PDA, then M ∈ DA and we can use Lemma 4 to find a language L′ recognised by
M/∼K such that L′ /∈ 〈P〉. It follows that M/∼K /∈ V, and thus M /∈ K M○ V.

On the other hand, suppose that A has none of the patterns Pk ∈ Pk. Let M be the
syntactic monoid of L(A). By Lemma 5, none of the languages recognised by M/∼K has any
of the patterns P ∈ P. For every such language Li, let Mi be the corresponding syntactic
monoid. We have that Mi ∈ V, and thus M/∼K ∈ V. This shows that M ∈ K M○ V.

The explicit patterns for Rm, Lm and Sim all build on the same class of directed graphs.
However, the orderings of the variables are different.

Definition 9. For m ≥ 1, we define the following sets of variables:

• Xm =
{

x, e1, . . . , e⌊m/2⌋, f1, . . . , f⌊(m−1)/2⌋

}

with x � ei � fi � ei+1,

• Ym =
{

x, e1, . . . , e⌊(m−1)/2⌋, f1, . . . , f⌊m/2⌋

}

with x � fi � ei � fi+1,

14

• Zm = {x, e1, . . . , em−1, f1, . . . , fm−1} with x � y for all y ∈ Zm and zi � zi+1 for
zi ∈ {ei, fi}, zi+1 ∈ {ei+1, fi+1}.

Let SXm (resp. SYm, SZm) have the following structure, where x, ei, fi′ ∈ Xm (resp. in Ym, Zm)
and ℓ and ℓ′ are chosen to match the maximal ei and fi′ respectively.

r j

k

eℓ

eℓ e2

e1

e1

x

f1

f1

f1

f1

fℓ′−1

fℓ′−1

fℓ′

f ′
ℓ

fℓ′

fℓ′

Then

• PR
m =

(

SXm , j 6= k
)

for even m ≥ 2, PR
m =

(

SYm, j 6= k
)

for odd m ≥ 3,

• PL
m =

(

SYm, j 6= k
)

for even m ≥ 2, PL
m =

(

SXm , j 6= k
)

for odd m ≥ 3,

• PSi
m =

(

SZm, j 6≤ k
)

for m ≥ 1.

Before showing that these patterns characterise the corresponding varieties, we show the
following lemma, which allows us to use Theorem 2 without adding PDA explicitly.

Lemma 6. Let A = (Q,A, ·, i, F) be a DFA. Suppose P ′
DA

is present in A, then PR
m , PL

m and
PSi
m are present in A for all m.

Proof. Proving the presence of PR
m and PL

m is straightforward. Since P ′
DA

and PDA are
equivalent, we may suppose PDA is present, with witnesses h′, g′. To distinguish the variables,
we prime the names of variables and states from PDA. We define h(ei) = h(fi) = h′(x′) for all
i, and h(x) = h′(A′

x). Defining g(r) = g′(j′) and extending it to a homomorphism of partial
semi-DFAs gives h and g witnessing the presence of PR

m and PL
m.

If g′(j′) 6≤ g′(k′) the same approach works for PSi
m . However, if we only have g′(k′) 6≤ g′(j′)

we require some more work. Let M be the syntactic monoid of L(A). Since M /∈ DA, we
have p, q, u, v ∈ A∗ such that p(uv)ωn1v(uv)ωn2q ∈ L while p(uv)ωn3q /∈ L for all n1, n2, n3 or
vice versa. In the latter case, we have the pattern PDA with g′(j′) 6≤ g′(k′) so we consider the
former case.

We define h(en) = (uv)η , h(fn) = (vu)η and h(x) = u(vu)η−1 for all n. Setting g(r) = i · p
gives a homomorphism g : SZm → A. All that is left is to show g(j) 6≤ g(k). We note
that g(j) = i · p(uv)η(vu)η = i · p(uv)ωηv(uv)ωη−1u and g(k) = i · p(uv)ηu(vu)η−1(vu)η =
i · p(uv)ωη−1u. We have g(j) · vq = i · p(uv)ωηv(uv)ωη−1uvq = i · p(uv)ωηv(uv)ωηq ∈ L and
g(k) · vq = i · p(uv)ωη−1uvq = i · p(uv)ωηq /∈ L giving the desired result.

Corollary 1. Let A be a DFA, and let M be the syntactic monoid of L(A). Then the following
holds:

(i) M ∈ Rm if and only if L(A) ∈ 〈PR
m 〉,

(ii) M ∈ Lm if and only if L(A) ∈ 〈PL
m〉,

(iii) M ∈ Sim if and only if L(A) ∈ 〈PSi
m 〉.

15

Proof. We proceed by induction on m. The inductive step uses Theorem 2, which require
the presence of the pattern P ′

DA
. However, by Lemma 6, it follows that 〈PR

m 〉 = 〈P
R
m ,P ′

DA
〉,

〈PL
m〉 = 〈P

L
m,P ′

DA
〉 and 〈PSi

m 〉 = 〈P
Si
m ,P ′

DA
〉. Thus we can without loss of generality assume

the collections contain P ′
DA

making Theorem 2 applicable. We show the base case R = 〈PR
2 〉 =

〈PR
2 ,P ′

DA
〉. The base case for PL

2 is analogous and for PSi
1 it is trivial.

Suppose L(A) /∈ 〈PR
1 〉. IfM /∈ DA then in particularM /∈ R, so we assumeM ∈ DA. Thus,

we suppose that PR
1 is present in A with g and h as the witnesses. Let ω be the idempotent

power of M . Then there exists p, q such that ph(e1)
ωh(x)q ∈ L(A)⇔ ph(e1)

ωq /∈ L(A) where
h(x) is a subword of h(e1). However, since M /∈ DA, we have p′h(e1)

ωq′ ∈ L(A) if and only if
p′h(e1)

ωh(x)h(e1)
ωq′ ∈ L(A) for all p′, q′ ∈ A∗. Thus

ph(e1)
ω(h(x)h(e1)

ω)ωh(x)q ∈ L(A) ⇔ ph(e1)
ωh(x)q ∈ L(A)

⇔ ph(e1)
ωq /∈ L(A)

⇔ ph(e1)
ω(h(x)h(e1)

ω)ωq /∈ L(A),

showing that M /∈ R = R2.
For the other direction, supposeM /∈ R. We then have words u, v, p, q such that p(vu)nωM q ∈

L ⇔ p(vu)nωM vq /∈ L for all n. Let g(r) = i · p, h(e1) = (vu)ηωM and h(x) = v. We have
g(j) = g(r) · h(e1) 6≡A g(r) · h(e1x) = g(k), showing that the pattern exists in A.

5 Patterns for Reverse-DFAs

In this section, we formalize patterns for reverse-DFAs and show how we can move between
result of DFAs and reverse-DFAs. The following definition is almost identical to Definition 2,
but for reverse deterministic automata.

Definition 10. Let X be a set with a partial order �. A type 1 reverse subword-pattern
P = (S, j 6= k) or type 2 reverse subword-pattern P = (S, j 6≤ k) consists of a finite partial
reverse-DFA S = (V,X, ·) and two states j, k ∈ V . If P = (S, j 6= k), we say that P is present
in a reverse-DFA A if there exists a homomorphism h : X∗ → A∗ where x � y implies that
h(x) is a subword of h(y) and a reverse semiautomata homomorphism g : S → Ah such that
g(j) 6≡A g(k) and for all ℓ ∈ V , the final state of A can be reached from g(ℓ). Analogously, we
say that P = (S, j 6≤ k) is present if there exist h and g such that g(j) 6≤A g(k). Two patterns
being equivalent is defined as for non-reverse patterns, and we call the pattern reverse-rooted
if there is a state r ∈ V such that for all ℓ ∈ V , we have ℓ = x · r for some x ∈ X.

Given a subword-pattern, changing the direction of the edges yields a reverse subword-
pattern.

Definition 11. Let P = (S, j 6≤ k) be a subword-pattern with S = (Q,X, ·). The reverse
subword-pattern P is the pattern

(

S, j 6≤ k
)

where S = (Q,X, ·r) is given by x ·r ℓ = ℓ · x for
all x ∈ X, ℓ ∈ Q.

Consider PR
1 = (S, j 6= k) where the underlying graph is

j k

e

e x

16

and x � e. By Corollary 1, this pattern characterises the R-trivial languages (i.e. the patterns

whose syntactic monoids have trivial R-classes). The pattern P
R

1 is given by the following
underlying graph:

jk

e

ex

Let A be the following reverse-DFA:

a, b

a, b

a

b

Then L(A) = A∗a where A = {a, b}. We note that P
R

1 is not present in A. Since A∗a is not
R-trivial, we see that reversing patterns does not preserve characterisation of languages. It

can, however, be shown that the pattern P
R

1 characterises the L-trivial patterns. This hints at
a left-right symmetry of the varieties characterised by a pattern P and P . We formalise this.

Definition 12. Let t ∈ ΩX . We define the reverse ω-term, tr, inductively:

(i) If t ∈ X or t = 1, then tr = t,

(ii) If t = t1t2 , then tr = tr2t
r
1,

(iii) If t = sω , then tr = (sr)ω.

We say that an ω-term t is symmetric if t = tr up to a renaming of the variables.

The following lemma shows a close connection between reverse monoids and reverse ω-terms.

Lemma 7. Let t ∈ ΩX be an omega term, and let i : X → M be a function. Then, the
interpretation I : ΩX → M generated by i satisfies I(t) = x if and only if the interpretation
I ′ : ΩX → M r generated by i satisfies I ′(tr) = x. In particular, M satisfies t ≤ s if and only
if M r satisfies tr ≤ sr, and M satisfies t = s if and only if M r satisfies tr = sr.

Proof. By symmetry, we need only show that I(t) = x implies I ′(tr) = x. We proceed by
structural induction. The statement is obvious for 1 and for variables. Next, suppose t = t1t2.
There are elements y1, y2 ∈ M such that y1 = I(t1), y2 = I(t2) and x = y1y2. By induction,
y1 = I ′(tr1), y2 = I ′(tr2). In M r, we have x = y2 · y1 = I ′(tr2) · I

′(tr1) = I ′(tr2t
r
1) = I ′(tr). The

case t = sω is trivial, noting that ωM = ωMr .

Definition 13. Let {ti ≤ si} be a set of ω-relations and let V = Jti ≤ siK be the corresponding
variety, then Vr = Jtri ≤ sri K. If V = Vr, then V is symmetric.

We note, for instance that Rm = Lr
m, Lm = Rr

m which in particular implies that the varieties
Rm ∩ Lm are symmetric. The varieties Sim are also symmetric.

17

Lemma 8. Let P = (S, j 6≤ k) be a pattern and P the corresponding reverse pattern. Then
V = 〈P〉 if and only if Vr = 〈P〉.

This Lemma shows in particular that if if V is symmetric, then the patterns defining mem-
bership in the corresponding language variety for a DFA is essentially the same as the ones
defining it for a reverse-DFA. The only difference is the direction of the edges. In particular,
this means that we have reverse-DFA characterizations of all varieties in Corollary 1.

Proof. By symmetry, it is enough to show Vr = 〈P i〉 implies V = 〈Pi〉. Let L = L(A) for some
automata A. By Lemma 7, we have L ∈ V if and only if L ∈ Vr. It is also clear that L ∈ 〈P〉
if and only if L = L(A) ∈ 〈P〉. We get

L ∈ V ⇔ L ∈ Vr ⇔ L ∈ 〈P〉 ⇔ L ∈ 〈P〉.

Since L was arbitrary, the result follows.

6 The Finite Behaviour of Carton-Michel automata

We consider two types of patterns for Carton-Michel automata, dealing with the finite and
infinite behaviour respectively. To make this distinction precise, we introduce the fin-syntactic
and inf-syntactic monoids. The former identifies words which behaves the same with respect
to finite prefixes of the language, and the latter identifies words which behaves the same with
respect to infinitely iterated words.

Definition 14. Let L ⊆ Aω be a language and let u, v ∈ A∗. We say that u ≤fin v if for all
x, y, z ∈ A∗,

xuyzω ∈ L⇒ xvyzω ∈ L.

We define the fin-syntactic morphism to be the natural projection π : A∗ → A∗/≤fin and the
codomain is called the fin-syntactic monoid. We define the inf-syntactic morphism and monoid
analogously using ≤inf defined by u ≤inf v if for all x, y ∈ A∗, we have

x(uy)ω ∈ L⇒ x(vy)ω ∈ L.

It is clear that the syntactic semigroup is in some variety V if and only if both the fin-
syntactic monoid and inf-syntactic semigroup are in V.

In this section, we deal with the behaviour of the fin-syntactic monoid. This is done using
patterns which are defined almost exactly as Definition 10. However, one needs to be careful in
the definition of such a pattern being present. In fact, since Carton-Michel automata are not
guaranteed to be reverse-deterministic everywhere, we can not a priori define any candidate
witness g : S → A. However, this is easily remedied by considering morphisms to trim
components of the Carton-Michel automata.

Definition 15. A type 1 and type 2 subword-pattern for a Carton-Michel automata is de-
fined as in Definition 10. It is present in a Carton-Michel automaton A if there exists a
homomorphisms h : X∗ → A∗, a trim subautomaton B in A, and a reverse semiautomata
homomorphism g : S → Bh where g and h has the properties of Definition 10.

18

Note that it is not sufficient to assume that every state in the automata is reachable from
a final state. Consider for instance the following automata recognizing the language A∗aAω.
This language has syntactic monoid in Si1 = J+. However, both k4 and k5 are reachable from

a final state, making g(k) = k4 and g(j) = k5 a viable witness for PSi
1 being present if only

reachability from final states was required.

k1 k2

k3 k4 k5

a b

a

b

a, b

b

a a, b

The following lemma show that Mfin ∈ V can be characterised by using the same patterns
as in the finite reverse-DFA case.

Lemma 9. Let A be a Carton-Michel automaton, recognising a language L(A) with fin-
syntactic morphism µ : A∗ →Mfin. Let V = 〈P〉 where the patterns are language patterns for
reverse-DFAs. Then Mfin ∈ V if and only if A does not have any of the patterns in P.

Proof. Since a pattern is present if and only if it is present in the trim subautomata A, we
lose no generality in assuming A to be trim. For each ℓ ∈ Q, consider the reverse-DFA
Aℓ = (Q,A, ·, I, {ℓ}). The syntactic morphism µℓ : A∗ → Mℓ = A∗/≤ℓ of L(Aℓ) is given by
the natural projection on the equivalence classes of the relation ≤ℓ defined by u ≤ℓ v if

xuy · ℓ ∈ I ⇒ xvy · ℓ ∈ I

for all x, y ∈ A∗. We have Mℓ ∈ V if and only if Aℓ does not have any of the patterns in P.
Suppose µ(u) ≤ µ(v) and ℓ = ⊲y′zω. Since xuyy′zω ∈ L implies xvyy′zω ∈ L for all

x, y ∈ A∗, we get µℓ(u) ≤ µℓ(v). Thus Mℓ divides M . Since A is trim, this is true for all states
ℓ in A and it follows that if A has a pattern P ∈ P, then so does some Aℓ, and thus M /∈ V.

On the other hand, if µℓ(u) ≤ µℓ(v) for all ℓ, then xuyzω ∈ L implies xvyzω ∈ L for all z.
Hence M divides Mℓ1 × · · · ×Mℓk . It follows that if Mℓ ∈ V for all ℓ, then so is M . If Mℓ ∈ V

for all ℓ, then no Aℓ has any of the patterns in P which implies that A can not have any of
the patterns.

7 The Infinite Behaviour of Carton-Michel automata

In this section, we give pattern characterizations of the infinite behaviour of Carton-Michel
automata. We characterize two types of infinite behaviour. First, we handle the inf-syntactic
monoid, and show that for our purposes it is enough to show that it is in DA. Then, we
give pattern characterizations for being open, closed respectively clopen in the Cantor and
alphabetic topology.

We use a modified version of subword-patterns, enhanced subword-patterns. The enhance-
ment is twofold; we assume that every path corresponding to an edge in the pattern is non-
empty, and we assume that some edges can be distinguished as final. The paths corresponding
to these edges are required to have some final state along them.

19

Definition 16. Let X be a set with a partial order �. A type 1 reverse subword-pattern
P = (S, j 6= k, F) or type 2 reverse subword-pattern P = (S, j 6≤ k, F) are defined as in
Definition 15 with F being a subset of the edges in S called final edges. If P = (S, j 6= k),
we say that P is present in a Carton-Michel automata A if there exists a homomorphism
h : X+ → A+ where x � y implies that h(x) is a subword of h(y) and a trim subautomata
B with a reverse semiautomata homomorphism g : S → Bh such that g(j) 6≡A g(k) with the
following property: if x ∈ F , x · ℓ is defined and h(x) = a1 . . . an, then there exists 1 ≤ i ≤ n
such that ai . . . an · g(ℓ) is final.

We show that for varieties J1 ⊆ V ⊆ DA, characterizing having syntactic monoid in V

is equivalent to having fin-syntactic monoid in V and inf-syntactic monoid in DA. We also
handle the special case Si1 = J+ which does not include J1.

Lemma 10. Let V be a (positive) variety such that J1 ⊆ V ⊆ DA. Let L ⊆ A∞ be a
language with syntactic monoid M , fin-syntactic morphism µfin : A∗ →Mfin and inf-syntactic
morphism µinf : A∗ →Minf . Then M ∈ V if and only if Mfin ∈ V and Minf ∈ DA.

Proof. It is clear that if M ∈ V, then so are Mfin and Minf . For the other direction, assume
Mfin ∈ V and Minf ∈ DA. We note that the (unordered) monoid 2A with union as operation
is in J1. Let M

′ be the submonoid of Mfin × 2A generated by ν(a) = (µfin(a), {a}). We show
that there exists a surjective homomorphism f : M ′ → Minf . This implies Minf ∈ V which
implies M ∈ V.

Let u ∈ A+ and define f (ν(u)) = µinf (u). We need to show that this is well-defined. In
other words, we need to show that ν(u) ≤ ν(v) implies µinf (u) ≤ µinf (v). Let us assume the
former, that is, we assume µfin(u) ≤ µfin(v) and alph(u) = alph(v). We set n = ωM , and get

x(uy)ω = x ((uy)n)ω ∈ L ⇒ x
(

(uy)n(vy)2n(uy)n
)ω
∈ L (4)

⇒ x(uy)n(vy)n
(

(vy)n(uy)2n(vy)n
)ω
∈ L (5)

⇒ x(uy)n(vy)ω ∈ L (6)

⇒ x(vy)n(vy)ω = x(vy)ω ∈ L (7)

where (4) and (6) follows from Minf ∈ DA and alph(u) = alph(v), (7) follows from µfin(u) ≤
µfin(v) and (5) is just a rewriting of the word.

Out of the monoids appearing in Table 1, only Si1 does not contain J1. Thus, we only need
to find two pattern characterizations, one for the inf-syntactic monoid being in Si1 and one
for it being in DA. For the latter, the following lemma is useful.

Lemma 11. Let n ∈ N be fixed, and let L ⊆ Aω be a language. Let µfin : A∗ → Mfin

be its fin-syntactic morphism and let Minf be its inf-syntactic monoid. If Mfin ∈ DA and
Minf /∈ DA, then there exists x ∈ A∗ e, u ∈ A+ with alph(u) ⊆ alph(e) such that x(enuen)ω ∈
L⇔ x(en)ω /∈ L for all n.

Proof. Let k = ωMinf
ωMfin

. It follows directly from the fact that Minf /∈ DA that there exists

x, y ∈ A∗, e, u ∈ A+ with alph(u) ⊆ alph(e) such that x(ekueky)ω ∈ L while x(eky)ω /∈ L.
Let f1 = (ekueky)k and f2 = (eky)k. Note that alph(f1) = alph(f2). We have x(fn

1 f
n
2 f

n
1)

ω ∈
L ⇔ xfn

1 (f
n
2 f

n
1)

ω ∈ L ⇔ xfn
2 (f

n
2 f

n
1)

ω ∈ L ⇔ x(fn
2 f

n
1 f

n
2)

ω ∈ L where the middle equivalence
follows from the fact that µfin(f1) = µfin(f2). Thus, it must be the case that either x(fn

1)
ω ∈

L 6⇔ x(fn
1 f

n
2 f

n
1)

ω ∈ L or x(fn
2)

ω ∈ L 6⇔ x(fn
2 f

n
1 f

n
2)

ω ∈ L. This gives the desired result.

20

Proposition 4. Let A be a Carton-Michel automaton, and let Minf be the inf-syntactic monoid
of L(A). Let Ssi and Sda be the following partial semiautomata:

kjSsi :
x

y

x

kjSda :

z

Az

z

z

where Az � z and for each pattern the black bold edge as well as at least one of the gray bold
edges are final edges. We then have the following characterizations:

(i) Minf ∈ Si1 if and only if PSi

1-inf = (Ssi, j 6≤ k) is not present in A,

(ii) suppose PDA is not in A, then Minf ∈ DA if and only if PDA-inf = (Sda, j 6= k) is not
present in A,

Proof. Let µinf : A∗ →Minf be the inf-syntactic morphism. Let us first consider (i). Assume
that the pattern is present with h : X+ → A+ as a witness. Then there exists p such that
ph(x)ω ∈ L while p(h(y)h(x))ω /∈ L. In particular, 1 6≤ µinf (h(y)), showing that M /∈ Si1. On
the other hand, if Minf /∈ Si1, then there exists p, u, v ∈ A∗ such that puω ∈ L but p(vu)ω /∈ L.
Defining h(x) = u, h(y) = v, g(j) = ⊲uω and g(k) = ⊲(vu)ω gives the desired witness.

Next, consider (ii). Assume that the pattern is present with h : X+ → A+ as a witness. Then
there exists p such that p(h(z)nh(Az)h(z)

n)ω ∈ L ⇔ p(h(z)n)ω /∈ L for all n. In particular,
µ(h(z))ωMµ(h(Az))µ(h(z))

ωM 6= µ(h(z))ωM . Since alph(h(Az)) ⊆ alph(h(z)), Lemma 1 implies
that Minf /∈ DA.

For the other direction, suppose that Minf /∈ DA. By Lemma 11, there exists x ∈ A∗, e, u ∈
A+ with alph(u) ⊆ alph(e) such that x(eηueη)ω ∈ L ⇔ x(eη)ω /∈ L. Letting g(j) = ⊲(eη)ω,
g(k) = ⊲(eηueη)ω, h(z) = e|u|η and h(Az) = u shows that PDA-inf is present in A.

This leads to the following theorem characterizing membership of the inf-syntactic monoid
in the varieties which interests us in this paper.

Theorem 3. Let A be a Carton-Michel automaton, and let M be the syntactic monoid of
L(A). Then for m ≥ 2:

(i) M ∈ Si1 if and only if neither P
Si

1 nor PSi

1-inf is present in A,

(ii) M ∈ Sim if and only if neither P
Si

m , PDA nor PDA-inf is present in A,

(iii) M ∈ Rm ∩ Lm if and only if neither P
R

m,P
L

m nor PDA-inf is present in A.

Next, we turn to characterizing topology. We consider patterns for the Cantor and alphabetic
topology. One can obtain patterns for being closed in the respective topology by switching
j and k, and for being clopen (i.e. both open and closed) by replacing the inequality by an
equality.

Proposition 5. Let A be a Carton-Michel automaton, and let Sc and Sa be the partial semi-
automata defined below:

Sc : kj

zz

Sa : k ℓj

Bzz

z Az

z

21

Where for Sa, we have Az, Bz � z. Then

(i) L(A) ∈ Ocantor if and only if Pcantor = (Sc, j 6≤ k) is not present in A,

(ii) L(A) ∈ Oalph if and only if Palph = (Sa, j 6≤ k) is not present in A,

(iii) L(A) is clopen in the alphabetic topology if and only if Palph-clopen = (Sa, k 6= j) is not
present in A.

Proof. Let µ : A∗ →M be the syntactic morphism of L(A). We first show (i). Suppose Pcantor
exists in A with h(z) = u. Choose α ∈ Aω such that g(k) = ⊲α (such an α exists since g(k)
is reachable from some cycle with a final state). Then there exists p such that puω ∈ L while
punα /∈ L for any n. This means L(A) /∈ Ocantor.

On the other hand, suppose L(A) /∈ Ocantor. Then there exists a linked pair (s, f) in M
and an idempotent f ′ such that [s][f]ω ⊆ L and [s][f ′]ω ∩ L(A) = ∅. Let p ∈ [s], u ∈ [f] and
v ∈ [f ′]. We choose h(z) = uη, g(j) = ⊲uω and g(k) = ⊲uηvω. Since µ(suη) = µ(s), it follows
that p · g(j) ∈ I while p · g(k) /∈ I giving the desired pattern.

Showing (ii) follow a similar line of argument. Suppose Palph exists with h : Y + → A+ as
witness. Then there is a word x such that xh(z)ω ∈ L while xh(z)nh(Az)h(Bz)

ω /∈ L for all
n. Since alph(h(Az)), alph(h(Bz)) ⊆ alph(h(z)), it follows that L is not open in the alphabetic
topology.

For the other direction, suppose L is not open in the alphabetic topology. Then there exists
α ∈ L and n ∈ N such that p im(α)ω ⊆ L for no prefix p of α which has length at least n. Let
µ : A∗ →M be the syntactic morphism, and let (s, f) be a linked pair such that α ∈ [s][f]ω. By
the choice of α, there exists β = ŝx̂f̂ ′

ω
/∈ L such that µ(ŝ) = s and alph(f̂ ′), alph(x̂) ⊆ alph(f̂)

where f̂ ∈ [f]. By concatenating with f̂ if necessary, we can assume x̂ is nonempty. Set

h(z) = f̂η|x̂f̂ ′|, h(Az) = x̂, h(Bz) = f̂ ′
η
, then g(j) = ⊲f̂ω, g(ℓ) = ⊲f̂ ′

ω
gives the desired

pattern.
By considering the complement of the language, we see that whenever a pattern P =

(S, j 6≤ k) characterizes being open a topology, then P = (S, k 6≤ j) characterizes being closed
and thus P = (S, k 6= j) characterizes being clopen. Thus (ii) implies (iii).

To explicitly mention clopen-ness in the alphabetic topology has a purpose. The following
two lemmas show that an ω-language with syntactic monoid in DA is in the Boolean closure
of the Cantor topology if and only if it is clopen in the alphabetic topology.

Lemma 12. If a regular language L ⊆ Aω satisfy L ∈ Oalph and Aω \ L ∈ Oalph then it is in
B(Ocantor).

Lemma 12. Let µ : A∗ → M be the syntactic morphism of L. We show that for every
linked pair (s, e) in M , there exists L′ ∈ B(Ocantor) such that either [s][e]ω ⊆ L′ ⊆ L or
[s][e] ⊆ L′ ⊆ Aω \ L. This implies the desired result.

We consider the directed graph F with vertices all linked pairs (t, f) and an edge (t, f) →
(t′, f ′) if and only if tp = t′ for some p and [t][f] ⊆ L ⇔ [t′][f ′] ⊆ Aω\L. We show that F is
a forest. Indeed, suppose tp = t′ and t′q = t. Then tfpf ′q = t and thus (t, (fpf ′q)ωM) is a
linked pair. Without loss of generality, assume [t][(fpf ′q)ωM]ω ⊆ L. It follows by alphabetic
openness that [t][f]ω ⊆ L and [t′][f ′]ω ⊆ L, a contradiction. Since F is a forest, we can define
a well order (t, f) ≤F (t′, f ′) if and only if (t, f) is reachable from (t′, f ′).

We use induction over ≤F . By symmetry, it is enough to show that the desired L′ exists
for [s][e]ω ⊆ L. We have that [s][e]ω ⊆ [s]A∗ \

⋃

[t][f]ω ⊆ L where the union is taken over

22

all (t, f) <F (s, e) such that [t][f]ω ∩ L = ∅. By induction, for each such pair, there is a set
Xt,f ∈ B(Ocantor) such that Xt,f ∩L = ∅. We get [s][e]ω ⊆ [s]A∗ \

⋃

Xt,f ⊆ L which yields the
desired result.

The other direction is not true in general. In particular, every singleton {α} is closed in
the Cantor topology. If it was open in the alphabetic topology, then any language would be.
However, we have the following special case.

Lemma 13. If A is a Carton-Michel automaton in which PDA is not present, and if L(A) ∈
B(Ocantor), then L(A) ∈ Oalph and L(A) ∈ Aω \ Oalph.

Proof. We show that B(Ocantor) ⊆ Oalph which by symmetry implies the result. If L ∈ Ocantor,
then it is clearly in Oalph.

Next, assume Aω \L ∈ Ocantor. Let u ∈ A∗ and suppose puω ∈ L. We want to show puηvω ∈
L for all v with alph(v) ⊆ alph(u) which would yield the desired result. For contradiction,
assume puηvω /∈ L. Since Aω \ L ∈ Ocantor we have n such that puηvnAω ∩ L(A) = ∅. In
particular puηvnuω /∈ L. Setting g(j) = ⊲uηvnuω, g(k) = ⊲uω, h(x) = un|v|η and h(Ax) =
uηvn gives witnesses of the pattern PDA being present in A, a contradiction.

To conclude this contribution, we note some optimizations; for deciding membership in FO2
1,

Σ2
1 and Σ2

2, the patterns PSi

1-inf and PDA-inf are redundant.

Lemma 14. Let A be a Carton-Michel automaton in which P
Si

1 is not present. If PSi

1-inf =
(S, j 6≤ k) is present in A, then so is Pcantor.

Proof. Suppose h, g are witnesses for PSi

1-inf being present in A. Let ℓn = h(x)n · g(k). We
show ℓn ≡A g(k) 6≥A g(j), which gives the desired result since h(x)η is a loop at both g(j) and
ℓη.

We use induction over n. For n = 0, there is nothing to show. Now suppose ℓ′ = h(x) · g(k),
and g(k) = h(y) · ℓ′. Since PSi

1 is not present, we have ℓ′ ≡A g(j). We get

ph(x)n+1g(j) ∈ I ⇔ ph(x)n · ℓ′ ∈ I

⇔ ph(x)n · g(j) ∈ I since ℓ′ ≡A g(j).

⇔ p · g(j) ∈ I by induction,

showing that ℓn ≡A g(j).

Lemma 15. Let A be a Carton-Michel automaton, and suppose that A has the pattern
PDA-inf , then A has the pattern Palph or the pattern PDA.

Proof. To differentiate the variables from the two different patterns, we prime all variables
used in Palph. We first assume that PDA-inf exists in A witnessed by the automata morphism
g and the monoid homomorphism h where g(j) 6≤A g(k). We define h′ and g′ witnessing the
existence of the pattern Palph by

g′(k′) = g′(ℓ′) = g(k), g′(j′) = g(j),

h′(z) = h(z)2 h′(A′
z) = h(z), h′(Bz) = h(zAz).

Since h(Az) is a subword of h(z), it follows that h′(A′
z) is a subword of h′(z), and thus h′, g′

witnesses the desired pattern.

23

On the other hand, if g(j) 6≥A g(k), we define

g′(ℓ′) = g(j), g′(k′) = h(zηAz)
η · g(j), g′(j′) = g(k),

h′(z′) = h(zηAz)
η h′(A′

z) = h′(B′
z) = h(z).

If g′(k′) 6≡A g(j), then since h(Az) is a subword of h(zη), we have that PDA is present in
A. On the other hand, if g′(k′) ≡A g(j), then g′(j′) = g(k) 6≤A g(j) ≡A g′(k′), and thus the
pattern Palph is present.

8 NL-completeness

In general, deciding membership on DFA-input is intractable (e.g. deciding membership of star-
free languages is PSPACE-complete [3]). However, one of the advantages of using patterns
to characterize some variety is that deciding the presence of patterns is in NL and thus so is
variety membership. We show that this is also true for subword-patterns which have stable
superwords.

Definition 17. Let P be a pattern such that whenever x � y such that x 6= y, and ℓ ◦ y is
defined, then ℓ ◦ yy = ℓ ◦ y. We say that P has the stable superwords.

Intuitively, a pattern has the stable superwords if all y which are not minimal with respect
to � occurs only as transitions to a state where y is a loop. Note in particular that all patterns
which we have introduced explicitly throughout the paper has this property. We also note that
if � is the identity, then the pattern vacuously has stable superwords.

We introduce Algorithm 1 for patterns having stable superwords. It finds a given subword-
pattern P non-deterministically storing only a finite number of states (depending on P) from
the automata, thus using only logarithmic space. The fundamental idea of the algorithm is as
in the non-subword case (cf. [3, 10]); for each variable in the pattern, we trace out paths in
the automata, remembering only the initial and final states. However, we need to take special
care for variables x � y. Every time we want to take a step on the path of x, we require that
we also take a step on the path of y, showing the desired subword property.

The following Lemma shows that the algorithm indeed finds the desired patterns.

Lemma 16. A pattern P with stable superwords is present in A if and only if Algorithm 1
terminates and at the end the stored states sj, sk satisfy sj 6≤A sk.

Proof. Suppose first that P is present in A where h and g has the desired properties. We guess
sℓ = g(ℓ) in the first for-loop.

For each variable x and each step n of the algorithm we have a homomorphism qn : X∗ → A∗

with the following invariant properties:

(i) For each stored tuple (sℓ, x, sℓ′), we have sℓ · qn(x) = sℓ′ ,

(ii) if x � y, then alph(qn(x)) ⊆ alph(qn(y)).

(iii) for all x, we have alph(qn(x)) ⊆ alph(h(x)).

Note that if qn(x) = ε for all x, then the algorithm halts. Furthermore, if the algorithm halts,
we have sj = g(j) 6≤A g(k) = sk, which is the desired criteria. Thus, we need only show that
the algorithm halts. We choose q1 = h.

24

Algorithm 1: Detecting the Subword-Pattern P = (S, j 6≤ k) where S = (V,X, ◦)

Data: A DFA A = (Q,A, i, E, ·)
foreach ℓ ∈ V do

Guess sℓ ∈ Q and store it
if sℓ is not reachable from i then do an infinite loop

end

foreach (ℓ, x,m) ∈ ◦ do
Store (sℓ, x, sm)

end

while there exists a stored tuple (sℓ, x, sm) such that sℓ 6= sm do

Guess a ∈ A
Guess y ∈ X
foreach stored tuple (sℓ′ , z, sm′) such that y � z do

(sℓ′ , z, sm′)← (sℓ′ · a, z, sm′)
end

end

Suppose there is some qn(x) which is nonempty. We show that it is possible to find n′ ≥ n
such that the above invariants are satisfied and qn(y) = qn′(y) for all y 6≻ x while either
|qn′(x)| < |qn(x)| or there is some z ≺ x such that qn′(z) is nonempty. We proceed by
induction over � reversed.

By induction, we can assume that there is n′′ such that qn′′(x)[1] = qn′′(y)[1] = a for all y � x.
If x is maximal with respect to �, it is trivially true. Otherwise, since alph(qn(x)) ⊆ alph(qn(y))
we use induction to remove letters from qn(y) until a appears.

For step n′ = n′′ + 1, we guess a ∈ A and x ∈ X in the interior of the while-loop. For each
y � x, let ty be such that qn′′(y) = aty. We define

qn+1(x) =

{

tx if qn′′(z) = ε for all z ≺ x

txh(y) otherwise

qn+1(y) =

{

tyh(y) if y ≻ x

qn(y) otherwise

We note that condition (iii) is satisfied. We also have that (i) holds because P has stable
superwords (if y � x, then y is a loop at ℓ′, we must have h(y) a cycle at sℓ′ in the given tuple).

To see that (ii) is satisfied, suppose y � z. If z 6� x then y 6� x and thus the corresponding
alphabets remain unchanged. Suppose instead z � x. Then alph(qn+1(y)) ⊆ alph(h(y)) ⊆
alph(h(z)) = alph(qn+1(z)) giving the desired result.

It now follows easily that we can make qn(x) empty for all x. Indeed, choose a nonempty x
which is minimal with respect to �. By repeated application of the above argument, we can
find n′ such that qn′(x) = ε, while qn(y) = ε implies qn′(y) = ε (since if qn(y) = ε, condition
(ii) ensures that x 6� y). We can thus make the qn(x) empty one by one.

For the other direction, we need to define g and h with the desired properties. We define
g(ℓ) = sℓ for ℓ ∈ V . Furthermore, for each x ∈ X, the algorithm provides a word ux being the
concatenation of every a guessed whenever x was among the variables updated in an iteration

25

of the while-loop. It is clear that if x is an edge between ℓ and ℓ′, then sℓ · ux = sℓ′ and if
x � y, then ux is a subword of uy. Thus, defining h(x) = ux gives the desired function.

Proposition 6. Let A be a DFA or a Carton–Michel automata. Checking the presence in A
of a pattern P with stable superwords is in NL in the size of A.

Proof. For a fixed P, Algorithm 1 stores a fixed number of states in Q, and thus the algorithm
is in NL. It is a standard result that checking whether sj 6≤A sk is in NL. Thus, the desired
result follows from Lemma 16.

We note that Algorithm 1 can be extended so that it checks whether an edge is final. Indeed,
for each final edge e of the pattern, we store a boolean be which is set to true whenever the
corresponding tuple encounters a final state. Similarly, we can check that emaps to a nonempty
word by storing a boolean which is set to true whenever the tuple is part of edges treated in
the interior of the while loop. Thus, checking presence of enhanced subword-patterns is also
in NL.

We also give a hardness result. This is done via a reduction from graph reachability, a well
known NL-complete problem. This hardness result extends further than variety membership.
Indeed, for DFAs we consider all (non-trivial) properties P for which L ∈ P implies Lu−1 ∈ P
and for Carton-Michel automata we consider all non-trivial properties for which L ∈ P implies
u−1L ∈ P . Note in particular that being in a language variety or being open/closed in the
Cantor or alphabetic topology are properties with this trait.

Proposition 7. Let P be a nontrivial property of regular (resp. ω-regular) languages contain-
ing the empty language and such that whenever L ∈ P then Lu−1 ∈ P (resp. u−1L ∈ P).
Given a DFA (resp. Carton-Michel automata) A, deciding such a property is NL-hard in the
size of A.

Proof. We first consider the DFA case. Let B = (Q,A, ·, i, F) be a DFA such that L(B) /∈ P
(such a B exists since P is nontrivial). Suppose we are given a digraph G = (V,E) and states
j, k where we want to check whether k is reachable from j. Let # be an arbitrary symbol. We
define the automata

C = (Q ∪ V ∪ {s} , A ∪ E ∪ {#} , ◦, i, {k})

where ◦ is defined as

ℓ ◦ x =























ℓ · x if ℓ · x is defined

ℓ′ if x = (ℓ, ℓ′) ∈ E

j if x = # and ℓ ∈ F

s otherwise.

26

Intuitively, we have the following picture:

j k

G

?
∈ F

∈ F

i

B

#

#

s
a, e′,#

e,#

a, e,#

where we interpret a as any letter in A, e as any edge in E and e′ as any edge in E for which
the transition is not already defined. It is clear that C is a DFA, and that its size is polynomial
in the size of G.

Claim. The automaton C satisfies P if and only if there is a path from j to k.

Proof. Since k is the only final state, it is clear that if there is no path from j to k, then
L(C) is empty and thus satisfy P . On the other hand, suppose that there is a path labeled
by u from j to k. We note that L(B) = L(C)(#u)−1. Thus, if L(C) ∈ P , then L(B) ∈ P , a
contradiction.

Since B is fixed given a fixed property P , and the size of C is polynomial in the size of G, we
have a reduction from graph reachability to membership of P .

The proof for Carton-Michel automata follows the same line of argument as in the DFA
case. Let B = (Q,A, ·, I, F) be a Carton-Michel automata such that L(B) /∈ P , and suppose
G = (V,E) and states j, k are given such that we want to check whether k is reachable from j.
Let # again be an arbitrary symbol. We define the automata

C = (Q ∪ V ∪ {s, f, g} , A ∪ E ∪ {#} , ◦, {j} , F ∪ {f})

where ◦ is defined as

x ◦ ℓ =











































x · ℓ if x · ℓ is defined

ℓ′ if x = (ℓ′, ℓ) ∈ E

k if x = # and ℓ ∈ I

f if ℓ ∈ {f, g} and x ∈ E ∪ {#}.

g if ℓ ∈ {f, g} and x ∈ A

s otherwise.

This gives the following picture. We note the similarity to the DFA case when changing the

27

direction of all arrows.

kj

G

?
∈ I

∈ I

B

#

#

s
a, e′,#

e,#

a, e,#

g f

a

e,#

a e,#

We make the same interpretations of a, e and e′ as in the DFA case.

Claim. The automaton C is a Carton-Michel automaton.

Proof. We define B = A ∪ E ∪ {#}. Let α ∈ Bω. We show that α has a unique final path in
C by distinguishing two cases, either im(α) ⊆ A or im(α) 6⊆ A. Suppose im(α) 6⊆ A. The only
final loops containing letters outside A is those contained in the component with g and f , and
it is clear that there is exactly one final path for each such word in that component.

Next, suppose im(α) ⊆ A. In particular, we can write α = uα′ where alph(α′) = A and u is
either empty or ends with a letter which is not in A. Since A is a Carton Michel automata,
there exists a unique run of α′ in A. Since the only added final state in B is f , and since any
final state involving f requires some e ∈ E or # to appear infinitely often, the unique run of
α′ in A is also a unique run of α in B. Let the start of this unique run be ℓ. Since B is reverse
deterministic, there exists a unique state in B, say ℓ′ such that u ◦ ℓ = ℓ′. Hence, there is a
unique run of α starting at ℓ′.

It is straightforward to generalise the previous claim to the Carton-Michel automata case;
the automaton C satisfy P if and only if there is a path from j to k. Hence, we again have a
reduction from graph reachability, giving the desired result.

Conclusion

For all full and half levels of the FO2 quantifier alternation hierarchy, we give automata char-
acterizations in terms of forbidden subword-patterns. These results rely on algebraic and
topological characterizations of the FO2 levels (see Table 1). For finite words, we consider
DFAs (Corollary 1) and for infinite words, our patterns apply to Carton-Michel automata
(Theorem 3 and Proposition 5). For every fixed level, these patterns yield an NL-algorithm
to decide whether a given automaton accepts a language at this level (Proposition 6); this
problem is sometimes called the membership problem for the respective level. Together with
a more general NL-hardness result (Proposition 7), this shows that the membership problem
is NL-complete for every level of the FO2 quantifier alternation hierarchy for both finite and
infinite words.

28

References

[1] A. Boussidan and M. Kufleitner. FO2 quantifier alternation over infinite words, 2018.
Unpublished manuscript.

[2] O. Carton and M. Michel. Unambiguous Büchi automata. Theoret. Comput. Sci., 297(1-
3):37–81, 2003.

[3] S. Cho and D. T. Huỳnh. Finite-automaton aperiodicity is PSPACE-complete. Theoret.
Comput. Sci., 88(1):99–116, 1991.

[4] J. Cohen, D. Perrin, and J.-É. Pin. On the expressive power of temporal logic. J. Comput.
System Sci., 46(3):271–294, 1993.

[5] V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic
over finite words. Internat. J. Found. Comput. Sci., 19(3):513–548, 2008.

[6] V. Diekert and M. Kufleitner. Fragments of first-order logic over infinite words. Theory
Comput. Syst., 48(3):486–516, 2011.

[7] S. Eilenberg. Automata, languages, and machines. Vol. B. Academic Press, 1976.

[8] L. Fleischer. Efficient membership testing for pseudovarieties of finite semigroups.
arXiv:1805.00650, 2018.

[9] L. Fleischer, M. Kufleitner, and A. Lauser. The half-levels of the FO2 alternation hierarchy.
Theory Comput. Syst., 61(2):352–370, 2017.

[10] C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. Theory Comput. Syst., 42(2):256–
286, 2008.

[11] V. Henriksson and M. Kufleitner. Nesting negations in FO2 over infinite words.
arXiv:2012.01309, 2020.

[12] J. Kallas, M. Kufleitner, and A. Lauser. First-order fragments with successor over infinite
words. In Proc. STACS 2011, volume 9 of LIPIcs, pages 356–367. Dagstuhl Publishing,
2011.

[13] O. Kĺıma and L. Polák. Forbidden patterns for ordered automata. J. Autom. Lang. Comb.,
25(2-3):141–169, 2020.

[14] D. Kozen. Lower bounds for natural proof systems. In FOCS 1977, Proceedings, pages
254–266, Providence, Rhode Island, 1977. IEEE Computer Society Press.

[15] A. Krebs and H. Straubing. An effective characterization of the alternation hierarchy in
two-variable logic. ACM Trans. Comput. Log., 18(4)30:1–22, 2017.

[16] M. Kufleitner and T. Walter. Level two of the quantifier alternation hierarchy over infinite
words. Theory Comput. Syst., 62(3):467–480, 2018.

[17] M. Kufleitner and P. Weil. The FO2 alternation hierarchy is decidable. In Proc. CSL’12,
volume 16 of LIPIcs, pages 426–439. Dagstuhl Publishing, 2012.

29

[18] D. Perrin and J.-É. Pin. Infinite words. Elsevier, 2004.

[19] J.-É. Pin. Varieties of Formal Languages. Foundations of computer science. North Oxford
Academic, 1986.

[20] J.-É. Pin. Mathematical foundations of automata theory, 2020. Available at
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf.

[21] S. Preugschat and T. Wilke. Effective characterizations of simple fragments of temporal
logic using Carton-Michel automata. Log. Methods Comput. Sci., 9(2:08):1–22, 2013.

[22] H. Schmitz and K. W. Wagner. The Boolean Hierarchy over Level 1/2 of the Straubing-
Therien Hierarchy. arXiv:cs/9809118, 1998.

[23] M. P. Schützenberger. Sur le produit de concaténation non ambigu. Semigroup Forum,
13(1):47–75, 1976.

[24] J. Stern. Characterizations of some classes of regular events. Theoret. Comput. Sci.,
35(1):17–42, 1985.

[25] J. Stern. Complexity of some problems from the theory of automata. Inform. and Control,
66(3):163–176, 1985.

[26] H. Straubing and P. Weil. Varieties. arXiv:1502.03951, 2015.

[27] D. Thérien and T. Wilke. Over words, two variables are as powerful as one quantifier
alternation. In Proc. STOC’98, pages 234–240. ACM Press, 1998.

[28] P. Weis and N. Immerman. Structure theorem and strict alternation hierarchy for FO2

on words. Log. Methods Comput. Sci., 5(3:3):1–23, 2009.

30

https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf

	1 Introduction
	2 Preliminaries
	2.1 Languages and Automata
	2.2 Monoids, Varieties and Recognition
	2.3 Fragments of Logic

	3 Subword-Patterns
	4 Hierarchies of Subword-Patterns
	5 Patterns for Reverse-DFAs
	6 The Finite Behaviour of Carton-Michel automata
	7 The Infinite Behaviour of Carton-Michel automata
	8 NL-completeness

