
ar
X

iv
:2

10
8.

06
98

4v
1

 [
cs

.F
L

]
 1

6
A

ug
 2

02
1

Constrained Synchronization and Subset

Synchronization Problems for Weakly Acyclic
Automata

Stefan Hoffmannr0000´0002´7866´075Xs

Informatikwissenschaften, FB IV, Universität Trier, Universitätsring 15, 54296 Trier,
Germany, hoffmanns@informatik.uni-trier.de

Abstract. We investigate the constrained synchronization problem for
weakly acyclic, or partially ordered, input automata. We show that, for
input automata of this type, the problem is always in NP. Furthermore,
we give a full classification of the realizable complexities for constraint
automata with at most two states and over a ternary alphabet. We find
that most constrained problems that are PSPACE-complete in general
become NP-complete. However, there also exist constrained problems
that are PSPACE-complete in the general setting but become polynomial
time solvable when considered for weakly acyclic input automata. We
also investigate two problems related to subset synchronization, namely
if there exists a word mapping all states into a given target subset of
states, and if there exists a word mapping one subset into another. Both
problems are PSPACE-complete in general, but in our setting the former
is polynomial time solvable and the latter is NP-complete.

Keywords: automata theory · constrained synchronization · computa-
tional complexity · weakly acyclic automata · subset synchronization

1 Introduction

A deterministic semi-automaton is synchronizing if it admits a reset word, i.e., a
word which leads to a definite state, regardless of the starting state. This notion
has a wide range of applications, from software testing, circuit synthesis, commu-
nication engineering and the like, see [28,30]. The famous Černý conjecture [7]
states that a minimal length synchronizing word, for an n-state automaton, has
length at most pn ´ 1q2. We refer to the mentioned survey articles [28,30] for
details1.

Due to its importance, the notion of synchronization has undergone a range
of generalizations and variations for other automata models. In some generaliza-
tions, related to partial automata [22], only certain paths, or input words, are
allowed (namely those for which the input automaton is defined).

1 A new and updated survey article (in Russian) is currently in preparation by Mikhail
V. Volkov [29].

http://arxiv.org/abs/2108.06984v1

2 S. Hoffmann

In [15] the notion of constrained synchronization was introduced in connec-
tion with a reduction procedure for synchronizing automata. The paper [13]
introduced the computational problem of constrained synchronization. In this
problem, we search for a synchronizing word coming from a specific subset of
allowed input sequences. For further motivation and applications we refer to the
aforementioned paper [13]. In this paper, a complete analysis of the complexity
landscape when the constraint language is given by small partial automata with
up to two states and an at most ternary alphabet was done. It is natural to
extend this result to other language classes, or even to give a complete classi-
fication of all the complexity classes that could arise. For commutative regular
constraint languages, a full classification of the realizable complexities was given
in [16]. In [17], it was shown that for polycyclic constraint languages, the problem
is always in NP.

Let us mention that restricting the solution space by a regular language has
also been applied in other areas, for example to topological sorting [1], solv-
ing word equations [9,10], constraint programming [23], or shortest path prob-
lems [24]. The road coloring problem asks for a labeling of a given graph such
that a synchronizing automaton results. A closely related problem to our prob-
lem of constrained synchronization is to restrict the possible labeling(s), and this
problem was investigated in [32].

In [13] it was shown that we can realize PSPACE-complete, NP-complete
or polynomial time solvable constrained problems by appropriately choosing a
constraint language. Investigating the reductions from [13], we see that most
reductions yield automata with a sink state, which then must be the unique
synchronizing state. Hence, we can conclude that we can realize these complex-
ities with this type of input automaton.

Contrary, for example, unary automata are synchronizing only if they admit
no non-trivial cycle, i.e., only a single self-loop. In this case, we can easily decide
synchronizability for any constraint language in polynomial time. Hence, for
these simple types of automata, the complexity drops considerably. So, a natural
question is, if we restrict the class of input automata, what complexities are
realizable?

Here, we will investigate this question for the class of weakly acyclic input
automata. These are automata such that the transition relation induces a par-
tial order on the state sets. We will show that for this class, the constrained
synchronization problem is always in NP. Then, in the spirit of the work [13], we
will give a full classification of the complexity landscape for constraint automata
with up to three states and a ternary alphabet. Compared with the classifica-
tion result from [13], we find that most problems that are PSPACE-complete in
general will become NP-complete. However, a few, in general PSPACE-complete,
cases become polynomial time solvable for weakly acyclic input automata.

Related synchronization problems for weakly acyclic automata were previ-
ously investigated in [27]. For example, in [27], it was shown that the problem
to decide if a given subset of states could be mapped to a single state, a problem

Constrained Synchronization and Weakly Acyclic Automata 3

PSPACE-complete for general automata [2,25], is NP-complete for weakly acyclic
automata.

Furthermore, we investigate two problems related to subset synchronization,
namely the problem if we can map the whole state set into a given target set
by some word, and if we can map any given starting set into another target set.
Both problems are PSPACE-complete in general [2,3,17,21,25,28]. However, for
weakly acyclic automata the former becomes polynomial time solvable, as we
will show here, and the latter becomes NP-complete.

Similar subset synchronization problems, for general, strongly connected and
synchronizing automata, were investigated in [2].

Weakly acyclic automata are also known as partially ordered automata [6],
or acyclic automata [19]. As shown in [6], the languages recognized by weakly
acyclic automata are precisely the languages recognized by R-trivial monoids.

2 Preliminaries

By Σ we denote a finite set of symbols, also called an alphabet. By Σ˚ we
denote the set of all words over Σ, i.e., finite sequences with the concatenation
operation. The empty word is denoted by ε. A language L is a subset L Ď Σ˚.

A partial deterministic finite automaton (PDFA) is denoted by a quintuple
A “ pΣ,Q, δ, q0, F q, where Q is a finite set of states, Σ the input alphabet,
δ : Q ˆ Σ Ñ Q is a partial transition function, q0 the start state and F Ď Q the
set of final states. An automaton A “ pΣ,Q, δ, q0, F q is called complete, if δ is a
total function, i.e., δpq, xq is defined for any q P Q and x P Σ.

In the usual way, the transition function δ can be extended to a function
δ̂ : Q ˆ Σ˚ Ñ Q by setting, for q P Q, u P Σ˚ and x P Σ, δ̂pq, εq “ q and

δ̂pq, uxq “ δpδ̂pq, uq, xq. In the following, we will drop the distinction between δ

and δ̂ and will denote both functions simply by δ.
For S Ď Q and u P Σ˚, we set δpS, uq “ tδps, uq | s P S and δps, uq is defined u

and δ´1pS, uq “ tq P Q | δpq, uq is defined and δpq, uq P Su. For q P Q and
u P Σ˚, we set δ´1pq, uq “ δ´1ptqu, uq.

The language recognized by A is LpAq “ tu P Σ˚ | δpq0, uq P F u.
We say that q P Q is reachable from p P Q (in A) if there exists a word

u P Σ˚ such that δpp, uq “ q.
For A “ pΣ,Q, δ, q0, F q and Γ Ď Σ, by A|Γ “ pΓ,Q, δ|Γ , q0, F q we denote

the automaton A restricted to the subalphabet Γ , i.e., δ|Γ : Q ˆ Γ Ñ Q with
δ|Γ pq, xq “ δpq, xq for q P Q and x P Γ .

We say a letter x P Σ induces a self-loop at a state q P Q, if δpq, xq “ q.
A state s P Q is called a sink state, if every letter induces a self-loop at it,

i.e., δpq, xq “ q for any x P Σ.
An automaton A “ pΣ,Q, δ, q0, F q is called weakly acyclic, if it is complete

and for any q P Q and u P Σ˚ztεu, if δpq, uq “ q, then δpq, xq “ q for any letter x
appearing in u, i.e., the simple2 cycles are self-loops. Equivalently, the reachabil-
ity relation is a partial order. Here, we say a state q is larger than another state

2 A cycle is simple if it only involves distinct states [27].

4 S. Hoffmann

p, if q is reachable from p in A. A state in a weakly acyclic automaton is called
maximal, if it is maximal with respect to this partial order. Note that here, we
require weakly acyclic automata to be complete. This is in concordance with [27].
However, partially ordered automata are sometimes allowed to be partial in the
literature [20]. Equivalently, an automaton is weakly acyclic if and only if there
exists an ordering q1, . . . , qn of its states such that if δpqi, xq “ qj for some letter
x P Σ, then i ď j, i.e., we can topologically sort the states.

A semi-automaton A “ pΣ,Q, δq is a finite complete automaton without a
specified start state and with no specified set of final states. Every notion defined
for complete automata that does not explicitly use the start state and the set
of final states is also defined in the same way for semi-automata. For example,
being weakly acyclic. When the context is clear, we call both finite automata
and semi-automata simply automata.

A complete automatonA is called synchronizing if there exists a word w P Σ˚

with |δpQ,wq| “ 1. In this case, we call w a synchronizing word for A. We
call a state q P Q with δpQ,wq “ tqu for some synchronizing word w P Σ˚ a
synchronizing state.

For a fixed PDFA B “ pΣ,P, µ, p0, F q, we define the constrained synchro-
nization problem:

Definition 1. LpBq-Constr-Sync

Input: Deterministic semi-automaton A “ pΣ,Q, δq.
Question: Is there a synchronizing word w for A with w P LpBq?

The automaton B will be called the constraint automaton. If an automaton A

is a yes-instance of LpBq-Constr-Sync we call A synchronizing with respect
to B. Occasionally, we do not specify B and rather talk about L-Constr-Sync.
The unrestricted synchronization problem, i.e., Σ˚-Constr-Sync in our nota-
tion, is in P [30]. We are going to investigate this problem for weakly acyclic
input automata only.

Definition 2. LpBq-WAA-Constr-Sync

Input: Weakly acyclic semi-automaton A “ pΣ,Q, δq.
Question: Is there a synchronizing word w for A with w P LpBq?

We assume the reader to have some basic knowledge in computational com-
plexity theory and formal language theory, as contained, e.g., in [18]. For in-
stance, we make use of regular expressions to describe languages. And we make
use of complexity classes like P, NP, or PSPACE. The following was shown in [13].

Theorem 3 ([13]). Let B “ pΣ,P, µ, p0, F q be a PDFA. If |P | ď 1 or |P | “ 2
and |Σ| ď 2, then LpBq-Constr-Sync P P. For |P | “ 2 with |Σ| “ 3, up to
symmetry by renaming of the letters, LpBq-Constr-Sync is PSPACE-complete
precisely in the following cases for LpBq:

apb ` cq˚ pa ` b ` cqpa ` bq˚ pa ` bqpa ` cq˚ pa ` bq˚c

pa ` bq˚ca˚ pa ` bq˚cpa ` bq˚ pa ` bq˚cc˚ a˚bpa ` cq˚

a˚pb ` cqpa ` bq˚ a˚bpb ` cq˚ pa ` bq˚cpb ` cq˚ a˚pb ` cqpb ` cq˚

Constrained Synchronization and Weakly Acyclic Automata 5

and polynomial time solvable in all other cases.

In weakly acyclic automata, maximal states, sink states and synchronizing
states are related as stated in the next lemmata.

Lemma 4. In a weakly acyclic automaton3 a state is maximal if and only if it
is a sink state.

Lemma 5. Let A “ pΣ,Q, δq be a weakly acyclic automaton. If A is synchro-
nizing, then the synchronizing state must be a unique sink state in A that is
reachable from every other state and, conversely, such a state is a synchronizing
state.

With Lemma 5, we can test if a given weakly acyclic automaton is synchro-
nizing. First, check every state if it is a sink state. If we have found a unique sink
state, then do a breadth-first search from this sink state by traversing the tran-
sitions in the reverse direction. This gives a better algorithm than the general
algorithm, which runs in time Op|Σ||Q|2q, see [30].

Corollary 6. For weakly acyclic automata we can decide in time Op|Σ||Q|`|Q|q
if it is synchronizing.

3 Constrained Synchronization of Weakly Acyclic
Automata

In general, for any constraint automaton, the constrained synchronization prob-
lem is always in PSPACE, see [13]. Here, we show that for weaky acyclic input
automata, the constrained synchronization problem is always in NP. First, we
establish a bound on the size of a shortest synchronizing word, which directly
yields containment in NP as we have a polynomially bounded certificate which
could be verified in polynomial time.

Proposition 7. Let A be a weakly acyclic automaton with n states and B “
pΣ,P, µ, p0, F q be a fixed PDFA. Then, a shortest synchronizing word w P LpBq
for A has length at most |P |

`

n

2

˘

.

Proof. Let q1, . . . , qn be a topological sorting of the states of A. We repre-
sent the situation after reading a word u P Σ˚, i.e., the set δpQ, uq, by a
tuple pi1, . . . , inq P t1, . . . , nun, where ij is the index of δpqj , uq in the topo-
logical sorting, i.e., δpqj , uq “ qij . Then, u P Σ˚ is synchronizing if and only
if the corresponding tuple is pn, . . . , nq. The starting tuple is p1, . . . , nq. For
pi1, . . . , inq, pj1, . . . , jnq P t1, . . . , nun we write pi1, . . . , inq ă pj1, . . . , jnq if, for
all r P t1, . . . , nu, we have ir ď jr and there exists at least one s P t1, . . . , nu
such that is ă js.

3 Recall that here, weakly acyclic automata are always complete. For partial automata
such that the reachability relation is a partial order, this does not have to be true.

6 S. Hoffmann

Let w “ x1 ¨ ¨ ¨xm P LpBq with xi P Σ for i P t1, . . . ,mu. Then, set Si “
δpQ, x1 ¨ ¨ ¨xiq and S0 “ Q. Suppose Si`|P | “ Si for some i P t0, 1, . . . , nu. Then,
as A is weakly acyclic4, for the word u “ xi`1 ¨ ¨ ¨xi`|P | we have δpq, uq “ q

for any q P Si and, as it has length |P |, it induces a loop in the constraint
automaton B. So, we can replace this factor of w by a shorter word v P Σ˚ of
length less than |P | that yields the same result, i.e., Si`|P | “ δpQ, x1 ¨ ¨ ¨xivq
and x1 ¨ ¨ ¨xivxi`|P |`1 ¨ ¨ ¨xn P LpBq.

Now, suppose w “ x1 ¨ ¨ ¨xm P LpBq is a shortest synchronizing word for A.
By the previous paragraph, we can suppose Si`|P | ‰ Si for any i P t1, . . . , nu.
As A is weakly acyclic, and we can only move forward in the topological sorting,
if δpQ, uq ‰ δpQ, uvq, then for the tuple pi1, . . . , inq corresponding to δpQ, uq
and for the tuple pj1, . . . , jnq for δpQ, uvq we have pi1, . . . , inq ă pj1, . . . , jnq.
Note that we have equality if and only if δpQ, uq “ δpQ, uvq. As we start with
p1, . . . , nq and want to reach pn, . . . , nq, we have to increase at least n ´ 1 times
the first entry, n´2 times the second and so on. Now, by the previous reasoning,
every |P | symbols we can suppose we increase some component. Combining these
observations yields that a shortest synchronizing word has length at most

|P | ¨ ppn ´ 1q ` pn ´ 2q ` . . . ` 1q “ |P | ¨

ˆ

n

2

˙

.

This finishes the proof.

With Proposition 7 we can conclude that for weakly acyclic input automata,
the constrained synchronization problem is always in NP.

Theorem 8. For weakly acyclic input automata and an arbitrary constraint au-
tomaton, the constrained synchronization problem is in NP.

4 Subset Synchronization Problems

Here, we will investigate the followig problems from [2,3,17,21,25,28,31] for weakly
acyclic input automata.

Definition 9. Sync-From-Subset

Input: A “ pΣ,Q, δq and S Ď Q.
Question: Is there a word w with
|δpS,wq| “ 1?

Definition 10. Sync-Into-Subset

Input: A “ pΣ,Q, δq and S Ď Q.
Question: Is there a word w with
δpQ,wq Ď S?

Definition 11. SetTransporter

Input: A “ pΣ,Q, δq and two subsets S, T Ď Q.
Question: Is there a word w P Σ˚ such that δpS,wq Ď T?

4 More generally, it is also easy to see that in weakly acyclic automata, no word can
induce a non-trivial permutation of a subset of states.

Constrained Synchronization and Weakly Acyclic Automata 7

These problems are PSPACE-complete in general [2,3,25,28] for at least binary
alphabets. In [27] it was shown that Sync-From-Subset is NP-complete for
weakly acyclic input automata. Interestingly, for weakly acyclic input automata,
the complexity of Sync-Into-Subset drops considerably. Namely, we could
solve the problem in polynomial time. Hence, the ability to have transitions
that go backward seems to be essential to get hardness above polynomial time
solvability for this problem.

Theorem 12. The problem Sync-Into-Subset is polynomial time solvable for
weakly acyclic input automata. More generally5, given S, T Ď Q such that S

contains all maximal states reachable from S, the existence of a word w P Σ˚

such that δpS,wq Ď T could be decided in polynomial time.

Not surprisingly, as Sync-From-Subset is NP-complete [27] for at least bi-
nary alphabets, SetTransporter is NP-complete for at least binary alphabets.

Theorem 13. SetTransporter is NP-complete for weakly acyclic input au-
tomata when the alphabet is fixed but contains at least two distinct letters.

Proof. For containment in NP, suppose pA, S, T q with A “ pΣ,Q, δq, S, T Ď Q,
is an instance of SetTransporter with A being weakly acyclic. Let a, b R Σ be
two new symbols and sf R Q a new state. We can suppose S, T are non-empty,
for otherwise, if S “ H we have a trivial solution and if S is non-empty and
T “ H we have no solution at all. Then, construct A1 “ pΣY ta, bu, QY tsfu, δ1q
with, for q P Q and x P Σ Y ta, bu,

δ1pq, xq “

$

’

’

&

’

’

%

δpq, xq if x P Σ;
sf if x “ a and q R S;
sf if x “ b and q P T ;
q otherwise.

and δ1psf , xq “ sf for any x P Σ Y ta, bu. Note that δ1pQ Y tsfu, aq “ S Y tsfu,
δ1pq, bq “ sf for q P Q if and only if q P T and that A1 is weakly acyclic as
we have only added self-loops or transitions going into the sink state sf . Then,
there exists w P Σ˚ such that δpS,wq Ď T in A if and only if δ1pQ, awbq “ tsfu
in A1. So, we have reduced the original problem to the problem to decide if A1

has a synchronizing word for the constraint language aΣ˚b. By Theorem 8, the
last problem is in NP.

For NP-hardness, we can use the same reduction as used in [27, Theorem 4]
to show NP-hardness of Sync-From-Subset with the same set S but setting
T “ tfu, where f is the sink state used in the reduction from [27].

In [17], it was shown that SetTransporter is NP-complete for general
unary automata. For unary weakly acyclic automata, the problem is in P.

Proposition 14. If |Σ| “ 1, then SetTransporter is in P for weakly acyclic
input automata.

5 This more general formulation was pointed out by an anonymous referee.

8 S. Hoffmann

5 Constraint Automata with Two States and at most
Three Letters

Here, we give a complete classification of the complexity landscape of the con-
straint synchronization problem with weakly acyclic automata as input automata
and when the constraint is given by an at most two state PDFA over an at most
ternary alphabet.

For our NP-hardness result, we adapt a construction due to Eppstein and
Rystsov [11,26] which uses the NP-complete SAT problem [8].

SAT

Input: A set X of n boolean variables and a set C of m clauses;
Question: Does there exist an assignment of values to the variables in X

such that all clauses in C are satisfied?

First, we single out those constraint languages that give NP-hard problems.

Proposition 15. For the following constraint languages, the constrained syn-
chronization problem for weakly acyclic automata is NP-hard:

apb ` cq˚ pa ` b ` cqpa ` bq˚ pa ` bqpa ` cq˚

pa ` bq˚cpa ` bq˚ a˚bpa ` cq˚ a˚pb ` cqpa ` bq˚

a˚bpb ` cq˚ pa ` bq˚cpb ` cq˚ a˚pb ` cqpb ` cq˚.

Proof (sketch). We only sketch the case LpBq “ pa`bq˚cpb`cq˚, the other cases
could be handled similarly. We adapt a reduction by Eppstein and Rystsov [11,26]
to show NP-hardness for the decision variant of the problem of a shortest synchro-
nizing word. Given a SAT instance with variables X “ tx1, . . . , xnu and clauses
C “ tc1, . . . , cmu, we construct a weakly acyclic automaton A “ pΣ,Q, δq over
the alphabet ta, b, cu with states qi,j for 1 ď i ď m and 0 ď j ď n ` 1, plus a
sink state qf . Then δ is defined, for i P t1, . . . ,mu and j P t1, . . . , nu, as

δpqi,j , bq “

"

qi,j`1 if xj P ci _ txj , xju X ci “ H;
qf if xj P ci;

and, symmetrically,

δpqi,j , cq “

"

qi,j`1 if xj P ci _ txj , xju X ci “ H;
qf if xj P ci.

Furthermore, for i P t1, . . . ,mu and j P t0, . . . , n ` 1u,

δpqi,j , aq “

"

qi,j if j P t0, 1u;
qf if j R t0, 1u.

Lastly, for i P t1, . . . ,mu, we set δpqi,n`1, bq “ δpqi,n`1, cq “ qi,n`1, δpqi,0, bq “
qi,0, δpqi,0, cq “ qi,1 and qf “ δpqf , aq “ δpqf , bq “ δpqf , cq. Note that we have
tq1,1, . . . , qm,1u Ď δpQ, ucq for any u P ta, bu˚ and, for v P tb, cu˚, δpqi,1, vq “ qf

Constrained Synchronization and Weakly Acyclic Automata 9

if and only if some symbol in v at a position smaller or equal than n branches out
of the strand qi,1, ¨ ¨ ¨ , qi,n, which means v could be identified with a satisfying
assignment for the clause ci. Conversely, if we have a satisfying assignment,
construct a word v “ v1 ¨ ¨ ¨ vn P tb, cu˚ by setting vi “ b if the i-th variable
is set to one, and vi “ c otherwise. Then, δpQ, acvq “ tqfu. So, we can show
that A has a synchronizing word in LpBq if and only if there exists a satisfying
assignment for all clauses in C.

In the next two propositions, we handle those cases from the list given in The-
orem 3 that do not appear in Proposition 15. It will turn out that for these cases,
the complexity drops from PSPACE-completeness to polynomial time solvable.

Proposition 16. We have ppa ` bq˚cq-WAA-Constr-Sync P P

Proof (sketch). By Lemma 5, if A is synchronizable, it must possess a unique
synchronizing sink state sf . In that case, set T “ δ´1psf , cq. Then, we have a
synchronizing word in pa ` bq˚c if and only if there exists a word w P pa ` bq˚

such that δ|ta,bupQ,wq Ď T in A|ta,bu “ pΣ,Q, δ|ta,buq. The latter problem is in P

by Theorem 12.

Proposition 17. We have ppa ` bq˚ca˚q-WAA-Constr-Sync P P and ppa `
bq˚cc˚q-WAA-Constr-Sync P P.

Proof (sketch). By Lemma 5, the automaton A could only be synchronizing if
it has a unique sink state sf . In this case, set Si “ δ´1psf , a

iq and n “ |Q|. We
have Si “ Sn for any i ě n. Then, for each i P t0, . . . , nu, set Ti “ δ´1pSi, cq and
decide, which could be done in polynomial time by Theorem 12, if there exists
a word w P ta, bu˚ in A|ta,bu “ pta, bu, Q, δ|ta,buq such that δ|ta,bupQ,wq Ď Ti,
which is equivalent to δpQ,wcaiq “ tsfu.

Combining the results of this section, we can give a precise classification of the
complexity landscape for the problem with weakly acyclic input automata and
when the constraint automaton6 has at most two states over a ternary alphabet.

Theorem 18. Let B “ pΣ,P, µ, p0, F q be a PDFA. If |P | ď 1 or |P | “ 2 and
|Σ| ď 2, then LpBq-WAA-Constr-Sync P P. For |P | “ 2 with |Σ| “ 3, up to
symmetry by renaming of the letters, LpBq-WAA-Constr-Sync is NP-complete
precisely for the cases listed in Proposition 15 and in P otherwise.

6 Relation to Automata with TTSPL Automaton Graphs

In [4,5] the decision problem related to minimal synchronizing words was inves-
tigated for TTSPL automata. These are automata whose automaton graph, i.e.,
the multigraph resulting after forgetting about the labels, is a TTSPL graph,

6 Recall that the constraint automaton is a partial automaton, whereas the input
(semi-)automaton is always complete.

10 S. Hoffmann

i.e, a two-terminal series-parallel graph with a start and sink node and where
self-loops are allowed.

In the context of automata theory, such automata were originally studied
in connection with the size of resulting regular expressions, i.e., motivated by
questions on the descriptional complexity of formal languages [14].

Many problems for series-parallel graphs are computationally easy [12], which
partly motivated the aforementioned studies [4,5]. However, from a fixed pa-
rameter complexity perspective, for most parameters, synchronization problems
remain hard on the corresponding automata class [4,5].

We will not give all the definitions, but refer the interested reader to the
aforementioned papers. We only mention in passing that TTSPL automata form
a proper subclass of the weakly acyclic automata. Also, by employing a simi-
lar construction as used in [4, Proposition 4.1], i.e., introducing two additional
letters, an additional starting state and some auxiliary states to realize several
paths from the start state by a tree-like structure to the starting states of the
paths corresponding to the clauses in the reduction, we can alter the reduction
from Proposition 15 to yield a TTSPL graph. However, we can even do better
and note that for the reductions used in Proposition 15, we do not need addi-
tional letters, but can realize the branching from the additional starting state
with two existing letters and use a third letter to map the additional states to
the sink state. The resulting automaton is a TTSPL automaton, for example
the transitions going directly to the sink state arise out of parallel compositions.
Hence, we can even state the following.

Theorem 19. For the constrained synchronization problem restricted to input
automata whose automaton graph is a TTSPL graph, we have the same classifi-
cation result for small constraint PDFAs as stated in Theorem 18. In particular,
we can realize NP-complete constrained problems.

7 Conclusion

We have investigated the complexity of the constrained synchronization problem
for weakly acyclic input automata. We noticed that in this setting, the problem
is always in NP. In the general setting, it was possible to have PSPACE-complete
constrained problems, whereas this is no longer possibly in our setting. We have
investigated the complexities for small constrained automata in the same way
as done in the general case in [13]. We found out that certain problems that
are PSPACE-complete in general become NP-complete, whereas others that are
PSPACE-complete even become polynomial time solvable. A similar phenomenon
was observed for certain subset synchronization problems that are all PSPACE-
complete in general.

It is natural to continue this investigation for other classes of automata, to
find out what properties are exactly needed to realize PSPACE-complete prob-
lems or for what other classes we only have NP-complete constrained problems,
or what are the minimum requirements on the input automata to realize NP-
complete problems.

Constrained Synchronization and Weakly Acyclic Automata 11

Also, a complete classification of all possible realizable complexities, a prob-
lem orginally posed in [13], is still open. Hence, as a first step it would be
interesting to know if for our restricted problem only the complexities P and
NP-complete arise, or if we can realize a constrained problem equivalent to some
NP-intermediate candidate problem.

Acknowledgement. I thank the anonymous reviewers for noticing some issues in the
proofs of Theorem 13 and Proposition 15 that have been fixed. Also, I thank them for
pointing out typos and some unclear formulations.

References

1. Amarilli, A., Paperman, C.: Topological sorting with regular constraints. In:
Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) ICALP 2018,
July 9-13, 2018, Prague, Czech Republic. LIPIcs, vol. 107, pp. 115:1–115:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2018)

2. Berlinkov, M.V., Ferens, R., Szykula, M.: Preimage problems for deterministic
finite automata. J. Comput. Syst. Sci. 115, 214–234 (2021)

3. Blondin, M., Krebs, A., McKenzie, P.: The complexity of intersecting finite au-
tomata having few final states. Comput. Complex. 25(4), 775–814 (2016)

4. Bruchertseifer, J., Fernau, H.: Synchronizing series-parallel automata with loops.
In: Freund, R., Holzer, M., Sempere, J.M. (eds.) NCMA 2019, Valencia, Spain,
July 2-3, 2019. pp. 63–78. Österreichische Computer Gesellschaft (2019)

5. Bruchertseifer, J., Fernau, H.: Synchronizing words and monoid factorization: A
parameterized perspective. In: Chen, J., Feng, Q., Xu, J. (eds.) TAMC 2020, 16th
International Conference, Changsha, China, October 18-20, 2020, Proceedings.
Lecture Notes in Computer Science, vol. 12337, pp. 352–364. Springer (2020)

6. Brzozowski, J.A., Fich, F.E.: Languages of R-trivial monoids. J. Comput. Syst.
Sci. 20(1), 32–49 (1980)

7. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

8. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the
Third Annual ACM Symposium. pp. 151–158. ACM, New York (1971)

9. Diekert, V.: Makanin’s algorithm for solving word equations with regular con-
straints. Report, Fakultät Informatik, Universität Stuttgart (03 1998)

10. Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105–
140 (2005)

11. Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal on Com-
puting 19(3), 500–510 (1990)

12. Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. Comput. 98(1),
41–55 (1992)

13. Fernau, H., Gusev, V.V., Hoffmann, S., Holzer, M., Volkov, M.V., Wolf, P.: Compu-
tational complexity of synchronization under regular constraints. In: Rossmanith,
P., Heggernes, P., Katoen, J. (eds.) MFCS 2019, August 26-30, 2019, Aachen, Ger-
many. LIPIcs, vol. 138, pp. 63:1–63:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2019)

14. Gulan, S.: Series parallel digraphs with loops - graphs encoded by regular expres-
sion. Theory Comput. Syst. 53(2), 126–158 (2013)

12 S. Hoffmann

15. Gusev, V.V.: Synchronizing automata of bounded rank. In: Moreira, N., Reis, R.
(eds.) Implementation and Application of Automata - 17th International Confer-
ence, CIAA. LNCS, vol. 7381, pp. 171–179. Springer (2012)

16. Hoffmann, S.: Computational complexity of synchronization under regular commu-
tative constraints. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H. (eds.) Computing
and Combinatorics - 26th International Conference, COCOON 2020, Atlanta, GA,
USA, August 29-31, 2020, Proceedings. Lecture Notes in Computer Science, vol.
12273, pp. 460–471. Springer (2020)

17. Hoffmann, S.: On A class of constrained synchronization problems in NP. In: Cor-
dasco, G., Gargano, L., Rescigno, A.A. (eds.) Proceedings of the 21st Italian Con-
ference on Theoretical Computer Science, Ischia, Italy, September 14-16, 2020.
CEUR Workshop Proceedings, vol. 2756, pp. 145–157. CEUR-WS.org (2020)

18. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company (1979)

19. Jirásková, G., Masopust, T.: On the state and computational complexity of the
reverse of acyclic minimal dfas. In: Moreira, N., Reis, R. (eds.) Implementation and
Application of Automata - 17th International Conference, CIAA 2012, Porto, Por-
tugal, July 17-20, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7381,
pp. 229–239. Springer (2012)

20. Krötzsch, M., Masopust, T., Thomazo, M.: Complexity of universality and related
problems for partially ordered nfas. Inf. Comput. 255, 177–192 (2017)

21. Luks, E.M., McKenzie, P.: Parallel algorithms for solvable permutation groups. J.
Comput. Syst. Sci. 37(1), 39–62 (1988)

22. Martyugin, P.V.: Synchronization of automata with one undefined or ambiguous
transition. In: Moreira, N., Reis, R. (eds.) Implementation and Application of Au-
tomata - 17th International Conference, CIAA. LNCS, vol. 7381, pp. 278–288.
Springer (2012)

23. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004, Toronto, Canada, September 27 - October 1,
2004, Proceedings. LNCS, vol. 3258, pp. 482–495. Springer (2004)

24. Romeuf, J.: Shortest path under rational constraint. Inf. Process. Lett. 28(5), 245–
248 (1988)

25. Rystsov, I.K.: Polynomial complete problems in automata theory. Inf. Process.
Lett. 16(3), 147–151 (1983)

26. Rystsov, I.K.: On minimizing the length of synchronizing words for finite automata.
In: Theory of Designing of Computing Systems, pp. 75–82. Institute of Cybernetics
of Ukrainian Acad. Sci. (1980), (in Russian)

27. Ryzhikov, A.: Synchronization problems in automata without non-trivial cycles.
Theor. Comput. Sci. 787, 77–88 (2019)

28. Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer (2005)

29. Volkov, M.V.: Synchronizing finite automata. I. (in Russian, submitted)
30. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,

C., Otto, F., Fernau, H. (eds.) Language and Automata Theory and Applications,
Second International Conference, LATA. LNCS, vol. 5196, pp. 11–27. Springer
(2008)

31. Vorel, V.: Subset synchronization and careful synchronization of binary finite au-
tomata. Int. J. Found. Comput. Sci. 27(5), 557–578 (2016)

32. Vorel, V., Roman, A.: Complexity of road coloring with prescribed reset words. J.
Comput. Syst. Sci. 104, 342–358 (2019)

Constrained Synchronization and Weakly Acyclic Automata 13

A Proofs for Section 2 (Preliminaries)

Lemma 4. In a weakly acyclic automaton7 a state is maximal if and only if it is a

sink state.

Proof. As from a sink state no other state is reachable, it could not have any proper
successor states, hence is maximal. Conversely, if a state is maximal, then by definition
no other state is reachable from it, hence, every outgoing transition has to go back to
this state, i.e., induces a self-loop.

Lemma 5. Let A “ pΣ,Q, δq be a weakly acyclic automaton. If A is synchronizing,

then the synchronizing state must be a unique sink state in A that is reachable from

every other state and, conversely, such a state is a synchronizing state.

Proof. Let A “ pΣ,Q, δq be weakly acyclic and w P Σ˚ be such that δpQ,wq “ tqu for
some q P Q. Hence, q is reachable from every other state and so must be maximal. By
Lemma 4, q is a sink state. Conversely, if we have a sink state s P Q reachable from
every other state q P Q by a word wq, we can construct a synchronizing word. We can
suppose Q has more than two states, for otherwise the problem is trivial. Set w1 “ wq

and S1 “ δpQ,w1q for some q P Qztsu. Then, inductively, let i ą 1 and, if |Si´1| ą 1,
choose q P Si´1ztsu and set wi “ wi´1wq . As q and s are mapped to s P Si´1, in this
case |Si| ă |Si´1|. So, after at most |Q| ´ 1 many steps, for some i P t1, . . . , |Q|u we
must have Si “ tsu and δpQ,wiq “ tsu.

Remark 1. Note that the procedure used in the proof of Lemma 5 works for any au-
tomaton with a sink state reachable from any other state.

B Proofs for Section 3 (Constrained Synchronization of
Weakly Acyclic Automata)

Theorem 8. For weakly acyclic input automata and an arbitrary constraint automa-

ton, the constrained synchronization problem is in NP.

Proof. By Proposition 7 we can guess a shortest synchronizing word in LpBq of poly-
nomial length. Verifying that such a word is indeed synchronizing could be done in
polynomial time.

C Proofs for Section 4 (Subset Synchronization
Problems)

Theorem 12. The problem Sync-Into-Subset is polynomial time solvable for weakly

acyclic input automata. More generally8, given S, T Ď Q such that S contains all

maximal states reachable from S, the existence of a word w P Σ˚ such that δpS,wq Ď T

could be decided in polynomial time.

7 Recall that here, weakly acyclic automata are always complete. For partial automata
such that the reachability relation is a partial order, this does not have to be true.

8 This more general formulation was pointed out by an anonymous referee.

14 S. Hoffmann

Proof. We show the more general claim, the implication for Sync-Into-Subset is then
implied by setting S “ Q. Let A “ pΣ,Q, δq be a weakly acyclic automaton. Let R Ď S

be the set of maximal states reachable from S in A and suppose R Ď S and T Ď Q.
Set n “ |Q|.

Claim: There exists w P Σ˚ such that δpS,wq Ď T if and only if R Ď T .

Proof of the Claim: By Lemma 4, the set R only contains sink states. So,
for any w P Σ˚, we have R Ď δpS,wq. Hence, if δpS,wq Ď T , then R Ď T .
Conversely, suppose R Ď T . Let wΣ contain every symbol from the input
alphabet Σ exactly once, in any order. Apart from the states in R, for every
other state q in S, there is a state q1 ‰ q that can be reached from q by reading
one symbol. As self-loops are the only cycles in weakly acyclic automata, we
have δpS,wn´1

Σ q Ď R. Hence, we find that δpS,wn´1

Σ q Ď T . [End, Proof of the
Claim]

Hence, we only have to check if R Ď T , which could be done in polynomial time, as R
is easily computable.

Proposition 14. If |Σ| “ 1, then SetTransporter is in P for weakly acyclic input

automata.

Proof. If A “ ptau, Q, δq is weakly acyclic over a unary alphabet, then it is a collection
of paths that end in single state with a self-loops, where multiple paths could end in the
same state labeled by a self-loop. Hence, for a given set S Ă Q, the states in δpQ,a|Q|´1q
are precisely those states that are labeled by self-loops. Hence, δpQ,aiq “ δpQ,a|Q|´1q
for all i ě |Q| and we only need to test the state sets δpQ, aiq for i P t1, . . . , |Q| ´ 1u
if they equal a given target set T Ď Q. All these operations could be performed in
polynomial time.

D Proofs for Section 5 (Constraint Automata with Two
States and at most Three Letters)

Proposition 15. For the following constraint languages, the constrained synchroniza-

tion problem for weakly acyclic automata is NP-hard:

apb` cq˚ pa` b` cqpa` bq˚ pa` bqpa` cq˚

pa` bq˚cpa` bq˚ a˚bpa` cq˚ a˚pb` cqpa` bq˚

a˚bpb` cq˚ pa` bq˚cpb` cq˚ a˚pb` cqpb` cq˚.

Proof. The following reductions are all adaptions of a reduction from Eppstein and
Rystsov [Epp90,Rys80] to show NP-hardness for the decision variant of the problem of
a shortest synchronizing word. The reduction works by constructing for every clause a
linear path. The states on these paths correspond to the variables, and we can only leave
this path and end in a synchronizing sink state at those states whose corresponding
literals are contained in the clause associated to the path. The additional letter is used,
in some sense, to reset all states either to the start states of the paths or to the sink
state.

1. The constraint language apb ` cq˚. The adaption is similar to a reduction used
in [Ryz19, Theorem 4].

Constrained Synchronization and Weakly Acyclic Automata 15

px1 _ x2q px1 _ x2q ^ p x1q px1 _ x2q^ ^

q2,1

q2,2

q2,3

q1,1

q1,2

q1,3

q3,1

q3,2

q3,3

q4,1

q4,2

q4,3

qf

σk1 σk1

Fig. 1. Example for the SAT formula px1 _ x2q ^ px1 _ x2q ^ p x1q ^ px1 _ x2q of
the reduction used in the proof of Proposition 15 for the constraint language apb` cq˚.
The transitions for a are drawn with thick dotted lines, the transitions labeled by b are
drawn by dashed lines and those labeled by c are drawn by solid lines.

px1 _ x2q px1 _ x2q ^ p x1q px1 _ x2q^ ^

q2,0

q2,1

q2,2

q2,3

q1,0

q1,1

q1,2

q1,3

q3,1

q3,1

q3,2

q3,3

q4,0

q4,1

q4,2

q4,3

qf

σk1 σk1

Fig. 2. A concrete example, for the SAT formula px1 _ x2q ^ px1 _ x2q ^ p x1q ^
px1_x2q, of the reduction used in the proof of Proposition 15 for pa`bq˚cpa`bq˚. The
transitions for the letter c are drawn with dotted lines, the transitions labeled by a are
drawn by dashed lines and those labeled by b are drawn by solid lines.

16 S. Hoffmann

px1 _ x2q px1 _ x2q ^ p x1q px1 _ x2q^ ^

q2,0

q2,1

q2,2

q2,3

q1,0

q1,1

q1,2

q1,3

q3,1

q3,1

q3,2

q3,3

q4,0

q4,1

q4,2

q4,3

qf

σk1 σk1

Fig. 3. Example for px1 _ x2q ^ px1 _ x2q ^ p x1q ^ px1 _ x2q of the reduction used
in the proof of Proposition 15 for pa` bq˚cpb ` cq˚. The a-transitions are drawn with
dotted lines, the b-transitions by solid lines and the c-transitions by dashed lines. The
self-loops at the qi,1’s could also be changed to transitions ending in qf .

Construction: Given a SAT instance with variables X “ tx1, . . . , xnu and clauses
C “ tc1, . . . , cmu, we construct a weakly acyclic automaton A “ pΣ,Q, δq over the
alphabet ta, b, cu with states qi,j for 1 ď i ď m and 1 ď j ď n`1, plus a sink state
qf . The transition function δ is defined, for i P t1, . . . ,mu and j P t1, . . . , nu, as

δpqi,j , bq “

"

qi,j`1 if xj P ci _ txj , xju X ci “ H;
qf if xj P ci;

and, symmetrically,

δpqi,j , cq “

"

qi,j`1 if xj P ci _ txj , xju X ci “ H;
qf if xj P ci.

Furthermore, for i P t1, . . . ,mu and j P t1, . . . , n` 1u, we set

δpqi,j , aq “

"

qi,1 if j “ 1;
qf if j ‰ 0.

Lastly, for i P t1, . . . ,mu, we set δpqi,n`1, bq “ δpqi,n`1, cq “ qi,n`1, and qf “
δpqf , aq “ δpqf , bq “ δpqf , cq. See Figure 1 for an example of the reduction.

Verification: Suppose A has a synchronizing word w P LpBq. Then, w “ au with
u P tb, cu˚. As qf is a sink state, we have δpQ,wq “ tqfu. Consider a state qi,1. As
a labels a self-loop on this state, we have δpqi,1, uq “ sf . However, δpqi,1, uq “ sf
holds precisely if u has a prefix v P tb, cun with v “ v1 ¨ ¨ ¨ vn for tv1, . . . , vnu Ď Σ

Constrained Synchronization and Weakly Acyclic Automata 17

such that for any clause ci there exists r P t1, . . . , nu with vr “ b if xr P ci or
vr “ c if xr P ci. Hence, we get a satisfying assignment for all clauses by setting
xj “ 0 if vj “ b and xj “ 1 if vj “ c for j P t1, . . . , nu.
Conversely, suppose a satisfying assignment for the variables x1, . . . , xn exists.
Then, set u “ u1 ¨ ¨ ¨un with uj “ b if xj “ 0 and uj “ c if xj “ 1 for j P t1, . . . , nu.
Then, we have δpqi,1, uq “ sf for i P t1, . . . ,mu. As δpQ,aq “ tq1,1, . . . , qm,1, qfu,
we find δpQ,auq “ tsfu.

2. The constraint language pa` b` cqpa` bq˚. We can use the same reduction as in
Case 1, but with the letters changed: the letter c acts like the letter a in Case 1
and the letter a like the letter c before. Note that we can use the letter c if we have
a satisfying assignment for the given SAT formula, but not conversely. However,
by only investigating the paths taken from the start states qi,1, we can read of a
satisfying assignment.

3. The constraint language pa ` bqpa ` cq˚. We can use the same reduction as in
Case 1, but with the letters changed: the letter b acts like the letter a in Case 1
and the letter a like the letter b before. Note that we can use the letter b if we have
a satisfying assignment for the given SAT formula, but we do not need to use it in
in the other direction of the reduction. However, by only investigating the paths
taken from the start states qi,1, we can read of a satisfying assignment.

4. The constraint language pa` bq˚cpa` bq˚. Here, we need a different construction.
The reason is that the special letter that is only allowed to be read once, which was
the letter a in Case 1 and is the letter c here, had, in the previous cases, the property
that before it, it was not possible to read anything, i.e., if it appeared in a word of
the constraint language, it appeared as the first letter of that word. Without this
property, for example in the case we are considering now, we can read in any word
long enough to drive everything into the last states of the strands corresponding
to the clauses, i.e., the states qi,n`1 in the reduction of Case 1. Then, from this
state we could read the special letter to map them to the the sink state.
We can circumvent this by introducing additional state qi,0. More formally, we give
the complete construction next.

Construction: Given a SAT instance with variables X “ tx1, . . . , xnu and clauses
C “ tc1, . . . , cmu, we construct a weakly acyclic automaton A “ pΣ,Q, δq over the
alphabet ta, b, cu with states qi,j for 1 ď i ď m and 0 ď j ď n`1, plus a sink state
qf . The transition function δ is defined as, for i P t1, . . . ,mu and j P t1, . . . , nu,

δpqi,j , aq “

"

qi,j`1 if xj P ci _ txj , xju X ci “ H;
qf if xj P ci;

and, symmetrically,

δpqi,j , bq “

"

qi,j`1 if xj P ci _ txj , xju X ci “ H;
qf if xj P ci.

Furthermore, for i P t1, . . . ,mu and j P t1, . . . , n` 1u,

δpqi,j , cq “

"

qi,1 if j “ 1;
qf if j ‰ 0.

Lastly, for i P t1, . . . ,mu, we set δpqi,n`1, aq “ δpqi,n`1, bq “ qi,n`1 and

δpqi,0, aq “ δpqi,0, bq “ qi,0, δpqi,0, cq “ qi,1

18 S. Hoffmann

and qf “ δpqf , aq “ δpqf , bq “ δpqf , cq.

Verification: Suppose A has a synchronizing word w P LpBq. As qf is a sink state,
we have δpQ,wq “ tqfu. Write w “ ucv with u P ta, bu˚ and v P ta, bu˚. For
i P t1, . . . ,mu, we have δpqi,0, ucq “ qi,1. Hence, we must have δpqi,1, vq “ sf . By
construction, this is the case precisely if v has a prefix v1 P ta, bun with v1 “ v1

1 ¨ ¨ ¨ v
1
n

for tv1
1, . . . , v

1
nu Ď Σ such that for any clause ci there exists r P t1, . . . , nu with

v1
r “ a if xr P ci or v1

r “ b if xr P ci. Hence, we get a satisfying assignment for all
clauses by setting xj “ 0 if v1

j “ a and xj “ 1 if v1
j “ b for all j P t1, . . . , nu.

Conversely, suppose a satisfying assignment for the variables x1, . . . , xn exists.
Then, set u “ u1 ¨ ¨ ¨un with uj “ a if xj “ 0 and uj “ b if xj “ 1 for j P
t1, . . . , nu. Then, δpqi,1, uq “ sf for any i P t1, . . . , nu. Furthermore, we have
δpQ, cq “ tq1,1, . . . , qm,1, qfu. Hence, δpQ, cuq “ tsfu.

5. The constraint language a˚bpa` cq˚. We can use the same reduction as in Case 4,
but with the letter b acting like the letter c in Case 4 and the letter c like the letter
b before.

6. The constraint language a˚pb ` cqpa ` bq˚. Here, we can use the same reduction
as in Case 4. Note that the construction enforces that we have to use a word that
uses the letter c.

7. The constraint language a˚bpb` cq˚. We can use the same reduction as in Case 4,
but with the letter b acting like the letter c in Case 4 and the letter c like the letter
b before.

8. The constraint language pa` bq˚cpb` cq˚. Here, the letter a will be the letter that
is used as a special letter. However, we can not use the previous constructions, but
use another one. The construction was already given in the main text. Also, see
Figure 3 for an example of the reduction.

Verification: Suppose A has a synchronizing word w P LpBq. As qf is a sink state,
we have δpQ,wq “ tqf u. Write w “ ucv with u P ta, bu˚ and v P tb, cu˚. For
i P t1, . . . ,mu, we have δpqi,0, ucq “ qi,1. Hence, we must have δpqi,1, vq “ sf .

By construction, this is the case precisely if v has a prefix v1 P tb, cun
1

, n1 ď n,
with v1 “ v1

1 ¨ ¨ ¨ v
1
n1 for tv1

1, . . . , v
1
n1u Ď Σ such that for any clause ci there exists

r P t1, . . . , nu with v1
r “ b if xr P ci or v1

r “ c if xr P ci. Hence, we get a satisfying
assignment for all clauses by setting xj “ 1 if v1

j “ b and xj “ 0 if v1
j “ c for all

j P t1, . . . , n1u, and setting the remaining variables to arbitrary values.
Conversely, suppose a satisfying assignment for the variables x1, . . . , xn exists.
Then, set u “ u1 ¨ ¨ ¨un with uj “ b if xj “ 1 and uj “ c if xj “ 0 for j P
t1, . . . , nu. Then, δpqi,1, uq “ sf for any i P t1, . . . , nu. Furthermore, we have
δpQ, acq “ tq1,1, . . . , qm,1, qfu. Hence, δpQ,acuq “ tsfu.

9. The constraint language a˚pb ` cqpb ` cq˚. We can use the same reduction as in
Case 1.

So, we have handled all constraint languages from the statement and the proof is
done.

Proposition 16. We have ppa` bq˚cq-WAA-Constr-Sync P P

Proof. By Lemma 5, if A is synchronizable, it must possess a unique synchronizing
sink state sf , which is easily testable. So, if it does not possess a unique sink state, it
could not have a synchronizing word in pa` bq˚c. If it has such a unique sink state sf ,

Constrained Synchronization and Weakly Acyclic Automata 19

set T “ δ´1psf , cq. Then, we have a synchronizing word in pa` bq˚c if and only if there
exists a word w P pa` bq˚ such that δ|ta,bupQ,wq Ď T in A|ta,bu “ pΣ,Q, δ|ta,buq. The
latter problem is solvable in polynomial time by Theorem 12 and we have a polynomial
time procedure for our original problem.

Proposition 17. We have ppa`bq˚ca˚q-WAA-Constr-Sync P P and ppa`bq˚cc˚q-WAA-Constr-Sync P
P.

Proof. By Lemma 5, the automaton A could only be synchronizing if it has a unique
sink state sf . Consider the sets Si “ δ´1psf , a

iq. As every path in A has length at
most |Q| and the only loops are self-loops, we have

tSi : i ě 0u “ tSi : i P t0, . . . , |Q|uu.

More specifically, as paths of length |Q| or more induce a (self-)loop, we have δpq, a|Q|`1q “
sf if and only if δpq, a|Q|q “ sf , which yields S|Q|`1 “ S|Q| and so, inductively, Si “ S|Q|

for all i ě |Q|. Then, for each i P t0, . . . , |Q|u, set Ti “ δ´1pSi, cq and decide if there
exists a word w P ta, bu˚ in A|ta,bu “ pta, bu, Q, δ|ta,buq such that δ|ta,bupQ,wq Ď Ti.
By Theorem 12, the last step could be done in polynomial time and as we only have
to perform this step |Q| ` 1 many times and the sets Ti and Si are computable in
polynomial time, the whole procedure runs in polynomial time.

Theorem 18. Let B “ pΣ,P, µ, p0, F q be a PDFA. If |P | ď 1 or |P | “ 2 and |Σ| ď 2,
then LpBq-WAA-Constr-Sync P P. For |P | “ 2 with |Σ| “ 3, up to symmetry by

renaming of the letters, LpBq-WAA-Constr-Sync is NP-complete precisely for the

cases listed in Proposition 15 and in P otherwise.

Proof. By Theorem 3, for at most two states and a binary alphabet, the problem is
always in P. Up to symmetry, for |P | “ 2 and |Σ| “ 3 we only have to check the cases
listed in Theorem 3, as for the other ones it is in P for general input automata. Except
for the cases the cases

pa` bq˚c, pa` bq˚ca˚ and pa` bq˚cc˚
,

these are all listed in Proposition 15. And for the cases from Theorem 3 not appear-
ing in Proposition 15 written above we have polynomial time solvable problems by
Proposition 16 and Proposition 17. Containment in NP is stated in Theorem 8.

References for the Appendix

Epp90. D. Eppstein. Reset sequences for monotonic automata. SIAM Journal on

Computing, 19(3):500–510, 1990.
Rys80. Igor K. Rystsov. On minimizing the length of synchronizing words for finite au-

tomata. In Theory of Designing of Computing Systems, pages 75–82. Institute
of Cybernetics of Ukrainian Acad. Sci., 1980. (in Russian).

Ryz19. Andrew Ryzhikov. Synchronization problems in automata without non-trivial
cycles. Theor. Comput. Sci., 787:77–88, 2019.

	Constrained Synchronization and Subset Synchronization Problems for Weakly Acyclic Automata

