Skip to main content

Robust Foreground Segmentation in RGBD Data from Complex Scenes Using Adversarial Networks

  • Conference paper
  • First Online:
Book cover Frontiers of Computer Vision (IW-FCV 2021)

Abstract

Foreground segmentation is a fundamental problem in many artificial intelligence and computer vision based applications. However, robust foreground segmentation with high precision is still a challenging problem in complex scenes. Currently, many of the existing algorithms process the input data in RGB space only, where the foreground segmentation performance is most likely degraded by various challenges like shadows, color camouflage, illumination changes, out of range camera sensors and bootstrapping. Cameras capturing RGBD data are highly active visual sensors as they provide depth information along with RGB of the given input images. Therefore, to address the challenging problem we propose a foreground segmentation algorithm based on conditional generative adversarial networks using RGB and depth data. The goal of our proposed model is to perform robust foreground segmentation in the presence of various complex scenes with high accuracy. For this purpose, we trained our GAN based CNN model with RGBD input data conditioned on ground-truth information in an adversarial fashion. During training, our proposed model aims to learn the foreground segmentation on the basis of cross-entropy loss and euclidean distance loss to identify between real vs fake samples. While during testing the model is given RGBD input to the trained generator network that performs robust foreground segmentation. Our proposed method is evaluated using two RGBD benchmark datasets that are SBM-RGBD and MULTIVISION kinect. Various experimental evaluations and comparative analysis of our proposed model with eleven existing methods confirm its superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouwmans, T., Javed, S., Sultana, M., Jung, S.K.: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation. Neural Netw. 117, 8–66 (2019)

    Article  Google Scholar 

  2. Bouwmans, T., Zahzah, E.H.: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122, 22–34 (2014)

    Article  Google Scholar 

  3. Camplani, M., Maddalena, L., Gabriel, M., Petrosino, A., Salgado, L.: RGB-D dataset: background learning for detection and tracking from RGBD videos. In: IEEE ICIAP-Workshops (2017)

    Google Scholar 

  4. Chacon-Murguia, M.I., Orozco-Rodriguez, H.E., Ramirez-Quintana, J.A.: Self-adapting fuzzy model for dynamic object detection using RGB-D information. IEEE Sens. J. 17(23), 7961–7970 (2017)

    Article  Google Scholar 

  5. Chen, Y., Zou, W., Tang, Y., Li, X., Xu, C., Komodakis, N.: SCOM: spatiotemporal constrained optimization for salient object detection. IEEE Trans. Image Process. 27(7), 3345–3357 (2018)

    Article  MathSciNet  Google Scholar 

  6. De Gregorio, M., Giordano, M.: Cwisardh+: background detection in RGBD videos by learning of weightless neural networks. In: Battiato, S., Farinella, G., Leo, M., Gallo, G. (eds.) International Conference on Image Analysis and Processing, vol. 10590, pp. 242–253. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70742-6_23

    Chapter  Google Scholar 

  7. Demir, U., Unal, G.: Patch-based image inpainting with generative adversarial networks. arXiv preprint arXiv:1803.07422 (2018)

  8. Fernandez-Sanchez, E.J., Diaz, J., Ros, E.: Background subtraction based on color and depth using active sensors. Sensors 13(7), 8895–8915 (2013)

    Article  Google Scholar 

  9. Garcia-Garcia, B., Bouwmans, T., Silva, A.J.R.: Background subtraction in real applications: challenges, current models and future directions. Comput. Sci. Rev. 35, 100204 (2020)

    Article  MathSciNet  Google Scholar 

  10. Giraldo, J.H., Javed, S., Bouwmans, T.: Graph moving object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Huang, J., Wu, H., Gong, Y., Gao, D.: Random sampling-based background subtraction with adaptive multi-cue fusion in RGBD videos. In: 2016 9th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI), pp. 30–35. IEEE (2016)

    Google Scholar 

  13. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  14. Javed, S., Bouwmans, T., Sultana, M., Jung, S.K.: Moving object detection on RGB-D videos using graph regularized spatiotemporal RPCA. In: Battiato, S., Farinella, G., Leo, M., Gallo, G. (eds.) International Conference on Image Analysis and Processing, vol. 10590, pp. 230–241. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70742-6_22

    Chapter  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  16. Maddalena, L., Petrosino, A.: The sobs algorithm: what are the limits? In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 21–26. IEEE (2012)

    Google Scholar 

  17. Maddalena, L., Petrosino, A.: Background subtraction for moving object detection in RGBD data: a survey. J. Imaging 4(5), 71 (2018)

    Article  Google Scholar 

  18. Maddalena, L., Petrosino, A., et al.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168 (2008)

    Article  MathSciNet  Google Scholar 

  19. Midoh, Y., Nakamae, K.: Image quality enhancement of a cd-sem image using conditional generative adversarial networks. In: Metrology, Inspection, and Process Control for Microlithography XXXIII, vol. 10959, p. 109590B. International Society for Optics and Photonics (2019)

    Google Scholar 

  20. Minematsu, T., Shimada, A., Taniguchi, R.: Rethinking background and foreground in deep neural network-based background subtraction. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 3229–3233. IEEE (2020)

    Google Scholar 

  21. Minematsu, T., Shimada, A., Uchiyama, H., Taniguchi, R.: Analytics of deep neural network-based background subtraction. J. Imaging 4(6), 78 (2018)

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) International Conference on Medical image computing and computer-assisted intervention, vol. 9351, pp. 234–241. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Sultana, M., Mahmood, A., Bouwmans, T., Jung, S.K.: Dynamic background subtraction using least square adversarial learning. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 3204–3208. IEEE (2020)

    Google Scholar 

  24. Sultana, M., Mahmood, A., Bouwmans, T., Ki Jung, S.: Complete moving object detection in the context of robust subspace learning. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  25. Sultana, M., Mahmood, A., Javed, S., Jung, S.K.: Unsupervised deep context prediction for background estimation and foreground segmentation. Mach. Vis. Appl. (2018). https://doi.org/10.1007/s00138-018-0993-0

  26. Sultana, M., Mahmood, A., Javed, S., Jung, S.K.: Unsupervised deep context prediction for background foreground separation. arXiv preprint arXiv:1805.07903 (2018)

  27. Sultana, M., Mahmood, A., Javed, S., Jung, S.K.: Unsupervised RGBD video object segmentation using GANs. In: Asian Conference on Computer Vision (2018)

    Google Scholar 

  28. Trabelsi, R., Jabri, I., Smach, F., Bouallegue, A.: Efficient and fast multi-modal foreground-background segmentation using RGBD data. Pattern Recogn. Lett. 97, 13–20 (2017)

    Article  Google Scholar 

  29. Wu, Y., He, X., Nguyen, T.Q.: Moving object detection with a freely moving camera via background motion subtraction. IEEE Trans. Circuits Syst. Video Technol. 27(2), 236–248 (2017)

    Article  Google Scholar 

  30. Xin, B., Tian, Y., Wang, Y., Gao, W.: Background subtraction via generalized fused lasso foreground modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4676–4684 (2015)

    Google Scholar 

  31. Zhang, T., Liu, S., Ahuja, N., Yang, M.H., Ghanem, B.: Robust visual tracking via consistent low-rank sparse learning. Int. J. Comput. Vision 111(2), 171–190 (2015)

    Article  Google Scholar 

  32. Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE T-PAMI 35(3), 597–610 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the BK21 FOUR project (AI-driven Convergence Software Education Research Program) funded by the Ministry of Education, School of Computer Science and Engineering, Kyungpook National University, Korea (4199990214394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ki Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sultana, M., Bouwmans, T., Giraldo, J.H., Jung, S.K. (2021). Robust Foreground Segmentation in RGBD Data from Complex Scenes Using Adversarial Networks. In: Jeong, H., Sumi, K. (eds) Frontiers of Computer Vision. IW-FCV 2021. Communications in Computer and Information Science, vol 1405. Springer, Cham. https://doi.org/10.1007/978-3-030-81638-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81638-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81637-7

  • Online ISBN: 978-3-030-81638-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics