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Abstract. Modern key exchange protocols are usually based on the
Diffie–Hellman (DH) primitive. The beauty of this primitive, among
other things, is its potential reusage of key shares: DH shares can be
either used a single time or in multiple runs. Since DH-based proto-
cols are insecure against quantum adversaries, alternative solutions have
to be found when moving to the post-quantum setting. However, most
post-quantum candidates, including schemes based on lattices and even
supersingular isogeny DH, are not known to be secure under key reuse.
In particular, this means that they cannot be necessarily deployed as an
immediate DH substitute in protocols.
In this paper, we introduce the notion of a split key encapsulation mecha-
nism (split KEM) to translate the desired key-reusability of a DH-based
protocol to a KEM-based flow. We provide the relevant security notions
of split KEMs and show how the formalism lends itself to lifting Signal’s
X3DH handshake to the post-quantum KEM setting without additional
message flows.
Although the proposed framework conceptually solves the raised issues,
instantiating it securely from post-quantum assumptions proved to be
non-trivial. We give passively secure instantiations from (R)LWE, yet
overcoming the above-mentioned insecurities under key reuse in the pres-
ence of active adversaries remains an open problem. Approaching one-
sided key reuse, we provide a split KEM instantiation that allows such
reuse based on the KEM introduced by Kiltz (PKC 2007), which may
serve as a post-quantum blueprint if the underlying hardness assumption
(gap hashed Diffie–Hellman) holds for the commutative group action of
CSIDH (Asiacrypt 2018).
The intention of this paper hence is to raise awareness of the challenges
arising when moving to KEM-based key exchange protocols with key-
reusability, and to propose split KEMs as a specific target for instantia-
tion in future research.

Keywords: post-quantum, key encapsulation mechanisms, key exchange, Sig-
nal protocol, X3DH
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1 Introduction

The core Diffie–Hellman protocol [21]—Alice sends gx, Bob sends gy, and both
compute gxy as shared secret—is a beautiful and versatile cryptographic primi-
tive, plays a central role in modern key exchange protocols, and appears in many
variants. For example, a key share (x, gx) can be ephemeral (meaning used only
once) or static (meaning reused multiple times). Furthermore, the same share can
be used in role-symmetric ways, i.e., as both initiator and responder of key ex-
change sessions and the same message flow can give rise to different authenticated
key exchange (AKE) protocols (e.g., HMQV [50], CMQV [75], NAXOS [54]).
The security of DH-based constructions can in turn be based on many crypto-
graphic assumptions over the group, ranging from simple passive assumptions
like computational (CDH) or decisional (DDH) Diffie–Hellman, to interactive
assumptions like GapDH [63], oracle DH (ODH) [1], or PRF-ODH [43,11].

Indeed, modern real-world cryptographic protocols employ the Diffie–Hellman
key exchange protocol in ways that often rely on many aspects of this versatility.
Table 1 shows key exchange patterns from various Internet protocols that employ
a “signed ephemeral Diffie–Hellman” approach. In TLS 1.2 [20], the server sends
the initial ephemeral public key, and the client responds, while in TLS 1.3 [69],
the roles are reversed to reduce the number of round trips: the client sends the
initial ephemeral public key, and the server responds. In both cases the secu-
rity proofs [43,30] rely on interactive DH assumptions (variants of PRF-ODH)
because of how the session key is used in the protocol prior to the session being
fully authenticated.

In implicitly authenticated key exchange, static key pairs are used to derive
shared secrets that can only be computed by the intended parties; having a
peer who successfully computes the shared secret implicitly authenticates that
peer, in contrast to the explicit authentication provided by checking a signature
computed by one’s peer. Implicitly authenticated key exchange protocols have
long been of academic interest (e.g., [50,17,77]), and have recently started to be
used in real-world protocols, such as the original handshake design of Google’s
QUIC protocol [68,57] or the Signal protocol [72,14], as well as OPTLS [52]
which is the conceptual foundation of the TLS 1.3 handshake (cf. Table 2). In
these designs, (semi-)static DH keys enable low-latency, zero round-trip time
connections. The Signal protocol even focuses on asynchronous communication,
enabling parties to initiate a connection despite their peer being offline.

Moving to post-quantum solutions. Unfortunately, DH-based protocols are not
secure against quantum adversaries, so key exchange protocols need to transition
to post-quantum designs. The NIST Post Quantum Cryptography Standard-
ization process [61] is currently in the second round for identifying quantum-
resistant primitives. Furthermore, experimental deployment of post-quantum al-
gorithms in key exchange protocols has already taken place, e.g., by Google,
Cloudflare, and the Open Quantum Safe project [55,56,53,73,18].

While key exchange protocols are a crucial building block for many appli-
cations, the NIST standardization process did not explicitly ask for key ex-
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Protocol Core message flow Session key Security

SSHv2 [78]
(signed eph. DH)

hello

hello

epkA

epkB , lpkB , sig

DH(epkA, epkB) DDH [6]

TLS 1.2 [20]
(signed eph. DH)

hello

epkB , cert[lpkB ], sig

epkA

DH(epkA, epkB) snPRF-ODH [43]

TLS 1.3 [69]
(signed eph. DH)

hello, epkA

epkB , cert[lpkB ], sig DH(epkA, epkB) snPRF-ODH [30]

Table 1: Signed DH key exchange patterns of selected Internet protocols.
With epkX and lpkX we denote the ephemeral resp. long-term key of a party, hello
is the protocol initiator’s message, sig a signature under the long-term key, and
cert[lpkX ] the long-term key and certificate of party X.

change, but for the conceptually simpler notions of key encapsulation mecha-
nisms (KEMs) [71,16]. A KEM allows encapsulation of a symmetric key under a
public key within a ciphertext, such that the symmetric key can be decapsulated
only when knowing the corresponding secret key. Security-wise, the ciphertext
hides the encapsulated symmetric key indistinguishably from a random string.
The proposals to the NIST standardization process mostly follow the approach
to first provide a (weakly secure) public-key encryption scheme and then use
well-known transforms such as the Fujisaki–Okamoto transform [36,37,41] to
achieve a strongly-secure KEM with respect to active adversaries.

In principle, KEMs can directly be used to build and analyze key exchange
protocols, and allow to capture (implicitly authenticated) Diffie–Hellman flows
(e.g., in the static Diffie–Hellman handshake of TLS 1.2 [51]). The naive approach
hence would be to simply replace every DH combination in a key exchange pro-
tocol with a KEM. However, whereas DH shares can be freely reused by both
parties, particularly allowing static-static combinations (as used, e.g., in Sig-
nal [72]), the KEM concept restricts reuse to one side, namely the decapsulator.
This in turn limits the possible message flows and contributions of ephemeral
randomness that standard KEMs can capture, hindering a direct translation of
DH-type protocols to KEM-based designs, and leading to the question:

Can we capture post-quantum KEM designs in a way that
enables flexible key reuse and support efficient message flows

similar to the widely-used Diffie–Hellman-based designs?
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Protocol Core message flow Session key Security

TLS 1.2 [20]
(implicit-auth.
static DH
+ explicit-auth.
MAC)

hello

cert[lpkB ], mac

epkA, mac
DH(epkA, lpkB) mnPRF-ODH [51]

OPTLS [52]
(implicit-auth.
static/eph. DH
+ explicit-auth.
MAC)

hello, epkA

epkB , cert[lpkB ], mac
DH(epkA, epkB)‖
DH(epkA, lpkB)

GapDH, DDH [52]
(ROM)

Signal [72]
(X3DH: triple DH
handshake + opt.
eph./eph.)

hello

lpkB , sspkB , epk
†
B

lpkA, epkA

DH(lpkA, sspkB)‖
DH(epkA, lpkB)‖
DH(epkA, sspkB)‖
DH(epkA, epkB)†

mmPRF-ODH,
smPRF-ODH,
smPRF-ODH,

snPRF-ODH† [14]

QUIC [68,57]
(original
handshake)

hello, epkA

sspkB
DH(epkA, lpkB)‖
DH(epkA, sspkB)

GapDH [34]
(ROM)

Table 2: Implicitly authenticated DH key exchange patterns of selected Internet
protocols.
With epkX and lpkX we denote the ephemeral resp. long-term key of a party (the latter
might be known to a peer in advance), hello is the protocol initiator’s message, mac
a message authentication code under a derived key, and cert[lpkX ] the long-term key
and certificate of party X. Dashed arrows in the Signal key exchange indicate obtaining
the “prekey bundle” from the Signal server, blue values marked with † are optional.

1.1 Our Contributions

In this paper, we work towards a structure for achieving the key-reusability
of Diffie–Hellman-based key exchanges in the KEM setting by introducing the
notion of split KEMs in Section 4.1. In split KEMs, encapsulation of a shared
secret takes as input not only the public key of the decapsulator but also a
(potentially static) secret key of the encapsulator. Similarly, decapsulation of a
ciphertext takes as input not only the decapsulator’s secret key, but also the
encapsulator public key corresponding to the secret key used in encapsulation.

In Section 4.2, we illustrate how split KEMs enable the smooth transfer of
popular DH-based key exchanges such as Signal’s X3DH to the (post-quantum)
KEM setting. Especially in the case of the Signal protocol, the complex and
asynchronous initial key agreement (X3DH, short for “Extended Triple Diffie–
Hellman”) has been abstracted away as an idealized primitive in works on secure
messaging with and without post-quantum security considerations (cf., e.g., the
work by Alwen, Coretti, and Dodis [2] which is amenable to post-quantum se-
curity).



Towards Post-Quantum Security for Signal’s X3DH Handshake 5

In Section 4.3, we transfer the commonly-used security notion for KEMs of
indistinguishability of encapsulated keys from random to the split KEM setting.
For this we introduce the notion of lr-IND-CCA security that is parametrized
by l ∈ {n, s,m} and r ∈ {n,m} which will indicate how often the adversary is
allowed to query the “left” decapsulation oracle or the “right” encapsulation ora-
cle. (Here, n means no query is allowed, s means a single query is allowed, and m
means (polynomially) many queries are allowed.) This novel fine-grained se-
curity notion allows not only to distinguish between passive and active attacks,
but also captures key reuse on either the decapsulator’s or the encapsulator’s
side or on both sides.

As for realizing the split KEM notion, we show in Section 4.4 that plain
(R)LWE-based KEMs do non-trivially match the split KEM structure and main-
tain security in this formalization. However, known key reuse attacks against
(R)LWE-based KEMs prohibit such an instantiation from being secure against
active adversaries. We furthermore give an instantiation of an actively-secure
split KEM achieving mn-IND-CCA security based on the KEM introduced by
Kiltz [48]. While not being a post-quantum secure split KEM per se, the de-
sign and hardness assumptions may be replicable in the CSIDH setting (cf. the
following discussion in Section 1.2). Unfortunately, we have so far been unable
to successfully develop an instantiation in the strongest mm-IND-CCA setting
from a post-quantum assumption. We identify this as an important challenge
for future work.

1.2 Related Work

Related work for our split KEM notion includes approaches towards post-quantum
security of concrete protocols, notions for key reuse and the possibility of key
reuse in various post-quantum settings, as well as foundational extensions to the
definitional framework of KEMs.

Post-quantum protocols. Post-quantum secure protocol variants based on KEMs
have been proposed for TLS 1.3 [70] and WireGuard [42]. These protocols, unlike
Signal, allow (multiple) round trips and therefore do not experience the same
problem we discuss in this paper. For Signal, Alwen, Coretti, and Dodis [2] give a
first variant of Signal’s double-ratchet that is amenable to post-quantum secure
KEMs, however exclude the crucial initial key agreement. Duits [33] explores
transitioning Signal to the post-quantum setting; the suggested replacement of
DH with Supersingular Isogeny Diffie–Hellman (SIDH) [44,19] however is not
secure under the required key reuse, as we discuss next.

Key reuse with LWE and SIDH. There are a number of attacks on lattice-based
key exchange schemes when keys are reused [35,22,26,59,24,67,5,25,40,62]. There
exist proposals to enable secure key reuse in (R)LWE-based schemes [39,23],
however, these proposals only seem to at most guard against specific attacks at
a time, while still being vulnerable to other attacks. All LWE-based KEMs in
Rounds 2 and 3 of the NIST process rely on the Fujisaki–Okamoto transform
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to achieve IND-CCA security which provides safe key reuse for one party, but
comes at the cost of requiring the other party to fully disclose the secret key
behind their encapsulation.

Similarly, for key exchange based on SIDH [44] there are attacks when keys
are reused [38]; the SIKE NIST submission uses the FO transformation to pro-
vide security under key reuse. Azarderakhsh, Jao, and Leonardi [3] proposed
k-SIDH for static-static key exchange, where each party has k static keys, and
the final shared secret is computed from all k2 combinations. Security of k-SIDH
relies on an additional unproven assumption that the key exchange method be
“irreducible”, but the best attacks currently known are exponential in k [28]. For
k-SIDH at the 128-bit security, each party would need to send k ≈ 100 public
keys and compute k2 ≈ 10, 000 SIDH computations, making it extremely expen-
sive. A more efficient variant of k-SIDH by Jao and Urbanik [74] was found by
Basso et al. [4] to have poorer scaling than the original. There have been several
additional attempts which are either inconclusive [7] or insecure [47,28,29].

Static-static key agreement via CSIDH. Castryck et al. [12] introduce a scheme
based on supersingular isogenies named CSIDH that supports key reuse without
the need for additional transforms. Unlike the previously mentioned supersingu-
lar isogeny-based schemes building on [44], CSIDH is considering the hardness
of finding isogenies between isogenous supersingular elliptic curves over a prime
field Fp. While this yields a commutative group action, enabling truly DH-like
non-interactive key agreement, the concrete parameter selection for CSIDH has
been called into doubt [65,8] and the decisional Diffie–Hellman problem has been
challenged for settings related to CSIDH [13] (although not affecting CSIDH it-
self). De Kock [49] and Kawashima et al. [46] recently considered a translation of
the gap Diffie–Hellman assumption [63] to the CSIDH setting as the underlying
assumption to construct interactive, tightly post-quantum secure key exchange
protocols. So far, the intractability of this and other interactive hardness as-
sumptions needed for full-fledged key exchange (cf. Tables 1 and 2) however is
unknown for CSIDH.

PRF-ODH. The PRF-ODH assumption is a variant of the oracle-DH assump-
tion [1] which enables to argue pseudorandomness of PRF outputs when keyed
with related, reused DH values. It is a natural assumption in DH-based key ex-
changes and was introduced by Jager et al. in their analysis of TLS 1.2 [43]. Since
then it has been used in the analyses of many real-world key exchange protocols,
including TLS 1.3 [30,31] and Signal [14,15]. Brendel et al. [11] conducted a sys-
tematic study, including the presentation of a unified definition of the various
flavors of the PRF-ODH assumption that had been employed in the previous lit-
erature. We adopt their unified approach in our definition of lr-IND-CCA security
for split KEMs.

Post-quantum KEMs and KEM variants. Strongly-secure (IND-CCA) KEMs can
be obtained generically through transforming post-quantum secure public-key
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encryption [36,41]. These transforms, however, do not allow to reuse the encap-
sulator’s secret randomness. Xue et al. [76] introduce the notion of double-key
KEMs. Here, encapsulation and decapsulation take two public, resp. secret, keys
as input belonging to the same party, while split KEM encapsulation and decap-
sulation take one public and one secret input from each party, enabling static-
static key reuse. The notion of merged KEMs [32] aims to optimize bandwidth
for public ratchets in the Signal protocol; our work and the notion of split KEMs
instead is concerned with the initial key agreement with contributions from both
parties. In their notion of multi-recipient KEMs, Katsumata et al. [45] also de-
compose the encapsulation process, though without allowing a secret input of
the sender to enter encapsulation as in our split KEM notion.

2 Preliminaries

We begin by briefly introducing the notation we require throughout this paper.
Since our main concept builds upon the notion of KEMs, we subsequently review
their basic syntax and security notions. We note that we define security with
respect to quantum polynomial time (QPT) algorithms instead of probabilistic
polynomial time (PPT) as this work is motivated by the existence of adversaries
with access to local quantum computing power. We note that all problems that
can be solved by PPT algorithms can also be solved by QPT algorithms, whereas
the reverse is not true (e.g., computing discrete logarithms in special groups or
factorization of large composite numbers).

2.1 Notation

For an algorithm A we write y ← A(·), resp. y $←− A(·), for deterministically, resp.
probabilistically, running A on given inputs and assigning the output to y. We
say that an algorithm A is efficient if it runs in QPT in the security parameter
denoted by λ. By AO we express that the adversary denoted by A is given access
to oracle O. Finally, we use ⊥ as a special symbol to denote rejection or an error,
and we assume that ⊥/∈ {0, 1}∗.

2.2 Key Encapsulation Mechanisms

Definition 1. A key encapsulation mechanism KEM with associated public key
space PK, secret key space SK, ciphertext space C, and key space K is a tuple
of algorithms KEM = (KGen,Encaps,Decaps) defined as follows.

Key generation KGen: Takes as input the security parameter λ and outputs
a public-secret key pair in PK × SK, i.e., (pk, sk) $←− KGen(1λ).

Encapsulation Encaps: Takes as input a public key pk and outputs a cipher-
text c ∈ C and the encapsulated key K ∈ K, i.e., (c,K) $←− Encaps(pk).

Decapsulation Decaps: Takes as input a ciphertext c and secret key sk and
outputs K ′ ∈ K∪{⊥}, where ⊥ indicates an error, i.e., K ′ ← Decaps(sk, c).
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G indcpa
KEM,A(λ):

1 (pk, sk) $←− KGen(1λ)
2 (c?, K?

0 )
$←− Encaps(pk)

3 K?
1

$←− K
4 b $←− {0, 1}
5 b′ $←− A(pk, c?, K?

b )
6 return Jb′ = bK

G indcca
KEM,A(λ):

1 (pk, sk) $←− KGen(1λ)
2 (c?, K?

0 )
$←− Encaps(pk)

3 K?
1

$←− K
4 b $←− {0, 1}
5 b′ $←− AODecaps (pk, c?, K?

b )
6 return Jb′ = bK

ODecaps(c):

7 if c = c?

8 return ⊥
9 else

10 return Decaps(sk, c)

Fig. 1: IND-CPA and IND-CCA security games for KEM = (KGen,Encaps,Decaps)
with key space K.

We say that a KEM KEM = (KGen,Encaps,Decaps) is ε-correct if

Pr(pk,sk) $←−KGen(1λ),(c,K) $←−Encaps(pk)

[
K ′ 6= K

∣∣K ′ ← Decaps(sk, c)
]
≤ ε.

We call KEM (perfectly) correct if ε = 0.

KEM Security. The security of key encapsulation mechanisms can be formu-
lated in terms of indistinguishability as well as in terms of one-wayness. We recap
indistinguishability (of encapsulated keys), defined under either passive (chosen-
plaintext, IND-CPA) or active (chosen-ciphertext, IND-CCA) attacks. The notion
of one-wayness captures the (non-)recoverability of the encapsulated key from
the ciphertext. In this paper we focus on the notion of indistinguishability but
note that all security notions may be transferred to the one-wayness setting.

Definition 2. Let KEM be a KEM with key space K. We say that KEM is
IND-CPA-secure, resp. IND-CCA-secure, if for every QPT adversary A the ad-
vantage function for winning the game G indatkKEM,A (with atk = cpa, resp. atk = cca)
from Figure 1, defined as

AdvindatkKEM,A(λ) :=
∣∣∣Pr

[
G indatkKEM,A(λ) = 1

]
− 1

2

∣∣∣,
is negligible in the security parameter λ.

3 Instantiating Signal’s X3DH Key Exchange with KEMs

In this section, we illustrate the challenges arising when translating DH-based
key exchange protocols to the KEM setting following the example of Signal’s
X3DH initial key exchange design [72] for secure messaging. We will see that
simply replacing DH operations with KEM encapsulations results in additional
message flows and altered ephemeral/static share combinations for deriving key-
ing material of the involved parties.

While purely ephemeral DH-based key exchanges generally map well to KEMs,
many protocol designs further include DH-based combinations of static or semi-
static keys with (semi-)static or ephemeral keys, most importantly for implicit
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authentication (as in Signal [72] or the Noise framework [66]). However, KEMs
allow only for restricted key reuse (namely only on the decapsulator’s side) and
are hence limited in their support of static key share combinations.

3.1 X3DH: The Initial Key Agreement in Signal

X3DH [60] is part of the Signal secure messaging protocol [72] and establishes
the initial keys. We limit the following discussion to this initial key exchange.
For further information on the remaining cryptographic building blocks of the
Signal protocol, especially on the ratcheting stages following X3DH, we refer the
interested reader to, e.g., the analyses of Cohn-Gordon et al. [14] and Alwen et
al. [2].

In Figure 2 we give an illustration of X3DH, where Alice wishes to establish a
shared key with Bob. The session setup in Signal involves three parties, namely
the communicating parties Alice and Bob, plus a central server S. This is due to
the fact that Signal aims to provide secure messaging in an asynchronous setting,
i.e., chats can be initiated and encrypted messages can be exchanged even if not
all communication partners are online. For this, all users need to register their
long-lived identity key and further cryptographic key material with the central
server S. In more detail, every user U provides the server S with the public keys
of the following key pairs:

– a long-lived static identity key pair (lpkU , lskU ),
– a medium-lived semi-static (signed) prekey pair (sspkU , ssskU ), and
– n ephemeral prekey pairs (eppk1U , epsk

1
U ), . . . , (eppknU , epsk

n
U ).

When Alice wants to initiate a chat with Bob, she simply requests the neces-
sary information and cryptographic key material of Bob (the so-called “prekey
bundle”) from the central server S. From this she then derives an initial shared
secret that secures her first message(s) to Bob. Once Bob comes online again and
receives the first message from Alice (via the server), he requests Alice’s crypto-
graphic key material from the server S to be able to derive the same initial key
to decrypt Alice’s message.

More formally, Alice initiates a session with Bob by first pinging the server S
and requesting Bob’s public key material: the static identity key lpkB , the semi-
static prekey sspkB , as well as (optionally, if available) a single ephemeral (one-
time) prekey eppkB . Alice then generates an ephemeral key pair (epkA, eskA) of
her own and derives the master secret ms as

ms← sspklskAB ||lpkeskAB ||sspkeskAB ||eppkeskAB ,

where the last DH value eppkeskAB is only present if Alice has received one of Bob’s
ephemeral prekeys eppkB from the server. More on this below in Remark 1.

Alice then derives the initial key K from the master secret via a pseudo-
random function F keyed with ms and can then use this key to encrypt her
first message to Bob. Finally, Alice sends her ephemeral public key epkA to Bob
(alongside identifiers for, e.g., Bob’s semi-static and ephemeral prekeys that she
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Alice BobSignal Server

identity A identity B

static identity key (lpkA, lskA) static identity key (lpkB , lskB)

semi-static prekey (sspkA, ssskA) semi-static prekey (sspkB , ssskB)

(opt.) eph. prekeys {(eppkiA, epsk
i
A)}i (opt.) eph. prekeys {(eppkiB , epsk

i
B)}i

lpkB , sspkB , eppkB
† lpkA

(epkA, eskA) $←− KGen(1λ)

ms← sspk
lskA
B ||lpkeskAB ||sspkeskAB ||eppkeskAB

†

K ← F(ms, ·)
epkA

ms← lpk
ssskB
A ||epklskBA ||epkssskBA ||epkepskBA

†

K ← F(ms, ·)

Fig. 2: Signal’s X3DH key exchange. Interaction with the Signal server is dashed,
the optional ephemeral prekey (combination) is depicted in blue marked with †.

received from the server). Once Bob comes online he will receive this message
and can then request Alice’s static identity key lpkA from the server. Analo-
gously to Alice he can then compute the master secret ms and thus the final
initial key K that decrypts Alice’s first encrypted message to him.

Remark 1 (Exhaustion of ephemeral prekeys). Note that each of the n stored
ephemeral prekeys is only handed out once by the server, i.e., in case Charlie
wishes to also initiate a session with Bob, he will receive an ephemeral prekey
of Bob that is different from the one Alice received. However, if many users
initiate a session with Bob while he is offline, it may be the case that the stored
ephemeral prekeys on the server are exhausted. Hence, the initial shared secret is
only derived from the static identity key lpkB and the semi-static prekey sspkB .

3.2 A KEM-based X3DH Variant

Considering preparations for a post-quantum secure messaging design, one may
ask if any candidate of NIST’s post-quantum cryptography process can be used
smoothly in the above setting. Unfortunately this is not the case. As mentioned
before, replacing the Diffie–Hellman operations in Signal’s X3DH protocol with
KEMs causes difficulties, as we illustrate in Figure 3 and discuss in the following.

As before, when Alice initiates a session with Bob, she requests and receives
Bob’s static identity key lpkB , his semi-static prekey sspkB , as well as a sin-
gle ephemeral prekey eppkB (if available) from the server. Alice then separately
encapsulates key material under each of these keys and sends the resulting ci-
phertexts to Bob, establishing three shared keys K1, K2, and K3 (if available).
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Alice BobSignal Server

identity A identity B

static identity key (lpkA, lskA) static identity key (lpkB , lskB)

semi-static prekey (sspkA, ssskA) semi-static prekey (sspkB , ssskB)

(opt.) eph. prekeys {(eppkiA, epsk
i
A)}i (opt.) eph. prekeys {(eppkiB , epsk

i
B)}i

lpkB , sspkB , eppk
†
B lpkA

(c2, K2) $←− Encaps(lpkB)

(c3, K3) $←− Encaps(sspkB)

(c4, K4) $←− Encaps(eppkB)†
c2, c3, c

†
4

K2 ← Decaps(ssskB , c2)

K3 ← Decaps(lskB , c3)

K4 ← Decaps(epskB , c4)
†

(c1, K1) $←− Encaps(lpkA)

ms← K1||K2||K3||K†4
K ← F(ms, ·)c1?

K1 ← Decaps(lskA, c1)

ms← K1||K2||K3||K†4
K ← F(ms, ·)

Fig. 3: Signal’s X3DH key exchange with KEMs replacing the DH operations. In-
teraction with the Signal server is dashed, the optional ephemeral prekey (com-
bination) is depicted in blue marked with †. The last flow (in red marked with ?),
necessary for the key share combination involving Alice’s long-term key, breaks
the asynchronicity of X3DH.

Yet, in order to fully transfer X3DH to the KEM setting, these three keys
are not enough: they constitute, in order, the KEM analogues of the DH se-
crets DH(lpkB , epkA), DH(sspkB , epkA), and DH(eppkB , epkA), where Alice’s
ephemeral contribution via epkA is replaced by (differing) randomness inputs
on Alice’s side to the encapsulation algorithm. What is missing to complete the
master secret computation—and thus key derivation—in the same fashion as in
X3DH is the analogue of the DH combination of Alice’s static identity key and
Bob’s semi-static key, i.e., DH(sspkB , lpkA).

KEMs, however, do not provide for a non-ephemeral contribution of the
encapsulating party to the Encaps algorithm. In the KEM-based X3DH variant,
Bob can thus at most encapsulate under Alice’s static identity key lpkA, which
introduces an additional message flow (depicted in red in Figure 3). This however
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eradicates a key feature of instant messaging: asynchronicity, i.e., the ability to
send encrypted messages even if the receiving party is offline.5

4 Split Key Encapsulation Mechanisms

To tackle the above mentioned issues of KEMs in a DH-based protocol, we intro-
duce a new primitive called split key encapsulation mechanism, or split KEM, for
short. Split KEMs enable a more fine-grained notion of key encapsulation mech-
anisms, where the encapsulation procedure is divided up into key generation and
a subsequent shared-key computation step. As it turns out, the passively-secure
(IND-CPA) versions of many proposals for KEMs submitted to the NIST Post-
Quantum Cryptography Standardization process [61], especially those based on
lattices, seem to naturally fit into the split KEM format: their encapsulation
procedure can be split into a key generation and a shared-key computation part.

4.1 Definition of Split KEMs

Intuitively, a split KEM is a KEM in which both parties can contribute to the
encapsulation, with either one-time or (semi-)static keys. The key generation
on the encapsulator’s side (that does implicitly take place in many KEMs) is
decoupled from the encapsulation algorithm, thus allowing key reuse similar to
the DH setting. Figure 4 shows the communication flow when using a split KEM
to establish a shared secret.

Notation. Let enc denote the encapsulating party (in the following referred to
as the encapsulator) and similarly, dec denotes the decapsulating party (or de-
capsulator). Let PKenc and SKenc be the public and secret key space of the
encapsulator, and PKdec and SKdec analogously for the decapsulator (if irrele-
vant, or clear from the context, we will in the following omit the explicit mention
of these key spaces). Let C be the ciphertext space and K the key space.

Definition 3. A split KEM sKEM consists of four algorithms KGendec,KGenenc,
sEncaps, and sDecaps, where KGenenc and sEncaps are executed by the encapsu-
lator, and KGendec and sDecaps by the decapsulator.

– split KEM key generation for decapsulator and encapsulator, respec-
tively: (D, d) $←− KGendec(1

λ) and (E, e) $←− KGenenc(1
λ) are probabilistic al-

gorithms that output a key pair, consisting of a public key (denoted by capital
letters) and a secret key (denoted by lowercase letters) in PKdec×SKdec and
PKenc × SKenc, respectively.

5 Note that it is in general not possible for Bob to precompute and store ciphertext(s)
on the server alongside his public keys to avoid the additional message flow since
Bob may not know in advance which user wishes to establish a secure chat with him.
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Alice Bob

(D, d) $←− KGendec(1
λ) (E, e) $←− KGenenc(1

λ)

D E

(c,K) $←− sEncaps(e,D)

c

K/⊥ ← sDecaps(d,E, c)

Fig. 4: Communication flow of a split KEM sKEM = (KGendec,KGenenc, sEncaps,
sDecaps), where Alice is the decapsulator and Bob the encapsulator.

– split KEM encapsulation: (c,K) $←− sEncaps(e,D) is a probabilistic al-
gorithm executed by the encapsulator enc. It takes as input e ∈ SKenc, the
secret key of the encapsulator, and D ∈ PKdec, the public key of the decap-
sulator. Algorithm sEncaps then outputs the shared secret K ∈ K along with
its encapsulation c ∈ C. It is common to simply refer to the encapsulation
c of K as ciphertext.

– split KEM decapsulation: K/⊥ ← sDecaps(d,E, c) is a deterministic
algorithm executed by the decapsulator dec. On input a ciphertext c, the
decapsulator’s secret key d, and encapsulator’s public key E, it outputs either
the decapsulation K of c or ⊥, if the operation fails.

We say that a split key encapsulation sKEM = (KGendec,KGenenc, sEncaps, sDecaps)
is ε-correct if

Pr(D,d) $←−KGendec,(E,e)
$←−KGenenc,(c,K) $←−sEncaps(e,D)[K

′ 6=K |K ′←sDecaps(d,E,c) ] ≤ ε.

We call sKEM (perfectly) correct if ε = 0.

Symmetric Split KEMs. In some supersingular-isogeny-based KEMs the speci-
fication of the key generation algorithm depends on the role of the generating
party (cf., e.g., the NIST Round 2 candidate SIKE [19]). In these schemes, Al-
ice and Bob generate public points in different subgroups of the curve during
key generation, i.e., KGendec 6= KGenenc. However, there are also many natural
examples (e.g., DH- or LWE-based KEMs), where the key generation algorithms
for the encapsulator and the decapsulator do not differ. This allows generated
key pairs to be used as input for both the encapsulation and decapsulation al-
gorithms, i.e, across roles. In order to capture these special types of split KEMs,
we introduce the notion of a symmetric split KEM.

Definition 4 (Symmetric Split KEM). We call a split KEM sKEM =
(KGendec,KGenenc, sEncaps, sDecaps) symmetric if KGendec = KGenenc and the
same key pair of a party is reused in both roles. In particular, this means that
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PKdec = PKenc and SKdec = SKenc. For sake of simplicity, in this case we will
often simply refer to the key generation algorithm as KGen instead of KGendec
and KGenenc, respectively.
We say that sKEM = (KGen, sEncaps, sDecaps) is ε-correct if both

Pr(D,d),(E,e) $←−KGen(1λ),(c,K) $←−sEncaps(e,D)

[
K ′ 6= K

∣∣K ′ ← sDecaps(d,E, c)
]
≤ ε

and

Pr(D,d),(E,e) $←−KGen(1λ),(c,K) $←−sEncaps(d,E)

[
K ′ 6= K

∣∣K ′ ← sDecaps(e,D, c)
]
≤ ε.

Again, as before, a symmetric split KEM is called (perfectly) correct if ε = 0.

We stress that it is not necessary to move to the symmetric split KEM
setting if the key generation algorithms are the same for the encapsulator and
decapsulator, but a resulting key pair is only ever reused for a fixed role. However,
the symmetric split KEM setting is predestined for protocols like Signal’s X3DH
with KEMs. There, the long-term identity keys are used in both roles, either as
the initiating party (the encapsulator) or the responder (the decapsulator).

4.2 X3DH with Split KEMs

We briefly show that using the split KEM formalism could solve the aforemen-
tioned problems when switching from the DH to the KEM setting. Figure 5 illus-
trates the flow between Alice and Bob using only split KEMs. On the one hand,
the formalization of split KEMs may now allow both parties to reuse key pairs
and have them both contribute to the encapsulation operation(s). Furthermore,
regarding the issue of having to encapsulate without knowing the correspond-
ing public key, the split KEM formalism gets rid of the additional message flow
from Bob to Alice, thereby effectively regaining the asynchronicity of the secure
messaging application.

4.3 Security of Split KEMs

When translating the security definitions from the KEM setting (cf. Section 2.2)
to split KEMs, we need to address that encapsulation now contains a secret-key
input e and the potential reuse of keys. We arrive at fine-grained security notions
that we term lr-IND-CCA (cf. Figure 6), which are parametrized by l ∈ {n, s,m}
and r ∈ {n,m} . Here, l ∈ {n, s,m} indicates whether the adversary is allowed
to make no (l = n), a single (l = s), or polynomially many (l = m) queries to
the decapsulation oracle OsDecaps. Analogously, r ∈ {n,m} indicates the number
of queries the adversary is allowed to make to the encapsulation oracle OsEncaps.
The case that r = s is excluded since the adversary cannot make the encapsulator
encapsulate only once more under the secret key e used for challenge generation.
The key pair of the encapsulator is used either solely for the challenge generation
or polynomially many times. More formally:
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Alice BobSignal Server

identity A identity B

static identity key (lpkA, lskA) static identity key (lpkB , lskB)

semi-static prekey (sspkA, ssskA) semi-static prekey (sspkB , ssskB)

(opt.) eph. prekeys {(eppkiA, epsk
i
A)}i (opt.) eph. prekeys {(eppkiB , epsk

i
B)}i

lpkB , sspkB , eppk
†
B lpkA

(epkA, eskA) $←− KGen(1λ)

(c1, K1) $←− sEncaps(lskA, sspkB)

(c2, K2) $←− sEncaps(eskA, lpkB)

(c3, K3) $←− sEncaps(eskA, sspkB)

(c4, K4) $←− sEncaps(eskA, eppkB)†

ms← K1||K2||K3||K†4
K ← F(ms, ·) epkA, c1, c2, c3, c

†
4

K1 ← sDecaps(ssskB , lpkA, c1)

K2 ← sDecaps(lskB , epkA, c2)

K3 ← sDecaps(ssskB , epkA, c3)

K4 ← sDecaps(epskB , epkA, c4)
†

ms← K1||K2||K3||K†4
K ← F(ms, ·)

Fig. 5: Split KEM flow for the KEM-based version of Signal’s X3DH handshake.
Interaction with the Signal server is dashed, the optional ephemeral prekey (com-
bination) is depicted in blue marked with †.

Definition 5. Let sKEM = (KGendec,KGenenc, sEncaps, sDecaps) be a split KEM
with key space K. Let l ∈ {n, s,m} and r ∈ {n,m}. We say sKEM provides
lr-indistinguishability under chosen-ciphertext attacks, or for short, sKEM is
lr-IND-CCA-secure, if for every QPT adversary A the advantage Advlr-indccasKEM,A(λ)

in winning the game G lr-indccasKEM,A(λ) as depicted in Figure 6 defined as

Advlr-indccasKEM,A(λ) :=
∣∣∣Pr

[
G lr-indccasKEM,A(λ) = 1

]
− 1

2

∣∣∣
is negligible in the security parameter λ.

At this point, a couple of remarks are in order to motivate the definition:

Remark 2. One may wonder, why, in contrast to the regular KEM setting, the
adversary A is given access to an encapsulating oracle OsEncaps. This oracle must
be provided to the adversary since in the split KEM setting, the encapsulation
algorithm sEncaps not only takes as input the public key D of the decapsulating
party, but also its own secret key e. As elaborated in the next remark, in some
settings Amust however be able to learn encapsulations sEncaps(e,D′) for public
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G lr-indcca
sKEM,A(λ):

1 nl, nr ← 0
2 (D, d) $←− KGendec(1

λ)

3 (E, e) $←− KGenenc(1
λ)

4 (c?, K?
0 )

$←− sEncaps(e,D)
5 K?

1
$←− K

6 b $←− {0, 1}
7 b′ $←− AOsDecaps,OsEncaps (D,E, c?, K?

b )
8 return Jb′ = bK

OsDecaps(E
′, c):

9 if nl ≥ l
10 return ⊥
11 nl = nl + 1
12 if (E′, c) = (E, c?)
13 return ⊥
14 K ← sDecaps(d,E′, c)
15 return K

OsEncaps(D
′):

16 if nr ≥ r
17 return ⊥
18 nr = nr + 1
19 (c,K) $←− sEncaps(e,D′)
20 if (D′, c) = (D, c?)
21 return ⊥
22 else
23 return (c,K)

Gmm-sym-indcca
sKEM,A (λ):

1 (D, d) $←− KGen(1λ)

2 (E, e) $←− KGen(1λ)
3 (c?, K?

0 )
$←− sEncaps(e,D)

4 K?
1

$←− K
5 b $←− {0, 1}
6

b′ $←− A
[
OsksDecaps,O

sk
sEncaps

]
sk∈{d,e} (D,E, c?, K?

b )
7 return Jb′ = bK

OsksDecaps(pk, c):

8 if (sk = d ∧ (pk, c) = (E, c?))
∨ (sk = e ∧ (pk, c) = (D, c?))

9 return ⊥
10 else
11 return sDecaps(sk, pk, c)

OsksEncaps(pk):
12 (c,K) $←− sEncaps(sk, pk)
13 if (pk, c) = (D, c?)
14 return ⊥
15 else
16 return (c,K)

Fig. 6: Top: lr-IND-CCA security of split KEMs, where l, r ∈ {n, s,m}. Note that
we only consider lr ∈ {nn, sn,mn, sm,mm} to be relevant in our setting (see
Remark 3). Bottom: Definition of mm-sym-IND-CCA security of symmetric split
KEMs, where the key pairs (D, d) and (E, e) are reused across roles. In numerical
evaluations for l and r we naturally define n = 0, s = 1, and m =∞.

keys D′ of its own choosing. As this operation cannot be executed by A itself
due to the secret-key input e, an encapsulation oracle will be provided in these
cases.

Remark 3. We next discuss the six flavors lr ∈ {nn, sn, sm,mn, nm,mm}. In the
following, let (D, d) and (E, e) be the respective decapsulating and encapsulating
key pairs used for generating the challenge ciphertext c? and real encapsulated
key K?

0 in the lr-IND-CCA game.

– lr = nn: The notion of nn-IND-CCA security corresponds to the IND-CPA case
in the classical setting, where the adversary is only able to learn the public
keys and challenge ciphertext and key, but remains passive. Furthermore,
A is passive and may thus not learn decapsulations of ciphertexts c′ 6= c?.

– lr = sn: The notion of sn-IND-CCA captures that an active adversary may
alter the challenge ciphertext c? on the transit from the encapsulator to the
decapsulator in a setting where no keys are reused. Thus, A is allowed to
learn a single decapsulation sDecaps(d,E′, c) for (E′, c) 6= (E, c?).

– lr = sm: The notion of sm-IND-CCA is similar to the notion of sn-IND-CCA,
but here the encapsulator’s key pair (E, e) is reused across multiple encap-
sulations. Therefore, in addition to the single query to OsDecaps, A may now
also learn multiple encapsulations sEncaps(e,D′).

– lr = mn: The notion of mn-IND-CCA security corresponds to a reuse of the
key material (D, d) on the decapsulator’s side in the presence of an active
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adversary. Hence, the adversary is able to learn multiple decapsulations
sDecaps(d,E′, c) for (E′, c) 6= (E, c?).

– lr = nm: The notion of nm-IND-CCA security corresponds to a reuse of the
key material (E, e) on the encapsulator’s side in the presence of an active
adversary. Hence, the adversary is able to learn multiple encapsulations
sEncaps(e,D′) for (D′, c) 6= (D, c?). Having l = n encodes that the adver-
sary however cannot obtain the decapsulation of any different ciphertext
c′ 6= c? under D (e.g., due to c? being authentically transmitted to the
decapsulator).

– lr = mm: Finally, this notion mm-IND-CCA corresponds to reuse of keys
(D, d) and (E, e) on both the decapsulator’s and encapsulator’s side (in
fixed roles). This entails that the adversary can learn multiple related de-
capsulations and encapsulations.

We note the similarity to the lrPRF-ODH assumption formalization intro-
duced in [11]. This assumption captures security of DH-based key exchanges in
the presence of active adversaries in different reuse scenarios.

Security of Symmetric Split KEMs. In the following, we also provide the
indistinguishability-based security notion for symmetric split KEMs. Since sym-
metric split KEMs inherently model key reuse across roles, we only consider the
notion of mm-sym-IND-CCA to be relevant in practical settings and therefore do
not define lr-sym-IND-CCA in its full generality.6

Definition 6. Let sKEM = (KGen, sEncaps, sDecaps) be a symmetric split KEM
with key space K. We say sKEM provides symmetric mm-indistinguishability
under chosen-ciphertext attacks, in short sKEM is mm-sym-IND-CCA-secure, if
for every QPT adversary A the advantage Advmm-sym-indcca

sKEM,A in winning the game

Gmm-sym-indcca
sKEM,A (λ) as depicted in Figure 6 defined as

Advmm-sym-indcca
sKEM,A (λ) :=

∣∣∣Pr
[
Gmm-sym-indcca
sKEM,A (λ) = 1

]
− 1

2

∣∣∣
is negligible in the security parameter λ.

Remark 4. One may wonder whether it is possible to turn every secure sym-
metric split KEM into a split KEM, and vice versa. It is easy to see that every
mm-sym-IND-CCA secure symmetric split KEM is also mm-IND-CCA secure in
the sense of non-symmetric split KEMs. The key generation algorithm is sim-
ply executed in fixed decapsulator and encapsulator roles and the reduction
is straightforward by directly embedding the mm-sym-IND-CCA challenge into
the mm-IND-CCA game and relaying the oracle queries and answers to the re-
spective oracles. For the other direction, let sKEM = (KGendec,KGenenc, sEncaps,

6 Note that the symmetric split KEM setting implies key reuse, obsoleting lr = nn.
We further consider the notions lr ∈ {sn,mn, sm, nm} to be artificial as these notions
encode that only some parties reuse keys across roles while other do not.
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sDecaps) be an mm-IND-CCA-secure split KEM. Then sKEM′ = (KGen′, sEncaps′,
sDecaps′) as defined in Figure 7 is a mm-sym-IND-CCA-secure symmetric split
KEM. Again, this can be shown by a simple reduction, where the mm-IND-CCA
reduction embeds its challenge (D,E, c?, k?) in the following manner:

– The mm-sym-IND-CCA adversary A expects as input (pk, pk′, c?,K?), where
pk and pk′ are outputs of KGen′ and thus are of the form pk = (pkdec, pkenc)
and pk′ = (pk′dec, pk

′
enc).

– B now sets pkdec ← D and pk′enc ← E. It generates the remaining key
components itself via the respective key generation algorithm.

– Oracle queries concerning d and e of A can simply be relayed to B’s respec-
tive oracles. The other oracles, B can answer itself due to the knowledge of
the secret keys.

– At some point, A will output its guess b′ and B can output the same guess.

KGen′(1λ):

1 (D, d) $←− KGendec(1
λ)

2 (E, e) $←− KGenenc(1
λ)

3 pk ← (D,E)
4 sk ← (d, e)
5 return (pk, sk)

sEncaps′(sk = (d, e), pk′ = (D′, E′)):

6 (c,K) $←− sEncaps(e,D′)
7 return (c,K)

sDecaps′(sk′ = (d′, e′), pk = (D,E), c):

8 K ← sDecaps(d′, E, c)
9 return K

Fig. 7: Transform of mm-IND-CCA-secure split KEM sKEM = (KGendec,KGenenc,
sEncaps, sDecaps) to mm-sym-IND-CCA-secure symmetric split KEM sKEM′ =
(KGen′, sEncaps′, sDecaps′).

4.4 Instantiations of Split KEMs

We now turn to giving instantiations of secure split KEMs. Let us start by
showing that plain lattice-based KEMs secure under the (Ring-)Learning with
Errors assumption (R)LWE naturally fit the split KEM flow and maintain their
security against passive adversaries in this setting.

nn-IND-CCA Security from (R)LWE. Figure 8 illustrates a generic (R)LWE-
based key exchange viewed as a split KEM. Encapsulation on Bob’s side is split
into the generation of Bob’s key pair as well as the final encapsulation of the
shared key via the computation of an approximate shared secret and so-called
reconciliation information, which constitutes the ciphertext. As mentioned be-
fore, these constructions are not secure against active attacks and/or key reuse in
the “standard” KEM setting, and thus they naturally shouldn’t achieve security
above nn-IND-CCA in their split KEM formalization. We reduce the nn-IND-CCA
to what is commonly referred to as the DDH-like problem (DDH`), which we state
for LWE in the following. Note that the hardness of decision (R)LWE implies
hardness of the DDH-like problem (cf., e.g., [58,10]).
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Alice Bob

role dec role enc

public LWE parameters A, n, q, χ public LWE parameters A, n, q, χ

KGendec(1
λ) KGenenc(1

λ)

S,E $←− χ S′,E′ $←− χ
B← AS + E B′ ← AS′ + E′

(D, d)← (B,S) (E, e)← (B′,S′)

D E

sEncaps(e,D)

E′′ $←− χ
V ← BS′ + E′′

c $←− HelpRec(V)

K ← Rec(V, c)c

sDecaps(d,E, c)

V′ ← B′S

K ← Rec(V′, c)

Fig. 8: Instantiation of split KEM flow with plain LWE as, e.g., in [58,27,64,9]
with LWE parameters n, q, χ and fixed, public A. The functions HelpRec and Rec
aid computation of the shared secret K from the approximate shared secrets V,
V′ and vary among different (R)LWE-based schemes.

Definition 7 (DDH` Problem). Let A, n, q, χ be LWE parameters. Given rec-
onciliation information c, the decision Diffie–Hellman-like problem (DDH`) for
A, q, n, χ is to distinguish (B,B′, c,K) from (B,B′, c,K ′), where

– S,S′,E,E′,E′′ $←− χ,
– B← AS + E, and B′ ← AS′ + E′,
– V← BS′ + E′′, and c $←− HelpRec(V),
– K ← Rec(V, c) and K ′ $←− K is a random element in the key space.

For an algorithm A we define the distinguishing advantage to be

AdvDDH`
(A,n,q,χ),A(λ) :=

∣∣Pr[A(B,B′, c,K) = 1]− Pr[A(B,B′, c,K ′) = 1]
∣∣,

and say DDH` is hard if AdvDDH`
(A,n,q,χ),A is negligible in the security parameter λ.

Theorem 1. Let sKEM = (KGendec,KGenenc, sEncaps, sDecaps) be a split KEM
with key space K as in Figure 8 for secure LWE parameters A, n, q, χ. Then for
any QPT adversary A sKEM is nn-IND-CCA secure, assuming the hardness of
the DDH` problem for A, n, q, χ.

Proof. By straightforward reduction. We show that if there exists an efficient
adversary A against the nn-IND-CCA security of sKEM, then this immediately
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KGendec(1
λ):

1 x, y $←− Z?p
2 X ← gx

3 Y ← gy

4 D ← (X,Y )
5 d← (x, y)
6 return (D, d)

KGenenc(1
λ):

7 e $←− Z?p
8 E ← ge

9 return (E, e)

sEncaps(e,D = (X,Y )):

10 t← G(ge)
11 c← (XtY )e

12 K ← H(Xe)
13 return (c,K)

sDecaps(d,E, c):

14 t′ ← G(E)

15 if Ext
′+y 6= c

16 return ⊥
17 else
18 K ← H(Ex)
19 return K

Fig. 9: Instantiation of mn-IND-CCA-secure split KEM from the KEM by
Kiltz [48]. Here, G : G→ Zp is a target collision resistant function defined over a
cyclic group G = 〈g〉 of prime order p. Furthermore, H : G→ {0, 1}λ is a random
hash function such that the gap hashed Diffie–Hellman assumption GapHDH is
intractable in the security parameter λ wrt. (G, g, p,H).

implies an efficient solver B for theDDH` problem over the same parameter set
A, n, q, χ. B receives as input a tuple (B,B′, c,K?

b ), where B,B′, c are computed
as B ← AS + E, B′ ← AS′ + E′ and c $←− HelpRec(V), where V ← BS′ + E′′a
nd S,S′,E,E′,E′′ $←− χ. Depending on the internal DDH` challenge bit b $←−
{0, 1}, K?

b is either Rec(V, c) (for b = 0) or a random key from the key space K
(for b = 1). B then runs A on input (B,B′, c,K?

b′), i.e., D ← B,E ← B′, c? ← c,
and K?

b . Note that in the nn-IND-CCA case, A has no access to OsEncaps and
OsDecaps, i.e., B must not simulate any oracle queries. At some point, A will
then output a guess bit b′, and B will output the same bit. If A is successful
in the nn-IND-CCA game it has successfully distinguished whether K?

b is the
decapsulation of c or a random key, analogous to the DDH` challenge.

mn-IND-CCA security from GapHDH. For a non-trivial mn-IND-CCA secure
instantiation of a split KEM we rephrase the IND-CCA secure KEM by Kiltz [48]
based on the intractability of the gap hashed-DH assumption (GapHDH) as a
split KEM. Informally, the GapHDH assumption says that an adversary cannot
distinguish the two distributions (gx, gy,H(gxy)) and (gx, gy, R) for random ex-
ponents x, y, and random bit string R from the range of the hash function R,
even when given a DDH oracle which on input (ga, gb, gc) determines whether
gc = gab or not.

Recall that the split KEM notion exploits that some encapsulation algorithms
of KEMs perform an implicit key generation before computing the ciphertext
and the encapsulated shared key. Thus, Figure 9 is the same as the original
KEM in [48], but with the key generation of the encapsulator made explicit
in KGenenc. Obviously, this KEM is not post-quantum secure. However, if we
postulate the hardness of gap hashed-DH in the CSIDH setting, post-quantum
security is achieved.7

7 Recently, de Kock [49] and Kawashima et al. [46] used a translation of the concep-
tually related gap Diffie–Hellman (GapDH [63]) assumption to the CSIDH setting to
construct interactive, post-quantum secure key exchange protocols with tight secu-
rity.
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Theorem 2. Let (G, g, p,H), where G = 〈g〉 is a cyclic group of prime order p
and H : G → {0, 1}λ is a random hash function, chosen such that GapHDH is
intractable in the security parameter λ. Furthermore, let G : G→ Zp be a target
collision resistant function. Then sKEM = (KGendec,KGenenc, sEncaps, sDecaps)
as defined in Figure 9 is an mn-IND-CCA secure split KEM.

Proof Sketch. The proof works analogous to the proof given in [48]. We suppose
there exists an efficient adversary A against the mn-IND-CCA security of sKEM
(cf. Figure 9) and show that this immediately implies an efficient adversary B
against GapHDH. The reduction B gets as input a GapHDH challenge of the form
(gx, gy, Z) and shall decide whether Z equals H(gxy) or a random bit string in
{0, 1}λ. B samples w $←− Z?p and computes t? ← G(gy) for the target collision
resistant function G specified by sKEM.
B initiates A on input (D ← (gx, Y ), E ← gy, c?, Z), where c? ← gyw and

Y ← (gx)−t
?

gw. A may then query the decapsulation oracle OsDecaps multiple
times on public encapsulator keys E′ and ciphertexts c of its choice. The reduc-
tion simulates OsDecaps analogously to the decapsulation oracle in the IND-CCA
proof in [48]. B rejects pairs (E′, c) that are equal to (E, c?). Otherwise it checks
consistency of the ciphertexts corresponding to Line 15 of the decapsulation
process by querying its DDH oracle on (gxtY,E′, c), where t← G(E′).

Case 1: If t = t? but E′ 6= E: B has found a collision in G (contradicting G’s
security) and aborts.

Case 2: If t 6= t?, B can compute the decapsulation K as H
(
( c
E′w )(t−t

?)−1)
and return K to A.

At some point A will output a guess b′ whether Z = H(gxy) or random and B
will output the same bit.

5 Conclusion

We have seen that split KEMs could be a way to capture DH-style key exchange
flows with post-quantum security through enabling both parties to contribute to
the KEM encapsulation. The starting point for this discussion and the need for a
split-KEM–like notion stemmed from the fact that key exchange protocols based
on DH must eventually be transitioned to post-quantum secure alternatives,
which are given in the form of KEMs. For “simple” protocols, that only combine
two ephemeral DH key pairs at a time, this should not pose too much of an issue.
For specialized usages, such as 0-RTT modes based on DH or intricate patterns
with many different DH combinations as in the initial key agreement of Signal,
involving static keys, we have seen that standard KEMs are often inadequate.

We thus introduced the notion of split key encapsulation mechanisms. How-
ever, a major challenge remains, when it comes to showing that known KEMs
fulfill the split KEM notion with reuse of keys on both sides: while, e.g., many
passively-secure lattice-based KEMs are a prime example of the structure of split
KEMs (since their encapsulation can be divided up into key generation and key
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agreement on the encapsulator’s side), we know that these are not secure when
keys are reused. A promising candidate are constructions that replace the DH
operations by CSIDH [12]. However, to achieve full-fledged key exchange secu-
rity, interactive hardness assumptions such as the gap (hashed) DH assumption,
strong DH assumption, or PRF-ODH are needed. We see it as an open problem to
define these assumptions in the CSIDH setting and establish their intractability.
Only answers to these questions can truly establish CSIDH as a viable building
block for key exchange protocols.

Finally, it remains an open question to develop post-quantum solutions that
support static-static key exchange, or that can accommodate reversed message
flows; in other words, it is an open question to develop strongly-secure post-
quantum constructions that have the same flexibility as Diffie–Hellman-based
primitives. We believe the notion of split KEMs to be an adequate starting
point to this exploration.
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