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Abstract. High-level programming models aim at exploiting hardware
parallelism and reducing software development costs. However, their
adoption on ultra-low-power multi-core microcontroller (MCU) plat-
forms requires minimizing the overheads of work-sharing constructs on
fine-grained parallel regions. This work tackles this challenge by propos-
ing OMP-SPMD, a streamlined approach for parallel computing enabling
the OpenMP syntax for the Single-Program Multiple-Data (SPMD)
paradigm. To assess the performance improvement, we compare our so-
lution with two alternatives: a baseline implementation of the OpenMP
runtime based on the fork-join paradigm (OMP-base) and a version
leveraging hardware-specific optimizations (OPM-opt). We benchmarked
these libraries on a Parallel Ultra-Low Power (PULP) MCU, highlighting
that hardware-specific optimizations improve OMP-base performance up
to 69%. At the same time, OMP-SPMD leads to an extra improvement
up to 178%.

Keywords: ultra-low-power multi-core MCU- parallel programming -
OpenMP - SPMD

1 Introduction

In recent years, ultra-low-power (ULP) multi-core microcontroller units (MCUs)
have been introduced in low-cost, low-power IoT end-nodes and embedded sys-
tems markets [21] [22]. These platforms can provide more than one order of
magnitude increase in energy efficiency with respect to high-performance single-
core MCUs and carry out the computational power to support the execution of
complex workloads. As a representative of this class of MCUs, the PULP plat-
form [21] is an open-source, scalable, and energy-efficient multi-core architecture
tailored for sub-mW deeply embedded applications and IoT end-nodes.
Effective programming of these architectures requires the adoption of high-
level parallel programming models. However, to achieve high efficiency, we
need to tune runtimes to their specific characteristics and tightly limited re-
sources. First, exploiting the ULP features of the hardware architecture can
lead to an efficient implementation of the programming model. For instance,
the PULP platform includes specialized hardware for accelerating key parallel



patterns (e.g., barriers and locks). Second, parallel programming models imply
unavoidable overheads to distribute the workload and orchestrate communica-
tion/synchronization among the workers. The overhead minimization in the case
of fine-grained parallelism is a key challenge on these platforms. For instance,
typical applications have small working sets implying relatively small parallel
regions (just a few tens of cycles), making it difficult to amortize overheads.

Fork-join parallelization and Single-Program Multiple-Data (SPMD) are two
common paradigms in parallel programming. In the fork/join paradigm, the pro-
gram execution starts with a single thread, exploiting parallelism recruiting ad-
ditional threads when a parallel region is encountered (fork). When the parallel
region ends, only the initial thread continues the program execution sequen-
tially after synchronization (join). A well-known programming model based on
the fork/join paradigm is OpenMP [9] [10], which allows exploiting parallelism
through directives resolved at compile-time into low-level calls for a specific
runtime library. With the SPMD paradigm, all the cores start the program exe-
cution simultaneously. CUDA and OpenCL programming models adopt this ap-
proach on Single-Instruction Multiple-Thread (SIMT) hardware platforms such
as GPUs. However, the CUDA support is specific to NVidia platforms, while
OpenCL is more portable but requires a total code refactoring. In the domain
of embedded systems, it is a common practice to have low-level libraries provid-
ing SPMD-compliant primitives providing core identification and synchroniza-
tion [14] [6] [24].

In this work, we propose a novel approach based on the SPMD paradigm,
leveraging the intuitive front-end of the OpenMP programming model to hide the
increase in code complexity. Moreover, we present a comprehensive comparison
to assess the benefits of the proposed approach. We compared two variants of the
OpenMP runtimes: the first one (OMP-base) is a baseline implementation for an
embedded MCU-class target, with the aim to reduce the code footprint and the
execution time; the second one (OMP-opt) is fully optimized to take advantage of
the PULP hardware support for core idling and synchronization. We considered
a set of Digital Signal Processing (DSP) kernels and a full application that are
highly representative of the embedded DSP domain and cover a wide range of
typical parallelization schemes.

The main contributions of this paper are:

— the proposal of dedicated compile-time transformations to hide the increase
in code complexity deriving by adopting the low-level SPMD runtime, using
the OpenMP directives as a front-end (OMP-SPMD).

— a comprehensive comparison between the OMP-base runtime, a optimization
of the OpenMP runtime (OMP-opt) for an embedded target yet preserving
the fork/join behavior, and the proposed approach (OMP-SPMD - preserv-
ing the OpenMP syntax);

— a comparison between two different programming paradigms (fork/join and
SPMD) in the domain of ULP parallel MCUs, revealing that the OMP-
SPMD approach leads to performance improvement in terms of execution



time and energy consumption of up to 178% compared to the native fork/join
approach adopted for OpenMP.

We performed the experiments on a prototype implementation of the open-
source PULP platform targeting a cycle-accurate FPGA emulator. Experimental
evidence highlights that the OMP-opt runtime improves performance up to 69%
w.r.t. to the baseline and up to 178% w.r.t. the proposed OMP-SPMD runtime.

2 Related work

Parallel programming models provide abstractions to execute applications over
multi- and many-core computing platforms [5]. They differ for many aspects
(e.g., data organization, workload distribution, scheduling, communication, and
synchronization), which imply a trade-off between full transparency for the pro-
grammer and rewriting the code from scratch. OpenMP is a widespread program-
ming model for shared-memory platforms, and it has already been demonstrated
in the context of embedded systems. In this domain, a common solution is to
re-implement its semantics on top of resource-constrained middleware or even
bare-metal [12] [3]. The main programming models for general-purpose com-
puting on graphics processing units (GPGPU) computing (i.e., CUDA [14] and
OpenCL [6]) are based on the SPMD paradigm. While CUDA is specific for
NVidia platforms, OpenCL has been adopted in the domain of heterogeneous
embedded systems [25]. In the context of homogeneous multi-core systems, the
adoption of SPMD over Multiple-Program Multiple-Data (MPMD) can be bene-
ficial to increase the speed-ups on homogeneous multi-core systems due to factors
such as the improved locality for code and data, the reduction of the memory
footprint and synchronization overheads [23] [4] . In this work, we compare the
two paradigms to understand which one is more suitable for the multi-core MCU
target, considering the main factors impacting this investigation.

The lowering of OpenMP directives consists of a set of code transformations
that collect the affected code into new functions (outlining) and insert calls to
runtime functions. In the typical case, this process is performed by compilers
at an early stage of the front-end (e.g., GCC and clang/LLVM). This approach
allows a runtime designer to map OpenMP directives into runtime calls, imple-
menting other paradigms w.r.t. fork/join. Pereira et al. [16] describe a framework
that automatically converts program sections annotated with OpenMP 4.x di-
rectives into OpenCL kernels. This design goes in the direction of our work, but
we perform a step further, considering the severe constraints of the ULP MCUs,
requiring specific optimizations.

The OpenMP specification includes a simd directive that can be applied to a
loop with the intent to map multiple iterations on a set of instructions exposing
SIMD semantics. For instance, this construct can be used to exploit the packed-
SIMD instructions available on our target platform to perform operations on
vectors with 8-bits or 16-bits elements. However, our approach based on the
SPMD paradigm is more general as it is not limited to a program part (i.e.,
loops) but enables a global optimization of the whole program.



PULP SoC

PULP cluster
L2 TCDM TCDM TCDM
Mem. BANK BANK BANK
#0 #1 #M-1

IH bma I | [
Logarithmic Interconnect
Event Unit
BARRIER
MUTEX

: Peripherals :

SoC Bus
L
Cluster Bus

! puDMA |

HyperBus |1

Hierarchical 1S
L I I I I I I T

UART

| Shared FPU Interconnect |
I I I I
FPU FPU FPU
#0 #1 #2 #3

A 4 A A 4
) N
gl
Peripheral
Int.
-
-
c

Fig. 1. Top-level view of the PULP architecture.

3 Background

3.1 PULP platform

In this paper, we target a ULP multi-core MCU based on the open-source PULP
platform. Using the open-source RTL, we instantiated a cycle-accurate emulation
image of a multi-core cluster on a Xilinx VCU118 FPGA [19]. PULP is a multi-
core programmable processor that features a RISC-V based core for control
functions and a cluster (Fig. 1) of 8 RISC-V based cores for energy-efficient
DSP. These cores, namely RISCY [7], implement a 4 stage in-order single-issue
pipeline, supporting the RV32IMC instruction set, plus extensions for optimized
DSP and machine learning [18]. The platform features two memory levels, a 512
kB L2 memory (15 cycle latency for load/store operations) outside the cluster
and a single cycle latency, multi-bank, 64 kB L1 memory inside the cluster, which
enables shared-memory parallel programming. The cluster also includes four
floating-point units (FPUs) shared among the cluster cores. The event unit (EU)
is a hardware block introduced to support fine-grained parallelism with minimum
overhead [8]. This unit accelerates the execution of data-parallel patterns (e.g.,
thread dispatching, barrier semantic, and critical regions) and enables power-
saving policies to put the unused cores in idle state.

3.2 Parallel Programming Paradigms

OpenMP is one of the most adopted high-level programming models in dif-
ferent computing domains, from High-Performance Computing (HPC) to em-
bedded systems. It makes use of directives (defined for C/C++ and Fortran
languages), which are resolved at compile-time into low-level calls for a dedi-
cated runtime library, such as GNU libgomp [9] or LLVM OpenMP library [10].



OpenMP relies on a fork/join parallel execution model. The execution of the
program starts with a single thread (called master). When a parallel construct
is encountered, n — 1 additional threads (workers) are recruited into a parallel
team. Work-sharing constructs are employed to specify how the parallel work-
load is distributed among the threads. When the parallel region ends, all the
threads reach a barrier for synchronization. Then, the master thread continues
its execution sequentially.

The second approach considered in this paper adopts the SPMD paradigm,
using a set of primitives for control flow handling and inter-core synchroniza-
tion. In contrast to the fork/join paradigm adopted by OpenMP, where only the
master core starts executing the program until the execution flow encounters
a parallel region, all the cores start executing the same code. The cores follow
the same execution flow unless the programmer explicitly indicates that a sub-
set of cores must execute a specific region; parallel workloads are split among
cores (based on the core number) and run concurrently on different data. More-
over, the synchronization points and the allocation of data variables in shared
or private areas must be explicit. As the result of a preliminary analysis, the
approach based on the SPMD runtime implies more programmer effort than
OpenMP since it requires modifying the source code. Nevertheless, its adoption
guarantees a higher control on the parallelization process and, in general, less
overhead compared to a traditional OpenMP runtime. As introduced in Sec-
tion 1, the adoption of compile-time code transformations can make this effort
totally transparent to programmers. To enable automatic code transformations
at compile-time, we need to introduce a set of SPMD helper functions that are
described in the next section.

4 Deriving the SPMD-OMP model

4.1 Low-level Software Support for Parallel Computing

This work focuses on the work-sharing constructs that are more frequently used
to parallelize code in the embedded DSP domain, illustrating the OpenMP direc-
tives, the SPMD helper functions, and their mapping. The presented runtimes
are based on a common lightweight Hardware Abstraction Layer (HAL), which
provides minimal access to platform features in the absence of a full-fledged op-
erating system. This design choice enables a consistent reduction of the overhead
and guarantees higher energy efficiency. Getting as much parallelism as possible
out from an algorithm is not straightforward and usually requires a significant
effort from programmers.

4.2 Work-sharing Constructs

Table 1 reports the OpenMP directives considered in this work and the equiv-
alent SPMD helper functions. In OpenMP, the #pragma omp for directive is
placed before a loop, informing the compiler that each loop iteration is indepen-
dent of the others and, thus, executable concurrently. The workload is divided



Table 1. List of the OpenMP directives and SPMD helper functions with a brief usage
description.

OpenMP Directives SPMD Helper Functions Description
#pragma omp for SPMD_PARLOOP (start, end, from, to, step) worksharing construct to distribute
loop iterations among threads
#pragma omp for \ SPMD_PARLOOP_SCHED(start, end, from, worksharing construct to distribute
schedule(static, chunk) to, step, chunk) loop iterations among threads
SPMD_PARLOOP_STEP (step, chunk)
#pragma omp for \ SPDM_PARLOOP_REDUCTION_OP(var, performs a reduction on variable

reduction(op:var) temp_vars) with the operator (op)
reduction_func(op_f);
#pragma omp master IS_CORE.O, ... identifies a portion of the code
#pragma omp single executed only by a core
#pragma omp barrier spmd_barrier(); All the threads wait the other for
synchronization
#pragma omp critical spmd_critical_enter(); Critical section

spmd_critical_exit();

into equal chunks using the static scheduling (default option), where the chunk
size is equal to the number of iterations over the number of cores involved in
the parallel region. There is an implicit barrier at the end of the loop (unless a
nowait clause is specified). In the SPMD programming model, the helper macro
SPMD_PARLOOP computes the loop bounds (based on chunk size and core
id) used to distribute the iterations on the available cores. In this case, bar-
rier semantics must be explicit (e.g., calling spmd_barrier). The #pragma omp
for directive also provides a schedule(static, chunk) clause to specify a custom
chunk size. In SPMD, we can obtain the same behavior using the helper macros
SPMD_PARLOOP_SCHED and SPMD_PARLOOP_STEP to compute the loop
bounds (start and end) and the iteration step.

OpenMP supports loop reductions using the reduction(op:var) clause. A
shared variable performs an accumulation based on a standard operator (i.e.,
+, -, *). In this case, OpenMP runtimes adopt a mechanism to avoid race con-
ditions due to multiple accesses on the shared variable from multiple cores. In
SPMD, a shared array must be explicitly declared before calling the helper func-
tion. In this way, each core can store the intermediate accumulation values into
a dedicated array element (usually the one corresponding to the core id). At the
end of the computation, the master core accumulates all the partial results in the
target variable. A set of macros SPMD_PARLOOP_REDUCTION_OP perform
the final reduction step based on the used operator.

Most of the algorithms are not fully parallel and, hence, include sequential
code regions. The #pragma omp master/single directives allow executing the
sequential code with a single core (the master or a generic one, respectively).
This directive does not feature an implicit barrier; thus, a synchronization point
must be added (when needed). In the SPMD approach, the code is enclosed in
an if block that can be accessed only by one core (e.g., the core with the id equal
to 0), while the others continue the execution or can be blocked on a barrier.
The id of the executing core can be checked with a set of Boolean preprocessor
macros (IS_.CORE_0, ...).



The #pragma omp critical OpenMP directive specifies a portion of code that
must be executed from one core at a time. This directive adds a total order con-
straint and, consequently, reduces the program speed-up. In SPMD, we can spec-
ify a critical section enclosing a region of code between the spmd_critical_enter
and spmd_critical_ezit helper functions. Finally, the #pragma omp barrier in
OpenMP and spmd_barrier() in SPMD synchronize all the cores before proceed-
ing with the rest of the execution. When a core reaches a barrier, it is blocked
until all the other cores reach the barrier.

4.3 Event Unit Extensions for Overhead Reduction

The OMP-opt runtime makes use of the EU to reduce the overhead of the OMP-
base directives. The EU design is based on 32 level-sensitive event lines (per core)
correlated to event sources. Two EU extensions, namely barrier and mutex, con-
tain the logic to handle core-to-core signaling. The barrier extension includes a
register describing the status of each core. When the core reaches the barrier,
the matching bit in the status register is set. The EU generates an event when
all the cores reach the barrier, interpreted as a continuation condition for the
idle cores. The mutex extension enables mutual exclusivity supporting synchro-
nization primitives, being a resource that can only be owned by one core at a
time. Tentative accesses (try-lock semantic) are signaled in a dedicated status
register. The muter extension keeps track of all pending requests.

The OMP-opt runtime leverages the EU to reduce the overhead associated
with parallel regions and barrier constructs. Opening a parallel region, the mutez
extension enables fast and mutually exclusive access to shared data structures,
and the barrier extension simplifies the creation of a team of threads. When
encountering a barrier construct, the barrier extension provides seamless support
for the synchronization semantic. The benefits of hardware support are evident in
OpenMP-based applications employing a higher amount of work-sharing and/or
synchronization directives. Contrarily, the performance gain is still negligible for
embarrassingly parallel kernels.

The introduction of a new runtime based on the SPMD paradigm is justi-
fied by the fact that reducing the overhead of the OMP-base version through
hardware support is usually not enough to approach the ideal performance of
a benchmark. The intuition for this effect is related to the granularity of par-
allel code regions. In the case of fine-grained parallelism, the overhead required
to create multiple parallel teams can be significant. Also, the overhead for the
loop bound computation in different parallel regions can be reduced by apply-
ing common subexpression elimination (CSE), which is a standard optimization
pass in compiler toolchains. However, the code outlining for different regions in
a standard fork/join runtime can make its application harder.

4.4 Mapping OpenMP directives on the SPMD paradigm

As a motivating example to explain our approach, Fig. 2 shows the use of the
OpenMP directives (left) and the SPMD helper functions (right) to parallelize



void kmeans ()
{
if (core id == 0)
void kmeans () { // ..
{ }
/] ...
do { /* Compute loop bounds */
delta = 0.0f; SPMD PARLOOP (start, end, 0, N OBJECTS) ;
#pragma omp parallel \ SPMD_PARLOOP (start2, end2, 0, N_CLUSTERS) ;
num_ threads (NUM CORES) \
;hg;gd(delta) p;ivate(index) do {
{ local delta[core id] = 0;
/* main computation */ /* main computation */
#pragma omp for reduction(+: delta) for (i=start; i<end; i++) {
for (i=0; i<N_OBJECTS; it++) { // ...
/... }
} E ()
/* I n on delta */
/* array reduction */ SPMD PARLOOP REDUCTION SUM(delta,
#pragma omp for nowait - - - local delta) ;
for (i=0; i<N_CLUSTERS; i++) { /* array reduction */
for (j=0; j<NUM CORES; j++) { for (i=start2; i<end2; i++) {
/] ... for (j=0; j<NUM CORES; j++) {
} /...
} }
/! ... }
} /] ...
} while (delta > THRESH && } while (delta > THRESH &&
loop < MAX ITERS); loop < MAX ITERS);
// ..
} if (core_id == 0)
{
// ...
}
}

Fig. 2. Code snippet that shows a simple use of OpenMP directives (left) and SPMD
helper functions (right) applied to the K-MEANS kernel.

the K-MEANS kernel, included in the benchmark suite described in Section 5.
The OpenMP version is characterized by an overhead associated with opening
parallel regions. State-of-the-art solutions provide a dedicated OpenMP runtime
optimized for the embedded target, intending to reduce overheads as much as
possible, even not supporting some features that are considered unnecessary.
However, the overhead of parallel regions cannot be reduced under a few hundred
cycles. Considering the example depicted in Fig. 2, a parallel directive inside a
loop can incur a significant overhead.

In the SPDM version, the code outside parallel regions requires an addi-
tional check to force sequential execution, but the overhead of this operation
is negligible (maximum 3 cycles). The additional code (highlighted in bold) is
functionally equivalent to the code produced by the compiler for OpenMP, so it
is not a source of overhead. Moreover, additional code optimizations are possible
for the computation of static loop bounds because they are in the same code
block. The SPMD interface requires to provide additional parameters (start and
end indices), while OpenMP totally hides these details. The transformation from



OpenMP-annotated code to its SPMD variant is syntactically well-defined; con-
sequently, it can be performed as a source-to-source translation or a direct mod-
ification to the data structures in the compiler front-end. From this perspective,
Table 1 provides a map to translate the OpenMP directives into an equivalent
code adopting the SPMD helper functions. In addition to these guidelines, an
additional requirement derives from the main difference between for/join and
SPMD paradigms: the code outside an OpenMP parallel region must be exe-
cuted by core 0. This behavior can be easily enforced by adding a conditional
statement to the code regions that are not annotated.

In this work, we adopted a source-to-source approach. We prototyped our
methodology using ROSE [20], an open-source tool developed at Lawrence Liv-
ermore National Laboratory to enable source-to-source program analysis and
transformation. ROSE produces a high-level representation of the source code
based on an abstract syntax tree (AST). It provides an API to analyze and
modify the AST representation to derive a modified source code. We modified
the standard ROSE flow for lowering OpenMP directives as follows:

— visiting the AST structure, the code outside a parallel region is enclosed by
an if statement to ensure sequential execution;

— the computation of the loop bounds for the parallel loops is performed using
the SPMD helper macros, which are placed at the beginning of the helper
function to promote optimizations such as CSE;

— barriers and critical regions are mapped on the related SPMD functions,
replacing the call to libgomp functions.

This transformation flow is automatically applied to the OpenMP program,
and any additional modification is required to the programmer. The current
prototype supports the OpenMP directives used by the benchmarks, which are
reported in Table 2. Future extensions are discussed in Section 8.

5 Benchmarks

To compare the runtimes on the target multi-core architecture, we evaluate the
performance of eight benchmarks that are commonly used in DSP for feature
extraction, classification, and basic linear algebra functions. Table 2 reports the
OpenMP directives used to parallelize the benchmarks, their application do-
mains, and the percentage of parallelizable code.

The Principal Component Analysis (PCA) [1] is used for compression and
feature extraction. It performs an orthogonal transformation, mapping possibly
correlated variables into a set of linearly uncorrelated components. It requires
a mix of directives (Table 2), called multiple times, to exploit parallelism, re-
sulting in a complex parallel scheme. Another common kernel used for feature
extraction is the Discrete Wavelet Transform (DWT) [11], which decomposes a
signal into a different level of frequency resolutions through a bank of Low Pass
(LPF) and High Pass Filters (HPF), capturing both temporal and frequency
information, easily parallelizable using #pragma omp for directives and explicit



Table 2. For each benchmark, this table reports the main application domain (Do-
main), the OpenMP directives applied (OpenMP Dir.) and the percentage of the par-
allelizable code (Par. Code[%)).

Application Domain OpenMP Dir. Par.Code[%]
CONV Audio, Image, ExG #pragma omp for 100
DWT Audio, Image, ExG #pragma omp for 100

#pragma omp for schedule(static, chunk)
#pragma omp barrier

FFT Audio, Image, ExG #pragma omp for 100
#pragma omp barrier

MATMUL Audio, Image, ExG #pragma omp for 100

PCA ExG #pragma omp for 95

#pragma omp for reduction(var:oper)
#pragma omp master
#pragma omp barrier
SVM ExG #pragma omp for 99
#pragma omp master
#pragma omp barrier
K-MEANS Audio, Image, ExG #pragma omp for 97
#pragma omp master
#pragma omp barrier
M-NORM Audio, Image, ExG #pragma omp for 100
#pragma omp for reduction(var:oper)

barriers. The Fast Fourier Transform (FFT) [2] transforms a signal from the
time domain to the frequency domain. The cores of the cluster work on differ-
ent data, enforcing consistency with synchronization barriers. There are several
variants of this algorithm; in this paper, we consider decimation-in-frequency
radix-2. The Support Vector Machine (SVM) [15]is a classifier that is widely
used in machine learning embedded applications. Starting from a set of support
vectors (SVs) that compose a hyper-plane, it classifies unknown samples into
a known class, exploiting parallelism using #pragma omp for and barriers. We
also include an unsupervised classifier named K-Means, which can inference an
unknown outcome from input vectors. The parallel scheme includes #pragma
omp for, reduction directives, and sequential sections. The Mean-Normalization
(M-Norm) is a widespread operation in Machine Learning, and it is used to
transform the data such that the new output vector has zero-mean. The paral-
lelism is exploiting using #pragma omp for and reductions. The last two kernels
are Basic Linear Algebra Subprograms (BLAS) commonly used in DSP: matrix
multiplication (MatMul) and convolution (Conv), which is the most computing-
intensive kernel in Convolutional Neural Network (CNN) workload. Both of them
are fully parallel, requiring #pragma omp for directives to split the workload
among the cores and synchronization barriers.
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6 Experimental Results

In this section, we present an experimental assessment executing the benchmark
suite on the FPGA emulator described in Section 3.1. We used the hardware
performance counters available on the PULP cores, which provide accurate met-
rics on the core operation (clock cycles, executed instructions, instruction cache
misses, memory contentions, pipeline stalls, and FPU contentions). We consid-
ered the clock cycles required for the benchmark execution, varying the number
of cores involved in the computation (up to 8). To evaluate the single-core per-
formance, we considered a version of the code without the overhead from the
work-sharing constructs, which are not required for sequential execution. In par-
allel programs, there is a structural limit to the speed-up given by Amdahl’s law.
For each benchmark, we computed an Amdahl limit by measuring the percent-
age of parallelizable code (reported in Table 2) and supposing no parallelization
overhead. A comparison between the measured speed-ups and the ideal ones
provides a quantitative metric for code parallelization.

Fig. 3 depicts a comparison between real speed-ups and Amdahl limits for
all runtimes. As expected, OMP-opt is closer than OMP-base to the theoretical
limit, thanks to the adoption of hardware support. To provide insight, Table 3
reports execution times (in cycles, for 1 and 8 cores), gains of the new runtimes
over OMP-base, numbers of barriers and parallel regions, and the cycles lost for
hardware stalls. The stalls derive from different hardware sources: contentions
in accessing the TCDM by the cores, instruction cache misses, FPU contentions,
and barriers. The stalls for the parallel case consider the OMP-SPMD runtime.

The overhead reduction is more evident in the kernels that require more bar-
riers or parallel regions. The OMP-SPMD approach further reduces the overhead
for two main reasons. First, it does not require the creation of a parallel team
corresponding to a parallel construct. Second, a programmer can reduce checks
on parallel loop intervals by combining the boundary computations over multi-



Table 3. “OMP-base, ® OMP-opt, “OMP-SPMD, ¢ [OMP-base over OMP-opt]/[OMP-
base over OMP-SPMD] runtime (RT)[%], ¢ barriers (BR),  parallel regions (PR), ¢
[1-core stalls (S) / 8-core stalls] in kCycles.

1 Core 8 Cores
Kernel kCycles|kCycles ® kCycles ° kCycles °|RT[%] ¢ BR ¢ PR 7 S
CONV 136.9 21.8 21.3 17.7) 2 /23 1 1 0.69/ 0.70
DWT 24.9 11.9 7.0 4.3/69 / 178 27 9 0.28 / 0.55
FFT 228.0 39.0 37.6 3471 4/12 13 1 3.39 / 3.53
MATMUL 959.3 130.4 129.0 1275 1 /2 1 1 8.40 / 8.41
PCA 1'173.8 4174 321.3 255.00 30 / 64 206 262 33.64 / 35.70
SVM 29.6 1.9 44 4311 /14 1 1  313/314
K-MEANS 357.5 75.4 71.9 69.1 5/9 189 9 10.27 / 12.16
M-NORM 57.7 8.5 7.8 74/ 10/15 3 1 0.04/ 0.01
Application [kCycles|kCycles © kCycles ° kCycles °[RT[%] * BR ° PR 7 S 9
SEIZURE
DETECTION| 1’230.9 459.6 390.7 256.6| 18 / 79 450 344 31.44 / 35.93

ple loops. For the MatMul benchmark, the choice of a specific runtime does not
bring to particular improvements, as the three approaches show similar perfor-
mance (very close to the Amdahl limit). The benchmark that gains the most
benefit from SPMD is DWT, which shows a reduction of 69% and 178%, passing
from OMP-base to OMP-opt (i.e., optimized barriers and parallel regions), and
finally to OMP-SPMD (i.e., optimized control flow), respectively. In DWT, we
have reduced the parallelization overhead by unifying the logic to compute the
bounds of two parallel loops; the compiler cannot apply the same transformation
to the OpenMP version because the loops are in distinct modules of the control
flow graph (due to outlining). Consequently, the bounds are computed twice in
OpenMP-based runtimes, doubling the overhead.

Varying the cores from 2 to 8, all the benchmarks (except for MatMul) ap-
proach the Amdhal limit with the 2-cores execution. For 4 and 8 cores, the
speed-ups start saturating as a direct consequence of the overhead implied by
the work-sharing constructs. The PCA kernel demonstrates a high benefit in
using OMP-opt and OMP-SPMD. The main reason is that this kernel includes
a consistent number of parallel regions and requires several barriers for synchro-
nization. Reducing the overhead of OMP-base has a direct impact on perfor-
mance (i.e., 30% and 64%, respectively). All the other benchmarks, including
CONV, FFT, MATMUL, SVM, and M-NORM, show an improvement of up to
23%, 12%, 2%, 14%, and 15%, respectively, which is a direct consequence of the
overhead reduction. The only exception is the K-MEANS kernel, which has a
limited improvement even with many barriers and parallel regions (up to 9%).
In this case, the number of hardware stalls (reported in Table 3) significantly
increase with 8 cores, and this effect structurally limits the maximum speed-
up. Moreover, the fine granularity of the parallel workload highly reduces the
opportunities for optimizations.

Finally, we also evaluated the energy consumption of the DSP benchmarks.
The estimation relies on power measurements on a fabricated prototype of Mr.
Wolf [17], a PULP architecture with the same features of our FPGA emula-



Table 4. Energy consumption of 8-cores, based on real measurements on a silicon
prototype of PULP (operative point: 110MHz@0.8V).

Kernel OMP-base [pJJ]|OMP-Opt [pJ]|SPMD [pJ]|Reduction [%)]
Conv 3.54 3.49 3.20 1.44 - 9.60
DWT 1.40 1.09 0.77 22.50 — 45.00
FFT 6.61 6.54 6.26 1.06 - 5.30
MatMul 23.27 23.26 23.26 0.01 - 0.04
PCA 75.31 71.79 46.00 4.67 — 38.92
SVM 4.43 4.40 4.34 0.47 - 2.03
K-MEANS 12.99 12.57 12.47 3.20 - 4.00
M-NORM 1.43 1.37 1.34 4.09 - 6.29
Application [OMP-base [pJ]|OMP-Opt [pJ]|SPMD [nJ]|Reduction [%]
SEIZURE

DETECTION 81.69 77.92 51.72 36.69 — 4.62

tor, running a typical high-utilization workload (matrix multiplication). Table 4
shows the results of the energy consumption for the 8-cores execution at the op-
erating frequency of 110 MHz at 0.8 V, the optimal operating point to maximize
energy efficiency. The results show a reduction of the energy consumption by up
to 45% passing from OMP-base to SPMD, while the reduction from OMP-base
to Omp-Opt is capped to 22.50%. The difference between the two gains provides
a direct measure of the benefits of the SPMD approach w.r.t. an optimized run-
time taking advantage of dedicated hardware units. There is no linear correlation
between energy consumption and the variation in parallel speed-up due to the
power-savings policy implied by optimizations (e.g., clock-gating).

7 Seizure Detection Application

To better evaluate the impact of our approach in a real scenario, we considered a
full application taken from the biomedical field, the seizure detection processing
chain [13], which aims at detecting the outcome of a seizure in subjects affected
by epilepsy. This application contains three of the benchmarks included in this
exploration, more precisely, PCA, DWT, and SVM. As shown in the previous
section, these benchmarks demonstrate different parallel schemes and behaviors
depending on the chosen runtime. Table 3 presents results in performance and
speed-ups. In particular, passing from OMP-base to OMP-opt, we can see an
improvement of 18%, further increased to 79% passing to OMP-SPMD, with a
speed-up improvement from 2.7x to 4.8x. Table 4 also reports the total energy
consumption of this application.

8 Conclusion

In this work, we propose a highly streamlined, low-overhead approach based
on the SPMD paradigm as an alternative to the standard OpenMP approach



(based on fork/join) to target the emerging ULP multi-core MCUs. We com-
pared two alternative OpenMP runtimes, a baseline implementation suitable for
a generic embedded target and a fully optimized version taking advantage of
dedicated hardware support for core idling and synchronization, focusing on the
most used work-sharing constructs. We evaluated the performance using a pro-
totype implementation of the PULP platform on an FPGA emulator, using a set
of benchmarks from the DSP domain and a full application. We demonstrated
that the optimized OpenMP runtime improves performance by up to 69% com-
pared to the baseline; the SPMD approach leads to a further improvement (up to
178%), approaching the maximum achievable speed-up envisioned by Amdahl’s
law, with an average distance of 18%. The benefits of the OMP-SPMD over the
OMP-base programming model also emerge from the energy consumption, with
a gain by up to 82%. To get the best of both worlds, we introduce compile-time
source-to-source transformations to hide the increase in code complexity deriving
by adopting the low-level OMP-SPMD runtime, using the OpenMP directives.

As future work, we will finalize the automatic lowering of the OpenMP direc-
tives into SPMD primitives, which is now at a prototype level and lacks support
for a subset of OpenMP directives and clauses. We will also evaluate support
for advanced directives included in 4.0 and 5.0 OpenMP specifications, even if
the dynamic behavior of advanced constructs is generally not suitable for many
embedded applications running on MCU-class devices.
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