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Abstract. We present a static analysis framework for real-time task
systems running on multi-core processors. Our method analyzes tasks in
isolation at the binary level and generates worst-case timing and mem-
ory access profiles. These profiles can then be combined to perform an
interference analysis at the task system level, as part of a multi-core
Worst-Case Response Time (WCRT) analysis. In this paper we introduce
a formal description of the models and algorithmic building blocks com-
posing our framework. We also discuss how the memory access profiles
generated by our method could be used to feed existing state-of-the-art
WCRT frameworks. To the best of our knowledge, it is the first time
that a method is documented on how to produce sound, safe and precise
inputs for interference analysis methods.

Keywords: Multicore architectures · Worst-Case Execution Time · Static
analysis

1 Introduction

Worst-Case Execution Time (WCET) and Response Time (WCRT) analysis
methods have existed for decades and are currently being used in the industry
to provide static guarantees that tasks running in real-time systems will respect
their deadlines. Such methods have been improved over the years in order to
integrate the effects of complex hardware [1, 3] (e.g. pipelines, caches, branch
predictors) and software [2] (e.g. preemption, mutual exclusion) mechanisms,
but have mainly targeted single-core processors. The ongoing adoption of multi-
core architectures for the implementation of hard real-time systems raises new
challenges for the research community. Indeed previously unseen phenomena ap-
pear in such architectures, which can have a significant impact on the execution
time of the tasks that run in parallel. This so-called timing interference stems
from the fact that while tasks run in parallel on separate cores, they share some
hardware resources such as memories and interconnects. Classical timing analy-
sis methods make the hypothesis that tasks run in isolation (either on completely
isolated hardware or on the same core but at separate times). When tasks run
in parallel, this hypothesis no longer holds, and some additional delay can be
experienced if they try to access a shared resource simultaneously. As a result
their actual execution time may exceed the WCET computed in isolation, thus
voiding all timing guarantees.
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Different methods have been developed to handle this phenomenon, such as
predictable hardware components [10, 12, 19], extensions of previously existing
WCRT analysis [5, 17] and interference-free execution models enforced through
careful static scheduling and synchronization [8]. In this paper we focus on a
mixed analysis/compilation framework based on the notion of Time Interest
Points (TIPs), which was first introduced in [4]. In this framework, tasks are ini-
tially analyzed in isolation in order to pinpoint the instructions which may cause
or suffer from interference at runtime (the TIPs). The result of this first phase
is a representation of the worst case memory access profiles of the tasks in time,
under the form of timed execution traces. This information is then abstracted
as sequences of segments (one sequence per task) characterized by a worst-case
duration and a worst-case number of memory accesses, to be combined in a
static scheduling phase in which an interference analysis is performed. Finally,
synchronizations are automatically injected in the code in order to enforce the
schedule/response-time computed in the second phase. The main advantages of
this method are:

– It is applicable to a wide range of Commercial Off The Shelf (COTS) pro-
cessors. Some restrictions apply, but are not as strict as the ones imposed in
predictable hardware components,

– It is applicable to legacy code, with minimal automatic code modifications,
where existing methods based on static scheduling require heavy transfor-
mations of the source code of the tasks to make it comply with the execution
model,

– The byproducts of the analyses of the first phase (traces and segments)
can be used to feed state-of-the-art WCRT and Real-Time calculus [5, 17]
analyses rather than a static scheduling back-end, in order to allow more dy-
namic implementations of the system, with minimal code adjustment (time-
triggered or lock-based synchronizations, or thread yielding mechanisms and
scheduler configuration).

In this paper we focus on architectures where all cores have a private scratch-
pad memory in which their code is loaded and are equipped with private L1 data
caches and a shared memory bus implementing a greedy first-come first-served
policy. In this context we provide a formal description of the models and algo-
rithms which allow the abstraction of tasks binary code into time and memory
access profiles, and discuss how these profiles can be fed to state-of-the-art anal-
ysis techniques for which, to the best of our knowledge, no method was yet
provided to produce inputs.

2 Related works

The real-time systems community has been working on the problem of multi-
core interference for nearly two decades now. A comprehensive survey on the
topic has been published in [14]. In this section we position our work within the
state-of-the-art, and focus on two existing analysis frameworks for which our
results can be particularly useful.
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Reduction of interference through predictable execution: The framework
we present here can be seen as a generalization of the PRedictable Execution
Model (PREM) [16] for multi-core architectures, or as a relaxation of the con-
straints of the Acquisition-Execution-Restitution (AER) [8,18] execution model.
The original idea of PREM was to avoid interference between memory accesses
and asynchronous I/O traffic on a bus by carefully scheduling and enforcing
the execution of tasks so that it does not occur in parallel with I/O interrupts
or DMA transfers. The TIPs framework leverages this idea to the problem of
multi-core interference analysis: the primary objective of is to generate timing
and memory access profiles of real-time tasks in order to statically schedule
them on multi-core processors in a way that carefully accounts for, and possibly
reduces the interference between them. The AER execution model aims at sup-
pressing all interference by construction. The idea is to separate the execution
of each task into three consecutive parts: the acquisition (A) of code and data
for the task, the execution (E) of the task, and the restitution (R) of the out-
puts of the task to the shared memory. This separation is ensured either by the
programmer or by the compiler [15]. Then the tasks are statically scheduled in
a way that ensures that the A and R parts of the different tasks never occur in
parallel. The TIPs framework implements the same idea, but the granularity at
which it works (single memory accesses) is much finer, and it does not require
to compile the task as three separate parts. This has multiple advantages such
as the possibility to analyse and deploy legacy code with only small, automatic
modifications (for synchronizations), and the limitation of the memory overhead
due to static reservation in the AER model. Another difference is that TIPs
allow the construction of programs in which some amount of interference can be
tolerated (and statically quantified for compositionable processors [9]).

WCRT analysis frameworks: In [5] the authors present a WCRT analysis
framework for sporadic task systems scheduled on multi-core processors using
a preemptive fixed priority algorithm (and static partitioning of tasks on the
cores). The authors consider that each possible execution trace of each task in
the system is available for analysis, and from this set provide precise formulas to
quantify the effect of interference between tasks on the shared elements of the
target processor (memories, busses, processor time). This work extends classical
WCRT analyses [11] by introducing new interference terms to cover the partic-
ularities of multi-core processors, and by making it possible to precisely account
for the execution context of the tasks (i.e. which other tasks are running on the
same core, or in parallel). These terms are computed by extracting worst-case in-
formation for any time interval of any given size on the execution traces of tasks.
In [5] the authors discuss the empirical complexity of obtaining and manipulat-
ing the entirety of the execution traces for a task system corresponding to an
industrial application. Their conclusion is that traces are a desirable abstraction
of the tasks execution behavior since they can be easily manipulated and they
express precisely the relation between the task and the shared resources. In par-
ticular they emphasize the fact that the worst case behavior of a task depends on
its execution context, and that traces allow to exploit this. They conclude that
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although working on all execution traces is unfeasible for arbitrary applications,
it is possible to feed the framework with a set of abstract traces which overesti-
mate the worst case behaviors of the tasks. However nothing is said on how to
obtain such an abstraction, nor on the potential costs of the various abstraction
methods that could be used.

In [17] the authors provide a method close to real-time calculus [20] in order
to compute the WCRT of a task system on a multi-core processor. Each task is
represented as a sequence of time intervals, and for each time interval, a bound
on the worst case number of memory accesses performed by the task is assumed
to be known. Using this information, memory access arrival curves are derived
and then combined to upper-bound the interference effect in time. A method is
briefly sketched to derive the time intervals, which assumes precise knowledge
on the tasks behavior (in particular local best and worst case execution times),
but nothing is said on how this knowledge can be acquired in practice, nor on
the abstraction cost of building the time intervals this way.

In Sec. 4 we discuss how the worst-case traces and the temporal segments
that are generated by the TIPs framework could be good candidates to feed
the analyses of [5] and [17]. This discussion is preceded by a precise description
of these models, how they can be generated, and on the various optimization
objectives that can be used to tune the analysis and their potential impact on
the precision of the abstracted representations of the tasks.

3 Static analysis framework

In this section we first provide an overview of the TIPs static analysis framework,
and then focus on each of the separate transformations that compose it.

3.1 Overview of the method and models

The TIPs static analysis framework processes a real-time task system by a se-
quence of analyzes and transformations, which are detailed in the next sections:

– In a first step (Sec. 3.2), each task is analyzed in isolation. Starting from the
disassembled binary of a task, a Control Flow Graph (CFG) is constructed.
The CFG is analyzed in order to extract TIPs, that is to say instructions
which can produce or suffer from interference. In our current implementa-
tions, we focus on instructions which may generate traffic on the memory
bus due to a data cache miss, but the method could be easily extended to
misses from instruction caches. Other potential sources of interference such
as shared L2 caches or effects from cache coherence protocols can also be
modeled in the same framework, but are left for future work.

– Once the TIPs have been obtained, the CFG is transformed into a TIPs-
Graph (Sec. 3.2 as well): a simplified control flow graph where the nodes
correspond to the TIPs of the task, and the edges represent the possible
control flow between the TIPs, in an abstract version. Nodes are labelled
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with the number of memory accesses made by the corresponding TIP, and
edges are labelled with the worst case execution time of any execution paths
linking the source TIP and the destination TIP of the edge. This represen-
tation is TIP-centered, and simplifies the CFG while allowing the following
analyses and transformations to remain conservative.

– The TIPsGraph is then used to enumerate execution traces using a working
list algorithm (Sec. 3.3). The enumerated traces exhibit the occurrence of the
TIPs in all possible executions of the task. For each trace, the TIPs execution
dates are a worst-case approximations. The enumerated traces can be used
as timed memory access profiles for the tasks in WCRT analyses, but may
remain too complex to be used in practice for other methods (such as static
scheduling).

– For uses for which the enumerated traces are too complex to be exploited,
the traces for each task are then transformed into a sequence of so-called
”time segments” (Sec. 3.4): each segment has a duration and a worst case
number of memory accesses, and the sequence of segments represents an over-
approximation of the number of memory accesses that can be performed by
the task in the corresponding time windows.

– In the TIPs framework, the tasks of the system are then subjected to static
scheduling, using their representation as sequences of segments (Sec. 4). Dur-
ing this step, an interference analysis is performed, which assumes that the
processor architecture is time-compositionable [9], and its results are in-
cluded in the schedule. Once an acceptable schedule (i.e. which respects all
real-time constraints) has been found for the whole tasks system, synchro-
nizations are automatically inserted in the binary code of the tasks to enforce
the schedule.

In the remainder of this section we will provide more details and a formal rep-
resentation for each of the aforementioned steps and models.

3.2 Extracting a TIPsGraph from a CFG

The analysis of each task τ in isolation starts working on the CFG CFGτ =
{N , E} of τ , where N is the set of nodes called Basic Blocks (BBs) of the graph,
and E is the set of edges e ∈ N × N which represent the control flow of the
application. In this model BBs are sequences of instructions i0, i1, ..., in ∈ I
with a single entry point and a single exit point. Using MUST and MAY cache
analyses [13], TIPs are pinpointed from the rest of the instructions. As stated
before, a TIP is an instruction which may create or suffer from interference.
Recall that in the scope of this paper we focus on multi-core architectures in
which each core has a private L1 data cache, a private scratchpad holding the
code to execute and all cores share a memory bus. In this context TIPs are the
memory instructions which cannot be statically determined to always result in
a hit (called in short Always Hit - AH) in the L1 data cache of the core which
executes them. The objective of the first step of the analysis is to build for each
task τ a TIPsGraph TGτ = {T , ETG} where T ⊆ I × N is the set of TIPs of
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Fig. 1: Example of CFGs and their corresponding TIPsGraphs

the task and ETG ⊆ T × T × N is the set of edges representing the control flow
between TIPs. Each TIP t ∈ T is composed of an instruction t.i and of the
worst case number of memory accesses that this instruction may perform when
executed t.µ. Each edge e ∈ ETG is composed of a couple of TIPs (e.src, e.dst),
as well as a conservative approximation of the worst case execution time (e.w)
of the code portions between e.src.i and e.dst.i.

Property 1: ∀e ∈ ETG, e = (ij , ik, e.w), ∀p ∈ PATHS(ij , ik),

e.w ≥WCET (p),

where PATHS(ij , ik) is the set of possible execution paths between instruc-
tions ij .i and ik.i, and WCET (p) is a conservative approximation of the wcet
of the code portion composed of the instructions of p, which can be computed
using a static analysis tool.

To ensure that a TIPsGraph covers the possible executions of the whole task
it represents, we add two fictive nodes istart and iend which represent the entry
and exit points of the task. Both istart.µ and iend.µ are equal to 0. Fig. 1a shows
a TIPsGraph along with the CFG from which it was extracted. The TIPsGraph
starts with node istart and ends with node iend. The rest of the nodes composing
the TIPsGraph is extracted from the CFG: in this example we assume that four
memory instructions may access the bus (the cache analysis did not result in AH
for these). Each of them is represented in the TIPsGraph, as well as the possible
control flow between them. Each arc records such a possible transition, and is
labelled with the wcet of the portion(s) of code that are executed between the
TIP instructions.

In order to correctly handle loops, a TIP ihead, with ihead.µ = 0 is also
created to represent the loop header BB, if and only if there exists at least a
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TIP i inside the loop with i.µ > 0. When there is no TIP inside the loop, the loop
gets abstracted in the TIPsGraph, like illustrated in Fig. 1b : the control flow of
the loop is no longer detailed in the TIPsGraph, but the edge representing the
transition between the last TIP before the loop and the first TIP after the loop
accounts for the worst case loop duration.

3.3 Enumeration of timed execution traces

The next step of the analysis is to enumerate execution traces from the TIPs-
Graph. The result of this enumeration is an abstract representation of the possi-
ble execution traces of the task, with two interesting properties for our analysis
purposes:

– It is centered around memory accesses: only memory access instructions
are represented (and loop headers, when the loop body contains memory
access instructions) in the traces. In particular, control flow divergence which
does not lead to memory accesses is abstracted away, and accounted for in
the WCETs between TIPs. This reduces the empirical complexity of the
subsequent analyses.

– All transitions between TIPs are labelled with local WCETs. This guarantees
that the abstraction used to represent the tasks execution is conservative: al-
though not all actual execution traces are detailed in the analysis, the subset
on which we work is a sound conservative approximation for WCET anal-
ysis. Moreover, in combination with the following steps (static scheduling,
interference analysis, injection of synchronizations), this model is also sound
for the analysis of interference.

We define a trace tr as a sequence of couples (t, d) ∈ T ×N, where t is a TIP
and d is a conservative approximation of the worst case execution date of t.i in
trace tr. For a trace tr = [p0, p1, ..., pn] with ∀i ∈ [|0, n|], pi = (ti, di), we denote
by last(tr) the element pn. We also use tr :: pk+1 to denote the trace obtained
by concatenating trace tr with element pk+1.
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Algorithm 1 Basic trace enumeration

1: Traces← ∅
2: tr ← (istart, 0)
3: WL← {(tr, e, []) | e ∈ ETG ∧ e.src = istart}
4: while WL 6= [] do
5: (tr, e, context)← pop(WL)
6: (ilast, d)← last(tr)
7: B Dealing with loops
8: iteration← pop(context)
9: if is loop head(e.dst) then

10: if is return arc(e) then
11: if iteration = max bound(loop(e)) then
12: continue B Not a valid trace: dump it
13: else
14: push(context, iteration+ 1) B Advance iteration counter
15: end if
16: else
17: push(context, 0) B Entering a new loop
18: end if
19: else
20: if is loop exit(e) then
21: if iteration < min bound(loop(e)) then
22: continue B Not a valid trace: dump it
23: end if
24: end if
25: end if
26: B Adding a new element to the trace
27: tr ← tr :: (e.dst, d+ e.w)
28: if e.dst = iend then
29: Traces← Traces ∪ {tr}
30: else
31: WL←WL ∪ {(tr, en, context) | en ∈ ETG ∧ en.src = e.dst}
32: end if
33: end while
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A basic enumeration algorithm is described in Algo. 1. It is a working list
algorithm which performs a depth-first traversal of the TIPsGraph of a task. The
working list contains triplets composed of a trace currently under construction,
a TIPsGraph edge and a stack containing information regarding the current
iteration of loops that are being traversed. The algorithm iteratively builds the
set Traces of the enumerated traces. Initially, WL and Traces are empty. At
each step of the process, the algorithm gets a trace under construction from WL,
along with an edge from the TIPsGraph whose source node is the current last
node of the trace, and the corresponding loop iteration context. From this, the
trace is extended with the destination instruction of the edge, and pushes this
new state on WL, along with all possible successor edges of the new last node
of the trace. One trace is completed and thus added to the Traces set when the
node iend has been reached.

The tricky cases concern loop headers (L.8 to L.26): in order for the al-
gorithm to finish, it is mandatory for the number of iterations of each loop of
the task to be bounded (which is a basic requirement for WCET computation).
When the trace enumeration reaches an edge whose destination node corresponds
to a loop header (L.10), the algorithm checks (L.11) whether the arc in question
is a return arc from inside the loop (marking the end of an iteration of the loop),
or not (meaning the enumeration is entering the loop for the first iteration). If
the enumeration just enters the loop, a new loop iteration context is created
by pushing 0 (corresponding to the first iteration of the loop) on the context
stack (L.18). The algorithm uses a stack so it can handle nested loops. If on the
other hand, the current arc is a return arc, the algorithm checks if the current
iteration corresponds to a valid execution : it must not exceed the maximum it-
eration bound for the loop. If the execution is invalid, the current trace is simply
discarded (L.13), and the algorithm pops a new element from WL. In order to
work, the algorithm must also be able to pop an element from the context stack
when exiting a loop. This is done by detecting that the current edge exits from
the loop (L.21), and by checking that the minimum iteration bound has been
reached in the current stack (L.22). This minimum iteration bound is set to 0
by default, but the more precise it is, the better the outcome of the analysis.

Figure 2 displays 5 traces enumerated from the TIPsGraphs of Fig. 1. The
last trace (at the bottom), labelled (b) is the only trace that can be enumerated
from the TIPsGraph of Fig. 1b. The first element of the trace, istart, corresponds
to the start of the execution of the task at date 0. The next elements are the
execution of i1.i at date 5, the execution of i2.i at date 693 and finally the end of
the task at date 707. Traces (a1) to (a4) are a subset of all possible enumerated
traces from the TIPsGraph of Fig.1a. In order to enumerate them, we assumed
that the number of loop iterations varied at least between 0 iteration (trace
(a1)) and 2 iterations (trace (a3)). Trace (a1) corresponds to the execution of
the task when the loop is not executed. Traces (a2) and (a3) correspond to the
execution of the task when the left branch of the loop is taken respectively once
and twice before exiting the loop. Trace (a4) corresponds to the execution of the
task when the right branch of the loop is taken once before exiting. Notice that
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the dates for each element of these traces are worst case dates, meaning that
the corresponding instructions can in practice execute before that date, but are
guaranteed to never execute after. This means that any such trace covers multiple
execution patterns, which reduces the empirical complexity of the next steps of
the analysis (regardless of the analysis framework). However, three important
issues must be raised at this point:

– Knowing only a worst case date for the memory accesses may increase the
imprecision of the interference analysis, since it must consider that an access
can occur at any time before the worst case date. One way to mitigate this
issue is to inject synchronizations inside the code of the tasks to reduce the
size of the time intervals during which accesses may occur.

– As illustrated by the 4 traces (a1) to (a4), the same instruction can have a
different worst case date in different traces (e.g. i4.i), which can also lead to
imprecision in the interference analysis. Methods must be found to mitigate
this issue, either at the code generation level (once again, synchronizations)
or at the analysis level (careful accounting of the worst case number of mem-
ory access of the task on a given time interval).

– Enumerating traces when a loop has a different minimum and maximum
iteration bounds dramatically increases the empirical complexity of the enu-
meration algorithm: the enumeration of all possible sub-traces after the exit
of the loop must be performed entirely as many times as there are ways to
exit the loop (i.e. for each iteration between the minimum and maximum
loop bound), even though the enumeration of these sub-traces is exactly the
same each time, since they correspond to exactly the same portion of the
TIPsGraph (when infeasible paths are not considered). In the given exam-
ple, the portion of the TIPsGraph located after the loop is very small, but
in practice we have noticed that it is not the case for arbitrary applications,
and that the enumeration may become infeasible in acceptable time when
the min and max bounds for a loop differ too much.

The enumerated traces are a first, rather raw representation of the timing
and memory access profile of the tasks of the analyzed system. They can be
used to perform a WCRT analysis following the method described in [5], even
though caution must be taken: these are not real execution traces, but worst-case
approximations of execution traces. This means that the method of [5] will have
to be adapted to take into account this specificity, or that synchronizations will
have to be added to the task code in order to enforce some of the worst case
dates for the memory accesses.

In the TIPs framework however, the objective is to perform static scheduling,
in order to analyze and try to limit the interference between tasks. To do so, we
need to transform the enumerated traces into entities that will be practical to
schedule, such as temporal segments.

3.4 Temporal segments
We now present the kind of temporal segments that are used in the TIPs frame-
work in order to represent the time and memory access profile of tasks and to
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statically schedule them. A temporal segment si is a triplet (si.start, si.dur, si.µ)
where si.start is the start date of the segment, si.dur is its duration, and si.µ is
a map which contains the number of memory accesses that can happen on the
time interval [si.start, si.start+ si.dur] for each trace. In the following, we also
denote by si.end = si.start+ si.dur the end date of segment si.

Any task τ (resp. any enumerated trace tr ∈ Traces(τ)) can be abstracted us-
ing a sequence of segments Segsτ = [s0(τ), ..., sn(τ)] (resp. Segstr = [s0(tr), ..., sk(tr)]),
with the property that segments of a sequence do not overlap and the first
segment starts at date 0 i.e. s0(τ).start = 0 and ∀i ∈ [|1, n|], si(τ).start ≥
si−1(τ).end.

The shape of the segments sequence of each task will have an impact on the
scheduling and interference analysis phase. A trade-off must be found between:

– The number of segments for each task. Scheduling elements (tasks, or seg-
ments) on a multi-core target is a NP-hard problem, so increasing the number
of segments to schedule can increase the time it takes to build a schedule,
potentially to a point where it is no longer feasible in practice.

– The length of the segments. During the interference analysis, any two seg-
ments from different tasks scheduled on overlapping time intervals on differ-
ent cores will be considered as being in interference. By definition, smaller
segments occupy a core for less time than larger segments, and are thus less
exposed to interference from other cores. Moreover, smaller segments offer
more flexibility to the scheduler to reduce the impact of interference.

– The worst case number of memory accesses on each segment. The length of
the segments and the number and position of the synchronizations used to
enforce them have an impact on the number of memory accesses attributed
to each segment. This number must be conservative for each segment, so a
memory access from a single instruction can be counted in multiple segments
if the execution date of the instruction cannot be proven to happen in the
time interval of only one segment. This can increase the imprecision of the
method if one is not careful when shaping the segments and selecting the
synchronization points.

– The number of synchronizations that will be required to guarantee that the
code corresponding to the segments does not start before it is intended to.
Each synchronization corresponds to additional code for the task, so their
number must remain limited. Without optimization, code must be added
(automatically) to the task code to ensure that in each execution trace a
synchronization will be executed to enforce the start date of each segment.

In the remainder of this section, we provide algorithms that enable the ex-
traction of valid segment representations for tasks. These are baseline algorithms
which do not perform any optimization with regard to the aforementioned trade-
offs. In the description of the algorithms we use the empty sequence ([]) and
concatenation of an element e at the right-end of a sequence seq (::).

These algorithms rely on the Intersect operator which is defined in Def. 1.
This operator computes the intersection of two segments : if the segments corre-
spond to non-overlapping time intervals, the return value is empty. Otherwise,
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the operator returns a segment whose time interval is the intersection of the time
intervals of the two input segments, and its summary of worst case number of
memory accesses is the union of the summaries of worst case memory accesses of
the input segments. Our algorithms also use the Segments procedure described
in Algo. 3. This procedure transforms a trace tr of a task τ into a sequence of
segments in the following manner: for each node n in the trace, it creates two
segments: s1 which starts at the date of the node, spans the worst case duration
of the accesses of this node and has s1.µ = {tr : n.µ} (marking that on this time
interval trace tr makes at most n.µ accesses), and s2 which starts just after and
spans until the date of the next node and has s2.µ = {tr : 0}. The procedure is
also called with parameter dmax which is the maximum of the dates of the last
nodes of all traces of τ (i.e. the WCET of τ in the absence of interference). This
is used to extend the last segment so that it spans until dmax.

Definition 1. ∀si, sj ∈ Segs, Intersect(si, sj) =

∅ if si.start ≥ sj .end ∨ sj .start ≥ si.end
(si.start, si.dur, si.µ ∪ sj .µ) if si.start ≥ sj .start ∧ sj .end ≥ si.end
(si.start, sj .end− si.start, si.µ ∪ sj .µ) if si.start ≥ sj .start ∧ si.end ≥ sj .end
(sj .start, si.end− sj .start, si.µ ∪ sj .µ) if si.start < sj .start ∧ si.end ≤ sj .end
(sj .start, sj .dur, si.µ ∪ sj .µ) if si.start < sj .start ∧ si.end > sj .end

The top-level algorithm is described in Algo. 2: starting with an arbitrary
trace tr1 from the set of traces of τ , it transforms tr1 into a segments repre-
sentation using procedure Segments (described in Algo. 3): Segsτ . Then each
other trace tri of τ is transformed into a sequence of segments, and Segsτ is up-
dated with the intersection of the current segments of Segsτ and the segments
that represent tri. When this is done, a procedure tries to reduce the number of

Algorithm 2 Segments creation for a task

Require: Traces(τ), tr1 ∈ Traces(τ), ∆ ∈ N, dmax ∈ N
Ensure: Segsτ
1: Segsτ = Segments(tr1, dmax)
2: for all tri ∈ Traces(τ), tri 6= tr1 do
3: Segsτ ← Intersect(Segsτ , Segments(tri, dmax))
4: end for
5: Segsτ ← Fusion(Segsτ ,∆)
6: return Segsτ

segments using a minimum size ∆, by :

– preserving all segments s with max access(s) = 0 and s.dur ≥ ∆,
– for all other segments, fusing consecutive segments until the result of the

fusion has a length of at least ∆ or there is no more available segment to
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fuse. When fusing segments, the information about the worst case number of
memory accesses is combined trace-wise instead of blindly summed in order
to limit over-approximations.

We illustrate this algorithm in the examples of Fig. 3. Segment sequences
(Sa1) and (Sa2) are extracted directly from traces (a1) and (a2) of Fig. 2 using
Algo. 3. The result of their intersection is provided as (Sa1+a2). In this sequence,
the first access is displayed in gray to show that this segment corresponds to
either one access from trace (a1) or one access from trace (a2). The sequence
labelled (Sa) is obtained by iterating the intersection of the traces (a1), (a2),
(a3) and (a4). Different colors mean that accesses from different traces may
occur. Finally trace (S

′

a) is obtained by fusing together the smaller segments
and preserving large segments which are guaranteed to not perform any memory
access.

Algorithm 3 Extract a segments representation for a single trace

Require: tr1 ∈ Traces(τ), tr1 = (i0, d0), (i1, d1), ..., (in, dn); dmax
Ensure: Segstr1
1: Segstr1 = []
2: for all k ∈ [|0, n− 2|] do
3: acc end← dk + ik.µ× access time
4: Segstr1 ← Segstr1 :: (dk, acc end, {tr1 : ik.µ}) :: (acc end, dk+1 − acc end, {tr1 :

0})
5: end for
6: acc end← dn−1 + in−1.µ× access time
7: Segstr1 ← Segstr1 :: (dn − 1, acc end, {tr1 : ik.µ})
8: Segstr1 ← Segstr1 :: (acc end, dmax − acc end, 0)
9: return Segstr1

  

(S
a1
)

(S
a2
)

(S
a1+a2

)

(S
a
)

(S’
a
)1 21

Fig. 3: Examples of memory access profiles obtained from the traces of Fig. 2

4 Exploitation of the memory access profiles

In this section we conclude the description of the TIPs framework by a quick dis-
cussion about the uses that can be made of the enumerated traces and segments
in order to perform an interference-aware analysis of the task system. We thus
discuss how the enumerated traces and segments representations can be fed to
various ”back-ends” such as static schedulers or the WCRT analysis frameworks
described in Sec. 2.
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4.1 Interference analysis for static scheduling
Regardless of the task model (single period, sporadic, multi-periodic, dependent
or independent tasks) any existing static scheduling method can be adapted
to the TIPs model: instead of scheduling one time interval for a task as in
classical models, all segments for a task are scheduled in order. The potential
interference is computed using the information contained in the segments, and
must reflect the bus arbitration policy. Only segments scheduled on separate
cores and whose time intervals overlap are considered to interfere. The potential
interference is accounted for either by increasing the size of the segments on-the-
fly (e.g. [4, 7]), or by consuming an interference budget which can be added to
the tasks’ WCET prior to scheduling [6] (e.g. a 10% overhead on the computed
WCET for interference tolerance).

4.2 Multi-core WCRT analysis techniques
In order to use the interference formulas presented in [5] (at least for the part
regarding interference on the buses and memories), an upper bound on the num-
ber of accesses that can be made in any time-interval of any size must be found
for each task. In the TIPs framework, this information is available at 2 differ-
ent abstraction levels: the enumerated worst-case traces (Sec. 3.3) which offer
a finer level of granularity, and thus can lead to more precise bounds at the
cost of a more complex computation, and the segments (Sec. 3.4) which repre-
sent the memory access profiles at an higher level of abstraction. In both cases,
since the timings obtained in the TIPs framework are worst-case dates, synchro-
nizations must be added to the code to be able to lower-bound with certainty
the occurrence of accesses in time. The same is true for the real-time calculus
method of [17], for which the segment representation obtained through the TIPs
framework is a natural input format.

5 Conclusion and future works
We presented the TIPs framework: a collection of models and algorithms for
the extraction of precise timing and memory access profiles of real-time tasks.
For each level of abstraction, we provided a formalization of the corresponding
models and algorithms, as well as a discussion on the cost of the presented
abstractions. We finally discussed how the obtained memory access profiles could
be used as inputs for existing state-of-the-art analysis frameworks and tools. In
the future, we will work on optimizations and the evaluation of their impact on
the different ”back-ends”. In particular, we are currently working on a multi-
criterion optimization of the transformation of enumerated traces into segments,
trying to minimize the overestimation of the number of accesses in each segment
and the number of synchronizations to add to the tasks’ code.
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