l‘)

Check for
updates

Enforcing Almost-Sure Reachability in
POMDPs

1(=) 2

)

Sebastian Junges , Nils Jansen
and Sanjit A. Seshial

1 University of California at Berkeley, Berkeley, USA
sjunges@berkeley.edu
2 Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract. Partially-Observable Markov Decision Processes (POMDPs)
are a well-known stochastic model for sequential decision making under
limited information. We consider the EXPTIME-hard problem of syn-
thesising policies that almost-surely reach some goal state without ever
visiting a bad state. In particular, we are interested in computing the
winning region, that is, the set of system configurations from which a
policy exists that satisfies the reachability specification. A direct appli-
cation of such a winning region is the safe exploration of POMDPs by,
for instance, restricting the behavior of a reinforcement learning agent to
the region. We present two algorithms: A novel SAT-based iterative app-
roach and a decision-diagram based alternative. The empirical evaluation
demonstrates the feasibility and efficacy of the approaches.

1 Introduction

Partially observable Markov decision processes (POMDPs) constitute the stan-
dard model for agents acting under partial information in uncertain environ-
ments [34,52]. A common problem is to find a policy for the agent that maxi-
mizes a reward objective [36]. This problem is undecidable, yet, well-established
approximate [27], point-based [43], or Monte-Carlo-based [49] methods exist.
In safety-critical domains, however, one seeks a safe policy that exhibits strict
behavioral guarantees, for instance in the form of temporal logic constraints [44].
The aforementioned methods are not suitable to deliver provably safe policies.
In contrast, we employ almost-sure reach-avoid specifications, where the proba-
bility to reach a set of avoid states is zero, and the probability to reach a set of
goal states is one. Our Challenge 1 is to compute a policy that adheres to such
specifications. Furthermore, we aim to ensure the safe exploration of a POMDP,
with safe reinforcement learning [23] as direct application. Challenge 2 is then

This work is partially supported by NSF grants 1545126 (VeHICaL), 1646208 and
1837132, by the DARPA contracts FA8750-18-C-0101 (AA) and FA8750-20-C-0156
(SDCPS), by Berkeley Deep Drive, and by Toyota under the iCyPhy center.

This research has been partially funded by NWO grant OCENW.KLEIN.187: “Prov-
ably Correct Policies for Uncertain Partially Observable Markov Decision Processes”.
© The Author(s) 2021

A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 602-625, 2021.
https://doi.org/10.1007/978-3-030-81688-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_28&domain=pdf
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0003-1318-8973
http://orcid.org/0000-0001-6190-8707
https://doi.org/10.1007/978-3-030-81688-9_28

Enforcing Almost-Sure Reachability in POMDPs 603

to compute a large set of safe policies for the agent to choose from at any state
of the POMDP. Such sets of policies are called permissive policies [21,31].

POMDP Almost-Sure Reachability Verification. Let us remark that in POMDPs,
we cannot directly observe in which state we are, but we are in general able to
track a belief, i.e., a distribution over states that describes where in the POMDP
we may be. The belief allows us to formulate the following verification task:

For a POMDP, sets of target and avoid states, and a belief, does a policy
exist such that we reach the target states without ever visiting a bad state?

The underlying EXPTIME-complete problem requires—in general—policies
with access to memory of exponential size in the number of states [4,18]. For
safe exploration and, e.g., to support nested temporal properties, the ability to
solve this problem for each belief in the POMDP is essential.

We base our approaches on the concept of a winning region, also referred to
as controllable or attractor regions. Such regions are sets of winning beliefs from
which a policy exists that guarantees to satisfy an almost-sure specification.
The verification task relates three concrete problems which we tackle in this
paper: (1) Decide whether a belief is winning, (2) compute the mazimal winning
region, and (3) compute a large yet not necessarily maximal winning region. We
now outline our two approaches. First, we directly exploit model checking for
MDPs [5] using belief abstractions. The second, much faster approach iteratively
exploits satisfiability solving (SAT) [8]. Finally, we define a scheme to enable safe
reinforcement learning [23] for POMDPs, referred to as shielding [2,30].

MDP Model Checking. A prominent approach gives the semantics of a POMDP
via an (infinite) belief MDP whose states are the beliefs in the POMDP [36].
For almost-sure specifications, it is sufficient to consider belief-supports rather
than beliefs. In particular, two beliefs with the same support are either both in a
winning region or not [47]. We abstract a belief MDP into a finite belief-support
MDP, whose states are the support of beliefs. The (maximal) winning region are
(all) states of the belief-support MDP from which one can almost surely reach
a belief support that contains a goal state without visiting belief support states
that contain an avoid state.

To find a winning region in the POMDP, we thus just have to solve almost-
sure reachability in this finite MDP. The number of belief supports, however, is
exponentially large in the number of POMDP states, threatening the efficient
application of explicit state verification approaches. Symbolic state space rep-
resentations are a natural option to mitigate this problem [7]. We construct a
symbolic description of the belief support MDP and apply state-of-the-art sym-
bolic model checking. Our experiments show that this approach (referred to as
MDP Model Checking) does in general not alleviate the exponential blow-up.

Incremental SAT Solving. While the belief support model exploits the structure
of the belief support MDP by using a symbolic state space representation, it does
not exploit elementary properties of the structure of winning regions. To overcome
the scalability challenge, we aim to exploit information from the original POMDP,

604 S. Junges et al.

rather than working purely on the belief-support MDP. In a nutshell, our app-
roach computes the winning regions in a backward fashion by optimistically search-
ing policies without memory on the POMDP level. Concretely, starting from the
belief support states that shall be reached almost-surely, further states are added
to the winning region if we quickly can find a policy that reaches these states with-
out visiting those that are to avoid. We search for these policies by incrementaly
employing an encoding based on SAT solving. This symbolic encoding avoids an
expensive construction of the belief support MDP. The computed winning region
directly translates to sufficient constraints on the set of safe policies, i.e., each pol-
icy satisfying these constraints satisfies, by construction, the specification. The key
idea is to successively add short-cuts corresponding to already known safe policies.
These changes to the structure of the POMDP are performed implicitly on the SAT
encoding. The resulting scalable method is sound, but not complete by itself. How-
ever, it can be rendered complete by trading off a certain portion of the scalability;
intuitively one would eventually search for policies with larger amounts of memory.

Shielding. An agent that stays within a winning region is guaranteed to adhere
to the specification. In particular, we shield (or mask) any action of the agent
that may lead out of the winning region [1,39,42]. We stress that the shape of
the winning region is independent of the transition probabilities or rewards in
the POMDP. This independence means that the only prior knowledge we need to
assume is the topology, that is, the graph of the POMDP. A pre-computation of
the winning region thus yields a shield and allows us to restrict an agent to safely
explore environments, which is the essential requirement for safe reinforcement
learning [22,23] of POMDPs. The shield can be used with any RL agent [2].

Comparison with the State-of-the-Art. Similar to our approach, [15] solves almost-
sure specifications using SAT. Intuitively, the aim is to find a so-called simple pol-
icy that is Markovian (aka memoryless). Such a policy may not exist, yet, the
method can be applied to a POMDP that has an extended state space to account
for finite memory [33,37]. There are three shortcomings that our incremental SAT
approach overcomes. First, one needs to pre-define the memory a policy has at
its disposal, as well as a fixed lookahead on the exploration of the POMDP. Our
encoding does not require to fix these hyperparameter a priori. Second, the app-
roach is only feasible if small memory bounds suffice. Our approach scales to mod-
els that require policies with larger memory bounds. Third, the approach finds a
single simple policy starting from a pre-defined initial state. Instead, we find a
large winning region. For safe exploration, this means that we may exclude many
policies and never explore important parts of the system, harming the final per-
formance of the agent. Shielding MDPs is not new [2,9,10,30]. However, those
methods do neither take partial observability into account, nor can they guaran-
tee reaching desirable states. Nam and Alur [39] cover partial observability and
reachability, but do not account for stochastic uncertainty.

Ezxperiments. To showcase the feasibility of our method, we adopted a number of
typical POMDP environments. We demonstrate that our method scales better
than the state of the art. We evaluate the shield by letting an agent explore the

Enforcing Almost-Sure Reachability in POMDPs 605

POMDP environment according to the permissive policy, thereby enforcing the
satisfaction of the almost-sure specification. We visualize the resulting behavior
of the agent in those environments with a set of videos.

Contributions. Our paper makes four contributions: (1) We present an incre-
mental SAT-based approach to compute policies that satisfy almost-sure prop-
erties. The method scales to POMDPs whose belief-support states count billions;
(2) The novel approach is able to find large winning regions that yield permis-
sive policies. (3) We implement a straightforward approach that constructs the
belief-support symbolically using state-of-the-art model checking. We show that
its completeness comes at the cost of limited scalability. (4) We construct a
shield for almost-sure specifications on POMDPs which enforces at runtime that
no unsafe states are visited and that, under mild assumptions, the agent almost-
surely reaches the set of desirable states.

Further Related Work. Chatterjee et al. compute winning regions for minimizing
a reward objective via an explicit state representation [17], or consider almost-
sure reachability using an explicit state space [16,51]. The problem of determin-
ing any winning policy can be cast as a strong cyclic planning problem, proposed
earlier with decision diagrams [7]. Indeed, our BDD-based implementation on the
belief-support MDP can be seen as a reimplementation of that approach.

Quantitative variants of reach-avoid specifications have gained attention in,
e.g., [11,28,40]. Other approaches restrict themselves to simple policies [3,33,45,
58]. Wang et al. [55] use an iterative Satisfiability Modulo Theories (SMT) [6]
approach for quantitative finite-horizon specifications, which requires computing
beliefs. Various general POMDP approaches exist, e.g., [26,27,29,48,49,54,56].
The underlying approaches depend on discounted reward maximization and can
satisfy almost-sure specifications with high reliability. However, enforcing prob-
abilities that are close to 0 or 1 requires a discount factor close to 1, drastically
reducing the scalability of such approaches [28]. Moreover, probabilities in the
underlying POMDP need to be precisely given, which is not always realistic [14].

Another line of work (for example [53]) uses an idea similar to winning regions
with uncertain specifications, but in a fully observable setting. Finally, comple-
mentary to shielding, there are approaches that guide reinforcement learning
(with full observability) via temporal logic constraints [24,25].

2 Preliminaries and Formal Problem

We briefly introduce POMDPs and their semantics in terms of belief MDPs, before
formalising and studying the problem variants outlined in the introduction. We
present belief-support MDPs as a finite abstraction of infinite belief MDPs.

We define the support supp(u) = {z € X | u(z) > 0} of a discrete probability
distribution x4 and denote the set of all distributions with Distr(X).

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
(S, Act, tinit, P) with a set S of states, an initial distribution pinie € Distr(S), a
finite set Act of actions, and a transition function P: S x Act — Distr(S).

606 S. Junges et al.

Let post,(a) = supp(P(s, «)) denote the states that may be the successors of the
state s € S for action o € Act under the distribution P(s, «). If post,(«) = {s}
for all actions «, s is called absorbing.

Definition 2 (POMDP). A partially observable MDP (POMDP) is a tuple
P = (M, 2,0bs) with M = (S, Act, pinis, P) the underlying MDP with finite
S, {2 a finite set of observations, and obs: S — {2 an observation function.
We assume that there is a unique initial observation, i.e., that |{obs(s) | s €

supp (finit) H = 1.

More general observation functions obs: S — Distr(f2) are possible via a
(polynomial) reduction [17]. A path through an MDP is a sequence w, m =
(s0,0)(s1,01)...5, of states and actions. such that s;;; € post, (a;) for
a; € Act and 0 < i < n. The observation function obs applied to a path yields
an observation(-action) sequence obs(w) of observations and actions.

For modeling flexibility, we allow actions to be unavailable in a state (e.g.,
opening doors is only available when at a door), and it turned out to be crucial
to handle this explicitly in the following algorithms. Technically, the transition
function is a partial function, and the enabled actions are a set EnAct(s) = {a €
Act | post,(a) # 0}. To ease the presentation, we assume that states s, s’ with
the same observation share a set of enabled actions EnAct(s) = EnAct(s’).

Definition 3 (Policy). A policy o: (S x Act)* xS — Distr(Act) maps a path ©
to a distribution over actions. A policy is observation-based, if for each two paths
m, ' it holds that obs(mw) = obs(n’") = o(w) = o(x’). A policy is memoryless,
if for each m, 7' it holds that last(w) = last(n’) = o(n) = o(x’). A policy is
deterministic, if for each w, o(m) is a Dirac distribution, i.e., if |supp(o(m))| = 1.

Policies resolve nondeterminism and partial observability by turning a (PO)MDP
into the induced infinite discrete-time Markov chain whose states are the finite
paths of the (PO)MDP. Probability measures are defined on this Markov chain.

For POMDPs, a belief describes the probability of being in certain state based
on an observation sequence. Formally, a belief b is a distribution b € Distr(S)
over the states. A state s with positive belief b(s) > 0 is in the belief support,
s € supp(b). Let Pry(S’) denote the probability to reach a set S’ C S of states
from belief b under the policy o. More precisely, Prg (S’) denotes the probability
of all paths that reach S’ from b when nondeterminism is resolved by o.

The policy synthesis problem usually consists in finding a policy that satisfies
a certain specification for a POMDP. We consider reach-avoid specifications, a
subclass of indefinite horizon properties [46]. For a POMDP P with states S,
such a specification is ¢ = (REACH, AVOID) C S x S. We assume that states
in AVOID and in REACH are (made) absorbing and REACH N AVOID = ().

Definition 4 (Winning). A policy o is winning for ¢ from belief b in
(PO)MDP P iff Pri(AVOID) = 0 and Prj(REACH) = 1, i.e., if it reaches
AVOID with probability zero and REACH with probability one (almost-surely)
when b is the initial state. Belief b is winning for ¢ in P if there exists a winning
policy from b.

Enforcing Almost-Sure Reachability in POMDPs 607

We omit P and ¢ whenever it is clear from the context and simply call b winning.

Problem 1: Given a POMDP, a belief b, and a specification ¢, decide
whether b is winning and find a policy ¢ that is winning from b.

The problem is EXPTIME-complete [18]. Contrary to MDPs, it is not sufficient
to consider memoryless policies.

Model checking queries for POMDPs often rely on the analysis of the belief
MDP. Indeed, we may analyse this generally infinite model. Let us first recap
a formal definition of the belief MDP, using the presentation from [11]. In the
following, let P(s, v, 2) := > cg[obs(s’)=2] - P(s,a,s’) denote the probability!
to move to (a state with) observation z from state s using action a. Then,
P(b,a, z) :=) .5 b(s) - P(s,q, z) is the probability to observe z after taking a
in b. We define the belief obtained by taking a from b, conditioned on observing z:

[obs(s")=z] - > ,cq b(s) - P(s, 0, 8")

update(b|a, 2)(s') := P b0 2) : (1)

Definition 5 (Belief MDP). The belief MDP of POMDP P = (M, {2, obs)
where M = (S, Act, pinit, P) is the MDP BeIMDP(P) := (B, Act, Pg, ftinit) with
B = Distr(S), and transition function Pg given by

Py(b,a,b') = {P(b,a,obs(b’)) if b = deate(b|a,obs(b’)),
0 otherwise.

Due to (1) and the unique initial observation, we may restrict the beliefs to B =
U.co Distr({s | obs(s) = z}), that is, each belief state has a unique associated
observation. We can lift specifications to belief MDPs: Avoid-beliefs are the set
of beliefs b such that supp(b) N AVOID # 0, and reach-beliefs are the set of
beliefs b such that supp(b) C REACH.

Towards obtaining a finite abstraction, the main algorithmic idea is the fol-
lowing. For the qualitative reach-avoid specifications we consider, the belief prob-
abilities are irrelevant—only the belief support is important [47].

Lemma 1. For winning belief b, belief b’ with supp(b) = supp(b’) is winning.

Consequently, we can abstract the belief MDP into a finite belief support MDP.
Definition 6 (Belief-Support MDP). For a POMDP P = (M, (2, 0bs) with
M = (S, Act, pinit, P), the finite state space of a belief-support MDP Pg is
B ={bC S |Vs,s € b:obs(s) = obs(s')} where each state is the support of

a belief state. Action « in state b leads (with an irrelevant positive probability
p>0) to a state v, if

b e { U posts(a) N {s|obs(s) =2} |z € Q}

s€b

! We use Iverson brackets: [x] = 1 if holds and 0 otherwise.

608 S. Junges et al.

Thus, transitions between states within b and b’ are mimicked in the POMDP.
Equivalently, the following clarifies the belief-support MDP as an abstraction of
the belief MDP: there are transitions with action o between b and ', if there
exists beliefs b, b’ with supp(b) = b and supp(b’) = b/, such that b’ € post, ().
We lift the specification as before:

Definition 7 (Lifted specification). For ¢ = (AVOID, REACH), we define
v = (AVOIDp,REACHpg) with AVOIDg = {b | b N AVOID # 0}, and
REACHg = {b| b C REACH}.

We obtain the following lemma, which follows from the fact that almost-sure
reachability is a graph property?.

Lemma 2. If belief b is winning in the POMDP P for ¢, then the support
supp(b) is winning in the belief-support MDP Pg for ¢p.

Lemma 2 yields an equivalent reformulation of Problem 1 for belief supports:

Problem 1 (equivalent): Given a POMDP P, belief b, and specification
, decide whether supp(b) is winning for ¢ 5 in the belief-support MDP Pp.

3 Winning Regions

This section provides the observations on winning regions, a key concept for this
paper. An important consequence of Lemma 2 and the reformulation of Prob-
lem 1 to the belief-support MDP is that the initial distribution of the POMDP
is no longer relevant. Winning policies for individual beliefs may be composed
to a policy that is winning for all of these beliefs, using the individual action
choices.

Lemma 3. If the policies o and o’ are winning for the belief supports b and V',
respectively, then there exists a policy o’ that is winning for both b and b'.

While this statement may seem trivial on the MDP (or equivalently on beliefs),
we notice that it does not hold for POMDP states. As a natural consequence,
we are able to consider winning beliefs without referring to a specific policy.

Definition 8 (Winning region). Let o be a policy. A set W7 C B of belief
supports is a winning region for ¢ and o, if o is winning from each b € W7. A
set W, C B is a winning region for ¢, if every b € W, is winning. The region

containing all winning beliefs is the maximal winning region®.

2 Although the probabilities are not relevant to compute almost-sure reachabil-
ity, it is important to notice that almost-sure reachability is different from sure-
reachability [5]: For almost-sure reachability, there can be an infinite path that
never reaches the target, as long as the probability mass over all those paths is
0. Almost-sure reachability can, however, be expressed as sure-reachability in a par-
ticular game-setting [47].

3 In some literature, winning region always refers to a mazimal winning region.

Enforcing Almost-Sure Reachability in POMDPs 609

Observe that the maximal winning region in MDPs exists for qualitative reach-
ability, but not for quantitative reachability, which we do not consider here.

Problem 2: Given a POMDP P and a specification ¢, find the maximal
winning region W,,.

Using this definition of winning regions, we are able to reformulate Problem 1
by asking whether the support of some belief b is in the winning region.

Part of Problem 1 was to compute a winning policy. Below, we study the
connection between the winning region and winning policies. We are interested
in subsets of the maximal winning region that exhibit two properties:

Definition 9 (Deadlock-free). A set W of belief-supports W C B is
deadlock-free, if for every b € W, an action o € EnAct(b) ewxists such that
post, (o) CW.

Definition 10 (Productive). A set of belief supports W C B is productive
(towards o set REACHpg), if from every b € W, there exists a (finite) path
7 = boayby ... by, from by to b, € REACHp with b; € W and post,, (o) C W for
alll1 <i<n.

Every productive region is deadlock-free, as REACH-states are absorbing. The
maximal winning region is productive towards REACHg (and thus deadlock-
free) by definition. Intuitively, while a deadlock-free region ensures that one
never has to leave the region, any productive winning region ensures that from
every belief support within this region there is a policy to stay in the winning
region and that can almost-surely reach a REACH-state. In particular, to find a
winning policy (Challenge 1) or for the purpose of safe exploration (Challenge 2),
it is sufficient to find a productive subset of the maximal winning region. We
detail on this insight in Sect. 6.

Problem 3: Given a POMDP P and a specification ¢, find a (large) pro-
ductive winning region W,,.

To allow a compact representation of winning regions, we exploit that for any
belief support & C b it holds that post, (o) C post,(a) for all actions o € Act,
that is, the successors of b’ are contained in the successors of b.

Lemma 4. For winning belief support b, b’ C b is winning.

4 Iterative SAT-Based Computation of Winning Regions

We devise an approach for iteratively computing an increasing sequence of pro-
ductive winning regions. The approach delivers a compact symbolic encoding
of winning regions: For a belief (or belief-support) state from a given winning
region, we can efficiently decide whether the outcome of an action emanating
from the state stays within the winning region.

Key ingredient is the computation of so-called memoryless winning policies.
We start this section by briefly recapping how to compute such policies directly

610 S. Junges et al.

X > | (Ol X P ¥
(a) (b) (c)

Fig. 1. Cheese-Maze example to explain memoryless policies and shortcuts

on the POMDP, before we build an efficient incremental approach on top of this
base method. In particular, we first present a naive iterative algorithm based on
the notion of shortcuts, then describe how to implicitly add shortcuts within the
encoding, and then finally combine the ideas to an efficient algorithm.

4.1 One-Shot Approach to Find Small Policies from a Single Belief

We aim to solve Problem 1 and determine a winning policy. The number of
policies is exponential in the actions and the (exponentially many) belief support
states. Searching among doubly exponentially many possibilities is intractable in
general. However, Chatterjee et al. [15] observe that often much simpler winning
policies exist and provides a one-shot approach to find them. The essential idea
is to search only for memoryless observation-based policies o: {2 — Distr(Act)
that are winning for the (initial) belief support b.

Ezample 1. Consider the small Cheese-POMDP [35] in Fig. 1(a). States are cells,
actions are moving in the cardinal directions (if possible), and observations are
the directions with adjacent cells, e.g., the boldface states 6, 7,8 share an obser-
vation. We set REACH = {10} and AVOID = {9,11}. From belief support
b = {6,8} there is no memoryless winning policy—In states {6,8} we have to
go north, which prevents us from going south in state 7. However, we can find a
memoryless winning policy for {1,5}, see Fig. 1(b).

This problem is NP-complete, and it is thus natural to encode the problem as a
satisfiability query in propositional logic. We mildly adapt the original encoding
of winning policies [15]. We introduce three sets of Boolean variables: A, ,, Cs
and P; ;. If a policy takes action a € Act with positive probability upon obser-
vation z € {2, then and only then, A, , is true. If under this policy a state s € §
is reached from some initial belief support b, with positive probability, then and
only then, C; is true. We define a maximal rank &k to ensure the productivity.
For each state s and rank 0 < j < k, variable P ; indicates rank j for s, that
is, a path from s leads to s’ € REACH within j steps.* A winning policy is
then obtained by finding a satisfiable solution (via a SAT solver) to the conjunc-
tion W5 (b,, k) of the constraints (2a)—(5), where S; = S\ (AVOID U REACH).

4 Notice that a state s can have multiple ‘ranks’ in this encoding. Its rank is the
smallest j such that P; ; is true.

Enforcing Almost-Sure Reachability in POMDPs 611

N Ce (2a) AV Al (2b)

sSEb, 2€82 a€EnAct(z)

The initial belief support is clearly reachable (2a). The conjunction in (2b)
ensures that in every observation, at least one action is taken.

A —Cc. ~ A (C’S/\Aobs(s)7a—> A CS/) (3)

s€ AVOID ses s’ €post (a)
a€EnAct(s)
The conjunction (3) ensures that for any model for these formulas, the set of
states {s € S | Cs = true} is reachable, does not overlap with AVOID, and is
transitively closed under reachability (for the policy described by A,).

N\ Cs— Poy (4)
sES?
/\ -FPso A /\Ps,j<—>< \/ (Aobs(s),a N \/ Py 1)) (5)
s¢REACH sES? acEnAct(s) s’ €post(a)
1<j<k

Conjunction (4) states that any state that is reached almost-surely reaches a
state in REACH, i.e., that there is a path (of length at most) &k to the target.
Conjunctions (5) describe a ranking function that ensures the existence of this
path. Only states in REACH have rank zero, and a state with positive probability
to reach a state with rank j—1 within a step has rank at most j.

By [15, Thm. 2], it holds that the conjunction Wj(b,,k) of the con-
straints (2a)—(5) is satisfiable, if there is a memoryless observation-based pol-
icy such that ¢ is satisfied. If k = |S], then the reverse direction also holds. If
k < |S|, we may miss states with a higher rank. Large values for k are practically
intractable [15], as the encoding grows significantly with k. Pandey and Rinta-
nen [41] propose extending SAT-solvers with a dedicated handling of ranking
constraints.

In order to apply this to small-memory policies, one can unfold log(m) bits of
memory of such a policy into an m times larger POMDP [15,33], and then search
for a memoryless policy in this larger POMDP. Chatterjee et al. [15] include a
slight variation to this unfolding, allowing smaller-than-memoryless policies by
enforcing the same action over various observations.

4.2 TIterative Shortcuts

We exploit the one-shot approach to create a naive iterative algorithm that con-
structs a productive winning region. The iterative algorithm avoids the following
restrictions of the one-shot approach. (1) In order to increase the likelihood of
finding winning policies, we do not restrict ourselves to small-memory policies,
and (2) we do not have to fix a maximal rank k. These modifications allow us
to find more winning policies, without guessing hyper-parameters. As we do not
need to fix the belief-state, those parts of the winning region that are easy to
find for the solver are encountered first.

612 S. Junges et al.

The One-Shot Approach on Winning Regions. To understand the naive iterative
algorithm, it is helpful to consider the previous encoding in the light of Problem
3, i.e., finding productive winning regions. Consider first the interpretation of
the variables. Indeed, observe that we have found the same winning policy for
all states s where C; is true. Consequentially, any belief support b, = {s |
Cs true Aobs(s) = z} is winning,.

Lemma 5. If o is winning for b and b, then o is also winning for bUV'.

This lemma is somewhat dual to Lemma4, but requires a fixed policy. The
constraints (3) and ensure that a winning-region is deadlock-free. The constraints
(4) and (5) ensure productivity of the winning region.

Adding Shortcuts Fxplicitly. The key idea is that we iteratively add short-cuts
in the POMDP that represent known winning policies. We find a winning policy
o for some belief states in the first iteration, and then add a fresh action a,
to all (original) POMDP states: This action leads — with probability one — to
a REACH state, if the state is in the wining belief-support under policy o.
Otherwise, the action leads to an AVOID state.

Definition 11. For POMDP P = (M, {2,0bs) where M = (S, Act, ptinit, P)
and a policy o with associated winning region W, and assuming w.l.o.g., T €
REACH and 1. € AVOID, we define the shortcut POMDP P{c} = (M’, 2, obs)
with M" = (S, Act’, pinit, P’), Act’ = ActU{a,}, P'(s,a) = P(s,a) foralls € S
and a € Act, and P'(s,a,) = {T + [{s} e W], L [{s} € WS]}.

Lemma 6. For a POMDP P and policy o, the (mazimal) winning regions for
P{o} and P coincide.

First, adding more actions will not change a winning belief-support to be not
winning. Furthermore, by construction, taking the novel action will only lead to
a winning belief-support whenever following o from that point onwards would
be a winning policy. The key benefit is that adding shortcuts may extend the
set of belief-support states that win via a memoryless policy. This observation
also gives rise to the following extension to the one-shot approach.

Example 2. We continue with Example 1. If we add shortcuts, we can now find
a memoryless winning policy for b = {6, 8}, depicted in Fig. 1(c).

Iterative Shortcuts to Extend a Winning Region. The idea is now to run the one-
shot approach, extract the winning region, add the shortcuts to the POMDP, and
rerun the one-shot approach. To make the one-shot approach applicable in this
setting, it only needs one change: Rather than fixing an initial belief-support,
we ask for an arbitrary new belief-support to be added to the states that we
have previously covered. We use a data structure Win such that Win(z) encodes
all winning belief supports with observation z. Internally, the data structure
stores maximal winning belief supports (w.r.t. set inclusion, see also Lemma4)
as bit-vectors. By construction, for every b € Win(z), a winning region exists,
i.e., conceptually, there is a shortcut-action leading to REACH.

Enforcing Almost-Sure Reachability in POMDPs 613

Algorithm 1 Naive construction of winning regions

Input: POMDP P, reach-avoid specification ¢
Output: Winning region encoded in Win
Win(z) <« {s € REACH | obs(s) = z} for all z € 2

& — Encode(P, ¢, Win) > Create encoding (2b),(3),(6),(7).
while In s.t. n = & do > Call an SMT solver
Win(z) < Win(z) U{b| s € biff n(Cs)} for all z € 2
P — Ploy} > Extend POMDP with Def. 11

> with o, policy encoded by 7.
& — Encode(P, p, Win)

We extend the encoding (in partial preparation of the next subsection) and
add a variable U, € b that is true if the policy is winning in a belief support
that is not yet in Win(z). We replace (2a) with:

Voo n A (e Voa) n A (e AV)

zEN z€Q2 ses z€Q2 XeEWin(z) seS\X
Win(z)=0 obs(s)=z2 Win(z)#0 obs(s)=z

(6)

For an observation z for which we have not found a winning belief support
yet, finding a policy from any state s with obs(s) updates the winning region.
Otherwise, it means finding a winning policy for a belief support that is not
subsumed by a previous one (6).

Real-Valued Ranking. To avoid setting a maximal path length, we use unbounded
(real) variables R, rather than Boolean variables for the ranking [57]. This relax-
ation avoids the growth of the encoding and admits arbitrarily large ranks with
a fixed-size encoding into difference logic. This logic is an extension to proposi-
tional logic that can be checked using an SMT solver [6].

A C=(V Aaswanr(V) B>R) (7)

SES? acEnAct(s) s’epost (a)

We replace (4) and (5): A state must have a successor state with a lower rank —
as before, but with real-valued ranks (7).

Algorithm. Together, the algorithm is given in Algorithm 1. We initialize the
winning region based on the specification, then encode the POMDP using the
(modified) one-shot encoding. As long as the SMT solver finds policies that are
winning for a new belief-support, we add those belief supports to the winning
region. In each iteration, Win contains a winning region. Once we find no more
policies that extend the winning region on the extended POMDP, we terminate.

The algorithm always terminates because the set of winning regions is finite,
but in general does not solve Problem 2. Formally, the maximal winning region
is a greatest fixpoint [5] and we iterate from below, i.e., the fixpoint that we find

614 S. Junges et al.

will be the smallest fixpoint (of the operation that we implement). However, iter-
ating from above requires to reason that none of the doubly-exponentially many
policies is winning for a particular belief support state; whereas our approach
profits from finding simple strategies early on. Unfolding of memory as discussed
earlier also makes this algorithm complete, yet, suffers from the same blow-up.
A main advantage is that the algorithm often avoids the need for unfolding when
searching for a winning policy or large winning regions.

Next, we address two weaknesses: First, the algorithm currently creates a new
encoding in every iteration, yielding significant overhead. Second, the algorithm
in many settings requires adding a bit of memory to realize behavior where in
a particular observation, we first want to execute an action « and then follow
a shortcut from the state (with the same observation) reached from there. We
adapt the encoding to explicitly allow for these (non-memoryless) policies.

4.3 Incremental Encoding of Winning Regions

In this section, instead of naively adjusting the POMDP, we realize the idea of
adding shortcuts directly on the encoding. This encoding is the essential step
towards an efficacious approach for solving Problem 3. We find winning states
based on a previous solution, and instead of adding actions, we allow the solver
to decide following individual policies from each observation. In Sect.4.4, we
embed this encoding into an improved algorithm.

Our encoding represents an observation-based policy that can decide to take
a shortcut, which means that it follows a previously computed winning policy
from there (implicitly using Lemma 3). In addition to A, o, Cs and R from the
previous encoding, we use the following variables: The policy takes shortcuts in
states s where D, is true. For each observation, we must take the same shortcut,
referred to by a positive integer-valued index I,. More precisely, I, refers to a
shortcut from a previously computed (fragment of a) winning region stored in
Win(z)r.. The policy may decide to switch, that is, to follow a shortcut after
taking an action starting in a state with observation z. If F, is true, the policy
takes some action from z-states and from the next state, we take a shortcut. The
encoding thus implicitly represents policies that are not memoryless but rather
allow for a particular type of memory.
The conjunction of (6) and (8)—-(13) yields the encoding &% (Win):

AV 4.) A A -~Ca-D, (8)

2€82 a€EnAct(z) s€ AVOID
/\ (Cé A Aobs(s),a A= obs(s) - /\ Cs/) (9)
aEEsneAs::t(s) s'€post, ()
/\ (Cs A Aobs(s),oe A Fobs(s) - /\ DS’) (10)
seS s’ €post ()
a€EnAct(s)

Similar to (2b), (3), we select at least one action and AVOID-states should not
be reached (8). States reached are closed under the transitive closure, however,

Enforcing Almost-Sure Reachability in POMDPs 615

Algorithm 2 Naive construction of winning regions with incremental encoding
Input: POMDP P, reach-avoid specification ¢
Output: Winning region encoded in Win
Win(z) <« {s € REACH | obs(s) = z} for all z € 2
& — Encode(P, ¢, Win) > Create encoding (6),(8)—(13).
while In s.t. n = & do > Call an SMT solver
Win(z) < Win(z) U{b| s € biff n(Cs)} for all z € 2
¢ — Encode(P, ¢, Win)

only if we do not switch to taking a shortcut (9). Furthermore, we mark the
states reached after switching (10) and need to select a shortcut for these states.

N (Ds = L) >0) A\ L < [Win(2)] (11)
seS zZ€N
A N D. — L #i (12)

zZEN s€S\Win(z);
0<i<|Win(z)| obs(s)=z

If we reach a state s after switching, then we must pick a shortcut. We can only
pick an index that reflects a found winning region (11). If we pick this shortcut
reflecting a winning region (fragment) for observation z, then we are winning
from the states in Win(z);, but not from any other state s with that observation.
Thus, for s € Win(z);, if we are going to follow any shortcut (that is, D, holds),
we should not pick this particular shortcut encoded by I, (because it will lead
to an AVOID-state). In terms of the policy: Taking this previously computed
policy from state s is not (known to) lead us to a REACH-state (12). Finally,
we update the ranking to account for shortcuts.

/\ Os - (\/ (Aobs(s),oz A (\/ Rs > Rs’)) \ Fobs(s)) (13)
SES? a€EnAct(s) s’ €post(a)

We make a slight adaption to (7): Either we have a successor state with a lower
rank (as before) or we follow a shortcut—which either leads to the target or to
violating the specification (13). We formalize the correctness of the encoding:

Lemma 7. If n E @;’;(Win), then for every observation z, the belief support
b, = {s | n(Cs) = true,obs(s) = z} is winning.

Algorithm 2 is a straightforward adaption of Algorithm 1 that avoids adding
shortcuts explicitly (and uses the updated encoding). As before, the algorithm
terminates and solves Problem 3. We conclude:

Theorem 1. In any iteration, Algorithm 2 computes a productive winning region.

4.4 An Incremental Algorithm

We adapt the algorithm sketched above to exploit the incrementality of modern
SMT solvers. Furthermore, we aim to reduce the invocations of the solver by
finding some extensions to the winning region via a graph-based algorithm.

616 S. Junges et al.

Algorithm 3 Incremental construction of winning regions
Input: POMDP P, reach-avoid specification ¢
Output: Winning region encoded in Win
Win(z) <« {s € REACH | obs(s) = z} for all z € 2
Win < GraphPreprocessing(Win)

Dax — Encodesx (P, ¢, Win) > Create encoding (8)—(13)
Dinc — Encodeinc(P, ¢, Win) > Encode (6)
while 3 s.t. n = @Pax A Pinc do > Call an SMT solver, fix n
do > Extend policy

Dy — NMAza | nU2) An(Aza)} > Part. fix policy
while 35 s.t. n E Paix A Pvar A Dy > Call SMT, fix n

Win(z) «— Win(z) U{B | s € B iff n(Cs)} for all z € 2

Win «— GraphPreprocessing(Win)

Pix — Pax A Encodei1y(12) (P, ¢, Win) > Update: (11),(12)
Dinc — Encodeinc(P, ¢, Win) > Encode (6)

Graph-Based Preprocessing. To reduce the number of SMT invocations, we
employ polynomial-time graph-based heuristics. The first step is to use (fully
observable) MDP model checking on the POMDP as follows: find all states that
under each (not necessarily observation-based) policy reach an AVOID-state
with positive probability, and make them absorbing. Then, we find all states
that under each policy reach a REACH-state almost-surely. Then, we iteratively
search for winning observations and use them to extend the REACH-states. An
observation z is winning, if the belief-support {s | obs(s) = z} is winning. We
start with a previously determined winning region W. We iteratively update W
by adding states b, = {s | obs(s) = z} for some observation z, if there is an
action « such that from every s € b, it holds post (o) € W. The iterative
updates are interleaved with MDP model checking on the POMDP as described
above until we find a fixpoint.

Optimized Algorithm. We improve Algorithm 2 along four dimensions to obtain
Algorithm 3. First, we employ fewer updates of the winning region: We aim to
extend the policy as much as possible, i.e., we want the SMT-solver to find more
states with the same observation that are winning under the same policy. There-
fore, we fix the variables for action choices that yield a new winning policy, and
let the SMT solver search whether we can extend the corresponding winning
region by finding more states and actions that are compatible with the partial
policy. Second, we observe that between (outer) iterations, large parts of the
encoding stay intact, and use an incremental approach in which we first push
all the constraints from the POMDP onto the stack, then all the constraints
from the winning region, and finally a constraint that asks for progress. After
we found a new policy, we pop the last constraint from the stack, add new con-
straints regarding the winning region (notice that the old constraints remain
intact), and push new constraints that ask for extending the winning region
to the stack. We refresh the encoding periodically to avoid unnecessary clutter-
ing. Third, further constraints (1) make the usage of shortcuts more flexible—we

Enforcing Almost-Sure Reachability in POMDPs 617

allow taking shortcuts either immediately or after the next action, and (2) enable
an even more incremental encoding with some minor technical reformulations.
Fourth, we add the graph-preprocessing discussed above during the outer itera-
tion.

5 Symbolic Model Checking for the Belief-Support MDP

In this section, we briefly describe how we encode a given POMDP into a belief-
support MDP to employ symbolic, off-the-shelf probabilistic model checking. In
particular, we employ symbolic (decision-diagram, DD) representations of the
belief-support MDP as we expect this MDP to be huge. Constructing that DD
representation effectively is not entirely trivial. Instead, we advocate construct-
ing a (modular) symbolic description of the belief support MDP. Concretely,
we automatically generate a model description in the MDP modeling language
JANI [13],%> and then apply off-the-shelf model checking on the JANI description.

Conceptually, we create a belief-support MDP with auxiliary states to allow
for a concise encoding.® We use this auxiliary state b to describe for any transition
the conditioning on the observation. Concretely, a single transition P (b, a, b') in
the belief-support MDP is reflected by two transitions P (b, ov, b) and P (b, a1, ')
in our encoding, where o is a unique dummy action. We encode states using
triples (belsup, newobs, lact). belsup is a bit vector with entries for every state
s that we use to encode the belief support. Variables newobs and lact store
an observation and an action and are relevant only for the auxiliary states.
Technically, we now encode the first transition from b with the nondeterministic
action a to b. P(b,a) then yields (with arbitrary positive) probability a new
observation that will reflect the observation obs(b'). We store « and obs(b') in
lact and newobs, respectively. The second step is a single deterministic (dummy)
action updating belsup while taking into account newobs. The step also resets
lact and newobs.

The encoding of the transitions as follows: For the first step, we create nonde-
terministic choices for each action a and observation z. We guard these choices
with z meaning that the edge is only applicable to states having observation z,
i.e., the guard is Vses,obs(s)=z belsup(s). With these guarded edges, we define

the destinations: With an arbitrary” probability p, we go to an observation z; if
there is at least one state in s € belsup which has a successor state s’ € post,(«)
with obs(s’) = 2.

5 The description here works on a network of synchronized state machines as is also
common in the PRISM language.

5 The usage of message passing or indezed assignments in JANT would circumvent the
need for intermediate states, but is to the best of our knowledge not supported by
decision-diagram based model checkers.

7 We leave this a parametric probability in model building to reduce the number of
different probabilities, as this is beneficial for the size of the decision diagram that
STORM constructs — it will only have leafs 0, p, 1. Technically, such MDPs are not
necessarily well-defined but we can employ model checking on the graph structure.

618 S. Junges et al.

The following pseudocode reflects the first step in the transition encoding. The
syntax is as follows: take an action if a Boolean guard is satisfied, then updates
are executed with probability prob. An example for a guard is an observation z.

newobs < z
prob (\/ s belsup(s) ?p:0): !
P(s,0,21)>0 lact «+ «
take o if z then
newobs «— z,

prob (\/ s belsup(s) ?p:0):
P(s,a,2,)>0 lact «— «

The second step synchronously updates each state s’ in the POMDP indepen-
dently: The entry belsup(s’) is set to true if obs(s) = newobs and if there is a
state s currently true in (the old) belsup with s’ € post,(lact). The step thus
can be captured by the following pseudocode for each s':

take o) iftrue then probl : belsup(s') « (\/ P(s,1lact,s’) > 0) Aobs(s’)

Finally, whenever the dummy action « is executed, we also reset the variables
newobs and lact. The resulting encoding thus has transitions in the order of
IS + [£2]? - | max,e o EnAct(z)].

6 Almost-Sure Reachability Shields in POMDPs

In this section, we define a shield for POMDPs — towards the application of safe
exploration (Challenge 2) — that blocks actions which would lead an agent out
of a winning region. In particular, the shield imposes restrictions on policies to
satisfy the reach-avoid specification. Technically, we adapt so-called permissive
policies [21,31] for a belief-support MDP. To force an agent to stay within a
productive winning region W, for specification ¢, we define a (-shield v: b —
24¢ guch that for any winning b for ¢ we have v(b) C {a € Act | post,(a) C
Wy}, ie., an action is part of the shield v(b) if it exclusively leads to belief
support states within the winning region.

A shield v restricts the set of actions an arbitrary policy may take®. We
call such restricted policies admissible. Specifically, let b, be the belief sup-
port after observing an observation sequence 7. Then policy o is v-admissible if
supp(o (1)) C v(b;) for every observation-sequence 7. Consequently, a policy is
not admissible if for some observation sequence 7, the policy selects an action
a € Act which is not allowed by the shield.

Some admissible policies may choose to stay in the winning region without
progressing towards the REACH states. Such a policy adheres to the avoid-part
of the specification, but violates the reachability part. To enforce progress, we

8 While memory policies based on the belief (support) are sufficient to ensure almost-
sure reachability, the goal is to shield other policies that do not necessarily fall in
this restricted class.

Enforcing Almost-Sure Reachability in POMDPs 619

Rocks (6) with ‘fixpoint' shield Refuel (6,8) with ‘fixpoint’ shield Avoid (6,3) with ‘fixpoint' shield
o 1 2 3 a8 o 1 2 3 a4 s L S A R]

RN E5 =5 o B
' d
4
*_, 2 »
U .
¥)
. :
Hy A >
s
.

Fig. 2. Video stills from simulating a shielded agent on three different benchmarks.

adapt a notion of fairness. A policy is fair if it takes every action infinitely often
at any belief support state that appears infinitely often along a trace [5]. For
example, a policy that randomizes (arbitrarily) over all actions is fair-we notice
that most reinforcement learning policies are therefore fair.

Theorem 2. For a p-shield v and a winning belief support b, any fair v-
admissible policy satisfies @ from b.

We give a proof (sketch) in [32, Appendix]. The main idea is to show that
the induced Markov chain of any admissible policy has only bottom SCCs that
contain REACH-states.

Remark 1. If ¢ is a safety specification (where Prg(AVOID) = 0 suffices), we
can rely on deadlock-free winning regions rather than productive winning regions
and drop the fairness assumption.

7 Empirical Evaluation

We investigate the applicability of our incremental approach (Algorithm 3) to
Challenge 1 and Challenge 2, and compare with our adaption and implementa-
tion of the one-shot approach [15], see Sect. 4.1. We also employ the MDP model-
checking approach from Sect. 5. Experiments, videos, source code are archived®.

Setting. We implemented the one-shot algorithm, our incremental algorithm,
and the generation of the JANI description of the belief support MDP into the
model checker STORM [19] on top of the SMT solver z3 [38]. To compare with
the one-shot algorithm for Problem 1, that is, for finding a policy from the
initial state, we add a variant of Algorithm 3. Intuitively, any outer iteration
starts with an SMT-check to see whether we find a policy covering the initial
states. We realize the latter by fixing (temporarily) the Cs-variables. In the first
iteration, this configuration and its resulting policy closely resemble the one-
shot approach. For the MDP model-checking approach, we use STORM (from
the C++4 API) with the dd engine and default settings.

For the experiments, we use a MacBook Pro MV962LL/A, a single core, no
randomization, and use a 6 GB memory limit. The time-out (TO) is 15 min.

9 http://doi.org/10.5281/zenodo.4784940 or on http://github.com/sjunges/shielding-
POMDPs.

http://doi.org/10.5281/zenodo.4784940
http://github.com/sjunges/shielding-POMDPs
http://github.com/sjunges/shielding-POMDPs

620 S. Junges et al.

Baseline. We compare with the one-shot algorithm including the graph-based
preprocessing to identify more winning observations. We use two setups: (1) We
(manually, a-priori) search for optimal hyper-parameters for each instance. We
search for the smallest amount of memory possible, and for the smallest maximal
rank k (being a multiplicative of five) that yields a result. Guessing parameters
as an “oracle” is time-consuming and unrealistic. We investigate (2) the perfor-
mance of the one-shot algorithm by fixing the hyper-parameters to two memory-
states and k = 30. These parameters provide results for most benchmarks.

Benchmarks. Our benchmarks involve agents operating in N XN grids, inspired
by, e.g., [12,15,20,50,51]. See Fig.2 for video stills of simulating the following
benchmarks. Rocks is a variant of rock sample. The grid contains two rocks which
are either valuable or dangerous to collect. To find out with certainty, the rock
has to be sampled from an adjacent field. The goal is to collect a valuable rock,
bring it to the drop-off zone, and not collect dangerous rocks. Refuel concerns a
rover that shall travel from one corner to the other, while avoiding an obstacle
on the diagonal. Every movement costs energy and the rover may recharge at
recharging stations to its full battery capacity E. It receives noisy information
about its position and battery level. Evade is a scenario where a robot needs to
reach a destination and evade a faster agent. The robot has a limited range of
vision (R), but may scan the whole grid instead of moving. A certain safe area
is only accessible by the robot. Intercept is inverse to Fvade in the sense that
the robot aims to meet an agent before it leaves the grid via one of two available
exits. On top of the view radius, the agent observes a corridor in the center of the
grid. Awoid is a related scenario where a robot shall keep distance to patrolling
agents that move with uncertain speed, yielding partial information about their
position The robot may exploit their predefined routes. Obstacle contains static
obstacles where the robot needs to reach the exit. Its initial state and movement
are uncertain, and it only observes whether the current position is a trap or exit.

Results for Challenge 1. Table1 details the numerical benchmark results. For
each benchmark instance (columns), we report the name and relevant charac-
teristics: the number of states (|S|), the number of transitions (#Tr, the edges
in the graph described by the POMDP), the number of observations (|{2|), and
the number of belief support states (|b|). For the incremental method, we pro-
vide the run time (Time, in seconds), the number of outer iterations (#Iter.)
in Algorithm 3, and the number of invocations of the SMT solver (#solve), and
the approximate size of the winning region (|WW|). We then report these numbers
when searching for a policy that wins from the initial state. For the one-shot
method, we provide the time for the optimal parameters (on the next line)-TOs
reflect settings in which we did not find any suitable parameters, and the time
for the preset parameters (2,30), or N/A if no policy can be found with these
parameters. Finally, for (belief-support) MDP model checking, we give only the
run times.

The incremental algorithm finds winning policies for the initial state without
guessing parameters and is often faster versus the one-shot approach with an

Enforcing Almost-Sure Reachability in POMDPs 621

Table 1. Numerical results towards solving Problem 1 and Problem 3.

Inst. | Rocks (N) Refuel (N,E) | Evade (N,R) | Avoid (N,R) |Intercept (N,R) | Obstacle (N)
4 6 6,8 7,7 6,2 7,2 6,3 7,4 71 7,2 6 8
|S| 331 | 816 270 302 4232|8108 5976 13021 | 4705 4705 37 65
#Tr 3484 | 7292 1301 1545 28866 | 57570 | 14373 | 33949 |18049 | 18049 |224 |421
[92| 65 74 36 35 2202 | 4172 3300 | 8584 2002 2598 4 4
|b] 3.5E5 | 7.7E25 | 5.6E14 | 7.4£19 | 1.1E8 |4.4r11 | 1.1E15 | 2.917 | 6.4E10 | 2.7E9 1.1E9 | 2.917
. | Time |19 753 6 3 142 613 167 745 116 86 2 30
_ ‘g #lter. | 36 284 40 30 4 6 3 4 8 8 68 150
g 2‘ #solve | 1702 | 13650 | 1023 528 681 1129 629 1027 1171 976 839 4291
g W] 3.5E5 | 7.7825 | 1.2E11 | 2.18 |1.0E8 |4.2811 | 1.1E15 | 2.9817 | 9.2E4 | 2.9r4 4.1E7 | 3.8E14
4 Time |17 226 2 2 49 576 10 40 11 2 <1 <1
£F | #lter. 29 |65 2 4 1 1 1 1 2 1 0 |12
E | #solve | 1215 2652 |62 80 1 1 1 1 81 1 114 229
W] 4484 | 1.8813 |8.486 |3.7E4 |5.0e7 |1.0E11 |3.7E5 |6.9810|6.2E3 |2.1E3 4.1E5 | 4.5E9
8 8 Time | 120 TO 2 <1 12 270 22 53 8 1 1 195
G 0 [Memk 210 |? 2,15 |215 (120 1,30 [1,30 |1,25 |2,10 |1,10 |6,10 |5,50
=& |Time |TO |TO |11 37 TO |TO |TO | TO |28 18 N/A | N/A

MDP | Time |400 |TO

219 [MOo [TO |TO [TO |TO TO [TO [6 |MO

oracle providing optimal parameters, and significantly faster than the one-shot
approach with reasonably fixed parameters. In detail, Rocks shows that we can
handle large numbers of iterations, solver invocations, and winning regions. The
incremental approach scales to larger models, see e.g., Avoid. Refuel shows a
large sensitivity of the one-shot method on the lookahead (going from 15 to 30
increases the runtime), while Evade shows sensitivity to memory (from 1 to 2).
In contrast, the incremental approach does not rely on user-input, yet deliv-
ers comparable performance on Refuel or Awvoid. It suffers slightly on Fvade,
where the one-shot approach has reduced overhead. We furthermore conclude
that off-the-shelf MDP model checking is not a fast alternative. Its advantage
is the guarantee to find the maximal winning region, however, for our bench-
marks, maximal winning regions (empirically) coincide with the results from the
incremental fixpoint approach.

Results for Challenge 2. Winning regions obtained from running incrementally
to a fixpoint are significantly larger than when running them only until an initial
winning policy is found (cf. the table), but requires extra computational effort.

If a shielded agent moves randomly through the grid-worlds, the larger win-
ning regions indeed induce more permissiveness, that is, freedom to move for the
agent (cf. the videos, Fig. 2). This observation can also be quantified. In Table 2,
we compare the two different types of shields. For both, we give average and stan-
dard deviation over permissiveness over 250 paths. We choose to approximate per-
missiveness along a path as the number of cumulative actions allowed by the per-
missive scheduler along a path, divided by the number of cumulative actions avail-
able in the POMDP along that path. As the shield is correct by construction, each
run indeed never visits avoid states and eventually reaches the target (albeit after
many steps). This statement is not true for the unshielded agents.

622

8

We

S. Junges et al.

Table 2. Quantification of permissiveness using fraction of allowed actions.

Inst. Rocks (N) | Refuel (N,E) | Evade (N,R) | Avoid (N,R) | Intercept (N,R) | Obstacle (N)
4 6 6,8 7 6,2 7,2 6,3 7.4 7,1 7,2 6 8
avg | 0.85|0.81 |0.43 0.36 |0.62 0.50 |0.51 |0.56 |0.45 |0.47 0.68 | 0.74
stdev | 0.066 | 0.070 | 0.046 | 0.014 | 0.046 | 0.043 | 0.013|0.019 |0.037 | 0.047 0.040 | 0.047
avg |0.88 | 0.89 |0.77 |0.73 |0.86 0.87 |0.78 [0.80 |0.78 |0.84 0.73 | 0.73

av]
fixpoint
P stdev | 0.060 | 0.037 | 0.037 | 0.024 |0.015|0.016 | 0.015|0.017 |0.0780.070 0.036 | 0.059

initial

Conclusion

provided an incremental approach to find POMDP policies that satisfy

almost-sure reachability specifications. The superior scalability is demonstrated
on a string of benchmarks. Furthermore, this approach allows to shield agents in
POMDPs and guarantees that any exploration of an environment satisfies the
specification, without needlessly restricting the freedom of the agent. We plan to
investigate a tight interaction with state-of-the-art reinforcement learning and
quantitative verification of POMDPs. For the latter, we expect that an explicit
approach to model checking the belief-support MDP can be feasible.

References

10.

. Akametalu, A.K., Kaynama, S., Fisac, J.F., Zeilinger, M.N., Gillula, J.H., Tomlin,

C.J.: Reachability-based safe learning with Gaussian processes. In: CDC, pp. 1424~
1431. IEEE (2014)

Alshiekh, M., Bloem, R., Ehlers, R., Konighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI. AAAT Press (2018)

. Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing fixed-size stochastic con-

trollers for POMDPs and decentralized POMDPs. Auton. Agents Multi Agent
Syst. 21(3), 293-320 (2010). https://doi.org/10.1007/s10458-009-9103-z

Baier, C., Grofler, M., Bertrand, N.: Probabilistic w-automata. J. ACM 59(1),
1:1-1:52 (2012)

Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825-885. IOS Press (2009)

. Bertoli, P., Cimatti, A., Pistore, M.: Towards strong cyclic planning under partial

observability. In: ICAPS, pp. 354-357. AAAT (2006)

Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
I0S Press (2009)

Bloem, R., Jensen, P.G., Konighofer, B., Larsen, K.G., Lorber, F., Palmisano, A.:
It’s time to play safe: Shield synthesis for timed systems. CoRR abs/2006.16688
(2020)

Bloem, R., Koénighofer, B., Kénighofer, R., Wang, C.: Shield synthesis: runtime
enforcement for reactive systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 533-548. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0_51

https://doi.org/10.1007/s10458-009-9103-z
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1007/978-3-662-46681-0_51

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Enforcing Almost-Sure Reachability in POMDPs 623

Bork, A., Junges, S., Katoen, J.-P., Quatmann, T.: Verification of indefinite-horizon
POMDPs. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp.
288-304. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_16
Brockman, G., et al.: Open AI Gym. CoRR abs/1606.01540 (2016)

Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151-168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5_9

Burns, B., Brock, O.: Sampling-based motion planning with sensing uncertainty.
In: ICRA, pp. 3313-3318. IEEE (2007)

Chatterjee, K., Chmelik, M., Davies, J.: A symbolic SAT-based algorithm for
almost-sure reachability with small strategies in POMDPs. In: AAAI, pp. 3225—
3232. AAAT Press (2016)

Chatterjee, K., Chmelik, M., Gupta, R., Kanodia, A.: Qualitative analysis of
POMDPs with temporal logic specifications for robotics applications. In: ICRA,
pp. 325-330. IEEE (2015)

Chatterjee, K., Chmelik, M., Gupta, R., Kanodia, A.: Optimal cost almost-sure
reachability in POMDPs. Artif. Intell. 234, 26-48 (2016)

Chatterjee, K., Doyen, L., Henzinger, T.A.: Qualitative analysis of partially-
observable Markov decision processes. In: Hlinény, P., Kucera, A. (eds.) MFCS
2010. LNCS, vol. 6281, pp. 258-269. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15155-2_24

Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A STORM is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunc¢ak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592-600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9_31

Dietterich, T.G.: The MAXQ method for hierarchical reinforcement learning. In:
ICML, pp. 118-126. Morgan Kaufmann (1998)

Drager, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive con-
troller synthesis for probabilistic systems. In: Abrahém, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 531-546. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_44

Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward
safe control through proof and learning. In: AAAI, pp. 6485—6492. AAAI Press
(2018)

Garcia, J., Ferndndez, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16, 1437-1480 (2015)

Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-
regular objectives in model-free reinforcement learning. In: Vojnar, T., Zhang,
L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395-412. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17462-0_27

Hasanbeig, M., Abate, A., Kroening, D.: Cautious reinforcement learning with
logical constraints. In: AAMAS, pp. 483-491. IFAAMAS (2020)

Hausknecht, M.J., Stone, P.: Deep recurrent Q-learning for partially observable
MDPs. In: AAAI, pp. 29-37. AAAT Press (2015)

Hauskrecht, M.: Value-function approximations for partially observable Markov
decision processes. J. Artif. Intell. Res. 13, 33-94 (2000)

Horak, K., Bosansky, B., Chatterjee, K.: Goal-HSVI: heuristic search value itera-
tion for goal POMDPs. In: IJCAI, pp. 4764-4770. ijcai.org (2018)

Jaakkola, T.S., Singh, S.P., Jordan, M.I.: Reinforcement learning algorithm for
partially observable Markov decision problems. In: NIPS, pp. 345-352 (1994)

https://doi.org/10.1007/978-3-030-59152-6_16
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-642-15155-2_24
https://doi.org/10.1007/978-3-642-15155-2_24
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-54862-8_44
https://doi.org/10.1007/978-3-642-54862-8_44
https://doi.org/10.1007/978-3-030-17462-0_27

624

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.
47.

48.

49.

50.

S. Junges et al.

Jansen, N., Konighofer, B., Junges, S., Serban, A., Bloem, R.: Safe reinforcement
learning using probabilistic shields (invited paper). In: CONCUR. LIPIcs, vol. 171,
pp. 3:1-3:16. Schloss Dagstuhl - LZI (2020)

Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained
reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 130-146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9_8

Junges, S., Jansen, N., Seshia, S.A.: Enforcing almost-sure reachability in
POMDPs. CoRR abs/2007.00085 (2020)

Junges, S., Jansen, N., Wimmer, R., Quatmann, T., Winterer, L., Katoen, J.P.,
Becker, B.: Finite-state controllers of POMDPs using parameter synthesis. In: UAI,
pp. 519-529. AUAI Press (2018)

Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1-2), 99-134 (1998)

Littman, M.L., Cassandra, A.R., Kaelbling, L.P.: Learning policies for partially
observable environments: Scaling up. In: ICML, pp. 362-370. Morgan Kaufmann
(1995)

Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and infinite-horizon partially observable Markov decision problems. In: AAAI, pp.
541-548. AAAT Press (1999)

Meuleau, N., Kim, K.E., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of finite policies. In: UAI, pp. 417-426. Morgan Kaufmann
(1999)

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3-24

Nam, W., Alur, R.: Active learning of plans for safety and reachability goals with
partial observability. IEEE Trans. Syst. Man Cybern. Part B 40(2), 412-420 (2010)
Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real-Time Syst. 53(3), 354-402 (2017). https://doi.org/10.
1007/s11241-017-9269-4

Pandey, B., Rintanen, J.: Planning for partial observability by SAT and graph
constraints. In: ICAPS, pp. 190-198. AAAT Press (2018)

Pecka, M., Svoboda, T.: Safe exploration techniques for reinforcement learning -
an overview. In: Hodicky, J. (ed.) MESAS 2014. LNCS, vol. 8906, pp. 357-375.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13823-7_31

Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: an anytime algo-
rithm for POMDPs. In: IJCAI, pp. 1025-1032. Morgan Kaufmann (2003)

Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46-57. IEEE CS (1977)
Poupart, P., Boutilier, C.: Bounded finite state controllers. In: NIPS, pp. 823-830.
MIT Press (2003)

Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)

Raskin, J., Chatterjee, K., Doyen, L., Henzinger, T.A.: Algorithms for omega-
regular games with imperfect information. Log. Methods Comput. Sci. 3(3) (2007)
Shani, G., Pineau, J., Kaplow, R.: A survey of point-based POMDP solvers. Auton.
Agent. Multi-Agent Syst. 27(1), 1-51 (2013). https://doi.org/10.1007/s10458-012-
9200-2

Silver, D., Veness, J.: Monte-Carlo planning in large POMDPs. In: NIPS, pp. 2164—
2172 (2010)

Smith, T., Simmons, R.: Heuristic search value iteration for POMDPs (2004)

https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s11241-017-9269-4
https://doi.org/10.1007/s11241-017-9269-4
https://doi.org/10.1007/978-3-319-13823-7_31
https://doi.org/10.1007/s10458-012-9200-2
https://doi.org/10.1007/s10458-012-9200-2

51.

52.

53.

54.

55.

56.

57.

58.

Enforcing Almost-Sure Reachability in POMDPs 625

Svorenova, M., et al.: Temporal logic motion planning using POMDPs with parity
objectives: case study paper. In: HSCC, pp. 233-238. ACM (2015)

Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cam-
bridge (2005)

Turchetta, M., Berkenkamp, F., Krause, A.: Safe exploration for interactive
machine learning. In: NeurIPS, pp. 2887-2897 (2019)

Walraven, E., Spaan, M.T.J.: Accelerated vector pruning for optimal POMDP
solvers. In: AAAI, pp. 3672-3678. AAAI Press (2017)

Wang, Y., Chaudhuri, S., Kavraki, L.E.: Bounded policy synthesis for POMDPs
with safe-reachability objectives. In: AAMAS, pp. 238-246. IFAAMAS (2018)
Wierstra, D., Foerster, A., Peters, J., Schmidhuber, J.: Solving deep memory
POMDPs with recurrent policy gradients. In: de S&, J.M., Alexandre, L.A., Duch,
W., Mandic, D. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 697-706. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-74690-4_71

Wimmer, R., Jansen, N., Abrahé.m, E., Katoen, J.P., Becker, B.: Minimal coun-
terexamples for linear-time probabilistic verification. Theor. Comput. Sci. 549,
61-100 (2014)

Winterer, L., Wimmer, R., Jansen, N., Becker, B.: Strengthening deterministic
policies for POMDPs. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D.
(eds.) NFM 2020. LNCS, vol. 12229, pp. 115-132. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-55754-6_7

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-74690-4_71
https://doi.org/10.1007/978-3-030-55754-6_7
https://doi.org/10.1007/978-3-030-55754-6_7
http://creativecommons.org/licenses/by/4.0/

	Enforcing Almost-Sure Reachability in POMDPs
	1 Introduction
	2 Preliminaries and Formal Problem
	3 Winning Regions
	4 Iterative SAT-Based Computation of Winning Regions
	4.1 One-Shot Approach to Find Small Policies from a Single Belief
	4.2 Iterative Shortcuts
	4.3 Incremental Encoding of Winning Regions
	4.4 An Incremental Algorithm

	5 Symbolic Model Checking for the Belief-Support MDP
	6 Almost-Sure Reachability Shields in POMDPs
	7 Empirical Evaluation
	8 Conclusion
	References

