
A Maple Toolchain for Rigid Body Dynamics of
Serial, Hybrid and Parallel Robots

Moritz Schappler, Tim-David Job, and Tobias Ortmaier

Institute of Mechatronic Systems, Leibniz University Hannover, Germany
{moritz.schappler,tim-david.job,tobias.ortmaier}@imes.uni-hannover.de

Abstract. A newMaple toolchain for generating rigid body dynamics in
symbolic form for robot manipulators is presented. The peculiarity com-
pared to existing tools lies in the framework of Bash scripts controlling
the full workflow of the toolchain with a high degree of automation. The
optimized Matlab code generated by Maple is automatically converted
to function files with proper documentation and input assertions. This
renders manual post-processing of the results unnecessarily. The focus
of the paper is on the implemented unit-testing framework according to
the method of test-driven development. By providing the test framework
together with the generated code in a stand-alone version, a good test
coverage and a good software quality can be achieved. The results of the
open source project provide a basis for dynamics simulations for robot
dimensional synthesis or in model-based control of robot manipulators in
research or in industrial context. The general software approach can be
applied to other fields where theoretical models are derived with Maple.

Keywords: Rigid body dynamics · Robotics · Symbolic code · Toolchain
· Test-driven development · Maple computer algebra system

1 Introduction and State of the Art

Using a symbolic rather than numeric implementation of dynamics models for
robots is highly beneficial regarding the computational efficiency [9]. Some as-
pects of the models can only be obtained in a useful way via symbolic derivation,
such as the identification model [12]. Using models in simulations for a compar-
ison of different robots requires an automatic, general and efficient approach.

To be able to find the robot that is suited best for a given task, first a set
of robot kinematics has to be created, which is the outcome of the structural
synthesis. The structural synthesis of serial robots can be performed using screw
theory [17], Denavit-Hartenberg parameters [23] or variants thereof, such as the
traveling coordinate system method [10]. The synthesis of serial chains is mostly
discussed in literature in the context of parallel robots, which contain several
serial kinematic leg chains connected to a moving platform. Leg chains are gen-
erated with the virtual-chain approach and screw theory [15] or using the theory
of linear transformations and evolutionary morphology [11]. Following [19, p.25]
(for parallel robots), for the assessment of the robot’s performance, the dimen-
sions of the design parameters (e.g. lengths of the links) are as important as

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

2 M. Schappler et al.

the kinematic structure itself (i.e. number, type and alignment of joints). This
leads to the requirement of a combined robot synthesis, as proposed in [16] for
parallel robots, to determine which robot structure is suited best for a given
task. A dimensional synthesis, i.e. an optimization of the robot’s dimensions,
has to be performed for all possible structures. First investigations on the com-
bined synthesis for serial robots [23] have shown that the approach is feasible
in principle. However, the practicability of such an extensive optimization of
hundreds of robots with several optimization parameters each and highly non-
linear models strongly depends on the implementation. The robot models and
the objective and constraints function within the optimization problem need an
efficient implementation to be able to generate substantiated results.

A simulation of the robot dynamics model (i.e. the relation of force and mo-
tion) has to be evaluated in each iteration of the aforementioned optimization.
The rigid body dynamics for robots itself is a mathematical problem that can
be considered solved in that context for serial [12], hybrid [13,26,9,24,6] and
parallel robots [19,3,5,1]. For serial kinematic chains the Newton-Euler algo-
rithm is mainly used in software dedicated for robot dynamics [13,14,24]. Hybrid
robots, i.e. serial robots with additional closed kinematic loops, are mainly mod-
eled based on the serial chain dynamics with additional variational principles
to take closed loops into account [24] (D’Alembert, Jourdain). For parallel
robots, different definitions of the system coordinates are possible based on these
principles of energy equivalence [3,5,1].

There exist a variety of software toolchains for modeling dynamics equa-
tions for robot manipulators. A probably non-exhaustive list contains the sym-
bolic tools Robotran [9,24,6], SYMORO [13], openSYMORO [14], MapleSim
[31], Neweul-M2 [18], the Peter Corke Matlab toolbox [4] and some open source
toolboxes from single research projects, such as FloBaRoID [2], SymPyBotics
(or SageRobotics [27]) and the dVRK Dynamic Model Identification Package
[30]. Several numeric tools are available for simulating the inverse and forward
dynamics of general multibody systems, which includes the robot manipula-
tors in this work. Prominent examples are MSC Adams [20], Matlab Simscape
Multibody (SimMechanics) [29], the Rigid Body Dynamics Library [8], based on
Featherstone’s theory [7], and Drake [28]. Some symbolic programs also provide
the possibility for a numeric simulation of the systems, such as MapleSim [31].

These toolchains do not directly meet the requirements for creating a model
database required for the combined synthesis. Extensions regarding batch-pro-
cessing, unit-testing and post-processing are required, since most tools require
user interaction, which is not feasible for hundreds of robots. A key method for
ensuring software quality is systematic testing using unit testing frameworks,
which is central to test-driven development. This is often disregarded in soft-
ware for scientific projects [32]. Available toolchains presumably all give correct
results, but it is not always possible to completely verify this by the end user.
Open source tools, such as [27,14,2], typically come explicitly without warranty
raising the need for additional validation of the results. Misinterpretation of
interfaces of not well documented, but still error-free, software modules may

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

Maple Toolchain for Robot Rigid Body Dynamics 3

introduce errors in the further use within a bigger project. Creating a robot
database with the claim to include every unique robot structure will generate all
possible test cases and will raise all existing software bugs. Not using a proper
testing environment therefore can put unnecessary risks on projects relying on
the results of the software tools.

To encounter these issues for the case of robot dynamics for the proposed
application, a new toolchain1 was developed. It is based on Maple as symbolic
engine and Bash scripts for an automation of the model generation process. This
provides the flexibility to test the implementation of different algorithms, e.g.
an efficient formulation for parallel robots [1] or an unconventional method for
hybrid robot dynamics [25]. The contributions of this paper are
– a comparison of existing tools for the symbolic form of robot dynamics,
– elaborations on performing unit testing for parts of theoretical models at the

example of robot dynamics,
– details on the implementation of the new toolchain, which may be used to

structure similar programs in other fields,
– the application of the toolchain to a robot model database.2
The remainder of the paper is structured as follows. An overview of existing

programs is given Sec. 2. Theoretical fundamentals of robot dynamics are sum-
marized in Sec. 3 with a focus on how to perform unit testing. The structure of
the toolchain is presented in Sec. 4. The robot database as application example
is introduced in Sec. 5 and Sec. 6 concludes the paper.

2 Comparison of Existing Toolboxes for Robot Dynamics

As sketched in the previous section, several tools already exist for generating
the rigid body dynamics of robots in symbolic form. An extensive comparison
of the tools is given in Table 1. Some older software packages, e.g. referenced in
[27] are left out of the comparison due to their presumed deprecation. Commer-
cial software, such as Robotran and MapleSim, is available at a mature stage of
development. Since OpenSymoro is publicly available, the necessity escapes to
use Symoro+ with similar features. A variety of open source projects for robot
manipulators is implemented in Python using the sympy library as computer al-
gebra system (CAS) which helps avoiding licensing costs for software like Maple,
Mathematica, MapleSim and Matlab. The drawback of open source tools is the
dependency on single researchers supporting them, as can be seen by the status
“unmaintained” of SymPyBotics or the GitHub list of issues of OpenSymoro.

Robotran, MapleSim and Neweul-M2 allow the derivation of multibody dy-
namics of general mechanisms, which includes both tree-like and closed-loop sys-
tems and therefore all types of common robot manipulators. The Python tools
mainly focus on robotic applications, e.g. only serial robots [27] or additionally
robot kinematics with closed loops [14,30]. Some have very specific focus, such
1 Available under free license at https://github.com/SchapplM/robsynth-modelgen.
2 The database is available at https://github.com/SchapplM/robsynth-serroblib for
serial robots, ...-serhybroblib for hybrid and ...-parroblib for parallel robots.

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

4 M. Schappler et al.

as humanoid robots [2] or dynamics model identification [30,2]. Parallel robots
(PKM, parallel kinematic machines) require a specific modeling approach (see
Sec. 3.3), which is not available in the open source tools, but can be obtained
by MapleSim or Robotran. If a general closed-loop robot model not in minimal
(platform) coordinates is used instead, this leads to a less efficient implementa-
tion, since coordinates of platform coupling joints remain in the equations.

Some multibody tools have graphical user interfaces that reduce the need of
expert knowledge. For the batch creation of a robot database, this strength can
become a weakness, if it is not possible to automatically generate the dynamics
equations from a standardized description of the robot. A new toolchain was
developed, partly to avoid dependencies on dedicated commercial tools (while
allowing the dependency on a commercial CAS), partly due to the fact that most
open source tools were not accessible at the begin of the work in 2015. Since
an institutional license was available, the core tools of the proposed toolchain
are Maple for the symbolics engine and Matlab for the model evaluation and
simulations. This design decision distinguishes the proposed toolchain from the
Python toolboxes which have no commercial dependencies.

Table 1. Comparison of different tools for symbolic robot dynamics (legend below)

Name Ref. Area License CAS IM FlB Year UI
(1) (2) (3) (4) (5) (6)

Robotran [6] Multibody Comm. (7) MBS (8) yes yes 1990 GUI/CMD
Robotica [22] OL Rob. OSS Mathematica no no 1994 CMD+Vis.
Symoro+ [13] OL/CL Rob. Comm. Mathematica yes no 1997 GUI
MapleSim [31] Multibody Comm. Maple ? ? 2000 GUI
Neweul-M2 [18] Multibody Pr. (9) Matlab no yes 2007 GUI/CMD
ParaDyn [5] OL/PKM Pr. (10) Maple yes no 2009 CMD

RVC toolbox [4] OL Rob. OSS Matlab no no 2012 CMD+Vis.
OpenSymoro [14] OL/CL Rob. OSS Python yes yes 2014 CMD+Vis.
SymPyBotics [27] OL Rob. OSS Python yes no 2014 CMD+Vis.
FloBaRoID [2] OL Rob. OSS Python yes yes 2016 CMD+Vis.
dVRK DMI [30] OL/CL Rob. OSS Python yes no 2019 CMD
Proposed OL/CL/PKM OSS Maple yes yes 2019 CMD

Legend for Table 1 (referenced by round brackets in table headings and rows):
1: Area of application: multibody: general m.b. dynamics; OL Rob.: open loop robots;
CL Rob.: closed-loop robots; PKM: parallel kinematic machines (parallel robots).
2: OSS: Open source software; comm.: commercial software; pr.: proprietary tool.
3: Additional license required for Mathematica, Matlab Symbolics Toolbox or Maple.
4: Identification model of the inverse dynamics (linear in the dynamics parameters).
5: Floating base model for the inverse dynamics (non-fixed base link with six DoF).
6: UI: User interface; GUI: graphical; CMD: command line; Vis.: visualisation of the
results (but no visual interface for input).
7: Free for teaching and academic research.
8: Dedicated CAS for multibody systems (see [24]), accessed via web-based service.
9: Access to the software provided for project partners from industry and academia.
10: The tool was used for several projects from 2009 to 2017 at the author’s institute.

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

Maple Toolchain for Robot Rigid Body Dynamics 5

(a) 6-DoF (b) 4-DoF (c) 3-DoF
industrial robot robot palletizer parallel robot

q1

q2

q3
q4

q5

q6

q1

θ4, q2
q3

q4
θ7

θ5

θ8 θ6
θ9

θ2θ1, θ3

q1

θ2

θ3

θ4

θ5

q2

θ6

θ7

q3
x

x

x

Fig. 1. Examples of different types of robots with annotation of coordinates q, θ, x.
Cylinders and cuboids mark revolute and prismatic joints.

3 Robot Dynamics and Unit Testing Framework

The following section contains a high-level summary of the kinematic and dynam-
ics models of the three types of robots implemented in the proposed toolchain.
The modeling usually starts from a kinematic sketch of the robot, which may
originate from an existing CAD model. Detailed derivations and explanations
can be obtained from standard textbooks, such as [19,12,3,24], and the research
papers that are referenced. The theory is the basis for the unit testing framework
and therefore every part of the model (structured into numbered properties) is
followed by an elaboration on how to perform a unit test on it. It is assumed
that the model is derived symbolically but tests are performed numerically, since
the output of the tool are functions which implement single terms of the model.
A symbolic check for equality of two expressions is often not feasible, especially
if the derivation is by different approaches. The structure of this section enables
to follow the transfer from theory to test cases and allows an adaption of the
approach to theoretical models from other fields. The theoretical framework is
restricted to rigid body dynamics for three different types of robots, which each
require a specific approach to derive efficient models. The three types of robots
are sketched in Fig. 1. Serial robots (Fig. 1,a) are discussed in Sec. 3.1, serial-
hybrid robots (Fig. 1,b) in Sec. 3.2 and parallel robots (Fig. 1,c) in Sec. 3.3.

3.1 Serial-Link Robots

Fundamentals for serial robots are taken from the standard textbook [12]. The
derivation of the theory is structured according to the basic dynamics principles
of Newton-Euler and Lagrange, which start with the relations of position
and velocity (kinematics), over the definition of energy to forces (dynamics).

The following list of examples is not exhaustive for serial robots, but gives
an impression on how to prove the validity of the results for all steps of the
derivation of the kinematic and dynamics equations. The theoretical properties
and test cases of the models are partly summarized in Fig. 2. For a good test
coverage, each property block should have a dashed connection to a test case
block.

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

6 M. Schappler et al.

Property 1.
Kinematics

Property 2.
Velocity

Property 5.
Cut Force

Energy

Acceleration

Property 3.
Dynamics
(Lagrange)

Property 3.
Dynamics
(Newton-Euler)

Property 6.
Jacobian
and Force

Test 1.
Kinematics

Test 2.
Diff. Kin.

Test 3, 4, 5.
Dynamics

Test 6, 7. Dynamics and Energy

Test 10.
Cut Forces

Fig. 2. Overview of the properties and tests for serial robots

Property 1. The end effector pose x can be calculated via x=f(q) for a given
vector of n joint coordinates q. The forward kinematics is implemented using
homogenous transformation matrices and the modified Denavit-Hartenberg pa-
rameters from [12] for a minimal-parameter representation of the joint transfor-
mations. The pose x is without loss of generality a vector of position and three
Euler angles expressing orientation.

Test 1. The function f(q) can be validated graphically with plots, such as
Fig. 1,a. A CAD model can facilitate this, if available, but this is not mandatory.

Property 2. The velocity of the end effector follows the linear relation v=Jg(q)q̇
and ẋ=J(q)q̇, which represents the differential kinematics. The velocity v con-
tains linear velocity and angular velocity, while ẋ contains the time derivative of
the representation of orientation instead of the angular velocity. The geometric
Jacobian matrix Jg(q) can be derived by a geometric formula or by performing
the partial derivative Jg=∂v(q, q̇)/∂q̇ based on the kinematics of velocities of
the rigid bodies in the robot. The latter is beneficial for hybrid robots.

Test 2. The implementation of the Jacobian can be tested as follows: Let q1 and
∆q be arbitrary vectors in IRn with ‖∆q‖ � 1 and q2=q1+∆q. The pose dif-
ference ∆x=x2−x1=f(q2)−f(q1) can also be obtained by using the Jacobian
with ∆x′=J(q1)∆q. The dash only denotes the second implementation. If the
implementation of the Jacobian is correct, we have ‖∆x−∆x′‖<ε. This relation
is trivial from a mathematical point of view, since the test only uses differential
calculus from the derivation of J in property 2. However, this has to be ex-
plicitely implemented as a test to ensure the correctness of the implementation
of J(q). Throughout this paper the threshold ε≈ 10−9 is used to check for nu-
meric equality. This accounts for linearization error within differential relations
and rounding errors of floating point numbers in the numerous operations.

Property 3. The inverse dynamics equation τ=M(q)q̈+c(q, q̇)+g(q) for the
rigid body robot model in joint coordinates of the robot gives torques τ of the
joints required to perform the motion q, q̇, q̈. The general equation describes
both prismatic and revolute joints. The inertia matrix M takes inertial cou-
plings into account, c denotes the vector of centrifugal and Coriolis forces and

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

Maple Toolchain for Robot Rigid Body Dynamics 7

g contains the influence of gravitational effects. The equation can be obtained
either by the Newton-Euler algorithm or the Lagrangian equations of the second
kind.

Test 3. Both methods are implemented in the proposed toolbox. Doing this al-
lows to compare the results of the two implementation by ‖τ−τ ′‖<ε. For the
numeric test, random numbers are used for joint positions q, velocities q̇ and
accelerations q̈ as well as for kinematic parameters (lengths, constant angles)
and dynamics parameters (masses, center of masses, inertia).

Test 4. Several properties of the dynamics equations can be exploited to perform
further tests on the implementations of the single terms. A Coriolis matrix C
can be obtained from the mass matrix M using Christoffel symbols. It follows
the relation c′(q, q̇)=C(q, q̇)q̇. This can be exploited by the test ‖c−c′‖<ε.

Test 5. The term Ṁ(q, q̇)−2C(q, q̇) has to be a skew matrix.

Test 6. The kinetic energy can be derived symbolically using mechanics princi-
ples as Ekin(q, q̇). The mass matrix (in generalized coordinates q) is connected
with the kinetic energy via E′kin=q̇

TM(q)q̇. Comparing the two implementa-
tions leads to the test inequality ‖Ekin−E′kin‖<ε.

Test 7. The gravitational model can be tested with a forward dynamics simula-
tion. An ODE simulation is performed for q̈=−M−1(q)[c(q, q̇)+g(q)] using the
Runge-Kutta numerical integration ode45. This gives a time series q(t), q̇(t) and
q̈(t). The sum of energies over this trajectory is calculated using the potential
energy Epot(q), which has to be implemented within the Lagrange approach.
The test now checks, if the sum of energies Etotal=Ekin+Epot stays constant, by
using the inequality ‖Etotal(t=0)−Etotal(t=tend)‖<ε.

Property 4. The dynamics equations can be formulated in different sets of pa-
rameters: barycentric parameters pB (mass, center of mass, inertia), inertial pa-
rameters pI (mass, first and second moments of mass) and a minimal parameter
vector pM which is a linear combination of the inertial parameters, regrouping
parameters with the same effect on the dynamics. The latter implementation is
very efficient and essential for the identification of the parameters of a real robot.
The former approaches are more intuitive. The inertial parameters only occur in
a linear relation in the dynamics equations, allowing to write τ ′=ΦI(q, q̇, q̈)pI
and τ ′′=ΦM(q, q̇, q̈)pM. This identification model of the dynamics requires a
specific approach to the derivation of velocity and energy.

Test 8. To compare the different implementations regarding sets of parameters,
a consistent set of parameters pB, pI and pM is created using the parallel axis
theorem. Then the tests ‖τ−τ ′‖<ε and ‖τ−τ ′′‖<ε are performed.

Test 9. It is tested numerically if ΦMpM is a minimal form of ΦIpI. Via QR
decomposition it is checked that the information matrix for a virtual identi-
fication problem with random virtual trajectory samples q1, q̇1, q̈1, q2, ... has
rank([ΦT

I (q1, q̇1, q̈1),Φ
T
I (q2, q̇2, q̈2), ...]

T)=dim(pM).

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

8 M. Schappler et al.

Property 5. The internal cut forces from the rigid body dynamics are calculated
with wT=[wT

0 ,w
T
1 , ...,w

T
n]

T, where wi contains the stacked cut force and cut
moment for rigid body i (cut at the corresponding joint) from the Newton-Euler
approach.

Property 6. The geometric approach for the 6×n Jacobian matrix Jg can be
extended to obtain a 6×6(n+1) cut force Jacobian Jg,cut. The internal cut forces
from an external wrench (force and moment) can be obtained using this matrix
with w′=JT

g,cut(q)[f
T
ext,m

T
ext]

T.

Test 10. Further, it has to be ensured that the implementations of kinematics
and dynamics match each other. For the test, we set q̈=q̇=0 and set only one
mass of the robot to be non-zero. Here, fext=fgrav is the force resulting from
the test mass gravity andmext=0. Both expressions for the cut force have to be
identical, which can be tested numerically with ‖w−w′‖<ε.

3.2 Serial-Hybrid Robots

Serial-hybrid robots consist of a serial main structure connecting the base and
the end effector with additional closed kinematic loops, as depicted in Fig. 1,b.
The closed loops are used to constrain degrees of freedom or to shift the position
of motors within the structure [21]. The kinematics of closed loops require a
different approach than of open loops. The joint coordinates are separated into
the generalized (active joint) coordinates q and passive joints coordinates θ. The
theory can be viewed in detail in the textbooks [24,12] and e.g. in [21,13,26,9,6].

Property 7. The default approach uses loop equations in the implicit formula-
tion h(q,θ)=0. For simple mechanisms, such as the planar parallelograms in
Fig. 1,b, an inverse geometric model can be formulated explicitely as θ=θ(q).
The kinematic model of serial-hybrid robots is set up with the extended version
of the modified DH parameters [12,3] taking the branching in the kinematic tree
structure into account. Additionally to the open loop model, the loop closing
conditions are modeled as symbolic equations for h(q,θ) and θ(q) by hand.

Test 11. While creating the model, visual plausibility is checked with a kinematic
sketch as in Fig. 1,b.

Test 12. After this, the test ‖h(q,θ)‖<ε is performed. The passive joint coordi-
nates θ(q) are obtained symbolically or – if not possible – numerically using the
Newton-Raphson algorithm on h=0. The kinematic parameters and test config-
urations for q can not be chosen randomly as in the serial robot case, but have
to be chosen as plausible values by visual inspection or from CAD data.

Property 8. The kinematic constraints can be formulated in the differential form
θ̇=Jθq̇. The constraints Jacobian Jθ can be obtained from the implicit form h
of the constraints as Jθ=−(∂h/∂θ)−1(∂h/∂q). Using the elimination approach
[25], θ(q) is available in symbolic form and the differential relation J ′θ=∂θ/∂q
[21] can be obtained.

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

Maple Toolchain for Robot Rigid Body Dynamics 9

Test 13. The two implementations (implicit and explicit form) are tested with
the identity of Jθ and J ′θ up to rounding errors ε.

Property 9. Creating the robot model requires the definition of an open-loop
tree structure with the coordinates qOL, which contains the coordinates q and
θ. For this model, all tests and definitions from Sec. 3.1 can be used.

Test 14. Velocities of the rigid bodies of the robot are now generated by both
models based on property 2. For the elimination approach v=Jg(q)q̇ and for the
open-loop structure (implicit approach) v′=Jg,OL(qOL)q̇OL is used. The entities
q and qOL as well as q̇ and q̇OL are chosen consistently with random numbers
like in Test 12. Using this within the test ‖v−v′‖<ε proves the validity of the
implementation of the velocities within the algorithm. The velocity and Jaco-
bians can be set up for any rigid body of the mechanism, not limited to the end
effector link.

The same approach can be performed for the accelerations.

Property 10. The dynamics equations are again deduced by two different ap-
proaches to allow testing the results. Using the elimination approach [25], the
passive joints θ are completely eliminated from the symbolic equations already
at the kinematics stage. The Lagrangian equations of the second kind are used to
deduce the dynamics τ (q, q̇, q̈) in the closed-loop robots minimal coordinates q.
The projection approach leads to τ ′=τq+Jθτθ, where τq and τθ are the compo-
nents of the open-loop dynamics τOL(qOL, q̇OL, q̈OL) corresponding to the entries
of q and θ in qOL.

Test 15. The implementations are again tested numerically via ‖τ−τ ′‖<ε. Ran-
dom values for q, q̇, q̈ and consistent values for θ, θ̇, θ̈ are selected.

Some other tests on the dynamics from Sec. 3.2, such as the test of energy con-
sistency, are also applied.

3.3 Parallel Robots

Parallel robots, as given in Fig. 1,c have a similar modeling approach as hybrid
robots since they also contain closed kinematic loops. A detailed overview on
the dynamics is given in [3]. Usually the platform coordinates x are chosen as
minimal coordinates of the system [19]. The relation between platform velocity
v and the time derivative ẋ of the platform coordinates has to be regarded in
the algorithm [19,1] and is considered in the implementation, but is omitted here
for the sake of brevity and only entities related to ẋ are presented.

Property 11. For the symbolic derivation of the dynamics the two-step projec-
tion approach from [1] with a claim on high efficiency is used and gives the
dynamics τx(x, ẋ, ẍ, qOL) and the inverse Jacobian matrix J−1(x, qOL) with
q̇=J−1ẋ. The dynamics τx in platform coordinates can be projected into the
active joint coordinates with τ=JTτx. This represents the actuator force nec-
essary to achieve the robot motion given by x, ẋ and ẍ – a value necessary for
simulation and control.

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

10 M. Schappler et al.

Property 12. This implementation is verified by a second approach, which is
taken from [5] and presents a more general approach than standard algorithms
[19]. It mainly corresponds to a general form of the state-of-the-art approach
for the dynamics of closed kinematic loops from [6] with focus on using the
platform coordinates x. The implicit definition of the constraints h(x, qOL)=0 is
only partially implemented symbolically due to the high computational demand
in the general case. Again, qOL includes the active joint coordinates q and the
passive joints coordinates θ of the kinematic leg structure (without the platform).

Property 13. The differential formulation hxẋ+hqOL
q̇OL=0 with hx=∂h/∂x

and hqOL=∂h/∂qOL can be obtained from the constraints equations. This leads
to the inverse Jacobian matrix J−1OL=−h−1qOL

hx for the full joint vector, relating
q̇OL=J

−1
OLẋ. Selecting only the rows corresponding to the active joint coordinates

gives the inverse Jacobian matrix J ′−1, where the dash only marks the second
implementation in demarcation of the first one.

Test 16. The gradient matrices hx and hqOL
are tested against the constraints

formulation h by defining ∆x and ∆qOL with ‖∆x‖�1 and ‖∆qOL‖�1. Let x1

and qOL,1 be arbitrary random numbers with h1=h(x1, qOL,1)6=0. The values
x2=x1+∆x, qOL,2=qOL,1+∆qOL and h2=h(x2, qOL,2) are calculated. As a sec-
ond step, h′2=h1+hx∆x+hqOL

∆qOL is calculated and the two implementations
are tested with ‖h2−h′2‖<ε. This of course is (again) mathematically trivial,
but necessary, as elaborated upon in test 2. Due to the complexity of the terms
the implementation is otherwise prone to errors.

Test 17. Both implementations J−1 and J ′−1 from properties 11 and 13 are
tested for equality up to rounding errors of ε within the numerical computation.

Similar tests can be defined for the second time derivative of the the con-
straints equation, which is used to determine the acceleration relations.

Property 14. The second implementation of the dynamics of parallel robots [5]
is determined numerically. The approach is very similar to the case of hybrid
robots using the constraints Jacobians [24,6]. Expressed in platform frame, it
results τ ′x=τP(x, ẋ, ẍ)+J

−T
OL (qOL,x)τOL(qOL, q̇OL, q̈OL). The dependencies on

qOL and x and their time derivatives are added for clarity. These quantities
have to fulfill the constraints equations h=0, ḣ=0 and ḧ=0. The dynamics of
the platform as a rigid body in Cartesian space is considered with the term
τP and τOL contains the open-loop dynamics of the single leg chains that are
deduced with the methods presented in Sec. 3.1.

Test 18. Both implementations are then tested using the inequality ‖τx−τ ′x‖<ε.

Other tests for the dynamics, such as energy consistency by time-integration
of the forward dynamics, can be performed as presented in Sec. 3.1.

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

Maple Toolchain for Robot Rigid Body Dynamics 11

4 Description of the Proposed Toolchain

The fundamentals of kinematics and dynamics of Sec. 3 are implemented in a
toolchain to obtain the robot models for serial, hybrid and parallel robots follow-
ing the requirements introduced at the end of Sec. 1. The program is structured
within several Maple worksheets which each contain only a limited set of fun-
damental equations, corresponding to one of the numbered properties in Sec. 3.
This allows a convenient debugging with the graphical user interface of Maple.
All intermediate symbolic expressions are exchanged between worksheets via
data files which are saved in one worksheet and read in the next. Therefore each
worksheet can run independently, once previous parts are generated. This struc-
tural decision can be justified also by the experiences with another toolbox [5],
which was implemented solely based on Maple procedures. This made debugging
and extending the tool an impossible task regarding 280 interleaved procedures.

The proposed toolchain has three workflows corresponding to the robot type,
where the serial robot case is the most central one. The workflow for parallel
robots is modular. It first generates the corresponding serial kinematic leg chain
which is then used by the the approach of prop. 11 in Sec. 3.3. The use of the
Lagrange equations of the second kind allows a modular reuse of the worksheets
for serial robots also for hybrid robots using the elimination approach. The second
implementation for hybrid robots of prop. 10 in Sec. 3.2 is implemented in a
modular way similar to parallel robots using the workflow of the open-loop tree
structure first and then applying the worksheets for the implicit constraints.

The overall workflow is summarized in Fig. 3. As step 1, serial robots are de-
scribed with an input definition file using DH parameters from [12] and parallel
robots by an additional definition file referring to the leg chain and alignment of
the base joint. For hybrid robots, a separate manually created worksheet for the
constraints of Sec. 3.2 is necessary. Step 2 comprises (automatically) running all
Maple worksheets. To enable batch and partially parallel processing, all work-
sheets (.mw files) are saved separately in a text format (with .mpl extension),
which can be run by the terminal application of Maple. Every worksheet exports
the symbolic expressions of the model equations as optimized code in Matlab
syntax using the Maple CodeGeneration package. Following basic principles for
software quality [32], in step 3 the automatically generated optimized Matlab
code for all symbolic expressions is post-processed to reach a certain standard.
A Bash script creates a function file with a header comment with short descrip-
tion of the function and its inputs and outputs, assertions to prevent unexpected
user input, compiler information, statistics of the code generation and finally the
optimized code itself. After all function files are (automatically) generated, the
unit test framework is run in step 4. If all tests are passed, the results can be
used for their designated purpose in step 5.

1: Define
Input

2: Process
Worksheets

3: Post-
Process

4: Perform
Unit Tests

5: Use
Models

Fig. 3. Overview of the overall workflow of the toolchain

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

12 M. Schappler et al.

5 Application to a Model Database Framework

As introduced in Sec. 1, one of the purposes of the toolchain is to create an
algorithm that is able to determine the best robot for a given task. In a first
step of structural synthesis all possible structures have to be identified and their
description stored systematically. Then all robot models have to be generated
in symbolic form. Finally, the batch-optimization of all robots is performed and
the best robot is selected. All serial kinematic chains are generated using the ap-
proach from [23], which is similar to the evolutionary morphology from [11]. Leg
chains for parallel robots are created with the same approach with modifications
on the requirements from parallel robot structural synthesis [15,11]. This leads
to a database of the kinematic descriptions, i.e. Denavit-Hartenberg parameters
for serial robots [12]. For parallel robots lists of possible leg chains and align-
ments of the base and platform coupling joints are stored. The databases are
saved in text-based csv-tables to facilitate software version control using Git.

The models in the serial robot database are created as Matlab functions
by batch-processing the robot definition files with the proposed toolchain. This
stored input and output data, referenced in the footnotes on p. 3 of the paper,
can be regarded as a case study for the validity of the toolchain. At the current
stage, 616 unique kinematic chains (with 3 to 6 joints) are stored, which by
elimination of isomorphisms represent all possible structures [23]. The database
contains approximately 36 thousand Matlab files with 6 million lines of auto-
matically generated code. The size of the complete database is around 300MB
and therefore still feasible. Generating all robot models takes about 5 days of
CPU time on a standard desktop computer. Due to partially parallel execution,
all model files for one serial robot can be generated within one hour. By also gen-
erating the whole database with the tools SymPyBotics [27] and OpenSymoro
[14], the inverse dynamics of property 3 is validated against another reference.
The number of operations of these different implementations are counted in the
generated code and are compared in Fig. 4. The proposed Maple toolchain (with
Newton-Euler) has a similar efficiency as the Python-based references. Using
Lagrange is less efficient, as expected from literature [12].

Code generation for parallel robots shows that the selected symbolic approach
[1] of property 11 in Sec. 3.3 is very efficient for simple kinematic structures with a

0

1

2

3

#
 o

f
O

p
s.

 i
n

 K

Proposed, Lagrange Proposed, Newton SymPyBotics OpenSymoro

Fig. 4. Comparison of the number of operations for inverse dynamics of the proposed
toolbox with two methods (Lagrange, Newton-Euler) and two reference toolboxes
(SymPyBotics, OpenSymoro) over all 616 serial kinematics on the horizontal axis.
Sorted by increasing total number of joints and then by number of revolute joints.

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

Maple Toolchain for Robot Rigid Body Dynamics 13

(a) 4-DoF
robot palletizer

(b) 2-DoF
conveyor picker

(c) 6-DoF
PKM with serial-hybrid legs

Fig. 5. Examples of hybrid robots implemented in the program framework.

low number of kinematic parameters (resulting from a low number of mechanical
joints). For general kinematic leg chains with revolute joints instead of universal
and spherical joints, the necessary computation time can reach several days and
is not feasible any more. The case of parallel robots with platform coupling joints
that are not spherical is not included in the symbolic approach [1]. In summary,
only symbolic code for 91 parallel robot models was included in the database,
which in total consists of a few thousand symmetric parallel robots with 3 to 6
platform degrees of freedom (DoF). To perform dynamics simulations for parallel
robots therefore the approach [5] of property 12 in an extended formulation is
used, allowing also robots with non-spherical coupling joints.

Only some examples of industrial robots with closed loops are implemented
manually, such as robot palletizers (see Fig. 1,b or Fig. 5,a) and the 2-DoF pick-
and-place machine for conveyor belts from Fig. 5,b. An automated systematic
synthesis of serial-hybrid robots or parallel robots based on serial-hybrid leg
chains as (the manually created example) in Fig. 5,c is not implemented yet.

6 Conclusion

The presented new toolchain for robot dynamics stands out against existing tools
by focusing on an integral approach of a complete workflow from a robot defi-
nition to a stand-alone dynamics model implementation. Quality requirements,
such as automatic documentation and testing, are explicitly considered. No addi-
tional steps have to be performed by the user, such as manually post-processing
toolbox output or testing the results beyond integration tests. This allows the
deployment as a model generator for an extensive robot database which is used
for a dimensional synthesis over all existing robots to find the best robot for a
specified task.

Acknowledgements

This work was developed over five years using funding from the German Re-
search Foundation (DFG, grant 341489206), the Federal Ministry of Education
and Research of Germany (BMBF, grant 16SV6175) and the European Union’s
Horizon 2020 research and innovation programme (grant 688857).

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

14 M. Schappler et al.

References

1. Abdellatif, H., Heimann, B.: Computational efficient inverse dynam-
ics of 6-DOF fully parallel manipulators by using the Lagrangian
formalism. Mechanism and Machine Theory 44(1), 192–207 (2009).
https://doi.org/10.1016/j.mechmachtheory.2008.02.003

2. Bethge, S., Malzahn, J., Tsagarakis, N., Caldwell, D.: FloBaRoID –
a software package for the identification of robot dynamics parameters.
In: Int. Conf. on Robotics in Alpe-Adria Danube Region. pp. 156–165.
Springer (2017). https://doi.org/10.1007/978-3-319-61276-8_18, project home-
page: https://github.com/kjyv/FloBaRoID

3. Briot, S., Khalil, W.: Dynamics of Parallel Robots, Mechan. Machine Science,
vol. 35. Springer (2015). https://doi.org/10.1007/978-3-319-19788-3

4. Corke, P.: Robotics, vision and control. Springer Tracts in Advanced Robotics
(2011). https://doi.org/10.1007/978-3-642-20144-8, the CodeGenerator extension
was added by Jörn Malzahn, available at https://github.com/petercorke/robotics-
toolbox-matlab/tree/master/@CodeGenerator; a Python version of the toolbox is
under development at https://github.com/petercorke/robotics-toolbox-python

5. Do Thanh, T., Kotlarski, J., Heimann, B., Ortmaier, T.: On the inverse dynamics
problem of general parallel robots. In: IEEE Int. Conf. on Mechatronics. pp. 1–6
(2009). https://doi.org/10.1109/ICMECH.2009.4957202

6. Docquier, N., Poncelet, A., Fisette, P.: Robotran: a powerful symbolic
gnerator of multibody models. Mechanical Sciences 4(1), 199–219 (2013).
https://doi.org/10.5194/ms-4-199-2013, https://www.robotran.be/

7. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer Science & Business
Media (2008). https://doi.org/10.1007/978-1-4899-7560-7

8. Felis, M.L.: RBDL: an efficient rigid-body dynamics library using recursive algo-
rithms. Autonomous Robots pp. 1–17 (2016). https://doi.org/10.1007/s10514-016-
9574-0, project homepage: https://rbdl.github.io

9. Fisette, P., Postiau, T., Sass, L., Samin, J.C.: Fully symbolic generation of complex
multibody models. Mechanics of Structures and Machines 30(1), 31–82 (2002).
https://doi.org/10.1081/SME-120001477

10. Gogu, G.: Families of 6R orthogonal robotic manipulators with only isolated and
pseudo-isolated singularities. Mechanism and Machine Theory 37(11), 1347–1375
(Nov 2002). https://doi.org/10.1016/S0094-114X(02)00048-4

11. Gogu, G.: Structural Synthesis of Parallel Robots, Part 1: Methodology, vol. 866.
Springer (2008). https://doi.org/10.1007/978-1-4020-5710-6

12. Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Hermes
Penton Science (2002). https://doi.org/10.1016/B978-1-903996-66-9.X5000-3

13. Khalil, W., Creusot, D.: Symoro+: A system for the symbolic modelling of robots.
Robotica 15(2), 153–161 (1997). https://doi.org/10.1017/S0263574797000180

14. Khalil, W., Vijayalingam, A., Khomutenko, B., Mukhanov, I., Lemoine,
P., Ecorchard, G.: OpenSYMORO: An open-source software package for
symbolic modelling of robots. In: IEEE/ASME Int. Conf. on Advanced
Intelligent Mechatronics. pp. 1206–1211. Besançon, France (Jul 2014).
https://doi.org/10.1109/AIM.2014.6878246, https://github.com/symoro/symoro

15. Kong, X., Gosselin, C.M.: Type synthesis of parallel mechanisms. Springer Pub-
lishing Company, Incorporated (2007). https://doi.org/10.1007/978-3-540-71990-8

16. Krefft, M.: Aufgabenangepasste Optimierung von Parallelstrukturen für Maschi-
nen in der Produktionstechnik. Ph.D. thesis, Technische Universität Braunschweig,
Germany (2006), ISBN 3802786890, Vulkan-Verlag GmbH

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

Maple Toolchain for Robot Rigid Body Dynamics 15

17. Kuo, C.H., Dai, J.S.: Structural synthesis of serial robotic manipulators subject
to specific motion constraints. In: Proc. of the ASME 2010 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference. Montreal (2010). https://doi.org/10.1115/DETC2010-28947

18. Kurz, T., Eberhard, P., Henninger, C., Schiehlen, W.: From Neweul to Neweul-M2:
Symbolical equations of motion for multibody system analysis and synthesis. Multi-
body System Dynamics 24(1), 25–41 (2010). https://doi.org/10.1007/s11044-010-
9187-x, project homepage: https://www.itm.uni-stuttgart.de/software/neweul-m/

19. Merlet, J.P.: Parallel robots, Solid Mechanics and Its Applications, vol. 128.
Springer S.&B. Media, 2nd edn. (2006). https://doi.org/10.1007/1-4020-4133-0

20. MSC Software Corporation: MSC Adams, website, accessed Dec. 2nd 2020,
https://www.mscsoftware.com/product/adams

21. Nakamura, Y., Ghodoussi, M.: Dynamics computation of closed-link robot mech-
anisms with nonredundant and redundant actuators. IEEE Transactions on
Robotics and Automation (1989). https://doi.org/10.1109/70.34765

22. Nethery, J.F., Spong, M.W.: Robotica: a Mathematica package for
robot analysis. IEEE Robot. & Automat. Mag. 1(1), 13–20 (1994).
https://doi.org/10.1109/100.296449, github.com/RoboticSwarmControl/robotica

23. Ramirez, D.A.: Automatic generation of task-specific serial mechanisms using com-
bined structural and dimensional synthesis. Ph.D. thesis, Gottfried Wilhelm Leib-
niz Universität Hannover, Germany (2018). https://doi.org/10.15488/4571

24. Samin, J.C., Fisette, P.: Symbolic modeling of multibody systems, Solid Mechan-
ics and Its Applications, vol. 112. Springer Science & Business Media (2003).
https://doi.org/10.1007/978-94-017-0287-4

25. Schappler, M., Lilge, T., Haddadin, S.: Kinematics and dynamics model via explicit
direct and trigonometric elimination of kinematic constraints. In: Proc. of the 15th
IFToMM World Congress (2019). https://doi.org/10.1007/978-3-030-20131-9_311

26. Shi, P., McPhee, J.: Dynamics of flexible multibody systems using virtual work
and linear graph theory. Multibody System Dynamics 4(4), 355–381 (2000).
https://doi.org/10.1023/A:1009841017268

27. Sousa, C.D., Cortesão, R.: SageRobotics: open source framework for symbolic com-
putation of robot models. In: Proc. 27th Annu. ACM Symp. Applied Computing.
pp. 262–267 (2012). https://doi.org/10.1145/2245276.2245329, project homepage
(successor): https://github.com/cdsousa/SymPyBotics

28. Tedrake, R., the Drake Development Team: Drake: Model-based design and verifi-
cation for robotics (2019), project homepage: https://drake.mit.edu

29. The MathWorks, Inc.: Matlab Simscape Multibody, website, accessed Dec. 2nd
2020, https://mathworks.com/products/simmechanics.html

30. Wang, Y., Gondokaryono, R., Munawar, A., Fischer, G.S.: A convex
optimization-based dynamic model identification package for the da
Vinci research kit. IEEE Robotics and Automation Letters 4, 3657–
3664 (2019). https://doi.org/10.1109/LRA.2019.2927947, project homepage:
https://github.com/WPI-AIM/dvrk_dynamics_identification

31. Waterloo Maple Inc.: MapleSim, website, accessed Dec. 2nd 2020,
https://maplesoft.com/products/maplesim/

32. Wilson, G., Aruliah, D.A., Brown, C.T., Hong, N.P.C., Davis, M., Guy,
R.T., Haddock, S.H., Huff, K.D., Mitchell, I.M., Plumbley, M.D., et al.:
Best practices for scientific computing. PLoS biology 12(1), e1001745 (2014).
https://doi.org/10.1371/journal.pbio.1001745

This is the author’s version of an article that has been published in the 2021 Proceedings of “Maple
in Mathematics Education and Research”. Changes were made to this version by the publisher prior
to publication. Final version of record available at https://doi.org/10.1007/978-3-030-81698-8_23

Copyright (c) 2021 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.

