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Explainability: New Application and New
Promise of Fuzzy Techniques

World has always been run by experts. For millennia, the world has been run by
experts: Medical doctors used their skills and their intuition to cure patients,
engineers used their skills and their intuition to design building, bridges, etc.,
entrepreneurs used their intuition to run companies, generals use their skills and
their intuition to win battles, Sherlock Holmes’s used their skills and their intuition
to catch criminals, etc.

Why is this a problem? An obvious problem with this arrangement is that there
are very few very good top experts, not enough to solve all the problems. As a
result, the rest of us has to rely on the services of less experienced experts. Kings
could use the best medical doctors, but when a simple peasant got sick, the person
who took care of his or her illness was clearly not so skilled.

Another problem is that even top experts are sometimes wrong. John Le Carre, a
popular author of spy novels, describes—in his novel A Little Town in Germany—
a top expert as a person who only asks a question when he/she knows the answer.
Largely, this is true: A top medical doctor usually knows the diagnosis before the
tests confirm it, a top physicist intuits the results of the experiment, a top mathe-
matician knows whether the statement is true before a proof is found, etc. But even
top experts make mistakes. Most bridges designed by top engineers cause our awe,
but some of them spectacularly collapsed. Genius 20 century airplane designers had
many brilliant successes—and several catastrophic designs. David Hilbert, the top
mathematician of the late 1890s, when asked to present 23 important challenges to
the twentieth-century mathematicians, guessed most answers correctly, but not all,
e.g., his 13th problem was to find a function of three variables that cannot be
represented as compositions of functions of two variables—and it turned out that
this is impossible. One may say that 1/23 � 5% error rate is very low—but do we
really want 5% of the population to be sitting in jail without any crime just because
of Sherlock Holmes’s mistakes?

Leinbiz’s dream. As science and engineering developed, many things that were
previously based on intuition became the subject of exact equations. Engineers used
formulas to design buildings and bridges, even medical doctors started using some
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formulas to decide on the dosage of medicine. The famous sixteenth–
seventeenth-century philosopher Leibniz—a co-author of calculus and the author
of the binary system that all computers use—had a dream that some day, math-
ematization will reach a level at which we would not need experts, we would not
need informal arguments—we will just calculate and see who is right and what to
do.

Leibniz’s dream starts coming true. This is exactly what happened in the nine-
teenth century and in the first half of the twentieth century: More and more
equations have been discovered, and better and better computational devices enable
us to solve these equations. Control was no longer the domain only of experienced
operators—automatic controllers successfully operated factories and even airplanes.
Companies were no longer run based by intuition—technocrats provided mathe-
matical models that led to new successes. Even in military applications, game
theory—heaving financed by defense all over the world—promised to largely
replace the generals’ intuition.

By the 1960s, results were not always perfect, but the feeling was that with new
faster computers—and computers did become faster year after year—Leibniz’s
dream will finally come true. Medical expert systems will replace human doctors,
and robots will replace skilled workers.

But it turned out that experts are still needed. However, by the mid-1960s, it
became clear to several researchers that the original hopes were too optimistic. One
of these researchers was Lotfi Zadeh, one of the authors of the then most popular
book on automatic control. He realized that one of the reasons why even the best
automatic controllers were sometimes not as efficient as human experts is that
human experts possess additional knowledge—which is difficult to incorporate into
an automatic controller because it uses imprecise (“fuzzy”) words from natural
language like “small”.

To describe such knowledge in precise (and thus, computer-understandable)
terms, Zadeh came up with the ideas of fuzzy logic and fuzzy techniques. This
technique establishes a correspondence between natural language knowledge and
precise numerical formulas and dependencies.

Fuzzy boom and why it slowed down. After a few years, Zadeh’s ideas led to
numerous successful applications, from fuzzy rice cookers and washing machines
to fuzzy controllers for elevators, cars and trains.

Every time we did not have exact equations, exact data, using expert intuition—
translated, by fuzzy techniques, into precise control strategy—helped a lot. But of
course, more and more equations became known, so the need for expert knowledge
decreased—in many cases when previously we had to rely on expert knowledge,
now exact equations and known and an optimal control is possible.

What is happening now? The more adequately we describe a system, the more
complex the corresponding equations are. At some point, it becomes not realistic to
solve these equations by exact guaranteed methods.
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Instead, practitioners started using efficient—although not guaranteed—methods
of machine learning, where, based on several known cases with known solutions,
the system tries to find a similar solution for new cases. Many current machine
learning methods like deep learning are very good—they control self-driving cars,
they help companies decide who to hire, they help banks decide to whom to give
loans—they are everywhere.

And again, there is a problem. Many systems based on machine learning are very
good—but they are not perfect. If a system for solving crimes is 95% accurate, this
is a great achievement—but we can now repeat the same question: Do we really
want to see 5% of the population in jail just because of the program’s errors? More
generally, do we want 5% of the population—millions—to be treated unfairly just
because of the program’s imperfection?

So what is a solution? Modern machine learning techniques are like top experts in
the old days—they are usually good, but sometimes, they fail. So what can we do?

For a human expert—e.g., a medical doctor—the solution was to ask for his/her
arguments, to have him/her discuss it with other medical doctors. Unfortunately, we
cannot do it for a computer program, they are more like idiot savants rather than top
experts—they tell us the recommendations but they cannot explain how they came
up with these recommendations.

Since the current techniques do not provide such explanations, we need to learn
how to produce them. How can we do that? What we need is to translate numerical
results into a natural language description. In other words, what we need is to
invoke a correspondence between natural language knowledge and precise
numerical formulas and dependencies—and this correspondence is exactly what
fuzzy techniques provide! So, what we need is to learn how to use fuzzy techniques
to make results of machine learning explainable.

What is in this book? Some of the papers presented in this book do exactly this:
They show how fuzzy techniques can lead to explainable AI. At present, there are
not too many such cases, and this is still work in progress.

For this ultimate goal to succeed, we need to solve many challenging problems
in fuzzy techniques itself—and be able to better tune the current methods on new
applications. This is what most other papers are about—a steady progress in many
aspects of fuzzy.

We hope that this book—and similar books on explainable fuzzy AI—will boost
this important research area.

Our thanks. This book is based on papers from the 2021 Annual Conference
of the North American Fuzzy Information Processing Society. We want to thank
everyone who helped organize this conference; we also want to thank the authors
for selecting this venue for their interesting results, we want to thank the reviewers
for their hard work, we want to thank the conference participants for their
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interest, and—last but not the least—we want to thank Professor Janusz Kacprzyk
and the Springer staff for agreeing to (and helping to) produce this volume. Our
sincere thanks to all of you!

Julia Taylor Rayz
Victor Raskin

Scott Dick
Vladik Kreinovich
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